1
|
Ahmadian N, Jacobs S, Gosselink M, van der Kemp W, Hoogduin H, Coppoli A, Mason G, de Graaf R, Norouzizadeh H, Mahon C, Eijsden P, Tiessen R, Cerneus D, Miller C, Lepeleire I, Basile A, Klomp D, Prompers J, Wiegers E. Reproducibility of the Determination of 13C-Labeling of Glutamate and Glutamine in the Human Brain Using selPOCE-MRS at 7 T Upon [U- 13C]-Labeled Glucose Infusion. NMR IN BIOMEDICINE 2025; 38:e70026. [PMID: 40204526 PMCID: PMC11981885 DOI: 10.1002/nbm.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/18/2025] [Accepted: 02/23/2025] [Indexed: 04/11/2025]
Abstract
Glutamate (Glu) is the major excitatory neurotransmitter in the central nervous system. The measurement of Glu/glutamine (Gln) neurotransmitters in the brain provides valuable insights into the dynamic aspects of neuroenergetics and neurotransmitter cycles and can be accomplished through the detection of 13C-labeling of Glu and Gln during the administration of 13C-labeled glucose. Our goal is to evaluate the reproducibility of selective proton-observed, carbon-edited (selPOCE) MRS at 7 T for the detection of 13C-labeled Glu and Gln in the human brain. Data of three healthy participants, who were scanned twice at 7 T while undergoing [U-13C]-glucose infusion for 120 min, were used to detect 13C-labeled Glu and Gln in the brain, using selPOCE-STEAM-MRS. There was a rapid increase of plasma glucose 13C fractional enrichment (FE) during the first 20 min of infusion, followed by a steady state of plasma glucose 13C FE until the end of the [U-13C]-glucose infusion. The time courses of 13C-labeling of Glu and Gln were similar for test/retest. The test/retest variability was 15.8% for 13C-Glu and 33.3% for 13C-Gln. Knowing the variability of these readings using selPOCE-STEAM-MRS can inform the application to future studies on disease-specific alterations in Glu/Gln cycling.
Collapse
Affiliation(s)
- Narjes Ahmadian
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
- NeurosurgeryUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Sarah M. Jacobs
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Mark Gosselink
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Hans Hoogduin
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | - Dennis W. J. Klomp
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Jeanine J. Prompers
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Evita C. Wiegers
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|
2
|
Kumaragamage C, McIntyre S, Nixon TW, De Feyter HM, de Graaf RA. High-quality lipid suppression and B0 shimming for human brain 1H MRSI. Neuroimage 2024; 300:120845. [PMID: 39276817 PMCID: PMC11540284 DOI: 10.1016/j.neuroimage.2024.120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) is a powerful technique that can map the metabolic profile in the brain non-invasively. Extracranial lipid contamination and insufficient B0 homogeneity however hampers robustness, and as a result has hindered widespread use of MRSI in clinical and research settings. Over the last six years we have developed highly effective extracranial lipid suppression methods with a second order gradient insert (ECLIPSE) utilizing inner volume selection (IVS) and outer volume suppression (OVS) methods. While ECLIPSE provides > 100-fold in lipid suppression with modest radio frequency (RF) power requirements and immunity to B1+ field variations, axial coverage is reduced for non-elliptical head shapes. In this work we detail the design, construction, and utility of MC-ECLIPSE, a pulsed second order gradient coil with Z2 and X2Y2 fields, combined with a 54-channel multi-coil (MC) array. The MC-ECLIPSE platform allows arbitrary region of interest (ROI) shaped OVS for full-axial slice coverage, in addition to MC-based B0 field shimming, for robust human brain proton MRSI. In vivo experiments demonstrate that MC-ECLIPSE allows axial brain coverage of 92-95 % is achieved following arbitrary ROI shaped OVS for various head shapes. The standard deviation (SD) of the residual B0 field following SH2 and MC shimming were 25 ± 9 Hz and 18 ± 8 Hz over a 5 cm slab, and 18 ± 5 Hz and 14 ± 6 Hz over a 1.5 cm slab, respectively. These results demonstrate that B0 magnetic field shimming with the MC array supersedes second order harmonic capabilities available on standard MRI systems for both restricted and large ROIs. Furthermore, MC based B0 shimming provides comparable shimming performance to an unrestricted SH5 shim set for both restricted, and 5-cm slab shim challenges. Phantom experiments demonstrate the high level of localization performance achievable with MC-ECLIPSE, with ROI edge chemical shift displacements ranging from 1-3 mm with a median value of 2 mm, and transition width metrics ranging from 1-2.5 mm throughout the ROI edge. Furthermore, MC based B0 shimming is comparable to performance following a full set of unrestricted spherical harmonic fields up to order 5. Short echo time MRSI and GABA-edited MRSI acquisitions in the human brain following MC-shimming and arbitrary ROI shaping demonstrate full-axial slice coverage and extracranial lipid artifact free spectra. MC-ECLIPSE allows full-axial coverage and robust MRSI acquisitions, while allowing interrogation of cortical tissue proximal to the skull, which has significant value in a wide range of neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA.
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Terence W Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Henk M De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA; Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Jacobs SM, Prompers JJ, van der Kemp WJM, van der Velden TA, Gosselink M, Meliadò EF, Hoogduin HM, Mason GF, de Graaf RA, Miller CO, Bredael GM, van der Kolk AG, Alborahal C, Klomp DWJ, Wiegers EC. Indirect 1H-[ 13C] MRS of the human brain at 7 T using a 13C-birdcage coil and eight transmit-receive 1H-dipole antennas with a 32-channel 1H-receive array. NMR IN BIOMEDICINE 2024; 37:e5195. [PMID: 38845018 DOI: 10.1002/nbm.5195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 10/12/2024]
Abstract
The neuronal tricarboxylic acid and glutamate/glutamine (Glu/Gln) cycles play important roles in brain function. These processes can be measured in vivo using dynamic 1H-[13C] MRS during administration of 13C-labeled glucose. Proton-observed carbon-edited (POCE) MRS enhances the signal-to-noise ratio (SNR) compared with direct 13C-MRS. Ultra-high field further boosts the SNR and increases spectral dispersion; however, even at 7 T, Glu and Gln 1H-resonances may overlap. Further gain can be obtained with selective POCE (selPOCE). Our aim was to create a setup for indirect dynamic 1H-[13C] MRS in the human brain at 7 T. A home-built non-shielded transmit-receive 13C-birdcage head coil with eight transmit-receive 1H-dipole antennas was used together with a 32-channel 1H-receive array. Electromagnetic simulations were carried out to ensure that acquisitions remained within local and global head SAR limits. POCE-MRS was performed using slice-selective excitation with semi-localization by adiabatic selective refocusing (sLASER) and stimulated echo acquisition mode (STEAM) localization, and selPOCE-MRS using STEAM. Sequences were tested in a phantom containing non-enriched Glu and Gln, and in three healthy volunteers during uniformly labeled 13C-glucose infusions. In one subject the voxel position was alternated between bi-frontal and bi-occipital placement within one session. [4-13C]Glu-H4 and [4-13C]Gln-H4 signals could be separately detected using both STEAM-POCE and STEAM-selPOCE in the phantom. In vivo, [4,5-13C]Glx could be detected using both sLASER-POCE and STEAM-POCE, with similar sensitivities, but [4,5-13C]Glu and [4,5-13C]Gln signals could not be completely resolved. STEAM-POCE was alternately performed bi-frontal and bi-occipital within a single session without repositioning of the subject, yielding similar results. With STEAM-selPOCE, [4,5-13C]Glu and [4,5-13C]Gln could be clearly separated. We have shown that with our setup indirect dynamic 1H-[13C] MRS at 7 T is feasible in different locations in the brain within one session, and by using STEAM-selPOCE it is possible to separate Glu from Gln in vivo while obtaining high quality spectra.
Collapse
Affiliation(s)
- Sarah M Jacobs
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeanine J Prompers
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wybe J M van der Kemp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tijl A van der Velden
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Gosselink
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ettore Flavio Meliadò
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans M Hoogduin
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Graeme F Mason
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Corin O Miller
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Gerard M Bredael
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Anja G van der Kolk
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cezar Alborahal
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Evita C Wiegers
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Versteeg E, Nam KM, Klomp DWJ, Bhogal AA, Siero JCW, Wijnen JP. A silent echo-planar spectroscopic imaging readout with high spectral bandwidth MRSI using an ultrasonic gradient axis. Magn Reson Med 2024; 91:2247-2256. [PMID: 38205917 DOI: 10.1002/mrm.30008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE We present a novel silent echo-planar spectroscopic imaging (EPSI) readout, which uses an ultrasonic gradient insert to accelerate MRSI while producing a high spectral bandwidth (20 kHz) and a low sound level. METHODS The ultrasonic gradient insert consisted of a single-axis (z-direction) plug-and-play gradient coil, powered by an audio amplifier, and produced 40 mT/m at 20 kHz. The silent EPSI readout was implemented in a phase-encoded MRSI acquisition. Here, the additional spatial encoding provided by this silent EPSI readout was used to reduce the number of phase-encoding steps. Spectroscopic acquisitions using phase-encoded MRSI, a conventional EPSI-readout, and the silent EPSI readout were performed on a phantom containing metabolites with resonance frequencies in the ppm range of brain metabolites (0-4 ppm). These acquisitions were used to determine sound levels, showcase the high spectral bandwidth of the silent EPSI readout, and determine the SNR efficiency and the scan efficiency. RESULTS The silent EPSI readout featured a 19-dB lower sound level than a conventional EPSI readout while featuring a high spectral bandwidth of 20 kHz without spectral ghosting artifacts. Compared with phase-encoded MRSI, the silent EPSI readout provided a 4.5-fold reduction in scan time. In addition, the scan efficiency of the silent EPSI readout was higher (82.5% vs. 51.5%) than the conventional EPSI readout. CONCLUSIONS We have for the first time demonstrated a silent spectroscopic imaging readout with a high spectral bandwidth and low sound level. This sound reduction provided by the silent readout is expected to have applications in sound-sensitive patient groups, whereas the high spectral bandwidth could benefit ultrahigh-field MR systems.
Collapse
Affiliation(s)
- Edwin Versteeg
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kyung Min Nam
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alex A Bhogal
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen C W Siero
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
| | - Jannie P Wijnen
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Nam KM, Hendriks AD, Boer VO, Klomp DWJ, Wijnen JP, Bhogal AA. Proton metabolic mapping of the brain at 7 T using a two-dimensional free induction decay-echo-planar spectroscopic imaging readout with lipid suppression. NMR IN BIOMEDICINE 2022; 35:e4771. [PMID: 35577344 PMCID: PMC9541868 DOI: 10.1002/nbm.4771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The increased signal-to-noise ratio (SNR) and chemical shift dispersion at high magnetic fields (≥7 T) have enabled neuro-metabolic imaging at high spatial resolutions. To avoid very long acquisition times with conventional magnetic resonance spectroscopic imaging (MRSI) phase-encoding schemes, solutions such as pulse-acquire or free induction decay (FID) sequences with short repetition time and inner volume selection methods with acceleration (echo-planar spectroscopic imaging [EPSI]), have been proposed. With the inner volume selection methods, limited spatial coverage of the brain and long echo times may still impede clinical implementation. FID-MRSI sequences benefit from a short echo time and have a high SNR per time unit; however, contamination from strong extra-cranial lipid signals remains a problem that can hinder correct metabolite quantification. L2-regularization can be applied to remove lipid signals in cases with high spatial resolution and accurate prior knowledge. In this work, we developed an accelerated two-dimensional (2D) FID-MRSI sequence using an echo-planar readout and investigated the performance of lipid suppression by L2-regularization, an external crusher coil, and the combination of these two methods to compare the resulting spectral quality in three subjects. The reduction factor of lipid suppression using the crusher coil alone varies from 2 to 7 in the lipid region of the brain boundary. For the combination of the two methods, the average lipid area inside the brain was reduced by 2% to 38% compared with that of unsuppressed lipids, depending on the subject's region of interest. 2D FID-EPSI with external lipid crushing and L2-regularization provides high in-plane coverage and is suitable for investigating brain metabolite distributions at high fields.
Collapse
Affiliation(s)
- Kyung Min Nam
- Center for Image Sciences, Department of Radiology, University Medical Centre Utrecht, Utrecht
| | - Arjan D Hendriks
- Center for Image Sciences, Department of Radiology, University Medical Centre Utrecht, Utrecht
| | - Vincent O Boer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Dennis W J Klomp
- Center for Image Sciences, Department of Radiology, University Medical Centre Utrecht, Utrecht
| | - Jannie P Wijnen
- Center for Image Sciences, Department of Radiology, University Medical Centre Utrecht, Utrecht
| | - Alex A Bhogal
- Center for Image Sciences, Department of Radiology, University Medical Centre Utrecht, Utrecht
| |
Collapse
|
6
|
de Los Angeles Gomez M, Serrai H, Bhaduri S, Laleg-Kirati TM. A novel method for Magnetic Resonance Spectroscopy lipid signal suppression using Semi-classical signal analysis and Bidirectional Long short-term memory. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:317-320. [PMID: 36085985 DOI: 10.1109/embc48229.2022.9871645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive method that enables the analysis and quantification of brain metabolites, which provide useful information about the neuro-biological substrates of brain function. Lactate plays a pivotal role in the diagnosis of various brain diseases. However, accurate lactate quantification is generally difficult to achieve due to the presence of large lipid peaks resonating at a similar spectral position. To overcome this problem several techniques have been proposed. However, most of them suffer from lactate signal loss or poor lipid peak removal. In this paper, a novel method for lipid suppression for MRS signal is proposed. The method combines a semi-classical signal analysis method and a bidirectional long short term memory technique. The method is validated using simulated data that mimics real MRS data.
Collapse
|
7
|
Broeders TAA, Bhogal AA, Morsinkhof LM, Schoonheim MM, Röder CH, Edens M, Klomp DWJ, Wijnen JP, Vinkers CH. Glutamate levels across deep brain structures in patients with a psychotic disorder and its relation to cognitive functioning. J Psychopharmacol 2022; 36:489-497. [PMID: 35243931 PMCID: PMC9066676 DOI: 10.1177/02698811221077199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Patients with psychotic disorders often show prominent cognitive impairment. Glutamate seems to play a prominent role, but its role in deep gray matter (DGM) regions is unclear. AIMS To evaluate glutamate levels within deep gray matter structures in patients with a psychotic disorder in relation to cognitive functioning, using advanced spectroscopic acquisition, reconstruction, and post-processing techniques. METHODS A 7-Tesla magnetic resonance imaging scanner combined with a lipid suppression coil and subject-specific water suppression pulses was used to acquire high-resolution magnetic resonance spectroscopic imaging data. Tissue fraction correction and registration to a standard brain were performed for group comparison in specifically delineated DGM regions. The brief assessment of cognition in schizophrenia was used to evaluate cognitive status. RESULTS Average glutamate levels across DGM structures (i.e. caudate, pallidum, putamen, and thalamus) in mostly medicated patients with a psychotic disorder (n = 16, age = 33, 4 females) were lower compared to healthy controls (n = 23, age = 24, 7 females; p = 0.005, d = 1.06). Stratified analyses showed lower glutamate levels in the caudate (p = 0.046, d = 0.76) and putamen p = 0.013, d = 0.94). These findings were largely explained by age differences between groups. DGM glutamate levels were positively correlated with psychomotor speed (r(30) = 0.49, p = 0.028), but not with other cognitive domains. CONCLUSIONS We find reduced glutamate levels across DGM structures including the caudate and putamen in patients with a psychotic disorder that are linked to psychomotor speed. Despite limitations concerning age differences, these results underscore the potential role of detailed in vivo glutamate assessments to understand cognitive deficits in psychotic disorders.
Collapse
Affiliation(s)
- Tommy AA Broeders
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Tommy AA Broeders, Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Alex A Bhogal
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lisan M Morsinkhof
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christian H Röder
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mirte Edens
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis WJ Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christiaan H Vinkers
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam/GGZ inGeest, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Shams Z, Klomp DWJ, Boer VO, Wijnen JP, Wiegers EC. Identifying the source of spurious signals caused by B 0 inhomogeneities in single-voxel 1 H MRS. Magn Reson Med 2022; 88:71-82. [PMID: 35344600 PMCID: PMC9311141 DOI: 10.1002/mrm.29222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/04/2022] [Accepted: 02/19/2022] [Indexed: 12/04/2022]
Abstract
Purpose Single‐voxel MRS (SV MRS) requires robust volume localization as well as optimized crusher and phase‐cycling schemes to reduce artifacts arising from signal outside the volume of interest. However, due to local magnetic field gradients (B0 inhomogeneities), signal that was dephased by the crusher gradients during acquisition might rephase, leading to artifacts in the spectrum. Here, we analyzed this mechanism, aiming to identify the source of signals arising from unwanted coherence pathways (spurious signals) in SV MRS from a B0 map. Methods We investigated all possible coherence pathways associated with imperfect localization in a semi‐localized by adiabatic selective refocusing (semi‐LASER) sequence for potential rephasing of signals arising from unwanted coherence pathways by a local magnetic field gradient. We searched for locations in the B0 map where the signal dephasing due to external (crusher) and internal (B0) field gradients canceled out. To confirm the mechanism, SV‐MR spectra (TE = 31 ms) and 3D‐CSI data with the same volume localization as the SV experiments were acquired from a phantom and 2 healthy volunteers. Results Our analysis revealed that potential sources of spurious signals were scattered over multiple locations throughout the brain. This was confirmed by 3D‐CSI data. Moreover, we showed that the number of potential locations where spurious signals could originate from monotonically decreases with crusher strength. Conclusion We proposed a method to identify the source of spurious signals in SV 1H MRS using a B0 map. This can facilitate MRS sequence design to be less sensitive to experimental artifacts.
Collapse
Affiliation(s)
- Zahra Shams
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Vincent O Boer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jannie P Wijnen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Evita C Wiegers
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Hangel G, Niess E, Lazen P, Bednarik P, Bogner W, Strasser B. Emerging methods and applications of ultra-high field MR spectroscopic imaging in the human brain. Anal Biochem 2022; 638:114479. [PMID: 34838516 DOI: 10.1016/j.ab.2021.114479] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) of the brain enables insights into the metabolic changes and fluxes in diseases such as tumors, multiple sclerosis, epilepsy, or hepatic encephalopathy, as well as insights into general brain functionality. However, the routine application of MRSI is mostly hampered by very low signal-to-noise ratios (SNR) due to the low concentrations of metabolites, about 10000 times lower than water. Furthermore, MRSI spectra have a dense information content with many overlapping metabolite resonances, especially for proton MRSI. MRI scanners at ultra-high field strengths, like 7 T or above, offer the opportunity to increase SNR, as well as the separation between resonances, thus promising to solve both challenges. Yet, MRSI at ultra-high field strengths is challenged by decreased B0- and B1-homogeneity, shorter T2 relaxation times, stronger chemical shift displacement errors, and aggravated lipid contamination. Therefore, to capitalize on the advantages of ultra-high field strengths, these challenges must be overcome. This review focuses on the challenges MRSI of the human brain faces at ultra-high field strength, as well as the possible applications to this date.
Collapse
Affiliation(s)
- Gilbert Hangel
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Eva Niess
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Philipp Lazen
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Petr Bednarik
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Bernhard Strasser
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
10
|
Mandal PK, Guha Roy R, Samkaria A, Maroon JC, Arora Y. In Vivo 13C Magnetic Resonance Spectroscopy for Assessing Brain Biochemistry in Health and Disease. Neurochem Res 2022; 47:1183-1201. [PMID: 35089504 DOI: 10.1007/s11064-022-03538-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/27/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique that contributes to the elucidation of brain biochemistry. 13C MRS enables the detection of specific neurochemicals and their neuroenergetic correlation with neuronal function. The synergistic outcome of 13C MRS and the infusion of 13C-labeled substrates provide an understanding of neurometabolism and the role of glutamate/gamma-aminobutyric acid (GABA) neurotransmission in diseases, such as Alzheimer's disease, schizophrenia, and bipolar disorder. Moreover, 13C MRS provides a window into the altered flux rate of different pathways, including the tricarboxylic acid cycle (TCA) and the glutamate/glutamine/GABA cycle, in health and in various diseases. Notably, the metabolic flux rate of the TCA cycle often decreases in neurodegenerative diseases. Additionally, 13C MRS can be used to investigate several psychiatric and neurological disorders as it directly reflects the real-time production and alterations of key brain metabolites. This review aims to highlight the chronology, the technological advancements, and the applications of 13C MRS in various brain diseases.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India.
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, Australia.
| | - Rimil Guha Roy
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India
| | - Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India
| |
Collapse
|
11
|
Strasser B, Arango NS, Stockmann JP, Gagoski B, Thapa B, Li X, Bogner W, Moser P, Small J, Cahill DP, Batchelor TT, Dietrich J, van der Kouwe A, White J, Adalsteinsson E, Andronesi OC. Improving D-2-hydroxyglutarate MR spectroscopic imaging in mutant isocitrate dehydrogenase glioma patients with multiplexed RF-receive/B 0 -shim array coils at 3 T. NMR IN BIOMEDICINE 2022; 35:e4621. [PMID: 34609036 PMCID: PMC8717863 DOI: 10.1002/nbm.4621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
MR spectroscopic imaging (MRSI) noninvasively maps the metabolism of human brains. In particular, the imaging of D-2-hydroxyglutarate (2HG) produced by glioma isocitrate dehydrogenase (IDH) mutations has become a key application in neuro-oncology. However, the performance of full field-of-view MRSI is limited by B0 spatial nonuniformity and lipid artifacts from tissues surrounding the brain. Array coils that multiplex RF-receive and B0 -shim electrical currents (AC/DC mixing) over the same conductive loops provide many degrees of freedom to improve B0 uniformity and reduce lipid artifacts. AC/DC coils are highly efficient due to compact design, requiring low shim currents (<2 A) that can be switched fast (0.5 ms) with high interscan reproducibility (10% coefficient of variation for repeat measurements). We measured four tumor patients and five volunteers at 3 T and show that using AC/DC coils in addition to the vendor-provided second-order spherical harmonics shim provides 19% narrower spectral linewidth, 6% higher SNR, and 23% less lipid content for unrestricted field-of-view MRSI, compared with the vendor-provided shim alone. We demonstrate that improvement in MRSI data quality led to 2HG maps with higher contrast-to-noise ratio for tumors that coincide better with the FLAIR-enhancing lesions in mutant IDH glioma patients. Smaller Cramér-Rao lower bounds for 2HG quantification are obtained in tumors by AC/DC shim, corroborating with simulations that predicted improved accuracy and precision for narrower linewidths. AC/DC coils can be used synergistically with optimized acquisition schemes to improve metabolic imaging for precision oncology of glioma patients. Furthermore, this methodology has broad applicability to other neurological disorders and neuroscience.
Collapse
Affiliation(s)
- Bernhard Strasser
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Radiology, Boston, Massachusetts, USA
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Vienna, Austria
| | - Nicolas S. Arango
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jason P. Stockmann
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Radiology, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Borjan Gagoski
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bijaya Thapa
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Radiology, Boston, Massachusetts, USA
| | - Xianqi Li
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Radiology, Boston, Massachusetts, USA
| | - Wolfgang Bogner
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Vienna, Austria
| | - Philipp Moser
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Vienna, Austria
| | - Julia Small
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel P. Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tracy T. Batchelor
- Department Neurology, Division of Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jorg Dietrich
- Department Neurology, Division of Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andre van der Kouwe
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Radiology, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob White
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ovidiu C. Andronesi
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Radiology, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Maudsley AA, Andronesi OC, Barker PB, Bizzi A, Bogner W, Henning A, Nelson SJ, Posse S, Shungu DC, Soher BJ. Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4309. [PMID: 32350978 PMCID: PMC7606742 DOI: 10.1002/nbm.4309] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 02/01/2020] [Accepted: 03/10/2020] [Indexed: 05/04/2023]
Abstract
Magnetic resonance spectroscopic imaging (MRSI) offers considerable promise for monitoring metabolic alterations associated with disease or injury; however, to date, these methods have not had a significant impact on clinical care, and their use remains largely confined to the research community and a limited number of clinical sites. The MRSI methods currently implemented on clinical MRI instruments have remained essentially unchanged for two decades, with only incremental improvements in sequence implementation. During this time, a number of technological developments have taken place that have already greatly benefited the quality of MRSI measurements within the research community and which promise to bring advanced MRSI studies to the point where the technique becomes a true imaging modality, while making the traditional review of individual spectra a secondary requirement. Furthermore, the increasing use of biomedical MR spectroscopy studies has indicated clinical areas where advanced MRSI methods can provide valuable information for clinical care. In light of this rapidly changing technological environment and growing understanding of the value of MRSI studies for biomedical studies, this article presents a consensus from a group of experts in the field that reviews the state-of-the-art for clinical proton MRSI studies of the human brain, recommends minimal standards for further development of vendor-provided MRSI implementations, and identifies areas which need further technical development.
Collapse
Affiliation(s)
- Andrew A Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ovidiu C Andronesi
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts
| | - Peter B Barker
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, and the Kennedy Krieger Institute, F.M. Kirby Center for Functional Brain Imaging, Baltimore, Maryland
| | - Alberto Bizzi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Anke Henning
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Stefan Posse
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico
| | - Dikoma C Shungu
- Department of Neuroradiology, Weill Cornell Medical College, New York, New York
| | - Brian J Soher
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
13
|
Tkáč I, Deelchand D, Dreher W, Hetherington H, Kreis R, Kumaragamage C, Považan M, Spielman DM, Strasser B, de Graaf RA. Water and lipid suppression techniques for advanced 1 H MRS and MRSI of the human brain: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4459. [PMID: 33327042 PMCID: PMC8569948 DOI: 10.1002/nbm.4459] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/23/2020] [Indexed: 05/09/2023]
Abstract
The neurochemical information provided by proton magnetic resonance spectroscopy (MRS) or MR spectroscopic imaging (MRSI) can be severely compromised if strong signals originating from brain water and extracranial lipids are not properly suppressed. The authors of this paper present an overview of advanced water/lipid-suppression techniques and describe their advantages and disadvantages. Moreover, they provide recommendations for choosing the most appropriate techniques for proper use. Methods of water signal handling are primarily focused on the VAPOR technique and on MRS without water suppression (metabolite cycling). The section on lipid-suppression methods in MRSI is divided into three parts. First, lipid-suppression techniques that can be implemented on most clinical MR scanners (volume preselection, outer-volume suppression, selective lipid suppression) are described. Second, lipid-suppression techniques utilizing the combination of k-space filtering, high spatial resolutions and lipid regularization are presented. Finally, three promising new lipid-suppression techniques, which require special hardware (a multi-channel transmit system for dynamic B1+ shimming, a dedicated second-order gradient system or an outer volume crusher coil) are introduced.
Collapse
Affiliation(s)
- Ivan Tkáč
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Dinesh Deelchand
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Wolfgang Dreher
- Department of Chemistry, In vivo-MR Group, University Bremen, Bremen, Germany
| | - Hoby Hetherington
- Department of Radiology Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roland Kreis
- Departments of Radiology and Biomedical Research, University Bern, Bern, Switzerland
| | - Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Michal Považan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M. Spielman
- Department of Radiology, Stanford University, Stanford, California, CA, USA
| | - Bernhard Strasser
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Boston, MA, USA
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Kumaragamage C, De Feyter HM, Brown P, McIntyre S, Nixon TW, de Graaf RA. ECLIPSE utilizing gradient-modulated offset-independent adiabaticity (GOIA) pulses for highly selective human brain proton MRSI. NMR IN BIOMEDICINE 2021; 34:e4415. [PMID: 33001485 PMCID: PMC9472321 DOI: 10.1002/nbm.4415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/16/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
A multitude of extracranial lipid suppression methods exist for proton MRSI acquisitions. Popular and emerging lipid suppression methods each have their inherent set of advantages and disadvantages related to the achievable level of lipid suppression, RF power deposition, insensitivity to B1+ field and lipid T1 heterogeneity, brain coverage, spatial selectivity, chemical shift displacement (CSD) errors and the reliability of spectroscopic data spanning the observed 0.9-4.7 ppm band. The utility of elliptical localization with pulsed second order fields (ECLIPSE) was previously demonstrated with a greater than 100-fold in extracranial lipid suppression and low power requirements utilizing 3 kHz bandwidth AFP pulses. Like all gradient-based localization methods, ECLIPSE is sensitive to CSD errors, resulting in a modified metabolic profile in edge-of-ROI voxels. In this work, ECLIPSE is extended with 15 kHz bandwidth second order gradient-modulated RF pulses based on the gradient offset-independent adiabaticity (GOIA) algorithm to greatly reduce CSD and improve spatial selectivity. An adiabatic double spin-echo ECLIPSE inner volume selection (TE = 45 ms) MRSI method and an ECLIPSE outer volume suppression (TE = 3.2 ms) FID-MRSI method were implemented. Both GOIA-ECLIPSE MRSI sequences provided artifact-free metabolite spectra in vivo, with a greater than 100-fold in lipid suppression and less than 2.6 mm in-plane CSD and less than 3.3 mm transition width for edge-of-ROI voxels, representing an ~5-fold improvement compared with the parent, nongradient-modulated method. Despite the 5-fold larger bandwidth, GOIA-ECLIPSE only required a 1.9-fold increase in RF power. The highly robust lipid suppression combined with low CSD and sharp ROI edge transitions make GOIA-ECLIPSE an attractive alternative to commonly employed lipid suppression methods. Furthermore, the low RF power deposition demonstrates that GOIA-ECLIPSE is very well suited for high field (≥3 T) MRSI applications.
Collapse
Affiliation(s)
- Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Henk M. De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Brown
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Terence W. Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
Bhogal AA, Broeders TAA, Morsinkhof L, Edens M, Nassirpour S, Chang P, Klomp DWJ, Vinkers CH, Wijnen JP. Lipid-suppressed and tissue-fraction corrected metabolic distributions in human central brain structures using 2D 1 H magnetic resonance spectroscopic imaging at 7 T. Brain Behav 2020; 10:e01852. [PMID: 33216472 PMCID: PMC7749561 DOI: 10.1002/brb3.1852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Magnetic resonance spectroscopic imaging (MRSI) has the potential to add a layer of understanding of the neurobiological mechanisms underlying brain diseases, disease progression, and treatment efficacy. Limitations related to metabolite fitting of low signal-to-noise ratios data, signal variations due to partial-volume effects, acquisition and extracranial lipid artifacts, along with clinically relevant aspects such as scan time constraints, are among the challenges associated with in vivo MRSI. METHODS The aim of this work was to address some of these factors and to develop an acquisition, reconstruction, and postprocessing pipeline to derive lipid-suppressed metabolite values of central brain structures based on free-induction decay measurements made using a 7 T MR scanner. Anatomical images were used to perform high-resolution (1 mm3 ) partial-volume correction to account for gray matter, white matter (WM), and cerebral-spinal fluid signal contributions. Implementation of automatic quality control thresholds and normalization of metabolic maps from 23 subjects to the Montreal Neurological Institute (MNI) standard atlas facilitated the creation of high-resolution average metabolite maps of several clinically relevant metabolites in central brain regions, while accounting for macromolecular distributions. Partial-volume correction improved the delineation of deep brain nuclei. We report average metabolite values including glutamate + glutamine (Glx), glycerophosphocholine, choline and phosphocholine (tCho), (phospo)creatine, myo-inositol and glycine (mI-Gly), glutathione, N-acetyl-aspartyl glutamate(and glutamine), and N-acetyl-aspartate in the basal ganglia, central WM (thalamic radiation, corpus callosum) as well as insular cortex and intracalcarine sulcus. CONCLUSION MNI-registered average metabolite maps facilitate group-based analysis, thus offering the possibility to mitigate uncertainty in variable MRSI data.
Collapse
Affiliation(s)
- Alex A Bhogal
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tommy A A Broeders
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lisan Morsinkhof
- Technical Medicine, University of Twente, Enchede, The Netherlands
| | - Mirte Edens
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Anatomy & Neurosciences, Amsterdam UMC (location VU University Medical Center), Amsterdam, The Netherlands.,Department of Psychiatry, Amsterdam UMC (location VU University Medical Center)/GGZ inGeest, Amsterdam, The Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
Hingerl L, Strasser B, Moser P, Hangel G, Motyka S, Heckova E, Gruber S, Trattnig S, Bogner W. Clinical High-Resolution 3D-MR Spectroscopic Imaging of the Human Brain at 7 T. Invest Radiol 2020; 55:239-248. [PMID: 31855587 DOI: 10.1097/rli.0000000000000626] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Available clinical magnetic resonance spectroscopic imaging (MRSI) sequences are hampered by long scan times, low spatial resolution, strong field inhomogeneities, limited volume coverage, and low signal-to-noise ratio. High-resolution, whole-brain mapping of more metabolites than just N-acetylaspartate, choline, and creatine within clinically attractive scan times is urgently needed for clinical applications. The aim is therefore to develop a free induction decay (FID) MRSI sequence with rapid concentric ring trajectory (CRT) encoding for 7 T and demonstrate its clinical feasibility for mapping the whole cerebrum of healthy volunteers and patients. MATERIALS AND METHODS Institutional review board approval and written informed consent were obtained. Time-efficient, 3-dimensional encoding of an ellipsoidal k-space by in-plane CRT and through-plane phase encoding was integrated into an FID-MRSI sequence. To reduce scan times further, repetition times were shortened, and variable temporal interleaves were applied. Measurements with different matrix sizes were performed to validate the CRT encoding in a resolution phantom. One multiple sclerosis patient, 1 glioma patient, and 6 healthy volunteers were prospectively measured. For the healthy volunteers, brain segmentation was performed to quantify median metabolic ratios, Cramér-Rao lower bounds (CRLBs), signal-to-noise ratios, linewidths, and brain coverage among all measured matrix sizes ranging from a 32 × 32 × 31 matrix with 6.9 × 6.9 × 4.2 mm nominal voxel size acquired in ~3 minutes to an 80 × 80 × 47 matrix with 2.7 × 2.7 × 2.7 mm nominal voxel size in ~15 minutes for different brain regions. RESULTS Phantom structures with diameters down to 3 to 4 mm were visible. In vivo MRSI provided high spectral quality (median signal-to-noise ratios, >6.3 and linewidths, <0.082 ppm) and fitting quality. Cramér-Rao lower bounds were ranging from less than 22% for glutamine (highest CRLB in subcortical gray matter) to less than 9.5% for N-acetylaspartate for the 80 × 80 × 47 matrix (highest CRLB in the temporal lobe). This enabled reliable mapping of up to 8 metabolites (N-acetylaspartate, N-acetylaspartyl glutamate, total creatine, glutamine, glutamate, total choline, myo-inositol, glycine) and macromolecules for all resolutions. Coverage of the whole cerebrum allowed visualization of the full extent of diffuse and local multiple sclerosis-related neurochemical changes (eg, up to 100% increased myo-inositol). Three-dimensional brain tumor metabolic maps provided valuable information beyond that of single-slice MRSI, with up to 200% higher choline, up to 100% increased glutamine, and increased glycine in tumor tissue. CONCLUSIONS Seven Tesla FID-MRSI with time-efficient CRT readouts offers clinically attractive acquisition protocols tailored either for speed or for the investigation of small pathologic details and low-abundant metabolites. This can complement clinical MR studies of various brain disorders. Significant metabolic anomalies were demonstrated in a multiple sclerosis and a glioma patient for myo-inositol, glutamine, total choline, glycine, and N-acetylaspartate concentrations.
Collapse
Affiliation(s)
- Lukas Hingerl
- From the High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Bernhard Strasser
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Philipp Moser
- From the High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gilbert Hangel
- From the High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stanislav Motyka
- From the High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Eva Heckova
- From the High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stephan Gruber
- From the High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
17
|
Heckova E, Považan M, Strasser B, Motyka S, Hangel G, Hingerl L, Moser P, Lipka A, Gruber S, Trattnig S, Bogner W. Effects of different macromolecular models on reproducibility of FID-MRSI at 7T. Magn Reson Med 2020; 83:12-21. [PMID: 31393037 PMCID: PMC6851974 DOI: 10.1002/mrm.27922] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/12/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE A properly characterized macromolecular (MM) contribution is essential for accurate metabolite quantification in FID-MRSI. MM information can be included into the fitting model as a single component or parameterized and included over several individual MM resonances, which adds flexibility when pathologic changes are present but is prone to potential overfitting. This study investigates the effects of different MM models on MRSI reproducibility. METHODS Clinically feasible, high-resolution FID-MRSI data were collected in ~5 min at 7 Tesla from 10 healthy volunteers and quantified via LCModel (version 6.3) with 3 basis sets, each with a different approach for how the MM signal was handled: averaged measured whole spectrum (full MM), 9 parameterized components (param MM) with soft constraints to avoid overparameterization, or without any MM information included in the fitting prior knowledge. The test-retest reproducibility of MRSI scans was assessed voxel-wise using metabolite coefficients of variation and intraclass correlation coefficients and compared between the basis sets. Correlations of concentration estimates were investigated for the param MM fitting model. RESULTS The full MM model provided the most reproducible quantification of total NAA, total Cho, myo-inositol, and glutamate + glutamine ratios to total Cr (coefficients of variations ≤ 8%, intraclass correlation coefficients ≥ 0.76). Using the param MM model resulted in slightly lower reproducibility (up to +3% higher coefficients of variations, up to -0.1 decreased intraclass correlation coefficients). The quantification of the parameterized macromolecules did not affect quantification of the overlapping metabolites. CONCLUSION Clinically feasible FID-MRSI with an experimentally acquired MM spectrum included in prior knowledge provides highly reproducible quantification for the most common neurometabolites in healthy volunteers. Parameterization of the MM spectrum may be preferred as a compromise between quantification accuracy and reproducibility when the MM content is expected to be pathologically altered.
Collapse
Affiliation(s)
- Eva Heckova
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michal Považan
- Russell H. Morgan Department of Radiology and Radiological Science, The John Hopkins University School of Medicine, Baltimore, Maryland
| | - Bernhard Strasser
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stanislav Motyka
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gilbert Hangel
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Hingerl
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Philipp Moser
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexandra Lipka
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stephan Gruber
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| |
Collapse
|
18
|
Kumaragamage C, De Feyter HM, Brown P, McIntyre S, Nixon TW, de Graaf RA. Robust outer volume suppression utilizing elliptical pulsed second order fields (ECLIPSE) for human brain proton MRSI. Magn Reson Med 2019; 83:1539-1552. [PMID: 31742799 DOI: 10.1002/mrm.28047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE The robust and reliable utilization of proton magnetic resonance spectroscopic imaging (MRSI) at high fields is hampered by several key technical difficulties, including contamination from extracranial lipids. To that end, this work presents novel lipid suppression sequences for proton MRSI in the human brain utilizing elliptical localization with pulsed second-order fields (ECLIPSE). METHODS Two lipid suppression methods were implemented with the ECLIPSE gradient insert. One method is a variable power, 4-pulse sequence optimized to achieve outer volume suppression (OVS) and compared against a standard, 8-slice OVS method. The second ECLIPSE method is implemented as an inversion recovery (IR) sequence with elliptical inner volume selection (IVS) and compared against a global IR method. RESULTS The ECLIPSE-OVS sequence provided a 116-fold mean lipid suppression (range, 104-134), whereas an optimized 8-slice OVS sequence achieved 15-fold suppression (range, 13-18). Furthermore, the superior ECLIPSE-OVS suppression was achieved at 30% of the radiofrequency (RF) power required by 8-slice OVS. The ECLIPSE-based IR sequence suppressed skull lipids by 155-fold (range, 122-257), compared to 16-fold suppression (range, 14-19) achieved with IR. CONCLUSION OVS and IVS executed with ECLIPSE provide robust and effective lipid suppression at reduced RF power with high immunity to variations in B1 and T1 .
Collapse
Affiliation(s)
- Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut
| | - Henk M De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut
| | - Peter Brown
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut
| | - Terence W Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
19
|
Hendriks AD, van der Kemp WJ, Luijten PR, Petridou N, Klomp DW. SNR optimized 31 P functional MRS to detect mitochondrial and extracellular pH change during visual stimulation. NMR IN BIOMEDICINE 2019; 32:e4137. [PMID: 31329342 PMCID: PMC6900119 DOI: 10.1002/nbm.4137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 05/04/2023]
Abstract
UNLABELLED Energy metabolism of the human visual cortex was investigated by performing 31 P functional MRS. INTRODUCTION The human brain is known to be the main glucose demanding organ of the human body and neuronal activity can increase this energy demand. In this study we investigate whether alterations in pH during activation of the brain can be observed with MRS, focusing on the mitochondrial inorganic phosphate (Pi) pool as potential marker of energy demand. METHODS Six participants were scanned with 16 consecutive 31 P-MRSI scans, which were divided in 4 blocks of 8:36 minutes of either rest or visual stimulation. Since the signals from the mitochondrial compartments of Pi are low, multiple approaches to achieve high SNR 31 P measurements were combined. This included: a close fitting 31 P RF coil, a 7 T-field strength, Ernst angle acquisitions and a stimulus with a large visual angle allowing large spectroscopy volumes containing activated tissue. RESULTS The targeted resonance downfield of the main Pi peak could be distinguished, indicating the high SNR of the 31 P spectra. The peak downfield of the main Pi peak is believed to be connected to mitochondrial performance. In addition, a BOLD effect in the PCr signal was observed as a signal increase of 2-3% during visual stimulation as compared to rest. When averaging data over multiple volunteers, a small subtle shift of about 0.1 ppm of the downfield Pi peak towards the main Pi peak could be observed in the first 4 minutes of visual stimulation, but no longer in the 4 to 8 minute scan window. Indications of a subtle shift during visual stimulation were found, but this effect remains small and should be further validated. CONCLUSION Overall, the downfield peak of Pi could be observed, revealing opportunities and considerations to measure specific acidity (pH) effects in the human visual cortex.
Collapse
Affiliation(s)
- Arjan D. Hendriks
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Peter R. Luijten
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Natalia Petridou
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Dennis W.J. Klomp
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|
20
|
Vidya Shankar R, Chang JC, Hu HH, Kodibagkar VD. Fast data acquisition techniques in magnetic resonance spectroscopic imaging. NMR IN BIOMEDICINE 2019; 32:e4046. [PMID: 30637822 DOI: 10.1002/nbm.4046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Magnetic resonance spectroscopic imaging (MRSI) is an important technique for assessing the spatial variation of metabolites in vivo. The long scan times in MRSI limit clinical applicability due to patient discomfort, increased costs, motion artifacts, and limited protocol flexibility. Faster acquisition strategies can address these limitations and could potentially facilitate increased adoption of MRSI into routine clinical protocols with minimal addition to the current anatomical and functional acquisition protocols in terms of imaging time. Not surprisingly, a lot of effort has been devoted to the development of faster MRSI techniques that aim to capture the same underlying metabolic information (relative metabolite peak areas and spatial distribution) as obtained by conventional MRSI, in greatly reduced time. The gain in imaging time results, in some cases, in a loss of signal-to-noise ratio and/or in spatial and spectral blurring. This review examines the current techniques and advances in fast MRSI in two and three spatial dimensions and their applications. This review categorizes the acceleration techniques according to their strategy for acquisition of the k-space. Techniques such as fast/turbo-spin echo MRSI, echo-planar spectroscopic imaging, and non-Cartesian MRSI effectively cover the full k-space in a more efficient manner per TR . On the other hand, techniques such as parallel imaging and compressed sensing acquire fewer k-space points and employ advanced reconstruction algorithms to recreate the spatial-spectral information, which maintains statistical fidelity in test conditions (ie no statistically significant differences on voxel-wise comparisions) with the fully sampled data. The advantages and limitations of each state-of-the-art technique are reviewed in detail, concluding with a note on future directions and challenges in the field of fast spectroscopic imaging.
Collapse
Affiliation(s)
- Rohini Vidya Shankar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - John C Chang
- Banner M D Anderson Cancer Center, Gilbert, AZ, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Houchun H Hu
- Department of Radiology and Medical Imaging, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Vikram D Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
21
|
Moser P, Hingerl L, Strasser B, Považan M, Hangel G, Andronesi OC, van der Kouwe A, Gruber S, Trattnig S, Bogner W. Whole-slice mapping of GABA and GABA + at 7T via adiabatic MEGA-editing, real-time instability correction, and concentric circle readout. Neuroimage 2019; 184:475-489. [PMID: 30243974 PMCID: PMC7212034 DOI: 10.1016/j.neuroimage.2018.09.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/20/2018] [Accepted: 09/15/2018] [Indexed: 01/29/2023] Open
Abstract
An adiabatic MEscher-GArwood (MEGA)-editing scheme, using asymmetric hyperbolic secant editing pulses, was developed and implemented in a B1+-insensitive, 1D-semiLASER (Localization by Adiabatic SElective Refocusing) MR spectroscopic imaging (MRSI) sequence for the non-invasive mapping of γ-aminobutyric acid (GABA) over a whole brain slice. Our approach exploits the advantages of edited-MRSI at 7T while tackling challenges that arise with ultra-high-field-scans. Spatial-spectral encoding, using density-weighted, concentric circle echo planar trajectory readout, enabled substantial MRSI acceleration and an improved point-spread-function, thereby reducing extracranial lipid signals. Subject motion and scanner instabilities were corrected in real-time using volumetric navigators optimized for 7T, in combination with selective reacquisition of corrupted data to ensure robust subtraction-based MEGA-editing. Simulations and phantom measurements of the adiabatic MEGA-editing scheme demonstrated stable editing efficiency even in the presence of ±0.15 ppm editing frequency offsets and B1+ variations of up to ±30% (as typically encountered in vivo at 7T), in contrast to conventional Gaussian editing pulses. Volunteer measurements were performed with and without global inversion recovery (IR) to study regional GABA levels and their underlying, co-edited, macromolecular (MM) signals at 2.99 ppm. High-quality in vivo spectra allowed mapping of pure GABA and MM-contaminated GABA+ (GABA + MM) along with Glx (Glu + Gln), with high-resolution (eff. voxel size: 1.4 cm3) and whole-slice coverage in 24 min scan time. Metabolic ratio maps of GABA/tNAA, GABA+/tNAA, and Glx/tNAA were correlated linearly with the gray matter fraction of each voxel. A 2.15-fold increase in gray matter to white matter contrast was observed for GABA when enabling IR, which we attribute to the higher abundance of macromolecules at 2.99 ppm in the white matter than in the gray matter. In conclusion, adiabatic MEGA-editing with 1D-semiLASER selection is as a promising approach for edited-MRSI at 7T. Our sequence capitalizes on the benefits of ultra-high-field MRSI while successfully mitigating the challenges related to B0/B1+ inhomogeneities, prolonged scan times, and motion/scanner instability artifacts. Robust and accurate 2D mapping has been shown for the neurotransmitters GABA and Glx.
Collapse
Affiliation(s)
- Philipp Moser
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MRI, Vienna, Austria.
| | - Lukas Hingerl
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Bernhard Strasser
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michal Považan
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Gilbert Hangel
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Ovidiu C Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| |
Collapse
|
22
|
de Graaf RA, Brown PB, De Feyter HM, McIntyre S, Nixon TW. Elliptical localization with pulsed second-order fields (ECLIPSE) for robust lipid suppression in proton MRSI. NMR IN BIOMEDICINE 2018; 31:e3949. [PMID: 29985532 PMCID: PMC6108906 DOI: 10.1002/nbm.3949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/02/2018] [Accepted: 04/27/2018] [Indexed: 05/21/2023]
Abstract
Proton MRSI has great clinical potential for metabolic mapping of the healthy and pathological human brain. Unfortunately, the promise has not yet been fully achieved due to numerous technical challenges related to insufficient spectral quality caused by magnetic field inhomogeneity, insufficient RF transmit power and incomplete lipid suppression. Here a robust, novel method for lipid suppression in 1 H MRSI is presented. The method is based on 2D spatial localization of an elliptical region of interest using pulsed second-order spherical harmonic (SH) magnetic fields. A dedicated, high-amplitude second-order SH gradient setup was designed and constructed, containing coils to generate Z2, X2Y2 and XY magnetic fields. Simulations and phantom MRI results are used to demonstrate the principles of the method and illustrate the manifestation of chemical shift displacement. 1 H MRSI on human brain in vivo demonstrates high quality, robust suppression of extracranial lipids. The method allows a wide range of inner or outer volume selection or suppression and should find application in MRSI, reduced-field-of-view MRI and single-volume MRS.
Collapse
Affiliation(s)
- Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Peter B. Brown
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Henk M. De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Terence W. Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Iwata Y, Nakajima S, Plitman E, Mihashi Y, Caravaggio F, Chung JK, Kim J, Gerretsen P, Mimura M, Remington G, Graff-Guerrero A. Neurometabolite levels in antipsychotic-naïve/free patients with schizophrenia: A systematic review and meta-analysis of 1H-MRS studies. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:340-352. [PMID: 29580804 DOI: 10.1016/j.pnpbp.2018.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/02/2018] [Accepted: 03/20/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Studies using proton magnetic resonance spectroscopy (1H-MRS) have reported altered neurometabolite levels in patients with schizophrenia. However, results are possibly confounded by the influence of antipsychotic (AP). Thus, this meta-analysis aimed to examine neurometabolite levels in AP-naïve/free patients with schizophrenia. METHODS A literature search was conducted using Embase, Medline, and PsycINFO to identify studies that compared neurometabolite levels in AP-naïve/free patients with schizophrenia to healthy controls (HCs). Eight neurometabolites (glutamate, glutamine, glutamate + glutamine, N-acetylaspartate [NAA], choline, creatine, myo-inositol, and γ-Aminobutyric acid [GABA]) and seven regions of interest (ROI; medial prefrontal cortex, dorsolateral prefrontal cortex, frontal white matter, occipital lobe, basal ganglia, hippocampus/medial temporal lobe, and thalamus) were examined. RESULTS Twenty-one studies (N = 1281) were included in the analysis. The results showed lower thalamic NAA levels (3 studies, n = 174, effect size = -0.56, P = 0.0005) in the patient group. No group differences were identified for other neurometabolites. CONCLUSIONS Our findings suggest that impaired neuronal integrity in the thalamus may be a potential trait maker in the early stages of schizophrenia.
Collapse
Affiliation(s)
- Yusuke Iwata
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Department of Psychiatry, University of Toronto, 250 College Street, M5T 1R8 Toronto, Ontario, Canada; Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Shinichiro Nakajima
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Department of Psychiatry, University of Toronto, 250 College Street, M5T 1R8 Toronto, Ontario, Canada; Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, 160-8582 Tokyo, Japan; Geriatric Mental Health Division, Centre for Addiction and Mental Health, 80 Workman Way, M6J 1H4 Toronto, Canada
| | - Eric Plitman
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Institute of Medical Science, University of Toronto, 1 King's College Circle, M5S 1A8 Toronto, Ontario, Canada
| | - Yukiko Mihashi
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada
| | - Jun Ku Chung
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Institute of Medical Science, University of Toronto, 1 King's College Circle, M5S 1A8 Toronto, Ontario, Canada
| | - Julia Kim
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Institute of Medical Science, University of Toronto, 1 King's College Circle, M5S 1A8 Toronto, Ontario, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Department of Psychiatry, University of Toronto, 250 College Street, M5T 1R8 Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, 80 Workman Way, M6J 1H4 Toronto, Canada; Campbell Research Institute, Centre for Addiction and Mental Health, 1001 Queen St. W, M6J 1H4 Toronto, Ontario, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Gary Remington
- Department of Psychiatry, University of Toronto, 250 College Street, M5T 1R8 Toronto, Ontario, Canada; Campbell Research Institute, Centre for Addiction and Mental Health, 1001 Queen St. W, M6J 1H4 Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Department of Psychiatry, University of Toronto, 250 College Street, M5T 1R8 Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, 80 Workman Way, M6J 1H4 Toronto, Canada; Campbell Research Institute, Centre for Addiction and Mental Health, 1001 Queen St. W, M6J 1H4 Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Magnusson PO, Boer VO, Marsman A, Paulson OB, Hanson LG, Petersen ET. Gamma-aminobutyric acid edited echo-planar spectroscopic imaging (EPSI) with MEGA-sLASER at 7T. Magn Reson Med 2018; 81:773-780. [PMID: 30159924 PMCID: PMC6646902 DOI: 10.1002/mrm.27450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 11/08/2022]
Abstract
PURPOSE For rapid spatial mapping of gamma-aminobutyric acid (GABA) at the increased sensitivity and spectral separation for ultra-high magnetic field strength (7 tesla [T]), an accelerated edited magnetic resonance spectroscopic imaging technique was developed and optimized for the human brain at 7 T. METHODS A MEGA-sLASER sequence was used for GABA editing and volume selection to maximize editing efficiency and minimize chemical shift displacement errors. To accommodate the high bandwidth requirements at 7 T, a single-shot echo planar readout was used for rapid simultaneous encoding of the temporal dimension and 1 spatial. B0 and B1 field aspects specific for 7 T were studied together with correction procedures, and feasibility of the EPSI MEGA-sLASER technique was tested in vivo in 5 healthy subjects. RESULTS Localized edited spectra could be measured in all subjects giving spatial GABA signal distributions over a central brain region, having 45- to 50-Hz spatial intervoxel B0 field variations and up to 30% B1 field deviations. MEGA editing was found unaffected by the B0 inhomogeneities for the optimized sequence. The correction procedures reduced effects of intervoxel B0 inhomogeneities, corrected for spatial editing efficiency variations, and compensated for GABA resonance phase and frequency shifts from subtle motion and acquisition instabilities. The optimized oscillating echo-planar gradient scheme permitted full spectral acquisition at 7 T and exhibited minimal spectral-spatial ghosting effects for the selected brain region. CONCLUSION The EPSI MEGA-sLASER technique was shown to provide time-efficient mapping of regional variations in cerebral GABA in a central volume of interest with spatial B1 and B0 field variations typical for 7 T.
Collapse
Affiliation(s)
- Peter O Magnusson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| | - Vincent O Boer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| | - Anouk Marsman
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| | - Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, The Neuroscience Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars G Hanson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark.,Center for Magnetic Resonance, DTU Elektro, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Esben T Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark.,Center for Magnetic Resonance, DTU Elektro, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
25
|
Hingerl L, Bogner W, Moser P, Považan M, Hangel G, Heckova E, Gruber S, Trattnig S, Strasser B. Density-weighted concentric circle trajectories for high resolution brain magnetic resonance spectroscopic imaging at 7T. Magn Reson Med 2018; 79:2874-2885. [PMID: 29106742 PMCID: PMC5873433 DOI: 10.1002/mrm.26987] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/09/2017] [Accepted: 10/07/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE Full-slice magnetic resonance spectroscopic imaging at ≥7 T is especially vulnerable to lipid contaminations arising from regions close to the skull. This contamination can be mitigated by improving the point spread function via higher spatial resolution sampling and k-space filtering, but this prolongs scan times and reduces the signal-to-noise ratio (SNR) efficiency. Currently applied parallel imaging methods accelerate magnetic resonance spectroscopic imaging scans at 7T, but increase lipid artifacts and lower SNR-efficiency further. In this study, we propose an SNR-efficient spatial-spectral sampling scheme using concentric circle echo planar trajectories (CONCEPT), which was adapted to intrinsically acquire a Hamming-weighted k-space, thus termed density-weighted-CONCEPT. This minimizes voxel bleeding, while preserving an optimal SNR. THEORY AND METHODS Trajectories were theoretically derived and verified in phantoms as well as in the human brain via measurements of five volunteers (single-slice, field-of-view 220 × 220 mm2 , matrix 64 × 64, scan time 6 min) with free induction decay magnetic resonance spectroscopic imaging. Density-weighted-CONCEPT was compared to (a) the originally proposed CONCEPT with equidistant circles (here termed e-CONCEPT), (b) elliptical phase-encoding, and (c) 5-fold Controlled Aliasing In Parallel Imaging Results IN Higher Acceleration accelerated elliptical phase-encoding. RESULTS By intrinsically sampling a Hamming-weighted k-space, density-weighted-CONCEPT removed Gibbs-ringing artifacts and had in vivo +9.5%, +24.4%, and +39.7% higher SNR than e-CONCEPT, elliptical phase-encoding, and the Controlled Aliasing In Parallel Imaging Results IN Higher Acceleration accelerated elliptical phase-encoding (all P < 0.05), respectively, which lead to improved metabolic maps. CONCLUSION Density-weighted-CONCEPT provides clinically attractive full-slice high-resolution magnetic resonance spectroscopic imaging with optimal SNR at 7T. Magn Reson Med 79:2874-2885, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Lukas Hingerl
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Clinical Molecular MR ImagingMedical University of ViennaViennaAustria
| | - Philipp Moser
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Michal Považan
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Gilbert Hangel
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Eva Heckova
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Stephan Gruber
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Clinical Molecular MR ImagingMedical University of ViennaViennaAustria
| | - Bernhard Strasser
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| |
Collapse
|
26
|
Nassirpour S, Chang P, Avdievitch N, Henning A. Compressed sensing for high-resolution nonlipid suppressed 1 H FID MRSI of the human brain at 9.4T. Magn Reson Med 2018; 80:2311-2325. [PMID: 29707804 DOI: 10.1002/mrm.27225] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/06/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE The aim of this study was to apply compressed sensing to accelerate the acquisition of high resolution metabolite maps of the human brain using a nonlipid suppressed ultra-short TR and TE 1 H FID MRSI sequence at 9.4T. METHODS X-t sparse compressed sensing reconstruction was optimized for nonlipid suppressed 1 H FID MRSI data. Coil-by-coil x-t sparse reconstruction was compared with SENSE x-t sparse and low rank reconstruction. The effect of matrix size and spatial resolution on the achievable acceleration factor was studied. Finally, in vivo metabolite maps with different acceleration factors of 2, 4, 5, and 10 were acquired and compared. RESULTS Coil-by-coil x-t sparse compressed sensing reconstruction was not able to reliably recover the nonlipid suppressed data, rather a combination of parallel and sparse reconstruction was necessary (SENSE x-t sparse). For acceleration factors of up to 5, both the low-rank and the compressed sensing methods were able to reconstruct the data comparably well (root mean squared errors [RMSEs] ≤ 10.5% for Cre). However, the reconstruction time of the low rank algorithm was drastically longer than compressed sensing. Using the optimized compressed sensing reconstruction, acceleration factors of 4 or 5 could be reached for the MRSI data with a matrix size of 64 × 64. For lower spatial resolutions, an acceleration factor of up to R∼4 was successfully achieved. CONCLUSION By tailoring the reconstruction scheme to the nonlipid suppressed data through parameter optimization and performance evaluation, we present high resolution (97 µL voxel size) accelerated in vivo metabolite maps of the human brain acquired at 9.4T within scan times of 3 to 3.75 min.
Collapse
Affiliation(s)
- Sahar Nassirpour
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tuebingen, Germany
| | - Paul Chang
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tuebingen, Germany
| | - Nikolai Avdievitch
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Institute of Physics, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Anke Henning
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Institute of Physics, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| |
Collapse
|
27
|
Hangel G, Strasser B, Považan M, Heckova E, Hingerl L, Boubela R, Gruber S, Trattnig S, Bogner W. Ultra-high resolution brain metabolite mapping at 7 T by short-TR Hadamard-encoded FID-MRSI. Neuroimage 2018; 168:199-210. [DOI: 10.1016/j.neuroimage.2016.10.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022] Open
|
28
|
Nassirpour S, Chang P, Henning A. High and ultra-high resolution metabolite mapping of the human brain using 1 H FID MRSI at 9.4T. Neuroimage 2018; 168:211-221. [DOI: 10.1016/j.neuroimage.2016.12.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022] Open
|
29
|
Henning A. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: A review. Neuroimage 2017; 168:181-198. [PMID: 28712992 DOI: 10.1016/j.neuroimage.2017.07.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/27/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Magnetic Resonance Spectroscopy (MRS) allows for a non-invasive and non-ionizing determination of in vivo tissue concentrations and metabolic turn-over rates of more than 20 metabolites and compounds in the central nervous system of humans. The aim of this review is to give a comprehensive overview about the advantages, challenges and advances of ultra-high field MRS with regard to methodological development, discoveries and applications from its beginnings around 15 years ago up to the current state. The review is limited to human brain and spinal cord application at field strength of 7T and 9.4T and includes all relevant nuclei (1H, 31P, 13C).
Collapse
Affiliation(s)
- Anke Henning
- Max Plank Institute for Biological Cybernetics, Tübingen, Germany; Institute of Physics, Ernst-Moritz-Arndt University, Greifswald, Germany.
| |
Collapse
|
30
|
Považan M, Strasser B, Hangel G, Heckova E, Gruber S, Trattnig S, Bogner W. Simultaneous mapping of metabolites and individual macromolecular components via ultra-short acquisition delay 1 H MRSI in the brain at 7T. Magn Reson Med 2017. [PMID: 28643447 PMCID: PMC5811892 DOI: 10.1002/mrm.26778] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Purpose Short‐echo‐time proton MR spectra at 7T feature nine to 10 distinct macromolecule (MM) resonances that overlap with the signals of metabolites. Typically, a metabolite‐nulled in vivo MM spectrum is included in the quantification`s prior knowledge to provide unbiased metabolite quantification. However, this MM model may fail if MMs are pathologically altered. In addition, information about the individual MM peaks is lost. In this study, we aimed to create an improved MM model by parameterization of the in vivo MM spectrum into individual components, and to use this new model to quantify free induction decay MR spectroscopic imaging (FID‐MRSI) data. Methods The measured in vivo MM spectrum was parameterized using advanced method for accurate, robust, and efficient spectral fitting (AMARES) and Hankel‐Lanczos singular value decomposition algorithms from which six different MM models were derived. Soft constraints were applied to avoid over‐parameterization. All MM models were combined with simulated metabolite spectra to form complete basis sets. FID‐MRSI data from 14 healthy volunteers were quantified via LCModel, and the results were compared between all basis sets. Results The MM model using nine individual AMARES‐parameterized MM components with additional soft constraints achieved the most reliable results. Nine MMs and seven metabolites were mapped simultaneously over the whole slice. Conclusion The proposed MM model may facilitate studies that involve patients with pathologically altered MMs. Magn Reson Med 79:1231–1240, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Michal Považan
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Bernhard Strasser
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Gilbert Hangel
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Eva Heckova
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| |
Collapse
|
31
|
Ma J, Wismans C, Cao Z, Klomp DWJ, Wijnen JP, Grissom WA. Tailored spiral in-out spectral-spatial water suppression pulses for magnetic resonance spectroscopic imaging. Magn Reson Med 2017; 79:31-40. [PMID: 28370494 DOI: 10.1002/mrm.26683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/02/2017] [Accepted: 02/28/2017] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop short water suppression sequences for 7 T magnetic resonance spectroscopic imaging, with mitigation of subject-specific transmit RF field ( B1+) inhomogeneity. METHODS Patient-tailored spiral in-out spectral-spatial saturation pulses were designed for a three-pulse WET water suppression sequence. The pulses' identical spatial subpulses were designed using patient-specific B1+ maps and a spiral in-out excitation k-space trajectory. The subpulse train was weighted by a spectral envelope that was root-flipped to minimize peak RF demand. The pulses were validated in in vivo experiments that acquired high resolution magnetic resonance spectroscopic imaging data, using a crusher coil for fast lipid suppression. Residual water signals and MR spectra were compared between the proposed tailored sequence and a conventional WET sequence. RESULTS Replacing conventional spectrally-selective pulses with tailored spiral in-out spectral-spatial pulses reduced mean water residual from 5.88 to 2.52% (57% improvement). Pulse design time was less then 0.4 s. The pulses' specific absorption rate were compatible with magnetic resonance spectroscopic imaging TRs under 300 ms, which enabled spectra of fine in plane spatial resolution (5 mm) with good quality to be measured in 7.5 min. CONCLUSION Tailored spiral in-out spectral-spatial water suppression enables efficient high resolution magnetic resonance spectroscopic imaging in the brain. Magn Reson Med 79:31-40, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jun Ma
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Carrie Wismans
- Department of Radiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Zhipeng Cao
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Dennis W J Klomp
- Department of Radiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
32
|
Chadzynski GL, Bause J, Shajan G, Pohmann R, Scheffler K, Ehses P. Fast and efficient free induction decay MR spectroscopic imaging of the human brain at 9.4 Tesla. Magn Reson Med 2016; 78:1281-1295. [PMID: 27900794 DOI: 10.1002/mrm.26539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this work was to develop a fast and efficient MRSI-FID acquisition scheme and test its performance in vivo. The aim was to find a trade-off between the minimal total acquisition time and signal-to-noise ratio of the acquired spectra. METHODS Measurements were performed on a 9.4 Tesla system. Sequence optimization included redesign of water suppression, optimization of the sequence gradients, and improvement of the sampling efficiency by minimizing the read-out time. This resulted in an acquisition time of 2:47 and 22:13 minutes for 2D (TR = 57 ms; 3-mm in-plane resolution) and 3D MRSI (TR = 57 ms; 16 slices; 3-mm isotropic resolution), respectively. RESULTS Despite strong T1 weighting and first-order phase problems, it was possible to obtain spectra of an acceptable quality. The average line width calculated for the tCr peak across the entire field of view was 26.9 ± 9.6 Hz for 2D and 30.0 ± 11.3 Hz for 3D MRSI. In 3D measurements, the percent fraction of voxels fitted with Cramer-Rao lower bounds below 10% was 53.3 ± 4.1%, 63.4 ± 8.4%, and 81.0 ± 2.9% for Glu, tCr, and tNAA, respectively. CONCLUSION Considering the typically long duration of high-resolution MRSI, the proposed technique may be of interest for clinical applications and/or studies that focus on following the biochemistry of dynamic processes. Magn Reson Med 78:1281-1295, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Grzegorz L Chadzynski
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University of Tübingen, Tübingen, Germany.,High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jonas Bause
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Graduate Training Centre of Neuroscience, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Gunamony Shajan
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Rolf Pohmann
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University of Tübingen, Tübingen, Germany.,High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Philipp Ehses
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University of Tübingen, Tübingen, Germany.,High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
33
|
Strasser B, Považan M, Hangel G, Hingerl L, Chmelik M, Gruber S, Trattnig S, Bogner W. (2 + 1)D-CAIPIRINHA accelerated MR spectroscopic imaging of the brain at 7T. Magn Reson Med 2016; 78:429-440. [PMID: 27548836 PMCID: PMC5535010 DOI: 10.1002/mrm.26386] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 12/15/2022]
Abstract
Purpose To compare a new parallel imaging (PI) method for multislice proton magnetic resonance spectroscopic imaging (1H‐MRSI), termed (2 + 1)D‐CAIPIRINHA, with two standard PI methods: 2D‐GRAPPA and 2D‐CAIPIRINHA at 7 Tesla (T). Methods (2 + 1)D‐CAIPIRINHA is a combination of 2D‐CAIPIRINHA and slice‐CAIPIRINHA. Eight healthy volunteers were measured on a 7T MR scanner using a 32‐channel head coil. The best undersampling patterns were estimated for all three PI methods. The artifact powers, g‐factors, Cramér–Rao lower bounds (CRLB), and root mean square errors (RMSE) were compared quantitatively among the three PI methods. Metabolic maps and spectra were compared qualitatively. Results (2 + 1)D‐CAIPIRINHA allows acceleration in three spatial dimensions in contrast to 2D‐GRAPPA and 2D‐CAIPIRINHA. Thus, this sequence significantly decreased the RMSE of the metabolic maps by 12.1 and 6.9%, on average, for 4 < R < 11, compared with 2D‐GRAPPA and 2D‐CAIPIRINHA, respectively. The artifact power was 22.6 and 8.4% lower, and the CRLB were 3.4 and 0.6% lower, respectively. Conclusion (2 + 1)‐CAIPIRINHA can be implemented for multislice MRSI in the brain, enabling higher accelerations than possible with two‐dimensional (2D) parallel imaging methods. An eight‐fold acceleration was still feasible in vivo with negligible PI artifacts with lipid decontamination, thus decreasing the measurement time from 120 to 15 min for a 64 × 64 × 4 matrix. Magn Reson Med 78:429–440, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- B Strasser
- MRCE, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - M Považan
- MRCE, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Medical University of Vienna, Vienna, Austria
| | - G Hangel
- MRCE, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - L Hingerl
- MRCE, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - M Chmelik
- MRCE, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Medical University of Vienna, Vienna, Austria
| | - S Gruber
- MRCE, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - S Trattnig
- MRCE, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Medical University of Vienna, Vienna, Austria
| | - W Bogner
- MRCE, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Schür RR, Draisma LWR, Wijnen JP, Boks MP, Koevoets MGJC, Joëls M, Klomp DW, Kahn RS, Vinkers CH. Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of (1) H-MRS studies. Hum Brain Mapp 2016; 37:3337-52. [PMID: 27145016 DOI: 10.1002/hbm.23244] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022] Open
Abstract
The inhibitory gamma-aminobutyric acid (GABA) system is involved in the etiology of most psychiatric disorders, including schizophrenia, autism spectrum disorder (ASD) and major depressive disorder (MDD). It is therefore not surprising that proton magnetic resonance spectroscopy ((1) H-MRS) is increasingly used to investigate in vivo brain GABA levels. However, integration of the evidence for altered in vivo GABA levels across psychiatric disorders is lacking. We therefore systematically searched the clinical (1) H-MRS literature and performed a meta-analysis. A total of 40 studies (N = 1,591) in seven different psychiatric disorders were included in the meta-analysis: MDD (N = 437), schizophrenia (N = 517), ASD (N = 150), bipolar disorder (N = 129), panic disorder (N = 81), posttraumatic stress disorder (PTSD) (N = 104), and attention deficit/hyperactivity disorder (ADHD) (N = 173). Brain GABA levels were lower in ASD (standardized mean difference [SMD] = -0.74, P = 0.001) and in depressed MDD patients (SMD = -0.52, P = 0.005), but not in remitted MDD patients (SMD = -0.24, P = 0.310) compared with controls. In schizophrenia this finding did not reach statistical significance (SMD = -0.23, P = 0.089). No significant differences in GABA levels were found in bipolar disorder, panic disorder, PTSD, and ADHD compared with controls. In conclusion, this meta-analysis provided evidence for lower brain GABA levels in ASD and in depressed (but not remitted) MDD patients compared with healthy controls. Findings in schizophrenia were more equivocal. Even though future (1) H-MRS studies could greatly benefit from a longitudinal design and consensus on the preferred analytical approach, it is apparent that (1) H-MRS studies have great potential in advancing our understanding of the role of the GABA system in the pathogenesis of psychiatric disorders. Hum Brain Mapp 37:3337-3352, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Remmelt R Schür
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Luc W R Draisma
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Marco P Boks
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Martijn G J C Koevoets
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Dennis W Klomp
- Department of Radiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| |
Collapse
|
35
|
Kirchner T, Fillmer A, Henning A. Mechanisms of SNR and line shape improvement by B 0 correction in overdiscrete MRSI reconstruction. Magn Reson Med 2016; 77:44-56. [PMID: 26860614 DOI: 10.1002/mrm.26118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 11/19/2015] [Accepted: 12/15/2015] [Indexed: 11/09/2022]
Abstract
PURPOSE Inhomogeneities of the main magnetic field cause line broadening and location-dependent frequency shifts in brain MRSI. These are often visible despite advanced B0 shimming. The purpose of this work is to propose an advanced B0 correction method that can easily be applied during postprocessing. METHODS A target-driven overdiscrete reconstruction method previously introduced for MRSI is modified by dividing it into two steps. In a first step, an intermediate spectroscopic image with arbitrarily high resolution is generated, on which B0 correction is performed as an additional processing step based on an additionally acquired B0 map. This frequency-aligns metabolite peaks and destroys noise correlations between neighboring subvoxels. Second, the voxel is shaped by application of the spatial response target. The method was tested with simulated spectroscopic imaging data as well as in a series of MRSI data sets obtained from four healthy volunteers at 7T. RESULTS A systematic gain in spectral signal-to-noise ratio is achieved, due to spatial averaging now occurring over peak aligned and noise decorrelated subvoxel spectra. At the same time, metabolite peak line widths are reduced. CONCLUSION In the presence of B0 inhomogeneities across the field of view, the proposed method offers the potential to improve spectral quality with only a minimal additional effort during acquisition. Magn Reson Med 77:44-56, 2017. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas Kirchner
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Ariane Fillmer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Anke Henning
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| |
Collapse
|
36
|
Esmaeili M, Bathen TF, Rosen BR, Andronesi OC. Three-dimensional MR spectroscopic imaging using adiabatic spin echo and hypergeometric dual-band suppression for metabolic mapping over the entire brain. Magn Reson Med 2016; 77:490-497. [PMID: 26840906 DOI: 10.1002/mrm.26115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 11/12/2022]
Abstract
PURPOSE Large lipid and water signals in MR spectroscopic imaging (MRSI) complicate brain metabolite quantification. In this study, we combined adiabatic hypergeometric dual-band (HGDB) lipid and water suppression with gradient offset independent adiabatic (GOIA) spin echo to improve three-dimensional (3D) MRSI of the entire brain. METHODS 3D MRSI was acquired at 3T with a 32-channel coil. HGDB pulses were used before excitation and during echo time. A brain slab was selected with GOIA-W(16,4) pulses, weighted phase encoded stack of spirals, and real-time motion/shim correction. HGDB alone or in combination with OVS and MEGA (MEscher-GArwood) was compared with OVS only and no suppression. RESULTS The combined HGDB pulses suppressed lipids to 2%-3% of their full unsuppressed signal. The HGDB lipid suppression was on average 5 times better than OVS suppression. HGDB+MEGA provided 30% more suppression compared with a previously described HGDB+OVS scheme. The number of voxels with good metabolic fits was significantly larger in the HGDB data (91%-94%) compared with the OVS data (59%-80%). CONCLUSION HGDB pulses provided efficient lipid and water suppression for full brain 3D MRSI. The HGDB suppression is superior to traditional OVS, and it can be combined with adiabatic spin echo to provide a sequence that is robust to B1 inhomogeneity. Magn Reson Med 77:490-497, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Morteza Esmaeili
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ovidiu C Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Bashir A, Gropler R, Ackerman J. Absolute Quantification of Human Liver Phosphorus-Containing Metabolites In Vivo Using an Inhomogeneous Spoiling Magnetic Field Gradient. PLoS One 2015; 10:e0143239. [PMID: 26633549 PMCID: PMC4669158 DOI: 10.1371/journal.pone.0143239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/01/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Absolute concentrations of high-energy phosphorus (31P) metabolites in liver provide more important insight into physiologic status of liver disease compared to resonance integral ratios. A simple method for measuring absolute concentrations of 31P metabolites in human liver is described. The approach uses surface spoiling inhomogeneous magnetic field gradient to select signal from liver tissue. The technique avoids issues caused by respiratory motion, chemical shift dispersion associated with linear magnetic field gradients, and increased tissue heat deposition due to radiofrequency absorption, especially at high field strength. METHODS A method to localize signal from liver was demonstrated using superficial and highly non-uniform magnetic field gradients, which eliminate signal(s) from surface tissue(s) located between the liver and RF coil. A double standard method was implemented to determine absolute 31P metabolite concentrations in vivo. 8 healthy individuals were examined in a 3 T MR scanner. RESULTS Concentrations of metabolites measured in eight healthy individuals are: γ-adenosine triphosphate (ATP) = 2.44 ± 0.21 (mean ± sd) mmol/l of wet tissue volume, α-ATP = 3.2 ± 0.63 mmol/l, β-ATP = 2.98 ± 0.45 mmol/l, inorganic phosphates (Pi) = 1.87 ± 0.25 mmol/l, phosphodiesters (PDE) = 10.62 ± 2.20 mmol/l and phosphomonoesters (PME) = 2.12 ± 0.51 mmol/l. All are in good agreement with literature values. CONCLUSIONS The technique offers robust and fast means to localize signal from liver tissue, allows absolute metabolite concentration determination, and avoids problems associated with constant field gradient (linear field variation) localization methods.
Collapse
Affiliation(s)
- Adil Bashir
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert Gropler
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph Ackerman
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Chemistry, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
38
|
Hangel G, Strasser B, Považan M, Gruber S, Chmelík M, Gajdošík M, Trattnig S, Bogner W. Lipid suppression via double inversion recovery with symmetric frequency sweep for robust 2D-GRAPPA-accelerated MRSI of the brain at 7 T. NMR IN BIOMEDICINE 2015; 28:1413-25. [PMID: 26370781 PMCID: PMC4973691 DOI: 10.1002/nbm.3386] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 05/06/2023]
Abstract
This work presents a new approach for high-resolution MRSI of the brain at 7 T in clinically feasible measurement times. Two major problems of MRSI are the long scan times for large matrix sizes and the possible spectral contamination by the transcranial lipid signal. We propose a combination of free induction decay (FID)-MRSI with a short acquisition delay and acceleration via in-plane two-dimensional generalised autocalibrating partially parallel acquisition (2D-GRAPPA) with adiabatic double inversion recovery (IR)-based lipid suppression to allow robust high-resolution MRSI. We performed Bloch simulations to evaluate the magnetisation pathways of lipids and metabolites, and compared the results with phantom measurements. Acceleration factors in the range 2-25 were tested in a phantom. Five volunteers were scanned to verify the value of our MRSI method in vivo. GRAPPA artefacts that cause fold-in of transcranial lipids were suppressed via double IR, with a non-selective symmetric frequency sweep. The use of long, low-power inversion pulses (100 ms) reduced specific absorption rate requirements. The symmetric frequency sweep over both pulses provided good lipid suppression (>90%), in addition to a reduced loss in metabolite signal-to-noise ratio (SNR), compared with conventional IR suppression (52-70%). The metabolic mapping over the whole brain slice was not limited to a rectangular region of interest. 2D-GRAPPA provided acceleration up to a factor of nine for in vivo FID-MRSI without a substantial increase in g-factors (<1.1). A 64 × 64 matrix can be acquired with a common repetition time of ~1.3 s in only 8 min without lipid artefacts caused by acceleration. Overall, we present a fast and robust MRSI method, using combined double IR fat suppression and 2D-GRAPPA acceleration, which may be used in (pre)clinical studies of the brain at 7 T.
Collapse
Affiliation(s)
- Gilbert Hangel
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Bernhard Strasser
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michal Považan
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stephan Gruber
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marek Chmelík
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Gajdošík
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- MR Centre of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Schaller B, Clarke WT, Neubauer S, Robson MD, Rodgers CT. Suppression of skeletal muscle signal using a crusher coil: A human cardiac (31) p-MR spectroscopy study at 7 tesla. Magn Reson Med 2015; 75:962-72. [PMID: 25924813 PMCID: PMC4762536 DOI: 10.1002/mrm.25755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/19/2022]
Abstract
Purpose The translation of sophisticated phosphorus MR spectroscopy (31P‐MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac 31P spectra at 7T. We introduce the first surface‐spoiling crusher coil for human cardiac 31P‐MRS at 7T. Methods A planar crusher coil design was optimized with simulations and its performance was validated in phantoms. Crusher gradient pulses (100 μs) were then applied during human cardiac 31P‐MRS at 7T. Results In a phantom, residual signals were 50 ± 10% with BISTRO (B1‐insensitive train to obliterate signal), and 34 ± 8% with the crusher coil. In vivo, residual signals in skeletal muscle were 49 ± 4% using BISTRO, and 24 ± 5% using the crusher coil. Meanwhile, in the interventricular septum, spectral quality and metabolite quantification did not differ significantly between BISTRO (phosphocreatine/adenosine triphosphate [PCr/ATP] = 2.1 ± 0.4) and the crusher coil (PCr/ATP = 1.8 ± 0.4). However, the specific absorption rate (SAR) decreased from 96 ± 1% of the limit (BISTRO) to 16 ± 1% (crusher coil). Conclusion A crusher coil is an SAR‐efficient alternative for selectively suppressing skeletal muscle during cardiac 31P‐MRS at 7T. A crusher coil allows the use of sequence modules that would have been SAR‐prohibitive, without compromising skeletal muscle suppression. Magn Reson Med 75:962–972, 2016. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.
Collapse
Affiliation(s)
- Benoit Schaller
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - William T Clarke
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stefan Neubauer
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - Matthew D Robson
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - Christopher T Rodgers
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|