1
|
Kanal E, Maki JH, Schramm P, Marti‐Bonmati L. Evolving Characteristics of Gadolinium-Based Contrast Agents for MR Imaging: A Systematic Review of the Importance of Relaxivity. J Magn Reson Imaging 2025; 61:52-69. [PMID: 38699938 PMCID: PMC11645498 DOI: 10.1002/jmri.29367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Gadolinium-based contrast agents (GBCAs) are widely and routinely used to enhance the diagnostic performance of magnetic resonance imaging and magnetic resonance angiography examinations. T1 relaxivity (r1) is the measure of their ability to increase signal intensity in tissues and blood on T1-weighted images at a given dose. Pharmaceutical companies have invested in the design and development of GBCAs with higher and higher T1 relaxivity values, and "high relaxivity" is a claim frequently used to promote GBCAs, with no clear definition of what "high relaxivity" means, or general concurrence about its clinical benefit. To understand whether higher relaxivity values translate into a material clinical benefit, well-designed, and properly powered clinical studies are necessary, while mere in vitro measurements may be misleading. This systematic review of relevant peer-reviewed literature provides high-quality clinical evidence showing that a difference in relaxivity of at least 40% between two GBCAs results in superior diagnostic efficacy for the higher-relaxivity agent when this is used at the same equimolar gadolinium dose as the lower-relaxivity agent, or similar imaging performance when used at a lower dose. Either outcome clearly implies a relevant clinical benefit. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Emanuel Kanal
- Department of RadiologyUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
- Division of Emergency RadiologyUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Jeffrey H. Maki
- Department of RadiologyUniversity of Colorado Anschutz Medical CenterAuroraColoradoUSA
| | - Peter Schramm
- Department of NeuroradiologyUniversity Luebeck and Universitaetsklinikum Schleswig‐Holstein Campus LuebeckLuebeckGermany
| | - Luis Marti‐Bonmati
- Department of Radiology and GIBI230 Research Group on Biomedical ImagingHospital Universitario y Politécnico de La Fe and Instituto de Investigación Sanitaria La FeValenciaSpain
| |
Collapse
|
2
|
Li C, Shan S, Chen L, Afshari MJ, Wang H, Lu K, Kou D, Wang N, Gao Y, Liu C, Zeng J, Liu F, Gao M. Using Adaptive Imaging Parameters to Improve PEGylated Ultrasmall Iron Oxide Nanoparticles-Enhanced Magnetic Resonance Angiography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405719. [PMID: 39164979 PMCID: PMC11497041 DOI: 10.1002/advs.202405719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Indexed: 08/22/2024]
Abstract
The PEGylated ultrasmall iron oxide nanoparticles (PUSIONPs) exhibit longer blood residence time and better biodegradability than conventional gadolinium-based contrast agents (GBCAs), enabling prolonged acquisitions in contrast-enhanced magnetic resonance angiography (CE-MRA) applications. The image quality of CE-MRA is dependent on the contrast agent concentration and the parameters of the pulse sequences. Here, a closed-form mathematical model is demonstrated and validated to automatically optimize the concentration, echo time (TE), repetition time (TR) and flip angle (FA). The pharmacokinetic studies are performed to estimate the dynamic intravascular concentrations within 12 h postinjection, and the adaptive concentration-dependent sequence parameters are determined to achieve optimal signal enhancement during a prolonged measurement window. The presented model is tested on phantom and in vivo rat images acquired from a 3T scanner. Imaging results demonstrate excellent agreement between experimental measurements and theoretical predictions, and the adaptive sequence parameters obtain better signal enhancement than the fixed ones. The low-dose PUSIONPs (0.03 mmol kg-1 and 0.05 mmol kg-1) give a comparable signal intensity to the high-dose one (0.10 mmol kg-1) within 2 h postinjection. The presented mathematical model provides guidance for the optimization of the concentration and sequence parameters in PUSIONPs-enhanced MRA, and has great potential for further clinical translation.
Collapse
Affiliation(s)
- Cang Li
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Shanshan Shan
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueensland4072Australia
| | - Lei Chen
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Mohammad Javad Afshari
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Hongzhao Wang
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Kuan Lu
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Dandan Kou
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Ning Wang
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Yang Gao
- School of Computer Science and EngineeringCentral South UniversityChangsha410000China
| | - Chunyi Liu
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Feng Liu
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueensland4072Australia
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| |
Collapse
|
3
|
van Osch MJP, Wåhlin A, Scheyhing P, Mossige I, Hirschler L, Eklund A, Mogensen K, Gomolka R, Radbruch A, Qvarlander S, Decker A, Nedergaard M, Mori Y, Eide PK, Deike K, Ringstad G. Human brain clearance imaging: Pathways taken by magnetic resonance imaging contrast agents after administration in cerebrospinal fluid and blood. NMR IN BIOMEDICINE 2024; 37:e5159. [PMID: 38634301 DOI: 10.1002/nbm.5159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Over the last decade, it has become evident that cerebrospinal fluid (CSF) plays a pivotal role in brain solute clearance through perivascular pathways and interactions between the brain and meningeal lymphatic vessels. Whereas most of this fundamental knowledge was gained from rodent models, human brain clearance imaging has provided important insights into the human system and highlighted the existence of important interspecies differences. Current gold standard techniques for human brain clearance imaging involve the injection of gadolinium-based contrast agents and monitoring their distribution and clearance over a period from a few hours up to 2 days. With both intrathecal and intravenous injections being used, which each have their own specific routes of distribution and thus clearance of contrast agent, a clear understanding of the kinetics associated with both approaches, and especially the differences between them, is needed to properly interpret the results. Because it is known that intrathecally injected contrast agent reaches the blood, albeit in small concentrations, and that similarly some of the intravenously injected agent can be detected in CSF, both pathways are connected and will, in theory, reach the same compartments. However, because of clear differences in relative enhancement patterns, both injection approaches will result in varying sensitivities for assessment of different subparts of the brain clearance system. In this opinion review article, the "EU Joint Programme - Neurodegenerative Disease Research (JPND)" consortium on human brain clearance imaging provides an overview of contrast agent pharmacokinetics in vivo following intrathecal and intravenous injections and what typical concentrations and concentration-time curves should be expected. This can be the basis for optimizing and interpreting contrast-enhanced MRI for brain clearance imaging. Furthermore, this can shed light on how molecules may exchange between blood, brain, and CSF.
Collapse
Affiliation(s)
- Matthias J P van Osch
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Anders Wåhlin
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
- Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Paul Scheyhing
- Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ingrid Mossige
- Division of Radiology and Nuclear Medicine, Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lydiane Hirschler
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Anders Eklund
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Klara Mogensen
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Ryszard Gomolka
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Radbruch
- Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sara Qvarlander
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Andreas Decker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Yuki Mori
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- KG Jebsen Centre for Brain Fluid Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Katerina Deike
- Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway
| |
Collapse
|
4
|
Norris EC, Schneider G, Clark TJ, Kirchin MA, Wilson GJ, Maki JH. Efficacy of Whole-Blood Model of Gadolinium-Based Contrast Agent Relaxivity in Predicting Vascular MR Signal Intensity In Vivo. J Magn Reson Imaging 2024; 60:615-627. [PMID: 37916957 DOI: 10.1002/jmri.29089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Previous in vitro studies have described sub-linear longitudinal and heightened transverse H2O relaxivities of gadolinium-based contrast agents (GBCAs) in blood due to their extracellular nature. However, in vivo validation is lacking. PURPOSE Validate theory describing blood behavior of R1 and R2* in an animal model. STUDY TYPE Prospective, animal. ANIMAL MODEL Seven swine (54-65 kg). FIELD STRENGTH/SEQUENCE 1.5 T; time-resolved 3D spoiled gradient-recalled echo (SPGR) and quantitative Look-Locker and multi-echo fast field echo sequences. ASSESSMENT Seven swine were each injected three times with 0.1 mmol/kg intravenous doses of one of three GBCAs: gadoteridol, gadobutrol, and gadobenate dimeglumine. Injections were randomized for rate (1, 2, and 3 mL/s) and order, during which time-resolved aortic 3D SPGR imaging was performed concurrently with aortic blood sampling via an indwelling catheter. Time-varying [GBCA] was measured by mass spectrometry of sampled blood. Predicted signal intensity (SI) was determined from a model incorporating sub-linear R1 and R2* effects (whole-blood model) and simpler models incorporating linear R1, with and without R2* effects. Predicted SIs were compared to measured aortic SI. STATISTICAL TESTS Linear correlation (coefficient of determination, R2) and mean errors were compared across the SI prediction models. RESULTS There was an excellent correlation between predicted and measured SI across all injections and swine when accounting for the non-linear dependence of R1 and high blood R2* (regression slopes 0.91-1.04, R2 ≥ 0.91). Simplified models (linear R1 with and without R2* effects) showed poorer correlation (slopes 0.67-0.85 and 0.54-0.64 respectively, both R2 ≥ 0.89) and higher averaged mean absolute and mean square errors (128.4 and 177.4 vs. 42.0, respectively, and 5506 and 11,419 vs. 699, respectively). DATA CONCLUSION Incorporating sub-linear R1 and high first-pass R2* effects in arterial blood models allows accurate SPGR SI prediction in an in vivo animal model, and might be utilized when modeling MR blood SI. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Evan C Norris
- Department of Radiology, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Guenther Schneider
- Department of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg, Germany
| | - Toshimasa J Clark
- Department of Radiology, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Miles A Kirchin
- Global Medical & Regulatory Affairs, Bracco Imaging SpA, Milan, Italy
| | - Gregory J Wilson
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jeffrey H Maki
- Department of Radiology, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
- Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Di Gregorio E, Papi C, Conti L, Di Lorenzo A, Cavallari E, Salvatore M, Cavaliere C, Ferrauto G, Aime S. A Magnetic Resonance Imaging-Chemical Exchange Saturation Transfer (MRI-CEST) Method for the Detection of Water Cycling across Cellular Membranes. Angew Chem Int Ed Engl 2024; 63:e202313485. [PMID: 37905585 DOI: 10.1002/anie.202313485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Water cycling across the membrane transporters is considered a hallmark of cellular metabolism and it could be of high diagnostic relevance in the characterization of tumors and other diseases. The method relies on the response of intracellular proton exchanging molecules to the presence of extracellular Gd-based contrast agents (GBCAs). Paramagnetic GBCAs enhances the relaxation rate of water molecules in the extracellular compartment and, through membrane exchange, the relaxation enhancement is transferred to intracellular molecules. The effect is detected at the MRI-CEST (Magnetic Resonance Imaging - Chemical Exchange Saturation Transfer) signal of intracellular proton exchanging molecules. The magnitude of the change in the CEST response reports on water cycling across the membrane. The method has been tested on Red Blood Cells and on orthotopic murine models of breast cancer with different degree of malignancy (4T1, TS/A and 168FARN). The distribution of voxels reporting on membrane permeability fits well with the cells' aggressiveness and acts as an early reporter to monitor therapeutic treatments.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Chiara Papi
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Laura Conti
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Antonino Di Lorenzo
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Eleonora Cavallari
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Marco Salvatore
- IRCCS SDN SynLab, Via E. Gianturco 113, 80143, Napoli, Italy
| | - Carlo Cavaliere
- IRCCS SDN SynLab, Via E. Gianturco 113, 80143, Napoli, Italy
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Silvio Aime
- IRCCS SDN SynLab, Via E. Gianturco 113, 80143, Napoli, Italy
| |
Collapse
|
6
|
Petit M, Leclercq M, Pierre S, Ruggiero MR, El Atifi M, Boutonnat J, Fries PH, Berger F, Lahrech H. Fast-field-cycling NMR at very low magnetic fields: water molecular dynamic biomarkers of glioma cell invasion and migration. NMR IN BIOMEDICINE 2022; 35:e4677. [PMID: 34961995 DOI: 10.1002/nbm.4677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Our objective was to study NMR relaxometry of glioma invasion/migration at very low field (<2 mT) by fast-field-cycling NMR (FFC-NMR) and to decipher the pathophysiological processes of glioma that are responsible for relaxation changes in order to open a new diagnostic method that can be extended to imaging. The phenotypes of two new glioma mouse models, Glio6 and Glio96, were characterized by T2w -MRI, HE histology, Ki-67 immunohistochemistry (IHC) and CXCR4 RT-qPCR, and were compared with the U87 model. R1 dispersions of glioma tissues were acquired at low field (0.1 mT-0.8 T) ex vivo and were fitted with Lorentzian and power-law models to extract FFC biomarkers related to the molecular dynamics of water. In order to decipher relaxation changes, three main invasion/migration pathophysiological processes were studied: hypoxia, H2 O2 function and the water-channel aquaporin-4 (AQP4). Glio6 and Glio96 were characterized with invasion/migration phenotype and U87 with high cell proliferation as a solid glioma. At very low field, invasion/migration versus proliferation was characterized by a decrease in the relaxation-rate constant (ΔR1 ≈ -32% at 0.1 mT) and correlation time (≈-40%). These decreases corroborated the AQP4-IHC overexpression (Glio6/Glio96: +92%/+46%), suggesting rapid transcytolemmal water exchange, which was confirmed by the intracellular water-lifetime τIN decrease (ΔτIN ≈ -30%). In functional experiments, AQP4 expression, τIN and the relaxation-rate constant at very low field were all found to be sensitive to hypoxia and to H2 O2 stimuli. At very low field the role of water exchanges in relaxation modulation was confirmed, and for the first time it was linked to the glioma invasion/migration and to its main pathophysiological processes: hypoxia, H2 O2 redox signaling and AQP4 expression. The method appears appropriate to evaluate the effect of drugs that can target these pathophysiological mechanisms. Finally, FFC-NMR operating at low field is demonstrated to be sensitive to invasion glioma phenotype and can be straightforwardly extended to FFC-MRI as a new cancer invasion imaging method in the clinic.
Collapse
Affiliation(s)
- Manuel Petit
- BrainTech Lab INSERM U1205, Grenoble, France
- Grenoble Alpes University, France
| | - Maxime Leclercq
- BrainTech Lab INSERM U1205, Grenoble, France
- Grenoble Alpes University, France
| | - Sandra Pierre
- BrainTech Lab INSERM U1205, Grenoble, France
- Grenoble Alpes University, France
| | | | - Michèle El Atifi
- BrainTech Lab INSERM U1205, Grenoble, France
- Grenoble Alpes University, France
- Grenoble Hospital University (CHU), France
| | - Jean Boutonnat
- Grenoble Alpes University, France
- Grenoble Hospital University (CHU), France
| | | | - François Berger
- BrainTech Lab INSERM U1205, Grenoble, France
- Grenoble Alpes University, France
- Grenoble Hospital University (CHU), France
| | - Hana Lahrech
- BrainTech Lab INSERM U1205, Grenoble, France
- Grenoble Alpes University, France
| |
Collapse
|
7
|
Clark TJ, Wilson GJ, Maki JH. Relationship Between Simulated Gadolinium-Based Contrast Agent Injection Profile and Achievable Resolution Metrics in Contrast-Enhanced Magnetic Resonance Angiography. J Magn Reson Imaging 2021; 55:1797-1807. [PMID: 34694039 DOI: 10.1002/jmri.27966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Contrast bolus variation during contrast-enhanced magnetic resonance angiography (CE-MRA) acquisition may lead to vessel blurring. PURPOSE To combine knowledge of how contrast signal intensity (SI) evolves for different injection strategies with anatomically familiar parametric computer models to measure and visually assess the effects of a wide range of variables on modeled CE-MRA, and in doing so develop contrast rate injection guidelines. STUDY TYPE Computer modeling. PHANTOM Digital three-dimensional phantom consisting of orthogonal "aorta," 7 mm diameter "renal arteries" (with 57% and 86% diameter stenoses), and 7 mm diameter "superior mesenteric artery" (with 57% diameter stenosis). FIELD STRENGTH/SEQUENCE One millimeter in-plane resolution arterial CE-MRA imaging at 3 T. ASSESSMENT "Background" (time invariant) and "vascular" (time varying) components of the phantom were each Fourier transformed into the spatial frequency domain, the latter modulated by the SI evolution of a contrast bolus of varying "plateau" lengths and "tail" heights. Data are presented as surface plots of stenosis measurement error and blurring vs. a reference-standard injection. STATISTICAL TESTS Descriptive. RESULTS Shorter plateau lengths and lower tail heights resulted in increased measured stenosis error and blurring vs. the reference standard. Under a 44-second acquisition, full width half maximum stenosis error of the 86% stenosis with 25% plateau length and 25% tail height is 24% as compared to that from the reference standard. As plateau length and tail height approach 100%, stenosis error and blurring approach a floor defined by the MR acquisition's limitations. DATA CONCLUSION We propose that to achieve minimal degradation with CE-MRA, one can create a contrast bolus with either 60% plateau and 50% tail height or 80% plateau with any tail. These considerations may well prove to be of practical importance, possibly via manipulating the tail by means of multiphasic contrast injections. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Toshimasa J Clark
- Department of Radiology, Abdominal Imaging Section, University of Colorado, Aurora, Colorado, USA
| | | | - Jeffrey H Maki
- Department of Radiology, Abdominal Imaging Section, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
8
|
Anderson VC, Tagge IJ, Li X, Quinn JF, Kaye JA, Bourdette DN, Spain RI, Riccelli LP, Sammi MK, Springer CS, Rooney WD. Observation of Reduced Homeostatic Metabolic Activity and/or Coupling in White Matter Aging. J Neuroimaging 2020; 30:658-665. [PMID: 32558031 PMCID: PMC7529981 DOI: 10.1111/jon.12744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Transvascular water exchange plays a key role in the functional integrity of the blood-brain barrier (BBB). In white matter (WM), a variety of imaging modalities have demonstrated age-related changes in structure and metabolism, but the extent to which water exchange is altered remains unclear. Here, we investigated the cumulative effects of healthy aging on WM capillary water exchange. METHODS A total of 38 healthy adults (aged 36-80 years) were studied using 7T dynamic contrast enhanced MRI. Blood volume fraction (vb ) and capillary water efflux rate constant (kpo ) were determined by fitting changes in the 1 H2 O longitudinal relaxation rate constant (R1 ) during contrast agent bolus passage to a two-compartment exchange model. WM volume was determined by morphometric analysis of structural images. RESULTS R1 values and WM volume showed similar trajectories of age-related decline. Among all subjects, vb and kpo averaged 1.7 (±0.5) mL/100 g of tissue and 2.1 (±1.1) s-1 , respectively. While vb showed minimal changes over the 40-year-age span of participants, kpo declined 0.06 s-1 (ca. 3%) per year (r = -.66; P < .0005), from near 4 s-1 at age 30 to ca. 2 s-1 at age 70. The association remained significant after controlling for WM volume. CONCLUSIONS Previous studies have shown that kpo tracks Na+ , K+ -ATPase activity-dependent water exchange at the BBB and likely reflects neurogliovascular unit (NGVU) coupled metabolic activity. The age-related decline in kpo observed here is consistent with compromised NGVU metabolism in older individuals and the dysregulated cellular bioenergetics that accompany normal brain aging.
Collapse
Affiliation(s)
- Valerie C Anderson
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | - Ian J Tagge
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | - Joseph F Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Jeffrey A Kaye
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Dennis N Bourdette
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Rebecca I Spain
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Louis P Riccelli
- Diagnostic Radiology, Oregon Health & Science University, Portland, OR
| | - Manoj K Sammi
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| |
Collapse
|
9
|
Shen Y, Goerner FL, Heverhagen JT, Snyder C, Hu D, Li X, Runge VM. In vitro T2 relaxivities of the Gd-based contrast agents (GBCAs) in human blood at 1.5 and 3 T. Acta Radiol 2019; 60:694-701. [PMID: 30205704 DOI: 10.1177/0284185118799538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The availability of data in the medical literature for the T2 relaxivities of the Gd-based contrast agents (GBCAs) is limited. A comprehensive comparison between the agents available commercially (other than in Europe) is lacking, with no data available that most closely reflect the clinic, which is in human whole blood at body temperature. PURPOSE To complement the existing literature by determining T2 relaxivity data for eight GBCAs in vitro. MATERIAL AND METHODS The relaxivities of eight GBCAs diluted in human whole blood at 1.5 and 3 T were determined at 37 ± 0.5 °C. Gd was in the range of 0-4 mM. Multi-echo sequences with variable echo times were acquired using a phantom containing a dilution series with each agent, and SigmaPlot 12.0 was used to calculate the R2 relaxation rate and finally r2. Statistical comparisons between agents and field strengths were conducted. RESULTS The relationship between R2 vs. Gd was observed to be linear at 1.5 and 3 T, with a mild increase in r2 from 1.5 to 3 T for all GBCAs. T2 relaxivity data were compared with prior results. The GBCAs are closely clustered into two groups, with higher r2 noted for the two lipophilic (those with partial hepatobiliary excretion) compounds. CONCLUSION The r2 values at 1.5 and 3 T, determined for the eight GBCAs still clinically available (other than in Europe), provide a definitive baseline for future evaluations, including theoretical calculations of signal intensity and their clinical impact on T2-weighted scans.
Collapse
Affiliation(s)
- Yaqi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | | | - Johannes T Heverhagen
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital, University of Bern, Switzerland
| | | | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Xiaoming Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Val M Runge
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital, University of Bern, Switzerland
| |
Collapse
|
10
|
Maki JH, Wilson GJ, Clark TJ. Evaluation of four injection profiles for uniform contrast-enhanced signal intensity profiles in MR angiography. J Magn Reson Imaging 2019; 50:1808-1816. [PMID: 31095810 DOI: 10.1002/jmri.26793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Gadolinium concentration variation during acquisition of contrast-enhanced MR angiography (CE-MRA) may lead to artifacts. PURPOSE To compare signal intensity (SI) profiles of four different contrast agent injection strategies during CE-MRA with the goal of minimizing SI variation during acquisition. STUDY TYPE Prospective. SUBJECTS Forty subjects randomized to receive one of four injection profiles of gadobenate dimeglumine (0.1 mmol/kg), either undiluted (0.5 M) or diluted to 40 ml total volume. Tested profiles: 1) nondiluted single-phase ("standard" NS; 1.6 ml/s), 2) diluted single-phase (DS; 1.6 ml/s), 3) diluted biphasic (DB; 9 ml @ 3.3 ml/s, 29 ml @ 1.4 ml/s), 4) patient-tailored protocol using linear prediction (DT). FIELD STRENGTH/SEQUENCE Time-resolved SI measured at 3T with spoiled gradient echo sequences having analogous parameters to those of CE-MRA. ASSESSMENT Plateau arrival time, rise time, duration, peak and tail SI, plateau quality (sum of squared residuals; SSR), average SI for each injection type derived were used. STATISTICAL TEST Two-tailed t-test. RESULTS Peak SI, arrival, and rise times were not significantly different between groups, excepting peak SI DB slightly > DS (P = 0.042). Duration of NS vs. the diluted groups was significantly shorter (all P < 0.0001), and DS duration was significantly shorter than that of DT and DB (NS 11.4 ± 3.5 vs. DS 22.9 ± 4.3, DB 25.4 ± 2.3, DT 28.3 ± 4.1 sec). Quality (SSR) of the 20-second plateau was significantly better for DS, DB, DT as compared with NS (all P < 0.001). DATA CONCLUSION Three different strategies to power-inject diluted gadobenate dimeglumine targeting a 20-second plateau produced SI profiles with longer duration, more consistent plateau, and no significant loss in peak SI. Such injection profiles may provide more uniform SI during CE-MRA, potentially reducing blurring artifacts. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:1808-1816.
Collapse
Affiliation(s)
- Jeffrey H Maki
- The Department of Radiology, University of Colorado Denver, Aurora, Colorado, USA.,Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Gregory J Wilson
- Department of Radiology, University of Washington, Seattle, Washington, USA.,Bayer Healthcare, Whippany, New Jersey, USA
| | - Toshimasa J Clark
- The Department of Radiology, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
11
|
Li X, Mangia S, Lee JH, Bai R, Springer CS. NMR shutter-speed elucidates apparent population inversion of 1 H 2 O signals due to active transmembrane water cycling. Magn Reson Med 2019; 82:411-424. [PMID: 30903632 PMCID: PMC6593680 DOI: 10.1002/mrm.27725] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
Purpose The desire to quantitatively discriminate the extra‐ and intracellular tissue 1H2O MR signals has gone hand‐in‐hand with the continual, historic increase in MRI instrument magnetic field strength [B0]. However, recent studies have indicated extremely valuable, novel metabolic information can be readily accessible at ultra–low B0. The two signals can be distinguished, and the homeostatic activity of the cell membrane sodium/potassium pump (Na+,K+,ATPase) detected. The mechanism allowing 1H2O MRI to do this is the newly discovered active transmembrane water cycling (AWC) phenomenon, which we found using paramagnetic extracellular contrast agents at clinical B0 values. AWC is important because Na+,K+,ATPase can be considered biology’s most vital enzyme, and its in vivo steady‐state activity has not before been measurable, let alone amenable to mapping with high spatial resolution. Recent reports indicate AWC correlates with neuronal firing rate, with malignant tumor metastatic potential, and inversely with cellular reducing equivalent fraction. We wish to systematize the ways AWC can be precisely measured. Methods We present a theoretical longitudinal relaxation analysis of considerable scope: it spans the low‐ and high–field situations. Results We show the NMR shutter‐speed organizing principle is pivotal in understanding how trans–membrane steady–state water exchange kinetics are manifest throughout the range. Our findings illuminate an aspect, apparent population inversion, which is crucial in understanding ultra‐low field results. Conclusions Without an appreciation of apparent population inversion, significant misinterpretations of future data are likely. These could have unfortunate diagnostic consequences.
Collapse
Affiliation(s)
- Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Jing-Huei Lee
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
12
|
Abstract
OBJECTIVES The aim of this study was to determine the relaxation properties of ferumoxytol, an off-label alternative to gadolinium-based contrast agents, under physiological conditions at 1.5 T and 3.0 T. MATERIALS AND METHODS Ferumoxytol was diluted in gradually increasing concentrations (0.26-4.2 mM) in saline, human plasma, and human whole blood. Magnetic resonance relaxometry was performed at 37°C at 1.5 T and 3.0 T. Longitudinal and transverse relaxation rate constants (R1, R2, R2*) were measured as a function of ferumoxytol concentration, and relaxivities (r1, r2, r2*) were calculated. RESULTS A linear dependence of R1, R2, and R2* on ferumoxytol concentration was found in saline and plasma with lower R1 values at 3.0 T and similar R2 and R2* values at 1.5 T and 3.0 T (1.5 T: r1saline = 19.9 ± 2.3 smM; r1plasma = 19.0 ± 1.7 smM; r2saline = 60.8 ± 3.8 smM; r2plasma = 64.9 ± 1.8 smM; r2*saline = 60.4 ± 4.7 smM; r2*plasma = 64.4 ± 2.5 smM; 3.0 T: r1saline = 10.0 ± 0.3 smM; r1plasma = 9.5 ± 0.2 smM; r2saline = 62.3 ± 3.7 smM; r2plasma = 65.2 ± 1.8 smM; r2*saline = 57.0 ± 4.7 smM; r2*plasma = 55.7 ± 4.4 smM). The dependence of relaxation rates on concentration in blood was nonlinear. Formulas from second-order polynomial fittings of the relaxation rates were calculated to characterize the relationship between R1blood and R2 blood with ferumoxytol. CONCLUSIONS Ferumoxytol demonstrates strong longitudinal and transverse relaxivities. Awareness of the nonlinear relaxation behavior of ferumoxytol in blood is important for ferumoxytol-enhanced magnetic resonance imaging applications and for protocol optimization.
Collapse
|
13
|
Ruggiero MR, Baroni S, Aime S, Crich SG. Relaxometric investigations addressing the determination of intracellular water lifetime: a novel tumour biomarker of general applicability. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1527045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Maria Rosaria Ruggiero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Simona Baroni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- IBB-CNR, Torino, Italy
| | | |
Collapse
|
14
|
Springer CS. Using 1H 2O MR to measure and map sodium pump activity in vivo. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:110-126. [PMID: 29705043 DOI: 10.1016/j.jmr.2018.02.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/16/2018] [Accepted: 02/26/2018] [Indexed: 05/26/2023]
Abstract
The cell plasma membrane Na+,K+-ATPase [NKA] is one of biology's most [if not the most] significant enzymes. By actively transporting Na+ out [and K+ in], it maintains the vital trans-membrane ion concentration gradients and the membrane potential. The forward NKA reaction is shown in the Graphical Abstract [which is elaborated in the text]. Crucially, NKA does not operate in isolation. There are other transporters that conduct K+ back out of [II, Graphical Abstract] and Na+ back into [III, Graphical Abstract] the cell. Thus, NKA must function continually. Principal routes for ATP replenishment include mitochondrial oxidative phosphorylation, glycolysis, and creatine kinase [CrK] activity. However, it has never been possible to measure, let alone map, this integrated, cellular homeostatic NKA activity in vivo. Active trans-membrane water cycling [AWC] promises a way to do this with 1H2O MR. Inthe Graphical Abstract, the AWC system is characterized by active contributions totheunidirectional rate constants for steady-state water efflux and influx, respectively, kio(a) and koi(a). The discovery, validation, and initial exploration of active water cycling are reviewed here. Promising applications in cancer, cardiological, and neurological MRI are covered. This initial work employed paramagnetic Gd(III)chelate contrast agents [CAs]. However, the significant problems associated with in vivo CA use are also reviewed. A new analysis of water diffusion-weighted MRI [DWI] is presented. Preliminary results suggest a non-invasive way to measure the cell number density [ρ (cells/μL)], the mean cell volume [V (pL)], and the cellular NKA metabolic rate [cMRNKA(fmol(ATP)/s/cell)] with high spatial resolution. These crucial cell biology properties have not before been accessible invivo. Furthermore, initial findings indicate their absolute values can be determined.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
15
|
Bai R, Springer CS, Plenz D, Basser PJ. Fast, Na + /K + pump driven, steady-state transcytolemmal water exchange in neuronal tissue: A study of rat brain cortical cultures. Magn Reson Med 2017; 79:3207-3217. [PMID: 29106751 DOI: 10.1002/mrm.26980] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE Water homeostasis and transport play important roles in brain function (e.g., ion homeostasis, neuronal excitability, cell volume regulation, etc.). However, specific mechanisms of water transport across cell membranes in neuronal tissue have not been completely elaborated. METHODS The kinetics of transcytolemmal water exchange were measured in neuronal tissue using simultaneous, real-time fluorescence and nuclear magnetic resonance (NMR) measurements of perfused, active brain organotypic cortical cultures. Perfusion with a paramagnetic MRI contrast agent, gadoteridol, allows NMR determination of the unidirectional rate constant for steady-state cellular water efflux (kio ), and the mole fraction of intracellular water ( pi), related to the average cell volume (V). Changes in intracellular calcium concentration [Cai2+] were used as a proxy for neuronal activity and were monitored by fluorescence imaging. RESULTS The kio value, averaged over all cultures (N = 99) at baseline, was 2.02 (±1.72) s-1 , indicating that on average, the equivalent of the entire intracellular water volume turns over twice each second. To probe possible molecular pathways, the specific Na+ -K+ -ATPase (NKA) inhibitor, ouabain (1 mM), was transiently introduced into the perfusate. This caused significant transient changes (N = 8): [Cai2+] rose ∼250%, V rose ∼89%, and kio fell ∼45%, with a metabolically active kio contribution probably eliminated by ouabain saturation. CONCLUSIONS These results suggest that transcytolemmal water exchange in neuronal tissue involves mechanisms affected by NKA activity as well as passive pathways. The active pathway may account for half of the basal homeostatic water flux. Magn Reson Med 79:3207-3217, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ruiliang Bai
- Section on Quantitative Imaging and Tissue Sciences, DIBGI, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, DIBGI, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Payne KM, Wilds JM, Carniato F, Botta M, Woods M. On Water and its Effect on the Performance of T
1
-Shortening Contrast Agents. Isr J Chem 2017. [DOI: 10.1002/ijch.201700037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Katherine M. Payne
- Department of Chemistry; Portland State University; 1719 SW 10 Ave Portland, OR 97201 USA
| | - Jennifer M. Wilds
- Department of Chemistry; Portland State University; 1719 SW 10 Ave Portland, OR 97201 USA
| | - Fabio Carniato
- Dipartimento di Scienze e Tecnologie Avanzate; Università del Piemonte Orientale “A. Avogadro”; Viale Teresa Michel 11 15121 Alessandria Italy
| | - Mauro Botta
- Dipartimento di Scienze e Tecnologie Avanzate; Università del Piemonte Orientale “A. Avogadro”; Viale Teresa Michel 11 15121 Alessandria Italy
| | - Mark Woods
- Department of Chemistry; Portland State University; 1719 SW 10 Ave Portland, OR 97201 USA
- Advanced Imaging Research Center; Oregon Health and Science University; 3181 SW Sam Jackson Park Rd Portland, OR 97239 USA
| |
Collapse
|
17
|
Zhang J, Ring HL, Hurley KR, Shao Q, Carlson CS, Idiyatullin D, Manuchehrabadi N, Hoopes PJ, Haynes CL, Bischof JC, Garwood M. Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T 1 contrast for heating. Magn Reson Med 2016; 78:702-712. [PMID: 27667655 DOI: 10.1002/mrm.26394] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/08/2016] [Accepted: 08/03/2016] [Indexed: 12/23/2022]
Abstract
PURPOSE To use contrast based on longitudinal relaxation times (T1 ) or rates (R1 ) to quantify the biodistribution of iron oxide nanoparticles (IONPs), which are of interest for hyperthermia therapy, cell targeting, and drug delivery, within primary clearance organs. METHODS Mesoporous silica-coated IONPs (msIONPs) were intravenously injected into 15 naïve mice. Imaging and mapping of the longitudinal relaxation rate constant at 24 h or 1 week postinjection were performed with an echoless pulse sequence (SWIFT). Alternating magnetic field heating measurements were also performed on ex vivo tissues. RESULTS Signal enhancement from positive T1 contrast caused by IONPs was observed and quantified in vivo in liver, spleen, and kidney at concentrations up to 3.2 mg Fe/(g tissue wt.) (61 mM Fe). In most cases, each organ had a linear correlation between the R1 and the tissue iron concentration despite variations in intra-organ distribution, degradation, and IONP surface charge. Linear correlation between R1 and volumetric SAR in hyperthermia therapy was observed. CONCLUSION The linear dependence between R1 and tissue iron concentration in major organs allows quantitative monitoring of IONP biodistribution in a dosage range relevant to magnetic hyperthermia applications, which falls into the concentration gap between CT and conventional MRI techniques. Magn Reson Med 78:702-712, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jinjin Zhang
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hattie L Ring
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katie R Hurley
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Qi Shao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cathy S Carlson
- Veterinary Population Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Djaudat Idiyatullin
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Navid Manuchehrabadi
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - P Jack Hoopes
- Department of Surgery and Radiation Oncology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
18
|
Li X, Cai Y, Moloney B, Chen Y, Huang W, Woods M, Coakley FV, Rooney WD, Garzotto MG, Springer CS. Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 269:104-112. [PMID: 27288764 PMCID: PMC4958517 DOI: 10.1016/j.jmr.2016.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 05/25/2023]
Abstract
Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative contrast reagent/tissue-specific model parameters is the most investigated method. One of the primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable measurement of the arterial input function (AIF), which is the driving force behind all pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured from individual arteries sometimes require amplitude scaling for better representation of the blood contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF estimation or reference tissue AIF derivation can be useful and practical, especially when there is no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these approaches generally also require magnitude scaling of the derived AIF time-courses. Since the AIF varies among individuals even with the same CR injection protocol and the perfect scaling factor for reconstructing the ground truth AIF often remains unknown, variations in estimated pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, using simulated and real prostate cancer DCE-MRI data, we examined parameter variations associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted CR transfer constant (K(trans)) and the extravascular, extracellular volume fraction (ve) scale nearly proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be more suitable imaging biomarkers for cross-platform, multicenter applications. Data from our limited study cohort show that kio correlates with Gleason scores, suggesting that it may be a useful biomarker for prostate cancer disease progression monitoring.
Collapse
Affiliation(s)
- Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States.
| | - Yu Cai
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States
| | - Brendan Moloney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States
| | - Yiyi Chen
- Division of Biostatistics, Dept. of Public Health and Preventive Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, United States
| | - Wei Huang
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States
| | - Mark Woods
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States; Department of Chemistry, Portland State University, Portland, OR 97207, United States
| | - Fergus V Coakley
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR 97239, United States
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States
| | - Mark G Garzotto
- Department of Urology, Oregon Health & Science University, Portland, OR 97239, United States; Portland VA Medical Center, Portland, OR 97239, United States
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States
| |
Collapse
|
19
|
Clark TJ, Wilson GJ, Maki JH. Effect of injection rate on contrast-enhanced MR angiography image quality: Modulation transfer function analysis. Magn Reson Med 2016; 78:357-369. [DOI: 10.1002/mrm.26349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022]
|
20
|
Wilson GJ, Springer CS, Bastawrous S, Maki JH. Human whole blood 1 H 2 O transverse relaxation with gadolinium-based contrast reagents: Magnetic susceptibility and transmembrane water exchange. Magn Reson Med 2016; 77:2015-2027. [PMID: 27297589 DOI: 10.1002/mrm.26284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/31/2016] [Accepted: 04/29/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE To characterize transverse relaxation in oxygenated whole blood with extracellular gadolinium-based contrast reagents by experiment and simulation. METHODS Experimental measurements of transverse 1 H2 O relaxation from oxygenated whole human blood and plasma were made at 1.5 and 3.0 Tesla. Spin-echo refocused and free-induction decays are reported for blood and plasma samples containing four different contrast reagents (gadobenate, gadoteridol, gadofosveset, and gadobutrol), each present at concentrations ranging from 1 to 18 mM (i.e., mmol (contrast reagent (CR))/L (blood)). Monte Carlo simulations were conducted to ascertain the molecular mechanisms underlying relaxation. These consisted of random walks of water molecules in a large ensemble of randomly oriented erythrocytes. Bulk magnetic susceptibility (BMS) differences between the extra- and intracellular compartments were taken into account. All key parameters for these simulations were taken from independent published measurements: they include no adjustable variables. RESULTS Transverse relaxation is much more rapid in whole blood than in plasma, and the large majority of this dephasing is reversible by spin echo. Agreement between the experimental data and simulated results is remarkably good. CONCLUSION Extracellular field inhomogeneities alone make very small contributions, whereas the orientation-dependent BMS intracellular resonance frequencies lead to the majority of transverse dephasing. Equilibrium exchange of water molecules between the intra- and extracellular compartments plays a significant role in transverse dephasing. Magn Reson Med 77:2015-2027, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Sarah Bastawrous
- Radiology, University of Washington, Seattle, Washington, USA.,Radiology, Puget Sound VA Healthcare System, Seattle, Washington, USA
| | - Jeffrey H Maki
- Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Evaluation of a tailored injection profile (TIP) algorithm for uniform contrast-enhanced signal intensity profiles in MR angiography. J Magn Reson Imaging 2016; 44:1664-1672. [DOI: 10.1002/jmri.25298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/19/2016] [Indexed: 01/17/2023] Open
|
22
|
Gianolio E, Ferrauto G, Di Gregorio E, Aime S. Re-evaluation of the water exchange lifetime value across red blood cell membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:627-31. [PMID: 26744230 DOI: 10.1016/j.bbamem.2015.12.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/02/2015] [Accepted: 12/24/2015] [Indexed: 01/07/2023]
Abstract
The water exchange lifetime (τ(i)) through red blood cell (RBC) membranes can be measured by analyzing the water protons bi-exponential T1 and T2 curves when RBCs are suspended in a medium supplemented with paramagnetic species. Since the seminal papers published in the early '70s of the previous century, paramagnetic Mn(2+) ions were used for doping the extracellular compartment in the RBCs suspension. The obtained τ(i) values fall in the range of 9.8-14 ms. Conversely, other physic-chemical measurements afforded longer τ(i) values. Herein, it is shown that the replacement of Mn(2+) with the highly stable, hydrophilic Gd(III) complexes used as paramagnetic magnetic resonance imaging (MRI) contrast agents led to measure τ(iI) values of 19.1 ± 0.65 ms at 25 ° C. The observed difference is ascribed to the occurrence of enhanced permeability of RBC membrane in the presence of Mn(2+) ions. This view finds support from the observation that an analogous behavior was shown in the presence of other divalent cations, such Ca(2+) and Zn(2+) ions. A possible role of scramblase has been hypothesized. Finally, τ(i) has been measured in presence of alcohols to show that the herein proposed method can detect minor changes in RBC membranes' stiffness upon the incorporation of aliphatic alcohols.
Collapse
Affiliation(s)
- Eliana Gianolio
- University of Torino, Department of Molecular Biotechnologies and Health Science, Torino, Italy
| | - Giuseppe Ferrauto
- University of Torino, Department of Molecular Biotechnologies and Health Science, Torino, Italy
| | - Enza Di Gregorio
- University of Torino, Department of Molecular Biotechnologies and Health Science, Torino, Italy
| | - Silvio Aime
- University of Torino, Department of Molecular Biotechnologies and Health Science, Torino, Italy.
| |
Collapse
|
23
|
Rooney WD, Li X, Sammi MK, Bourdette DN, Neuwelt EA, Springer CS. Mapping human brain capillary water lifetime: high-resolution metabolic neuroimaging. NMR IN BIOMEDICINE 2015; 28:607-23. [PMID: 25914365 PMCID: PMC4920360 DOI: 10.1002/nbm.3294] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/28/2015] [Accepted: 03/02/2015] [Indexed: 05/25/2023]
Abstract
Shutter-speed analysis of dynamic-contrast-agent (CA)-enhanced normal, multiple sclerosis (MS), and glioblastoma (GBM) human brain data gives the mean capillary water molecule lifetime (τ(b)) and blood volume fraction (v(b); capillary density-volume product (ρ(†)V)) in a high-resolution (1)H2O MRI voxel (40 μL) or ROI. The equilibrium water extravasation rate constant, k(po) (τ(b)(-1)), averages 3.2 and 2.9 s(-1) in resting-state normal white matter (NWM) and gray matter (NGM), respectively (n = 6). The results (italicized) lead to three major conclusions. (A) k(po) differences are dominated by capillary water permeability (P(W)(†)), not size, differences. NWM and NGM voxel k(po) and v(b) values are independent. Quantitative analyses of concomitant population-averaged k(po), v(b) variations in normal and normal-appearing MS brain ROIs confirm P(W)(†) dominance. (B) P(W)(†) is dominated (>95%) by a trans(endothelial)cellular pathway, not the P(CA)(†) paracellular route. In MS lesions and GBM tumors, P(CA)(†) increases but P(W)(†) decreases. (C) k(po) tracks steady-state ATP production/consumption flux per capillary. In normal, MS, and GBM brain, regional k(po) correlates with literature MRSI ATP (positively) and Na(+) (negatively) tissue concentrations. This suggests that the P(W)(†) pathway is metabolically active. Excellent agreement of the relative NGM/NWM k(po)v(b) product ratio with the literature (31)PMRSI-MT CMR(oxphos) ratio confirms the flux property. We have previously shown that the cellular water molecule efflux rate constant (k(io)) is proportional to plasma membrane P-type ATPase turnover, likely due to active trans-membrane water cycling. With synaptic proximities and synergistic metabolic cooperativities, polar brain endothelial, neuroglial, and neuronal cells form "gliovascular units." We hypothesize that a chain of water cycling processes transmits brain metabolic activity to k(po), letting it report neurogliovascular unit Na(+),K(+)-ATPase activity. Cerebral k(po) maps represent metabolic (functional) neuroimages. The NGM 2.9 s(-1) k(po) means an equilibrium unidirectional water efflux of ~10(15) H2O molecules s(-1) per capillary (in 1 μL tissue): consistent with the known ATP consumption rate and water co-transporting membrane symporter stoichiometries.
Collapse
Affiliation(s)
- William D. Rooney
- Advanced Imaging Research CenterOregon Health and Science UniversityPortlandORUSA
- W. M. Keck Foundation High‐Field MRI LaboratoryOregon Health and Science UniversityPortlandORUSA
- Knight Cardiovascular InstituteOregon Health and Science UniversityPortlandORUSA
- Department of NeurologyOregon Health and Science UniversityPortlandORUSA
| | - Xin Li
- Advanced Imaging Research CenterOregon Health and Science UniversityPortlandORUSA
- W. M. Keck Foundation High‐Field MRI LaboratoryOregon Health and Science UniversityPortlandORUSA
| | - Manoj K. Sammi
- Advanced Imaging Research CenterOregon Health and Science UniversityPortlandORUSA
- W. M. Keck Foundation High‐Field MRI LaboratoryOregon Health and Science UniversityPortlandORUSA
| | | | - Edward A. Neuwelt
- Blood‐Brain Barrier ProgramOregon Health and Science UniversityPortlandORUSA
| | - Charles S. Springer
- Advanced Imaging Research CenterOregon Health and Science UniversityPortlandORUSA
- W. M. Keck Foundation High‐Field MRI LaboratoryOregon Health and Science UniversityPortlandORUSA
- Knight Cardiovascular InstituteOregon Health and Science UniversityPortlandORUSA
| |
Collapse
|
24
|
Reeder SB, Smith MR, Hernando D. Mathematical optimization of contrast concentration for T1-weighted spoiled gradient echo imaging. Magn Reson Med 2015; 75:1556-64. [PMID: 25981460 DOI: 10.1002/mrm.25744] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/17/2015] [Accepted: 03/28/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE To develop and validate closed form mathematical expressions that predict the optimal contrast agent concentration for the maximum T1-weighted spoiled gradient echo (SGRE) signal. THEORY AND METHODS Gadolinium and iron-based contrast agents can have significant transverse relaxivity that leads to signal dropout with increasing contrast agent concentration. A mathematical expression for the "optimal" contrast agent concentration where recovery of longitudinal magnetization is offset by increasing transverse signal decay was derived. Expressions for the maximum possible SGRE signal were also derived. Three phantoms were constructed, each with varying concentrations of one of the following three agents: gadoteridol, gadobenate dimeglumine, and ferumoxytol. After measuring the longitudinal and transverse relaxivity of the three agents, the SGRE signal was measured in the phantoms over a wide range of flip angles and echo times. RESULTS Excellent qualitative agreement between the SGRE signal behavior, optimal concentration, and optimal flip angle were observed between experimental measurements and theoretical predictions. CONCLUSION This work provides validated mathematical expressions for contrast enhanced T1-weighted SGRE imaging and may provide guidance for contrast dosing and injection protocols, as well as for novel pulse sequence design.
Collapse
Affiliation(s)
- Scott B Reeder
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Emergency Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Matthew R Smith
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Diego Hernando
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Springer CS, Li X, Tudorica LA, Oh KY, Roy N, Chui SYC, Naik AM, Holtorf ML, Afzal A, Rooney WD, Huang W. Intratumor mapping of intracellular water lifetime: metabolic images of breast cancer? NMR IN BIOMEDICINE 2014; 27:760-73. [PMID: 24798066 PMCID: PMC4174415 DOI: 10.1002/nbm.3111] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 05/10/2023]
Abstract
Shutter-speed pharmacokinetic analysis of dynamic-contrast-enhanced (DCE)-MRI data allows evaluation of equilibrium inter-compartmental water interchange kinetics. The process measured here - transcytolemmal water exchange - is characterized by the mean intracellular water molecule lifetime (τi). The τi biomarker is a true intensive property not accessible by any formulation of the tracer pharmacokinetic paradigm, which inherently assumes it is effectively zero when applied to DCE-MRI. We present population-averaged in vivo human breast whole tumor τi changes induced by therapy, along with those of other pharmacokinetic parameters. In responding patients, the DCE parameters change significantly after only one neoadjuvant chemotherapy cycle: while K(trans) (measuring mostly contrast agent (CA) extravasation) and kep (CA intravasation rate constant) decrease, τi increases. However, high-resolution, (1 mm)(2), parametric maps exhibit significant intratumor heterogeneity, which is lost by averaging. A typical 400 ms τi value means a trans-membrane water cycling flux of 10(13) H2O molecules s(-1)/cell for a 12 µm diameter cell. Analyses of intratumor variations (and therapy-induced changes) of τi in combination with concomitant changes of ve (extracellular volume fraction) indicate that the former are dominated by alterations of the equilibrium cell membrane water permeability coefficient, PW, not of cell size. These can be interpreted in light of literature results showing that τi changes are dominated by a PW (active) component that reciprocally reflects the membrane driving P-type ATPase ion pump turnover. For mammalian cells, this is the Na(+), K(+)-ATPase pump. These results promise the potential to discriminate metabolic and microenvironmental states of regions within tumors in vivo, and their changes with therapy.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- *Correspondence to: C. S. Springer, Jr, Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA. E-mail:
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
| | - Luminita A Tudorica
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Diagnostic Radiology, Oregon Health and Science UniversityPortland, OR, USA
| | - Karen Y Oh
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Diagnostic Radiology, Oregon Health and Science UniversityPortland, OR, USA
| | - Nicole Roy
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Diagnostic Radiology, Oregon Health and Science UniversityPortland, OR, USA
| | - Stephen Y-C Chui
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Hematology/Oncology, Oregon Health and Science UniversityPortland, OR, USA
| | - Arpana M Naik
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Surgical Oncology, Oregon Health and Science UniversityPortland, OR, USA
| | - Megan L Holtorf
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Clinical Trials Office, Oregon Health and Science UniversityPortland, OR, USA
| | - Aneela Afzal
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
| | - Wei Huang
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|