1
|
Stabinska J, Thiel TA, Zöllner HJ, Benkert T, Wittsack HJ, Ljimani A. Investigation of diffusion time dependence of apparent diffusion coefficient and intravoxel incoherent motion parameters in the human kidney. Magn Reson Med 2025; 93:2020-2028. [PMID: 39641988 DOI: 10.1002/mrm.30396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 10/21/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE To characterize the diffusion time (Δeff) dependence of apparent diffusion coefficient (ADC) and intravoxel incoherent motion-related parameters in the human kidney at 3 T. METHODS Sixteen healthy volunteers underwent an MRI examination at 3 T including diffusion-weighted imaging at different Δeff ranging from 24.1 to 104.1 ms. The extended mono-exponential ADC and intravoxel incoherent motion models were fitted to the data for each Δeff and the medullary and cortical ADC, (pseudo-)diffusion coefficients (D* and D) and flow-related signal fraction (f) were calculated. RESULTS When all the data were used for fitting, a significant trend toward higher ADC with increasing Δeff was observed between 24.1 and 104.1 ms (median and interquartile range: 2.38 [2.19, 2.47] to 2.84 [2.36, 2.90] × 10-3 mm2/s for cortex, and 2.28 [2.18, 2.37] to 2.82 [2.58, 3.11] × 10-3 mm2/s for medulla). In contrast, no significant differences in ADC were found when only the data acquired at b-values higher than 200 s/mm2 were used for fitting. When the intravoxel incoherent motion model was applied, cortical and medullary f increased significantly (cortex: 0.21 [0.15 0.27] to 0.37 [0.32, 0.49] × 10-3 mm2/s; medulla: 0.15 [0.13 0.29] to 0.41 [0.36 0.51] × 10-3 mm2/s). No significant changes in cortical and medullary D and D* were observed as diffusion time increased. CONCLUSION Renal perfusion and tubular flow substantially contribute to the observed increase in ADC over a wide range of Δeff between 24 and 104 ms.
Collapse
Affiliation(s)
- Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas Andreas Thiel
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Helge Jörn Zöllner
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthineers AG, Erlangen, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
2
|
Hernando D, Zhang Y, Pirasteh A. Quantitative diffusion MRI of the abdomen and pelvis. Med Phys 2021; 49:2774-2793. [PMID: 34554579 DOI: 10.1002/mp.15246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Diffusion MRI has enormous potential and utility in the evaluation of various abdominal and pelvic disease processes including cancer and noncancer imaging of the liver, prostate, and other organs. Quantitative diffusion MRI is based on acquisitions with multiple diffusion encodings followed by quantitative mapping of diffusion parameters that are sensitive to tissue microstructure. Compared to qualitative diffusion-weighted MRI, quantitative diffusion MRI can improve standardization of tissue characterization as needed for disease detection, staging, and treatment monitoring. However, similar to many other quantitative MRI methods, diffusion MRI faces multiple challenges including acquisition artifacts, signal modeling limitations, and biological variability. In abdominal and pelvic diffusion MRI, technical acquisition challenges include physiologic motion (respiratory, peristaltic, and pulsatile), image distortions, and low signal-to-noise ratio. If unaddressed, these challenges lead to poor technical performance (bias and precision) and clinical outcomes of quantitative diffusion MRI. Emerging and novel technical developments seek to address these challenges and may enable reliable quantitative diffusion MRI of the abdomen and pelvis. Through systematic validation in phantoms, volunteers, and patients, including multicenter studies to assess reproducibility, these emerging techniques may finally demonstrate the potential of quantitative diffusion MRI for abdominal and pelvic imaging applications.
Collapse
Affiliation(s)
- Diego Hernando
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yuxin Zhang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ali Pirasteh
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Wang X, Hu Y, Lu X, Cai Y, Shu J. Quantitative T2 mapping of rats with chronic hepatitis. Exp Ther Med 2021; 21:225. [PMID: 33603834 PMCID: PMC7851601 DOI: 10.3892/etm.2021.9656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/04/2020] [Indexed: 11/29/2022] Open
Abstract
The aim of the study was to explore the diagnostic value of T2 mapping in an experimental rat model of chronic liver disease. Chronic hepatitis was induced in Sprague-Dawley male rats (n=88) by intraperitoneal and abdominal subcutaneous injection of carbon tetrachloride in olive oil. The normal control rats (n=12) were similarly injected with the same dose of normal saline. All rats were randomly selected and subjected to T2-weighted/spectral adiabatic inversion recovery and multiple gradient- and spin-echo sequence. After scanning, rats were sacrificed immediately and livers removed for staining with hematoxylin and eosin, as well as Masson's trichrome, to determine the pathological stage of hepatic fibrosis, necroinflammatory activity and steatosis. The T2 values were measured and associated with histopathological findings. The T2 values were significantly associated with hepatic fibrosis (P<0.05), but not with hepatitis (P>0.05) or steatosis (P>0.05). By partial correlation analysis, a significant positive correlation was observed between the T2 values and stages of liver fibrosis (r=0.820; P<0.05). T2 values increased with progressive hepatic fibrosis. The differences between T2 values and stages of liver fibrosis were statistically significant. Statistically significant differences were observed between different stages of liver fibrosis (P<0.05), with an area under the curve value of 0.944 for predicting stage F1 or greater, 0.942 for stage F2 or greater, 0.958 for stage F3 or greater, and 0.948 for F4. Thus, the T2 value is one of the quantitative indices of imaging and accurately reflects the stages of liver fibrosis.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yan Hu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xin Lu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yu Cai
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
4
|
Jiang X, Xu J, Gore JC. Mapping hepatocyte size in vivo using temporal diffusion spectroscopy MRI. Magn Reson Med 2020; 84:2671-2683. [PMID: 32333469 DOI: 10.1002/mrm.28299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/11/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE The goal of this study is to implement a noninvasive method for in vivo mapping of hepatocyte size. This method will have a broad range of clinical and preclinical applications, as pathological changes in hepatocyte sizes are relevant for the accurate diagnosis and assessments of treatment response of liver diseases. METHODS Building on the concepts of temporal diffusion spectroscopy in MRI, a clinically feasible imaging protocol named IMPULSED (Imaging Microstructural Parameters Using Limited Spectrally Edited Diffusion) has been developed, which is able to report measurements of cell sizes noninvasively. This protocol acquires a selected set of diffusion imaging data and fits them to a model of water compartments in tissues to derive robust estimates of the cellular structures that restrict free diffusion. Here, we adapt and further develop this approach to measure hepatocyte sizes in vivo. We validated IMPULSED in livers of mice and rats and implemented it to image healthy human subjects using a clinical 3T MRI scanner. RESULTS The IMPULSED-derived mean hepatocyte sizes for rats and mice are about 15-20 µm and agree well with histological findings. Maps of mean hepatocyte size for humans can be achieved in less than 15 minutes, a clinically feasible scan time. CONCLUSION Our results suggest that this method has potential to overcome major limitations of liver biopsy and provide noninvasive mapping of hepatocyte sizes in clinical applications.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Zhang Y, Peña-Nogales Ó, Holmes JH, Hernando D. Motion-robust and blood-suppressed M1-optimized diffusion MR imaging of the liver. Magn Reson Med 2019; 82:302-311. [PMID: 30859628 DOI: 10.1002/mrm.27735] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/10/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE To develop motion-robust, blood-suppressed diffusion-weighted imaging (DWI) of the liver with optimized diffusion encoding waveforms and evaluate the accuracy and reproducibility of quantitative apparent diffusion coefficient (ADC) measurements. METHODS A novel approach for the design of diffusion weighting waveforms, termed M1-optimized diffusion imaging (MODI), is proposed. MODI includes an echo time-optimized motion-robust diffusion weighting gradient waveform design, with a small nonzero first-moment motion sensitivity (M1) value to enable blood signal suppression. Experiments were performed in eight healthy volunteers and five patient volunteers. In each case, DW images and ADC maps were compared between acquisitions using standard monopolar waveforms, motion moment-nulled (M1-nulled and M1-M2-nulled) waveforms, and the proposed MODI approach. RESULTS Healthy volunteer experiments using MODI showed no significant ADC bias in the left lobe relative to the right lobe (p < .05) demonstrating robustness to cardiac motion, and no significant ADC bias with respect to monopolar-based ADC measured in the right lobe (p < .05), demonstrating blood signal suppression. In contrast, monopolar-based ADC showed significant bias in the left lobe relative to the right lobe (p < .01) due to its sensitivity to motion, and both M1-nulled and M1-M2-nulled-based ADC showed significant bias (p < .01) due to the lack of blood suppression. Preliminary patient results also suggest MODI may enable improved visualization and quantitative assessment of lesions throughout the entire liver. CONCLUSIONS This novel method for diffusion gradient waveform design enables DWI of the liver with high robustness to motion and suppression of blood signals, overcoming the limitations of conventional monopolar waveforms and moment-nulled waveforms, respectively.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Óscar Peña-Nogales
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin.,Laboratorio de Procesado de Imagen, Universidad de Valladolid, Valladolid, Spain
| | - James H Holmes
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Diego Hernando
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
6
|
Porcari P, Hall MG, Clark CA, Greally E, Straub V, Blamire AM. The effects of ageing on mouse muscle microstructure: a comparative study of time-dependent diffusion MRI and histological assessment. NMR IN BIOMEDICINE 2018; 31:e3881. [PMID: 29315904 DOI: 10.1002/nbm.3881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
The investigation of age-related changes in muscle microstructure between developmental and healthy adult mice may help us to understand the clinical features of early-onset muscle diseases, such as Duchenne muscular dystrophy. We investigated the evolution of mouse hind-limb muscle microstructure using diffusion imaging of in vivo and in vitro samples from both actively growing and mature mice. Mean apparent diffusion coefficients (ADCs) of the gastrocnemius and tibialis anterior muscles were determined as a function of diffusion time (Δ), age (7.5, 22 and 44 weeks) and diffusion gradient direction, applied parallel or transverse to the principal axis of the muscle fibres. We investigated a wide range of diffusion times with the goal of probing a range of diffusion lengths characteristic of muscle microstructure. We compared the diffusion time-dependent ADC of hind-limb muscles with histology. ADC was found to vary as a function of diffusion time in muscles at all stages of maturation. Muscle water diffusivity was higher in younger (7.5 weeks) than in adult (22 and 44 weeks) mice, whereas no differences were observed between the older ages. In vitro data showed the same diffusivity pattern as in vivo data. The highlighted differences in diffusion properties between young and mature muscles suggested differences in underlying muscle microstructure, which were confirmed by histological assessment. In particular, although diffusion was more restricted in older muscle, muscle fibre size increased significantly from young to adult age. The extracellular space decreased with age by only ~1%. This suggests that the observed diffusivity differences between young and adult muscles may be caused by increased membrane permeability in younger muscle associated with properties of the sarcolemma.
Collapse
Affiliation(s)
- Paola Porcari
- Institute of Genetic Medicine and Centre for In Vivo Imaging, Newcastle University, Newcastle-upon-Tyne, UK
| | - Matt G Hall
- Developmental Imaging and Biophysics Section, UCL GOS Institute of Child Health, University College London, London, UK
| | - Chris A Clark
- Developmental Imaging and Biophysics Section, UCL GOS Institute of Child Health, University College London, London, UK
| | - Elizabeth Greally
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Andrew M Blamire
- Institute of Cellular Medicine and Centre for In Vivo Imaging, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
7
|
Marco-Rius I, Gordon JW, Mattis AN, Bok R, Santos RD, Sukumar S, Larson PE, Vigneron DB, Ohliger MA. Diffusion-weighted imaging of hyperpolarized [ 13 C]urea in mouse liver. J Magn Reson Imaging 2018; 47:141-151. [PMID: 28419644 PMCID: PMC5645231 DOI: 10.1002/jmri.25721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/16/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To compare the apparent diffusion coefficient (ADC) of hyperpolarized (HP) [13 C,15 N]urea to the ADC of endogenous water in healthy and fibrotic mouse liver. MATERIALS AND METHODS ADC measurements for water and [13 C]urea were made in agarose phantoms at 14.1T. Next, the ADC of water and injected HP [13 C,15 N]urea were measured in eight CD1 mouse livers before and after induction of liver fibrosis using CCl4 . Liver fibrosis was quantified pathologically using the modified Brunt fibrosis score and compared to the measured ADC of water and urea. RESULTS In cell-free phantoms with 12.5% agarose, water ADC was nearly twice the ADC of urea (1.93 × 10-3 mm2 /s vs. 1.00 × 10-3 mm2 /s). The mean ADC values of water and [13 C,15 N]urea in healthy mouse liver (±SD) were nearly identical [(0.75 ± 0.11) × 10-3 mm2 /s and (0.75 ± 0.22) × 10-3 mm2 /s, respectively]. Mean water and [13 C,15 N]urea ADC values in fibrotic liver (±SD) were (0.84 ± 0.22) × 10-3 mm2 /s and (0.75 ± 0.15) × 10-3 mm2 /s, respectively. Neither water nor urea ADCs were statistically different in the fibrotic livers compared to baseline (P = 0.14 and P = 0.99, respectively). Water and urea ADCs were positively correlated at baseline (R2 = 0.52 and P = 0.045) but not in fibrotic livers (R2 = 0.23 and P = 0.23). CONCLUSION ADC of injected hyperpolarized urea in healthy liver reflects a smaller change as compared to free solution than ADC of water. This may reflect differences in cellular compartmentalization of the two compounds. No significant change in ADC of either water or urea were observed in relatively mild stages of liver fibrosis. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:141-151.
Collapse
Affiliation(s)
- Irene Marco-Rius
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Aras N. Mattis
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- UCSF Liver Center University of California San Francisco, San Francisco, California, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Subramanian Sukumar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Peder E.Z. Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UCSF Liver Center University of California San Francisco, San Francisco, California, USA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UCSF Liver Center University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Intravoxel Incoherent Motion Protocol Evaluation and Data Quality in Normal and Malignant Liver Tissue and Comparison to the Literature. Invest Radiol 2016; 51:90-9. [PMID: 26405835 DOI: 10.1097/rli.0000000000000207] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Although intravoxel incoherent motion (IVIM) becomes more and more popular, there is currently no clear consensus on the number and distribution of b-values to use. In this work, we (1) tested and evaluated the data quality of a 25-b-value IVIM protocol in patients with malignant liver lesions and normal liver tissue as a standard of reference, (2) calculated an optimal b-value distribution and compared with the standard of reference, and (3) compared the 25-b-value protocol with other proposed protocols in the literature. MATERIALS AND METHODS Intravoxel incoherent motion imaging with 25 b-values was performed at 3 T in a total of 15 patients with malignant liver lesions. Reference IVIM parameter maps were calculated in tumor and normal liver tissue. With these parameters, optimal IVIM protocols with reduced numbers of b-values were calculated. These optimal IVIM protocols were again applied to calculate new IVIM parameter maps that were compared with the reference parameter maps by calculating mean relative errors. In addition, 35 other IVIM protocols, as found in literature, were compared in a similar way with the 25-b-value protocol serving as a standard of reference. RESULTS The mean relative error depends on the number of b-values and their distribution. In tumor tissue, the error is higher and more variable than in normal-appearing liver tissue. The largest errors occur in tumor tissue and in the protocols having low numbers of b-values in the IVIM protocols. In the calculated optimal IVIM protocols, the mean relative errors decreased by 40% or more when the number of b-values included increased from 4 to 16. The mean relative errors in the protocols adapted from the literature vary substantially between the various b-value distributions. One optimized 16-b-value protocol, which was found in literature, reduced the average relative error by 80% when compared with 4- and 5-b-value protocols listed in literature. CONCLUSIONS Including more b-values and applying an optimized b-value distribution significantly reduces errors in the IVIM parameter estimates, thereby increasing its accuracy.This effect is even more pronounced in inhomogeneous tumor compared with that in normal liver tissue. However, when restrictions in acquisition time or patient-related factors apply, a minimum of 16 b-values should be considered for reliable results.
Collapse
|
9
|
Zhang H, Yang Q, Yu T, Chen X, Huang J, Tan C, Liang B, Guo H. Comparison of T2, T1rho, and diffusion metrics in assessment of liver fibrosis in rats. J Magn Reson Imaging 2016; 45:741-750. [PMID: 27527587 DOI: 10.1002/jmri.25424] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To evaluate the value of T2 , T1 rho, and diffusion metrics in assessment of liver fibrosis in rats. MATERIALS AND METHODS Liver fibrosis in a rat model (n = 72) was induced by injection of carbon tetrachloride (CCl4 ) at 3T. T2 , T1 rho, and diffusion parameters (apparent diffusion coefficient (ADC), Dtrue ) via spin echo (SE) diffusion-weighted imaging (DWI) and stimulated echo acquisition mode (STEAM) DWI with three diffusion times (DT: 80, 106, 186 msec) were obtained in surviving rats with hepatic fibrosis (n = 52) and controls (n = 8). Liver fibrosis stage (F0-F6) was identified based on pathological results using the traditional liver fibrosis staging method for rodents. Nonparametric statistical methods and receiver operating characteristic (ROC) curve analysis were employed to determine the diagnostic accuracy. RESULTS Mean T2 , T1 rho, ADC, and Dtrue with DT = 186 msec correlated with the severity of fibrosis with r = 0.73, 0.83, -0.83, and -0.85 (all P < 0.001), respectively. The average areas under the ROC curve at different stages for T1 rho and diffusion parameters (DT = 186 msec) were larger than those of T2 and SE DWI (0.92, 0.92, and 0.92 vs. 0.86, 0.82, and 0.83). The corresponding average sensitivity and specificity for T1 rho and diffusion parameters with a long DT were larger (89.35 and 88.90, 88.36 and 89.97, 90.16 and 87.13) than T2 and SE DWI (90.28 and 79.93, 85.30 and 77.64, 78.21 and 82.41). The performances of T1 rho and Dtrue (DT = 186 msec) were comparable (average AUC: 0.92 and 0.92). CONCLUSION Among the evaluated sequences, T1 rho and STEAM DWI with a long DT may serve as superior imaging biomarkers for assessing liver fibrosis and monitoring disease severity. LEVEL OF EVIDENCE 1 J. Magn. Reson. Imaging 2017;45:741-750.
Collapse
Affiliation(s)
- Hui Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, Beijing, China
| | - Qihua Yang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Taihui Yu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaodong Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, Beijing, China.,Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Radiology, Affiliated hospital of Guangdong Medical College, Guangdong, China
| | - Jingwen Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cui Tan
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Biling Liang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, Beijing, China
| |
Collapse
|
10
|
Zhang H, Sun A, Li H, Saiviroonporn P, Wu EX, Guo H. Stimulated echo diffusion weighted imaging of the liver at 3 Tesla. Magn Reson Med 2016; 77:300-309. [DOI: 10.1002/mrm.26128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/19/2015] [Accepted: 12/23/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Hui Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of MedicineTsinghua UniversityBeijing Beijing China
| | - Aiqi Sun
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of MedicineTsinghua UniversityBeijing Beijing China
| | - Hongjun Li
- Department of Medical Imaging Center, Beijing You An HospitalCapital Medical UniversityBeijing China
| | - Pairash Saiviroonporn
- Department of Radiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkok Thailand
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal ProcessingThe University of Hong KongHong Kong SAR China
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong SAR China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of MedicineTsinghua UniversityBeijing Beijing China
| |
Collapse
|
11
|
Ribot EJ, Trotier AJ, Castets CR, Dallaudière B, Thiaudière E, Franconi JM, Miraux S. Free-breathing 3D diffusion MRI for high-resolution hepatic metastasis characterization in small animals. Clin Exp Metastasis 2015; 33:167-78. [DOI: 10.1007/s10585-015-9766-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
|
12
|
Yu SM, Ki SH, Baek HM. Nonalcoholic Fatty Liver Disease: Correlation of the Liver Parenchyma Fatty Acid with Intravoxel Incoherent Motion MR Imaging-An Experimental Study in a Rat Model. PLoS One 2015; 10:e0139874. [PMID: 26460614 PMCID: PMC4603664 DOI: 10.1371/journal.pone.0139874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Purpose To prospectively evaluate the changes in fatty acid concentration after administrating a 60% high-fat diet to a non-alcoholic fatty liver disease rat model and to perform a correlation analysis between fatty acid with molecular diffusion (Dtrue), perfusion-related diffusion (Dfast), and perfusion fraction (Pfraction). Material and Methods This prospective study was approved by the appropriate ethics committee. Ten male Sprague-Dawley rats were fed a 60% high-fat diet until the study was finished. Point-resolved spectroscopy sequence 1H-MRS with TR = 1,500 msec, TE = 35 msec, NEX = 64, and 8×8×8 mm3 voxel was used to acquire magnetic resonance spectroscopy (MRS) data. Diffusion-weighted imaging was performed on a two-dimensional multi-b value spin echo planar image with the following parameters: repetition time msec/echo time msec, 4500 /63; field of view, 120×120 msec2; matrix, 128×128; section thickness, 3 mm; number of repetition, 8; and multiple b value, 0, 25, 50, 75, 100, 200, 500, 1000 sec/mm2. Baseline magnetic resonance imaging and magnetic resonance spectroscopy data (control) were acquired. 1H proton MRS and diffusion-weighted imaging were obtained every 2 weeks for 8 weeks. The individual contributions of the true molecular diffusion and the incoherent motions of water molecules in the capillary network to the apparent diffusion changes were estimated using a least-square nonlinear fitting in MatLab. A Wilcoxon signed-rank test with the Kruskal-Wallis test was used to compare each week’s fatty acid mean quantification. Spearman’s correlation coefficient was used to evaluate the correlation between each fatty acid (e.g., total lipid (TL), total saturated fatty acid (TSFA), total unsaturated fatty acid (TUSFA), total unsaturated bond (TUSB), and polyunsaturated bond (PUSB)) and intravoxel incoherent motion (IVIM) mapping images (e.g., Dtrue, Dfast, and Pfraction). Results The highest mean TL value was at week 8 (0.278 ± 0.10) after the administration of the 60% high-fat diet, followed by weeks 6, 4, 2, and 0. The concentration level (16.99±2.29) of TSFA at week 4 was the highest. No significant differences in the concentrations of TUSFA, TUSB, or PUSB were observed in different weeks. Conclusion After the administration of the 60% high-fat diet in nonalcoholic fatty liver disease model, TL and TSFA depositions had significant changes. The mean concentrations of TUSFA, TUSB, PUSB did not significantly change. Total unsaturated fatty acid and polyunsaturated bond showed positive correlations with Dtrue and Pfraction.
Collapse
Affiliation(s)
- Seung-Man Yu
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Korea; Department of Radiological Science, Gimcheon University, Gimcheon, Gyeongsangbuk-do, Korea
| | - Sung Hwan Ki
- Department of Toxicology, College of pharmacy, Chosun University, Gwangju, Korea
| | - Hyeon-Man Baek
- Korea Basic Science Institute, Yeongudanji-Ro, Ochang-eup, Cheongwon-gun, Chungbuk, Korea
| |
Collapse
|