1
|
Goodburn R, Bruijnen T, Lecoeur B, Nair P, Ahmed M, Barnes H, Oelfke U, Wetscherek A. Gradient system characterization of a 1.5 T MR-Linac with application to 4D UTE imaging for adaptive MR-guided radiotherapy of lung cancer. Magn Reson Med 2025; 94:28-40. [PMID: 40106794 DOI: 10.1002/mrm.30505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/24/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE To measure the gradient system transfer function (GSTF) of an MR-Linac (Elekta Unity, Stockholm, Sweden) using an accessible phantom-based method and to apply trajectory corrections for UTE image reconstruction in the context of MR-guided radiotherapy of lung cancer. METHODS The first-order GSTF of a 1.5 T, split gradient Elekta Unity MR-Linac was measured using a thin-slice technique to characterize gradient system imperfections for each physical gradient axis (X, Y, Z). Repeatability measurements of the GSTF were performed 48 h apart. The GSTF was applied to trajectory correction in multi-echo UTE image reconstruction (TEs = 0.176, 1.85, 3.52 ms) to allow for UTE-Dixon inputs in the generation of synthetic CT. Images were acquired in an anthropomorphic phantom and in two free-breathing lung cancer patients. For patient scans, respiratory-correlated 4D-MR images were reconstructed using self-navigation and an iterative compressed-sensing algorithm. RESULTS The GSTF magnitude was similar across the X/Y/Z axes up to ˜6 kHz. The GSTF phase was similar between the X/Y/Z components up to ˜3 kHz. Repeatability measurements demonstrated minimal variations corresponding to a system delay difference of 0.06 μs. Corrected UTE trajectory spokes are shifted approximately 1 m-1 compared to the nominal k-space location. Corrected phantom and patient UTE images exhibited improved signal uniformity and contrast and reduced halo and signal loss artifacts. Trajectory correction for the later TE images did not improve overall image quality. CONCLUSION The proposed GSTF measurement method using standard MR-Linac hardware enables successful trajectory correction in UTE imaging reconstruction, with applications to lung synthetic CT generation for MR-guided radiotherapy.
Collapse
Affiliation(s)
- Rosie Goodburn
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Tom Bruijnen
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bastien Lecoeur
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
- Department of Computing, Imperial College London, London, United Kingdom
| | - Prashant Nair
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Merina Ahmed
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Helen Barnes
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Uwe Oelfke
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Andreas Wetscherek
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
2
|
Klimeš F, Plummer JW, Willmering MM, Matheson AM, Bdaiwi AS, Gutberlet M, Voskrebenzev A, Wernz MM, Wacker F, Woods J, Cleveland ZI, Walkup LL, Vogel-Claussen J. Quantifying spatial and dynamic lung abnormalities with 3D PREFUL FLORET UTE imaging: A feasibility study. Magn Reson Med 2025; 93:1984-1998. [PMID: 39825520 DOI: 10.1002/mrm.30416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
PURPOSE Pulmonary MRI faces challenges due to low proton density, rapid transverse magnetization decay, and cardiac and respiratory motion. The fermat-looped orthogonally encoded trajectories (FLORET) sequence addresses these issues with high sampling efficiency, strong signal, and motion robustness, but has not yet been applied to phase-resolved functional lung (PREFUL) MRI-a contrast-free method for assessing pulmonary ventilation during free breathing. This study aims to develop a reconstruction pipeline for FLORET UTE, enhancing spatial resolution for three-dimensional (3D) PREFUL ventilation analysis. METHODS The FLORET sequence was used to continuously acquire data over 7 ± 2 min in 36 participants, including healthy subjects (N = 7) and patients with various pulmonary conditions (N = 29). Data were reconstructed into respiratory images using motion-compensated low-rank reconstruction, and a 3D PREFUL algorithm was adapted to quantify static and dynamic ventilation surrogates. Image sharpness and signal-to-noise ratio were evaluated across different motion states. PREFUL ventilation metrics were compared with static 129Xe ventilation MRI. RESULTS Optimal image sharpness and accurate ventilation dynamics were achieved using 24 respiratory bins, leading to their use in the study. A strong correlation was found between 3D PREFUL FLORET UTE ventilation defect percentages (VDPs) and 129Xe VDPs (r ≥ 0.61, p < 0.0001), although PREFUL FLORET static VDPs were significantly higher (mean bias = -10.1%, p < 0.0001). In diseased patients, dynamic ventilation parameters showed greater heterogeneity and better alignment with 129Xe VDPs. CONCLUSION The proposed reconstruction pipeline for FLORET UTE MRI offers improved spatial resolution and strong correlation with 129Xe MRI, enabling dynamic ventilation quantification that may reveal airflow abnormalities in lung disease.
Collapse
Affiliation(s)
- Filip Klimeš
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Joseph W Plummer
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Matthew M Willmering
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alexander M Matheson
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Abdullah S Bdaiwi
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Marcel Gutberlet
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Andreas Voskrebenzev
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Marius M Wernz
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Jason Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Physics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jens Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| |
Collapse
|
3
|
Stewart NJ, Higano NS, Wucherpfennig L, Triphan SM, Simmons A, Smith LJ, Wielpütz MO, Woods JC, Wild JM. Pulmonary MRI in Newborns and Children. J Magn Reson Imaging 2025; 61:2094-2115. [PMID: 39639777 PMCID: PMC11987788 DOI: 10.1002/jmri.29669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Lung MRI is an important tool in the assessment and monitoring of pediatric and neonatal lung disorders. MRI can provide both similar and complementary image contrast to computed tomography for imaging the lung macrostructure, and beyond this, a number of techniques have been developed for imaging the key functions of the lungs, namely ventilation, perfusion, and gas exchange, through the use of free-breathing proton and hyperpolarized gas MRI. Here, we review the state-of-the-art in MRI methods that have found utility in pediatric and neonatal lung imaging, the structural and physiological information that can be gleaned from such images, and strategies that have been developed to deal with respiratory (and cardiac) motion, and other technological challenges. The application of lung MRI in neonatal and pediatric lung conditions, in particular bronchopulmonary dysplasia, cystic fibrosis, and asthma, is reviewed, highlighting our collective experiences in the clinical translation of these methods and technology, and the key current and future potential avenues for clinical utility of this methodology. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Neil J. Stewart
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of HealthThe University of SheffieldSheffieldUK
- Insigneo Institute of In Silico Medicine, The University of SheffieldSheffieldUK
| | - Nara S. Higano
- Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Department of RadiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Lena Wucherpfennig
- Department of Diagnostic and Interventional RadiologyUniversity Hospital HeidelbergHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL)HeidelbergGermany
- Department of Diagnostic and Interventional Radiology with Nuclear MedicineThoraxklinik at University Hospital HeidelbergHeidelbergGermany
| | - Simon M.F. Triphan
- Department of Diagnostic and Interventional RadiologyUniversity Hospital HeidelbergHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL)HeidelbergGermany
- Department of Diagnostic and Interventional Radiology with Nuclear MedicineThoraxklinik at University Hospital HeidelbergHeidelbergGermany
| | - Amy Simmons
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of HealthThe University of SheffieldSheffieldUK
| | - Laurie J. Smith
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of HealthThe University of SheffieldSheffieldUK
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional RadiologyUniversity Hospital HeidelbergHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL)HeidelbergGermany
- Department of Diagnostic and Interventional Radiology with Nuclear MedicineThoraxklinik at University Hospital HeidelbergHeidelbergGermany
| | - Jason C. Woods
- Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Department of RadiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Jim M. Wild
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of HealthThe University of SheffieldSheffieldUK
- Insigneo Institute of In Silico Medicine, The University of SheffieldSheffieldUK
| |
Collapse
|
4
|
Kang M, Otazo R, Behr G, Kee Y. 5D image reconstruction exploiting space-motion-echo sparsity for accelerated free-breathing quantitative liver MRI. Med Image Anal 2025; 102:103532. [PMID: 40132368 DOI: 10.1016/j.media.2025.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/22/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Recent advances in 3D non-Cartesian multi-echo gradient-echo (mGRE) imaging and compressed sensing (CS)-based 4D (3D image space + 1D respiratory motion) motion-resolved image reconstruction, which applies temporal total variation to the respiratory motion dimension, have enabled free-breathing liver tissue MR parameter mapping. This technology now allows for robust reconstruction of high-resolution proton density fat fraction (PDFF), R2∗, and quantitative susceptibility mapping (QSM), previously unattainable with conventional Cartesian mGRE imaging. However, long scan times remain a persistent challenge in free-breathing 3D non-Cartesian mGRE imaging. Recognizing that the underlying dimension of the imaging data is essentially 5D (4D + 1D echo signal evolution), we propose a CS-based 5D motion-resolved mGRE image reconstruction method to further accelerate the acquisition. Our approach integrates discrete wavelet transforms along the echo and spatial dimensions into a CS-based reconstruction model and devises a solution algorithm capable of handling such a 5D complex-valued array. Through phantom and in vivo human subject studies, we evaluated the effectiveness of leveraging unexplored correlations by comparing the proposed 5D reconstruction with the 4D reconstruction (i.e., motion-resolved reconstruction with temporal total variation) across a wide range of acceleration factors. The 5D reconstruction produced more reliable and consistent measurements of PDFF, R2∗, and QSM compared to the 4D reconstruction. In conclusion, the proposed 5D motion-resolved image reconstruction demonstrates the feasibility of achieving accelerated, reliable, and free-breathing liver mGRE imaging for the measurement of PDFF, R2∗, and QSM.
Collapse
Affiliation(s)
- MungSoo Kang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Gerald Behr
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Youngwook Kee
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, NY, USA.
| |
Collapse
|
5
|
April Chau OW, Geoghegan T, Everts J, Chen J, Feng M, Chen WC, Scholey JE, Yang Y, Ohliger MA, Sheng K, Miao X, Fan Z, Yang W. Multi-contrast 4DMR via MR multitasking: Early clinical experience and implication for liver stereotactic body radiation therapy. Radiother Oncol 2025; 206:110839. [PMID: 40081499 PMCID: PMC12009184 DOI: 10.1016/j.radonc.2025.110839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Liver tumors have low contrast on 4DCT. A novel Multitasking (MT)MR imaging technique has been implemented on the MR simulator, providing both T1 and T2-weighted 4DMR images in a single 8-min free-breathing scan for better tumor delineation and motion evaluation. This study reports our early clinical experience of MTMR regarding tumor visibility, motion characteristics, and resultant dosimetry compared to post-contrast 4DCT for liver SBRT. METHODS Phantom motion validation was performed. Tumor contrast-to-noise ratio (CNR) and motion were analyzed in 54 patients. Replanning for 17 patients (21 tumor volumes) was performed, and planning target volume receiving greater than 90% of the prescription (PTV_V90) was compared based on optimized dose distributions for each 4D dataset-derived PTV. RESULTS Phantom motions in both 4DCT and MTMR datasets were within <1.8 mm of the programmed ground truth. The absolute CNR of MTMR-T1w and MTMR-T2w were significantly greater than post-contrast 4DCT. Tumor superior-inferior motions were significantly greater in MTMR than in 4DCT, while PTV volumes were not significantly different between the two 4D datasets. The PTV_V90 calculated from individual MTMR-T1w and 4DCT optimized plans were similar. However, a statistically significant 5 % reduction of PTV_V90 was observed when the optimized PTV_MTMR dose was superimposed on the respective PTV_4DCT, or vice versa for the re-planning patient cohort. CONCLUSION This study demonstrates that the MTMR sequence offers superior tumor visualization and detects greater superior-inferior motion compared to 4DCT, enhancing the precision of radiotherapy planning for liver SBRT. While both imaging methods achieve comparable target volume coverage with individually optimized plans, discrepancies in tumor positioning lead to reduced coverage when plans are cross-applied, highlighting the importance of motion assessment accuracy. MTMR's ability to provide multiple contrast-weighted images in a single scan addresses limitations of traditional 4DCT and multi-sequence MR protocols, particularly for patients unable to receive contrast.
Collapse
Affiliation(s)
- Oi Wai April Chau
- Department of Radiation Oncology, UC San Francisco, San Francisco, CA 94143, USA
| | - Theodore Geoghegan
- Department of Radiation Oncology, UC San Francisco, San Francisco, CA 94143, USA
| | - Joshua Everts
- Department of Radiation Oncology, UC San Francisco, San Francisco, CA 94143, USA
| | - Junzhou Chen
- Department of Radiology, University of Southern California, Los Angeles, CA 90033, USA; Department of Bioengineering, UC Los Angeles, Los Angeles, CA 90095, USA
| | - Mary Feng
- Department of Radiation Oncology, UC San Francisco, San Francisco, CA 94143, USA
| | - William C Chen
- Department of Radiation Oncology, UC San Francisco, San Francisco, CA 94143, USA
| | - Jessica E Scholey
- Department of Radiation Oncology, UC San Francisco, San Francisco, CA 94143, USA
| | - Yang Yang
- Department of Radiology and Biomedical Imaging, UC San Francisco, San Francisco, CA 94143, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, UC San Francisco, San Francisco, CA 94143, USA
| | - Ke Sheng
- Department of Radiation Oncology, UC San Francisco, San Francisco, CA 94143, USA
| | - Xin Miao
- Department of Radiology, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhaoyang Fan
- Department of Radiology, University of Southern California, Los Angeles, CA 90033, USA
| | - Wensha Yang
- Department of Radiation Oncology, UC San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
6
|
Tasdelen B, Yagiz E, Cinbis BR, Tian Y, Nayak KS. Contactless cardiac gating at 0.55T using high-amplitude pilot tone with interference cancellation (HAPTIC). Magn Reson Med 2025. [PMID: 40228074 DOI: 10.1002/mrm.30528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025]
Abstract
PURPOSE To enable contactless cardiac gating at 0.55T using pilot tone (PT). Current PT methods are unable to extract weak motions, including cardiac motion, at lower B0 field strengths (<1.5T). METHODS We utilize high-amplitude pilot tone with interference cancellation, termed HAPTIC. The use of high amplitude PT improves sensitivity to cardiac motion, but introduces noise leakage into the imaging bandwidth. This leakage is removed using External Dynamic InTerference Estimation and Removal (EDITER) interference cancellation. HAPTIC performance at 0.55T is evaluated in healthy volunteers and patients with cardiac arrhythmia, over a 100-fold range in PT amplitude. Contactless HAPTIC gating performance is compared against conventional electrocardiogram (ECG). Noise enhancement due to HAPTIC is evaluated using noise-only scans acquired with varying PT amplitude levels. RESULTS We demonstrate robust extraction of cardiac PT signals at 0.55T, with cardiac gating (ECG vs. HAPTIC) jitter <9 ms, and noise enhancement ˜12%-35%. We demonstrate the ability to track cardiac and respiratory phase during real-time MRI and demonstrate reliable separation of cardiac and respiratory phases for retrospective binning using HAPTIC. Furthermore, we demonstrate that HAPTIC provides accurate cardiac gating in the challenging case of arrhythmia to showcase initial feasibility. CONCLUSION HAPTIC enables contactless cardiac gating at 0.55T, which has not previously been demonstrated with any PT variant. This could simplify clinical workflow and could serve as a solution for mid- and low-field MRI scanners that do not include built-in physiological monitoring.
Collapse
Affiliation(s)
- Bilal Tasdelen
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Ecrin Yagiz
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Baran R Cinbis
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Ye Tian
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Rastegar Jooybari F, Huynh C, Portnoy S, Voutsas J, Balmer-Minnes D, Saprungruang A, Yoo SJ, Lam CZ, Macgowan CK. Highly accelerated 4D flow MRI with respiratory compensation and cardiac view sharing: a cross-sectional study of flow in the great vessels of pediatric congenital heart disease. Pediatr Radiol 2025:10.1007/s00247-025-06226-1. [PMID: 40186653 DOI: 10.1007/s00247-025-06226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Conventional four-dimensional (4D) flow magnetic resonance imaging (MRI) is limited by long scan times, particularly in pediatric congenital heart disease (CHD) patients. OBJECTIVE This study evaluates accelerated 4D flow MRI incorporating respiratory compensation and cardiac view sharing in healthy adults and pediatric CHD patients. MATERIALS AND METHODS Subjects underwent 5-min free-breathing protocol with a three-dimensional (3D) radial trajectory and compressed sensing reconstruction. The 4D flow MRI reconstruction pipeline was improved by respiratory soft-gating and cardiac view sharing. Flow in major thoracic vessels was compared with two-dimensional (2D) phase contrast MRI, the reference standard. RESULTS Fourteen pediatric CHD patients (median age: 13 years (interquartile range (IQR): 5)) and four healthy adult volunteers (median age: 26 years (IQR: 3)) were recruited. Soft-gating improved diaphragm sharpness and reduced respiratory-induced blur (image quality scores: healthy: 46.1 soft-gated vs. 47.2 non-gated; CHD: 47.8 soft-gated vs. 48.2 non-gated). View sharing reduced undersampling artifacts and enhanced the signal-to-noise ratio (SNR, healthy: +9.9%; CHD: +3.8%). In healthy adults, correlations with 2D phase contrast MRI were strong for mean flow (R2=0.94, slope=0.94±0.12, root mean square error (RMSE)=6.4 ml/s; bias=1.1±6.4 ml/s, P=0.45) and peak flow (R2=0.9, slope=0.86±0.13, RMSE=40.9 ml/s; bias=21.3±44.7 ml/s, P=0.04). Similarly, CHD patients showed a strong correlation for mean flow (R2=0.88, slope=0.93±0.09, RMSE=8.3 ml/s) and peak flow (R2=0.97, slope=0.98±0.03, RMSE=25.9 ml/s). Internal consistency for 4D flow MRI in CHD cases showed mean percent differences of 6.1% Main pulmonary artery=Left pulmonary artery+Right pulmonary artery and 6.5% Ascending aorta=Descending aorta+Superior vena cava. CONCLUSION The accelerated 4D flow MRI method provides robust flow quantification and visualization in pediatric CHD patients, strongly correlating with 2D phase contrast MRI and completing scans in 5 min for clinical use.
Collapse
Affiliation(s)
- Fatemeh Rastegar Jooybari
- University of Toronto, 27 King's College Cir, Toronto, ON, M5S 1A1, Canada.
- Hospital for Sick Children, Toronto, Canada.
| | | | | | | | | | | | | | | | - Christopher K Macgowan
- University of Toronto, 27 King's College Cir, Toronto, ON, M5S 1A1, Canada
- Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
8
|
Wang Y, Zeng T, Liu F, Dou Q, Cao P, Chang HC, Deng Q, Hui ES. Illuminating the unseen: Advancing MRI domain generalization through causality. Med Image Anal 2025; 101:103459. [PMID: 39952023 DOI: 10.1016/j.media.2025.103459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Deep learning methods have shown promise in accelerated MRI reconstruction but face significant challenges under domain shifts between training and testing datasets, such as changes in image contrasts, anatomical regions, and acquisition strategies. To address these challenges, we present the first domain generalization framework specifically designed for accelerated MRI reconstruction to robustness across unseen domains. The framework employs progressive strategies to enforce domain invariance, starting with image-level fidelity consistency to ensure robust reconstruction quality across domains, and feature alignment to capture domain-invariant representations. Advancing beyond these foundations, we propose a novel approach enforcing mechanism-level invariance, termed GenCA-MRI, which aligns intrinsic causal relationships within MRI data. We further develop a computational strategy that significantly reduces the complexity of causal alignment, ensuring its feasibility for real-world applications. Extensive experiments validate the framework's effectiveness, demonstrating both numerical and visual improvements over the baseline algorithm. GenCA-MRI presents the overall best performance, achieving a PSNR improvement up to 2.15 dB on fastMRI and 1.24 dB on IXI dataset at 8× acceleration, with superior performance in preserving anatomical details and mitigating domain-shift problem.
Collapse
Affiliation(s)
- Yunqi Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; CU Lab for AI in Radiology (CLAIR), The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Tianjiao Zeng
- School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Furui Liu
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Qi Dou
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Peng Cao
- Department of Diagnostic Radiology, University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Hing-Chiu Chang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Qiao Deng
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; CU Lab for AI in Radiology (CLAIR), The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Edward S Hui
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; CU Lab for AI in Radiology (CLAIR), The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Psychiatry, The Chinese University of Hong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
9
|
Ghanbari F, Morales MA, Street JA, Rodriguez J, Johnson S, Pierce P, Carty A, Ngo LH, Hoeger CW, Tsao CW, Manning WJ, Nezafat R. Free-breathing, Highly Accelerated, Single-beat, Multisection Cardiac Cine MRI with Generative Artificial Intelligence. Radiol Cardiothorac Imaging 2025; 7:e240272. [PMID: 40178397 DOI: 10.1148/ryct.240272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Purpose To develop and evaluate a free-breathing, highly accelerated, multisection, single-beat cine sequence for cardiac MRI. Materials and Methods This prospective study, conducted from July 2022 to December 2023, included participants with various cardiac conditions as well as healthy participants who were imaged using a 3-T MRI system. A single-beat sequence was implemented, collecting data for each section in one heartbeat. Images were acquired with an in-plane spatiotemporal resolution of 1.9 × 1.9 mm2 and 37 msec and reconstructed using resolution enhancement generative adversarial inline neural network (REGAIN), a deep learning model. Multibreath-hold k-space-segmented (4.2-fold acceleration) and free-breathing single-beat (14.8-fold acceleration) cine images were collected, both reconstructed with REGAIN. Left ventricular (LV) and right ventricular (RV) parameters between the two methods were evaluated with linear regression, Bland-Altman analysis, and Pearson correlation. Three expert cardiologists independently scored diagnostic and image quality. Scan and rescan reproducibility was evaluated in a subset of participants 1 year apart using the intraclass correlation coefficient (ICC). Results This study included 136 participants (mean age [SD], 54 years ± 15; 69 female, 67 male), 40 healthy and 96 with cardiac conditions. k-Space-segmented and single-beat scan times were 2.6 minutes ± 0.8 and 0.5 minute ± 0.1, respectively. Strong correlations (P < .001) were observed between k-space-segmented and single-beat cine parameters in both LV (r = 0.97-0.99) and RV (r = 0.89-0.98). Scan and rescan reproducibility of single-beat cine was excellent (ICC, 0.97-1.0). Agreement among readers was high, with 125 of 136 (92%) images consistently assessed as diagnostic and 133 of 136 (98%) consistently rated as having good image quality by all readers. Conclusion Free-breathing 30-second single-beat cardiac cine MRI yielded accurate biventricular measurements, reduced scan time, and maintained high diagnostic and image quality compared with conventional multibreath-hold k-space-segmented cine images. Keywords: MR-Imaging, Cardiac, Heart, Imaging Sequences, Comparative Studies, Technology Assessment Supplemental material is available for this article. © RSNA, 2025.
Collapse
Affiliation(s)
- Fahime Ghanbari
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215
| | - Manuel A Morales
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215
| | - Jordan A Street
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215
| | - Jennifer Rodriguez
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215
| | - Scott Johnson
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215
| | - Patrick Pierce
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215
| | - Adele Carty
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215
| | - Long H Ngo
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215
| | - Christopher W Hoeger
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215
| | - Connie W Tsao
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215
| | - Warren J Manning
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Mass
| | - Reza Nezafat
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215
| |
Collapse
|
10
|
Korobova NV, Wassenaar NPM, Troelstra MA, Schrauben EM, Gurney-Champion OJ. A correction for modeling radial, spiral, and PROPELLER dynamic contrast-enhanced data: Time-averaged extended Tofts. Magn Reson Med 2025. [PMID: 40159679 DOI: 10.1002/mrm.30514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
PURPOSE Dynamic contrast-enhanced sequences (e.g. spiral, radial, PROPELLER MRI) often rely on oversampling the center of k-space. Instead of the discrete snapshots obtained by Cartesian sampling, oversampling the k-space center results in time-averaging of the signal. We hypothesize that these time-averaged signals decrease the accuracy of pharmacokinetic modeling and propose a model that accounts for this effect. THEORY AND METHODS To test our hypothesis, a modified extended Tofts model tailored to accommodate time-averaged signals is proposed. Simulated Monte Carlo experiments were conducted to compare the performance of the modified model with the conventional model. Additionally, to validate the findings in vivo, models were fitted to pseudo-spiral variable-density dynamic contrast-enhanced MRI scans of pancreatic cancer patients reconstructed at 4, 8, 10, and 15 s/frame. RESULTS The simulations demonstrated that for time-averaged acquisitions, our modified extended Tofts model provided more accurate and precise results than conventional models. Additionally, by integrating signals, some information on high temporal behavior was recovered. Particularly, at long acquisitions (15 s/frame), variable-density sampling with the modified model outperformed conventional discrete sampling. In vivo experiments confirmed these findings, as the corrected model showed more consistent estimates of parametersv p $$ {v}_p $$ andv e $$ {v}_e $$ over the tested sampling frequencies, highlighting its potential to improve accuracy in clinical settings. CONCLUSION Our study demonstrates that time-averaged signals lead to decreased accuracy and precision in pharmacokinetic modeling when ignored. We suggest using our corrected pharmacokinetic model when performing dynamic contrast-enhanced with variable-density acquisitions, especially for dynamic scan times that are 8 s and longer.
Collapse
Affiliation(s)
- Natalia V Korobova
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Nienke P M Wassenaar
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marian A Troelstra
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eric M Schrauben
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Oliver J Gurney-Champion
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Deng H, Dong X, Zhang Y, Zhou P, He Y, Yang L. Preliminary study on the feasibility of united compressed sensing with radial acquisition as a routine method for liver dynamic contrast-enhanced examination in elderly patients with malignancy. Insights Imaging 2025; 16:65. [PMID: 40120009 PMCID: PMC11929642 DOI: 10.1186/s13244-025-01936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVE To explore the value of the united imaging compressed sensing with radial acquisition (uCSR) in liver dynamic contrast-enhanced examinations for elderly patients with malignancy. METHODS Hundred patients aged 65 years or over were randomly divided into two groups: 50 patients underwent liver dynamic contrast-enhanced scanning using the uCSR sequence during free breathing, and 50 patients underwent scanning using the three-dimensional volume interpolated breath-hold examination (3D-VIBE) sequence while holding breath. Two radiologists independently and subjectively evaluated the overall image quality and image artifacts with a five-point scale. Concurrently, two technologists measured the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the arterial, portal venous and delay phase images in both groups. RESULTS uCSR has superior overall image-quality and image-artifact scores (z = 2.342, p = 0.019; z = 2.105, p = 0.035). The 3D-VIBE images of the arterial phase have higher SNR than uCSR (t = 4.988, p = 0.000), with no significant difference in the CNR (z = 0.676, p = 0.499). In the portal venous phase, the SNR and CNR of the 3D-VIBE images are superior to those of uCSR (z = 5.674, p = 0.000; t = 3.638, p = 0.000). In the delay phase, the SNR of the 3D-VIBE is slightly better than the uCSR (t = 5.471, p = 0.000), and the CNR shows no significant difference (z = 1.258, p = 0.208). CONCLUSION uCSR can be used as a method for liver dynamic contrast-enhanced scans in elderly patients with malignancy. It can improve patient comfort and reduce the failure rate of scans. CRITICAL RELEVANCE STATEMENT Our findings suggested that uCSR can be used for liver dynamic contrast-enhanced scans in elderly patients with malignancy, this preliminary study provided basis for it. KEY POINTS The uCSR can suppress the impact of respiratory motion artifacts on images. The UCSR can perform dynamic enhanced scanning of the liver under free breathing dynamics. The uCSR is suitable for dynamic contrast-enhanced MR imaging of the liver in elderly patients with malignancy.
Collapse
Affiliation(s)
- Heping Deng
- Radiology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolei Dong
- Radiology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhang
- Radiology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Zhou
- Radiology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yakun He
- Radiology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Liu Yang
- Out-patient Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
12
|
Feng L, Chandarana H. Accelerated Abdominal MRI: A Review of Current Methods and Applications. J Magn Reson Imaging 2025. [PMID: 40103292 DOI: 10.1002/jmri.29750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
MRI is widely used for the diagnosis and management of various abdominal diseases involving organs such as the liver, pancreas, and kidneys. However, one major limitation of MRI is its relatively slow imaging speed compared to other modalities. In addition, respiratory motion poses a significant challenge in abdominal MRI, often requiring patients to hold their breath multiple times during an exam. This requirement can be particularly challenging for sick, elderly, and pediatric patients, who may have reduced breath-holding capacity. As a result, rapid imaging plays an important role in routine clinical abdominal MRI exams. Accelerated data acquisition not only reduces overall exam time but also shortens breath-hold durations, thereby improving patient comfort and compliance. Over the past decade, significant advancements in rapid MRI have led to the development of various accelerated imaging techniques for routine clinical use. These methods improve abdominal MRI by enhancing imaging speed, motion compensation, and overall image quality. Integrating these techniques into clinical practice also enables new applications that were previously challenging. This paper provides a concise yet comprehensive overview of rapid imaging techniques applicable to abdominal MRI and discusses their advantages, limitations, and potential clinical applications. By the end of this review, readers are expected to learn the latest advances in accelerated abdominal MRI and explore new frontiers in this evolving field. Evidence Level: N/A Technical Efficacy: Stage 5.
Collapse
Affiliation(s)
- Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
13
|
Zhao Z, Lee HL, Ruan D, Ming Z, Han F, Bedayat A, Christodoulou AG, Finn JP, Nguyen KL. Ferumoxytol-Enhanced 5D Multiphase Steady-State Imaging Using Rotating Cartesian K-Space With Low-Rank Reconstruction for Pediatric Congenital Heart Disease. J Magn Reson Imaging 2025; 61:1311-1322. [PMID: 39143805 PMCID: PMC11805673 DOI: 10.1002/jmri.29565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The rotating Cartesian k-space multiphase steady-state imaging with contrast (ROCK-MUSIC) pulse sequence enables acquisition of whole-heart, cardiac phase-resolved images in pediatric congenital heart disease (CHD) without reliance on the ventilator gating signal. Multidimensional reconstruction with low rank tensor (LRT) has shown promise for resolving complex cardiorespiratory motion. PURPOSE To enhance ROCK-MUSIC by resolving cardiorespiratory phases using LRT reconstruction and to enable semi-automatic hyperparameter tuning by developing an image quality scoring model. STUDY TYPE Retrospective. POPULATION Thirty patients (45% female, age 2 days to 6.7 years) with CHD. FIELD STRENGTH/SEQUENCE 3-T, four-dimensional (4D) spoiled gradient recalled echo sequence. ASSESSMENT Eigenvector-based iTerative Self-consistent Parallel Imaging Reconstruction (ESPIRiT) served as the reference comparison for LRT reconstruction. A 4-point Likert scale was used for cardiac and vascular image quality scoring based on cardiac chamber definition, lumen signal uniformity, vascular margin clarity, and motion artifact. Ejection fraction and ventricular volumes were assessed in 16 patients. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and edge sharpness were computed. STATISTICAL TESTS Intraclass correlation coefficients, Wilcoxon signed-rank test, Bland-Altman. A P-value <0.05 was considered statistically significant. RESULTS Relative to ESPIRiT, LRT images received significantly higher cardiac (2.81 ± 0.57 vs. 3.19 ± 0.54) and vascular (2.81 ± 0.60 vs. 3.36 ± 0.53) image quality scores. Image quality scoring with semi-automated hyperparameter tuning showed strong correlations (R2 = 0.748) among image quality, SNR, and septal sharpness. Comparison of ejection fraction and volumetry derived from ESPIRiT, and LRT showed no significant systematic difference (P = 0.32). DATA CONCLUSION Integration of low-rank reconstruction with ROCK-MUSIC acquisition may be feasible, and semi-automatic hyperparameter tuning could be effective for generating cardiorespiratory resolved images. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Zixuan Zhao
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Hsu-Lei Lee
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center
| | - Dan Ruan
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
| | - Zhengyang Ming
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Fei Han
- Siemens Medical Solutions, Los Angeles, CA
| | - Arash Bedayat
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Anthony G. Christodoulou
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
| | - J. Paul Finn
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Kim-Lien Nguyen
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
14
|
Corbin N, Trotier AJ, Anandra S, Kadalie E, Dallet L, Miraux S, Ribot EJ. Whole-brain T 2 mapping with radial sampling and retrospective motion correction at 3T. Magn Reson Med 2025; 93:1026-1042. [PMID: 39367637 DOI: 10.1002/mrm.30328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
PURPOSE Several barriers prevent the use of whole-brain T2 mapping in routine use despite increasing interest in this parameter. One of the main barriers is the long scan time resulting in patient discomfort and motion corrupted data. To address this challenge, a method for accurate whole-brain T2 mapping with a limited acquisition time and motion correction capabilities is investigated. METHODS A 3D radial multi-echo spin-echo sequence was implemented with optimized sampling trajectory enabling the estimation of intra-scan motion, subsequently used to correct the raw data. Motion corrected echo images are then reconstructed with linear subspace constrained reconstruction. Experiments were carried out on phantom and volunteers at 3T to evaluate the accuracy of the T2 estimation, the sensitivity to lesions and the efficiency of the correction on motion corrupted data. RESULTS Whole-brain T2 mapping acquired in less than 7 min enabled the depiction of lesions in the white matter with longer T2. Data retrospectively corrupted with typical motion traces of pediatric patients highly benefited from the motion correction by reducing the error in T2 estimates within the lesions. All datasets acquired on seven volunteers, with deliberate motion, also showed that motion corrupted T2 maps could be improved with the retrospective motion correction both at the voxel level and the structure level. CONCLUSION A whole-brain T2 mapping sequence with retrospective intra-scan motion correction and reasonable acquisition time is proposed. The method necessitates advanced iterative reconstruction strategies but no additional navigator, external device, or increased scan time is required.
Collapse
Affiliation(s)
- Nadège Corbin
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, University Bordeaux, Bordeaux, France
| | - Aurelien J Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, University Bordeaux, Bordeaux, France
| | - Serge Anandra
- Biomedical Imaging platform pIBIO, UAR3767, CNRS, Bordeaux, France
| | - Emile Kadalie
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, University Bordeaux, Bordeaux, France
| | - Laurence Dallet
- Biomedical Imaging platform pIBIO, UAR3767, CNRS, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, University Bordeaux, Bordeaux, France
- Biomedical Imaging platform pIBIO, UAR3767, CNRS, Bordeaux, France
| | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, University Bordeaux, Bordeaux, France
| |
Collapse
|
15
|
Shang Y, Theilenberg S, Peng B, Schreiber LM, Einstein AJ, Jambawalikar SR, Juchem C. B 0 Magnetic Field Conditions in the Human Heart at 3 T Across One Thousand Subjects: A Numerical Simulation Study. NMR IN BIOMEDICINE 2025; 38:e70006. [PMID: 39929161 DOI: 10.1002/nbm.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Functional scans in cardiovascular magnetic resonance (CMR) adopting bSSFP sequences suffer from dark band artifacts due to B0 inhomogeneity. The best remedy to mitigate this issue is through cardiac B0 shimming. The development of an optimal B0 shim strategy for the human heart is hindered by a limited understanding of B0 conditions in clinical diagnostic orientations of CMR. Here, we present high-resolution B0 distributions in cardiac imaging planes, derived from simulations utilizing high-resolution computed tomography (CT) images from 1008 subjects, and present an oblique slicing method to derive such B0 distributions. This study also presents a theoretical analysis of spherical harmonic B0 shimming at 3 T using a static global approach and slice-specific dynamic shim updating in the short-axis view of human hearts. The characteristics of cardiac B0 conditions along with spherical harmonic shimming were correlated with the subjects' demographic parameters, with weak or no correlations, suggesting limited demographic commonality and predominantly subject-specific characteristics in cardiac B0. The segmented lung volume shows more significant associations and relatively higher correlations with B0 conditions, indicating that B0 conditions in the heart rely on the anatomy surrounding the heart more than overall body shape and size. This research provides a basis for the development of optimized cardiac B0 shim strategies.
Collapse
Affiliation(s)
- Yun Shang
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, USA
- MRI Research Institute, Department of Radiology, Weill Medical College of Cornell University, New York, USA
| | - Sebastian Theilenberg
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, USA
| | - Boyu Peng
- Department of Radiology, Columbia University in the City of New York, New York, USA
| | - Laura M Schreiber
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andrew J Einstein
- Department of Radiology, Columbia University in the City of New York, New York, USA
- Seymour, Paul and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center and NewYork-Presbyterian Hospital, New York, USA
| | | | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, USA
- Department of Radiology, Columbia University in the City of New York, New York, USA
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Montón Quesada I, Ogier AC, Ishida M, Takafuji M, Ito H, Sakuma H, Romanin L, Roy CW, Prša M, Richiardi J, Yerly J, Stuber M, van Heeswijk RB. Self-gated free-running 5D whole-heart MRI using blind source separation for automated cardiac motion extraction. Magn Reson Med 2025; 93:961-974. [PMID: 39385391 DOI: 10.1002/mrm.30322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/16/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE To compare two blind source separation (BSS) techniques to principal component analysis and the electrocardiogram for the identification of cardiac triggers in self-gated free-running 5D whole-heart MRI. To ascertain the precision and robustness of the techniques, they were compared in three different noise and contrast regimes. METHODS The repeated superior-inferior (SI) projections of a 3D radial trajectory were used to extract the physiological signals in three cardiac MRI cohorts: (1) 9 healthy volunteers without contrast agent injection at 1.5T, (2) 30 ferumoxytol-injected congenital heart disease patients at 1.5T, and (3) 12 gadobutrol-injected patients with suspected coronary artery disease at 3T. Self-gated cardiac triggers were extracted with the three algorithms (principal component analysis [PCA], second-order blind identification [SOBI], and independent component analysis [ICA]) and the difference with the electrocardiogram triggers was calculated. PCA and SOBI triggers were retained for image reconstruction. The image sharpness was ascertained on whole-heart 5D images obtained with PCA and SOBI and compared among the three cohorts. RESULTS SOBI resulted in smaller trigger differences in Cohorts 1 and 3 compared to PCA (p < 0.01) and in all cohorts compared to ICA (p < 0.04). In Cohorts 1 and 3, the sharpness increased significantly in the reconstructed images when using SOBI instead of PCA (p < 0.03), but not in Cohort 2 (p = 0.4). CONCLUSION We have shown that SOBI results in more precisely extracted self-gated triggers than PCA and ICA. The validation across three diverse cohorts demonstrates the robustness of the method against acquisition variability.
Collapse
Affiliation(s)
- Isabel Montón Quesada
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Augustin C Ogier
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Masaki Ishida
- Department of Radiology, Mie University Hospital, Tsu, Japan
| | | | - Haruno Ito
- Department of Radiology, Mie University Hospital, Tsu, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, Tsu, Japan
| | - Ludovica Romanin
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
| | - Christopher W Roy
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Milan Prša
- Woman-Mother-Child Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jonas Richiardi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- CIBM Center for BioMedical Imaging, Lausanne, Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- CIBM Center for BioMedical Imaging, Lausanne, Switzerland
| | - Ruud B van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
17
|
Najeeb F, Amjad K, Ullah I, Omer H. SC-GROG followed by L+S reconstruction with multiple sparsity constraints for accelerated Golden-angle-radial DCE-MRI. PLoS One 2025; 20:e0318102. [PMID: 39951435 PMCID: PMC11828349 DOI: 10.1371/journal.pone.0318102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
The GRASP (Golden-angle-radial Sparse Parallel MRI) is a contemporary method for reconstructing dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). This method combines the temporal incoherence of stack-of-stars Golden-angle-radial sampling pattern and acceleration capability of parallel MRI (PI) and compressed sensing (CS) for highly accelerated free-breathing DCE-MRI reconstruction. GRASP uses Temporal Total Variation (TV) norm as a sparsity transform to promote sparsity among multi-coil MRI data and Nonlinear Conjugate Gradient (NL-CG) algorithm to obtain an optimal solution. Additionally, GRASP uses NUFFT gridding to map Golden-angle-radial data to Cartesian grid before NL-CG based CS reconstruction. However, major limitations of GRASP include the temporal averaging effect due to Temporal TV, leading to a degradation in the dynamic contrast of DCE-MRI, and a high computational burden/reconstruction time due to repeated NUFFT gridding/degridding in NL-CG reconstruction. This paper introduces a novel approach to address limitations in GRASP reconstruction technique for free-breathing DCE-MRI. The proposed method combines SC-GROG gridding with low-rank plus sparse (L+S) reconstruction using multiple sparsity constraints for accelerated Golden-angle-radial DCE-MRI with improved temporal resolution and dynamic contrast. Monotone FISTA with variable acceleration (MFISTA-VA) is used to optimize the L+S optimization problem. Further, SC-GROG gridding is used to map Golden-angle radial data to Cartesian grid before L+S reconstruction. The proposed method is tested on two different 3T free-breathing in-vivo DCE-MRI datasets. Reconstruction results of the proposed method are evaluated by using: (i) convergence error, (ii) peak and mean values of arterial signal intensity in the selected region of interest (ROI) of DCE MR Images, and (iii) reconstruction time. Results show that the proposed method provides significant improvements in the reconstruction time and dynamic contrast than the conventional Golden-angle-radial DCE-MRI reconstruction techniques (i.e., GRASP, XD-GRASP). Furthermore, convergence analysis shows that integration of MFISTA-VA in L+S reconstruction provides faster convergence compared to conventional L+S reconstruction.
Collapse
Affiliation(s)
- Faisal Najeeb
- MIPRG Research Group, Electrical and Computer Engineering Department, COMSATs University Islamabad, Islamabad, Pakistan
| | - Kashif Amjad
- College of Computer Engineering & Science, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| | - Irfan Ullah
- MIPRG Research Group, Electrical and Computer Engineering Department, COMSATs University Islamabad, Islamabad, Pakistan
| | - Hammad Omer
- MIPRG Research Group, Electrical and Computer Engineering Department, COMSATs University Islamabad, Islamabad, Pakistan
| |
Collapse
|
18
|
Romanin L, Prsa M, Roy CW, Sieber X, Yerly J, Milani B, Rutz T, Si-Mohamed S, Tenisch E, Piccini D, Stuber M. Exploring the limits of scan time reduction for ferumoxytol-enhanced whole-heart angiography in congenital heart disease patients. J Cardiovasc Magn Reson 2025; 27:101854. [PMID: 39920923 PMCID: PMC11889962 DOI: 10.1016/j.jocmr.2025.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/24/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND One major challenge in cardiovascular magnetic resonance is reducing scan times to be more compatible with clinical workflows. In 3D magnetic resonance imaging (MRI), strategies to shorten scan times mostly rely on ECG-triggering or self-navigation for motion management, but are affected by heart rate variabilities or respiratory drifts. A similarity-driven multi-dimensional binning algorithm (SIMBA) was introduced for 3D whole-heart angiography from ferumoxytol-enhanced free-running MRI. This study explores acceleration limits using SIMBA, and its compressed-sensing extension extra-dimensional motion-compensation (XD-MC)-SIMBA, while preserving image quality. METHODS Data from 6-min free-running acquisitions of 30 congenital heart disease (CHD) patients were retrospectively undersampled to simulate 5-, 4-, 3-, 2-, and 1-min datasets. SIMBA and XD-MC-SIMBA reconstructions were applied. and the consistency of the data selection together with sharpness metrics were computed as a function of undersampling. Image quality was rated on a 5-point Likert scale. Shorter 3-minute acquisitions were prospectively acquired in nine CHD patients. RESULTS SIMBA's motion state selection was consistent across undersampling levels, with only 2 of 30 cases showing completely different selections. Image quality metrics decreased with increased undersampling, with SIMBA scoring lower compared to XD-MC-SIMBA. The diagnostic quality was good, with lower scores for 2- and 1-min datasets. Using XD-MC-SIMBA, 43% (31/72) of cases showed improved scores compared to SIMBA and 58% (7/12) of 1-min datasets improved to good or excellent quality. CONCLUSIONS This study demonstrates that ferumoxytol-enhanced free-running MRI can be highly accelerated for 3D angiography in CHD.With the aid of compressed sensing, XD-MC-SIMBA supports the acceleration down to 3 minutes or less.
Collapse
Affiliation(s)
- Ludovica Romanin
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
| | - Milan Prsa
- Division of Pediatric Cardiology, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christopher W Roy
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Xavier Sieber
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Bastien Milani
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tobias Rutz
- Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Salim Si-Mohamed
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; University Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France; Department of Radiology, Louis Pradel Hospital, Bron, France
| | - Estelle Tenisch
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Davide Piccini
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.
| |
Collapse
|
19
|
Pradella M, Elbaz MSM, Lee DC, Hong K, Passman RS, Kholmovski E, Peters DC, Baraboo JJ, Herzka DA, Nezafat R, Edelman RR, Kim D. A comprehensive evaluation of the left atrium using cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2025; 27:101852. [PMID: 39920924 PMCID: PMC11889362 DOI: 10.1016/j.jocmr.2025.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/09/2025] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
Atrial disease or myopathy is a growing concept in cardiovascular medicine, particularly in the context of atrial fibrillation, as well as amyloidosis and heart failure. Among cardiac imaging modalities, cardiovascular magnetic resonance (CMR) is particularly well suited for a comprehensive assessment of atrial myopathy, including tissue characterization and hemodynamics. The goal of this review article is to describe clinical applications and make recommendations on pulse sequences as well as imaging parameters to assess the left atrium and left atrial appendage. Furthermore, we aimed to create an overview of current and promising future emerging applications of left atrium-specific CMR pulse sequences focusing on both electrophysiologic (EP) and non-EP applications.
Collapse
Affiliation(s)
- Maurice Pradella
- Department of Radiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mohammed S M Elbaz
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel C Lee
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Internal Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - KyungPyo Hong
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rod S Passman
- Department of Internal Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Eugene Kholmovski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dana C Peters
- Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Justin J Baraboo
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, Illinois, USA
| | - Daniel A Herzka
- Department of Radiology, Case Western Reserve University and University Hospitals, Cleveland, Ohio, USA
| | - Reza Nezafat
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert R Edelman
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Radiology, Northshore University Health System, Evanston, Illinois, USA
| | - Daniel Kim
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, Illinois, USA.
| |
Collapse
|
20
|
Xu X, Leforestier R, Xia D, Block KT, Feng L. MRI of GlycoNOE in the human liver using GraspNOE-Dixon. Magn Reson Med 2025; 93:507-518. [PMID: 39367632 DOI: 10.1002/mrm.30270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 10/06/2024]
Abstract
PURPOSE The objective of this study was to develop a new MRI technique for non-invasive, free-breathing imaging of glycogen in the human liver using the nuclear Overhauser effect (NOE). METHODS The proposed method, called GraspNOE-Dixon, uses a novel MRI sequence that combines steady-state saturation-transfer preparation with multi-echo golden-angle radial stack-of-stars sampling. Multi-echo acquisition enables fat/water-separated imaging for quantification of water-specific NOE. Image reconstruction is performed using the improved golden-angle radial sparse parallel imaging (GRASP-Pro) technique to exploit spatiotemporal correlations in dynamic images. To evaluate the proposed technique, imaging experiments were first performed on glycogen phantoms, followed by in vivo studies involving healthy volunteers and patients with fatty liver disease. In addition, a comparative assessment of signal changes before and after a 12-h fasting period was performed. RESULTS Evaluation experiments on glycogen phantoms showed a robust linear correlation between the NOE signal and glycogen concentration. In vivo experiments demonstrated motion-robust NOE-weighted images, with potential for further acceleration. In subjects with varying liver fat content, the fat/water separation approach resulted in distortion-free Z-spectra, enabling the quantification of glycogen NOE. An approximately one-third reduction in the NOE signal was observed following a 12-h fasting period, consistent with a decrease in glycogen level. CONCLUSION This study introduces a clinically feasible imaging technique, GraspNOE-Dixon, for free-breathing volumetric multi-echo imaging of hepatic glycogen at 3 T. The motion robust imaging technique developed here may also have applications in other body areas beyond liver imaging.
Collapse
Affiliation(s)
- Xiang Xu
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rodolphe Leforestier
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ding Xia
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Li Feng
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
21
|
Mertens AJ, Cheng HLM. Accelerated dynamic magnetic resonance imaging from Spatial-Subspace Reconstructions (SPARS). PLoS One 2025; 20:e0317271. [PMID: 39888888 PMCID: PMC11785264 DOI: 10.1371/journal.pone.0317271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/24/2024] [Indexed: 02/02/2025] Open
Abstract
Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) ideally requires a high spatial and a high temporal resolution, but hardware limitations prevent acquisitions from achieving both simultaneously-either high temporal resolution is exchanged for spatial resolution, or vice versa. Even state-of-the-art image reconstruction techniques that infer missing data in a sparse acquisition space cannot recover the loss of spatial detail, especially at high temporal acceleration rates. The purpose of this paper is to introduce the concept of spatial subspace reconstructions (SPARS) and demonstrate its ability to reconstruct high spatial resolution dynamic images from as few as one acquired k-space spoke per time frame in a dynamic series. Briefly, a low-temporal-high-spatial resolution organization of the acquired raw data is used to estimate the basis vectors of the spatial subspace in which the high-temporal-high-spatial ground truth data resides. This subspace is then used to estimate entire images from single k-space spokes. In both simulated and human in-vivo data, the proposed SPARS reconstruction method outperformed standard GRASP and GRASP-Pro reconstruction, providing a shorter reconstruction time and yielding higher accuracy from both a spatial and temporal perspective.
Collapse
Affiliation(s)
- Alexander J. Mertens
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
- Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, Toronto, Canada
| | - Hai-Ling Margaret Cheng
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
- Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Chen J, Christodoulou AG, Han P, Xiao J, Han F, Hu Z, Wang N, Han H, Ling DC, Chang EL, Feng M, Scholey JE, Cui S, Li D, Yang W, Fan Z. Abdominal MR Multitasking for radiotherapy treatment planning: A motion-resolved and multicontrast 3D imaging approach. Magn Reson Med 2025; 93:108-120. [PMID: 39171431 PMCID: PMC11518652 DOI: 10.1002/mrm.30256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Radiotherapy treatment planning (RTP) using MR has been used increasingly for the abdominal site. Multiple contrast weightings and motion-resolved imaging are desired for accurate delineation of the target and various organs-at-risk and patient-tailored planning. Current MR protocols achieve these through multiple scans with distinct contrast and variable respiratory motion management strategies and acquisition parameters, leading to a complex and inaccurate planning process. This study presents a standalone MR Multitasking (MT)-based technique to produce volumetric, motion-resolved, multicontrast images for abdominal radiotherapy treatment planning. METHODS The MT technique resolves motion and provides a wide range of contrast weightings by repeating a magnetization-prepared (saturation recovery and T2 preparations) spoiled gradient-echo readout series and adopting the MT image reconstruction framework. The performance of the technique was assessed through digital phantom simulations and in vivo studies of both healthy volunteers and patients with liver tumors. RESULTS In the digital phantom study, the MT technique presented structural details and motion in excellent agreement with the digital ground truth. The in vivo studies showed that the motion range was highly correlated (R2 = 0.82) between MT and 2D cine imaging. MT allowed for a flexible contrast-weighting selection for better visualization. Initial clinical testing with interobserver analysis demonstrated acceptable target delineation quality (Dice coefficient = 0.85 ± 0.05, Hausdorff distance = 3.3 ± 0.72 mm). CONCLUSION The developed MT-based, abdomen-dedicated technique is capable of providing motion-resolved, multicontrast volumetric images in a single scan, which may facilitate abdominal radiotherapy treatment planning.
Collapse
Affiliation(s)
- Junzhou Chen
- Department of Radiology, University of Southern California
- Department of Radiation Oncology, University of Southern California
- Department of Bioengineering, University of California, Los Angeles
| | - Anthony G. Christodoulou
- Department of Bioengineering, University of California, Los Angeles
- Biomedical Imaging Research Institute, Cedars Sinai Medical Center
| | - Pei Han
- Department of Bioengineering, University of California, Los Angeles
- Biomedical Imaging Research Institute, Cedars Sinai Medical Center
| | - Jiayu Xiao
- Department of Radiology, University of Southern California
| | - Fei Han
- Siemens Medical Solutions USA, Inc
| | - Zhehao Hu
- Department of Radiology, University of Southern California
- Department of Radiation Oncology, University of Southern California
- Department of Bioengineering, University of California, Los Angeles
| | - Nan Wang
- Biomedical Imaging Research Institute, Cedars Sinai Medical Center
| | - Hui Han
- Biomedical Imaging Research Institute, Cedars Sinai Medical Center
| | - Diane C. Ling
- Department of Radiation Oncology, University of Southern California
| | - Eric L. Chang
- Department of Radiation Oncology, University of Southern California
| | - Mary Feng
- Department of Radiation Oncology, University of California, San Francisco
| | - Jessica E. Scholey
- Department of Radiation Oncology, University of California, San Francisco
| | | | - Debiao Li
- Department of Bioengineering, University of California, Los Angeles
- Biomedical Imaging Research Institute, Cedars Sinai Medical Center
| | - Wensha Yang
- Department of Radiation Oncology, University of California, San Francisco
| | - Zhaoyang Fan
- Department of Radiology, University of Southern California
- Department of Radiation Oncology, University of Southern California
- Department of Biomedical Engineering, University of Southern California
| |
Collapse
|
23
|
Lee W, Ryu K, Li Z, Oscanoa J, Wu Y, Robb F, Vasanawala S, Pauly J, Scott G. MRI Retrospective Respiratory Gating and Cardiac Sensing by CW Doppler Radar: A Feasibility Study. IEEE Trans Biomed Eng 2025; 72:112-122. [PMID: 39115989 PMCID: PMC11806077 DOI: 10.1109/tbme.2024.3440317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
OBJECTIVE This study investigates the feasibility of non-contact retrospective respiratory gating and cardiac sensing using continuous wave Doppler radar deployed in an MRI system. The proposed technique can complement existing sensors which are difficult to apply for certain patient populations. METHODS We leverage a software-defined radio for continuous wave radar at 2.4 GHz to detect in-vivo respiratory and cardiac time-scrolled signals. In-bore radar signal demodulation is verified with full electromagnetic simulations, and its functionality is validated on a test bench and within the MR bore with four normal subjects. Radar sensing was compared against well-known references: electrocardiography on a test bench, system bellows, and pulsed plethysmography sensors within the MRI bore. RESULTS The feasibility of non-contact cardiac rate sensing, dynamic breathing sequence synchronization, and in-bore motion correction for retrospective respiratory gating applications was demonstrated. Optimal radar front-end system arrangement, along with spectral isolation and narrow bandwidth of operation, enable MRI-compatible and interference-free motion sensing. The signal-to-noise-ratio degradation by the radar integration was within 4.5% on phantom images. CONCLUSION We confirmed that in-bore retrospective motion correction using CW Doppler radar is feasible without MRI system constraints. SIGNIFICANCE Non-contact motion correction sensing in MRI may provide better patient handling and throughput by complementing existing system sensors and motion correction algorithms.
Collapse
|
24
|
Stelter J, Weiss K, Wu M, Raspe J, Braun P, Zöllner C, Karampinos DC. Dixon-based B 0 self-navigation in radial stack-of-stars multi-echo gradient echo imaging. Magn Reson Med 2025; 93:80-95. [PMID: 39155406 DOI: 10.1002/mrm.30261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE To develop a Dixon-basedB 0 $$ {\mathrm{B}}_0 $$ self-navigation approach to estimate and correct temporalB 0 $$ {\mathrm{B}}_0 $$ variations in radial stack-of-stars gradient echo imaging for quantitative body MRI. METHODS The proposed method estimates temporalB 0 $$ {\mathrm{B}}_0 $$ variations using aB 0 $$ {\mathrm{B}}_0 $$ self-navigator estimated by a graph-cut-based water-fat separation algorithm on the oversampled k-space center. TheB 0 $$ {\mathrm{B}}_0 $$ self-navigator was employed to correct for phase differences between radial spokes (one-dimensional [1D] correction) and to perform a motion-resolved reconstruction to correct spatiotemporal pseudo-periodicB 0 $$ {\mathrm{B}}_0 $$ variations (three-dimensional [3D] correction). Numerical simulations, phantom experiments and in vivo neck scans were performed to evaluate the effects of temporalB 0 $$ {\mathrm{B}}_0 $$ variations on the field-map, proton density fat fraction (PDFF) andT 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ map, and to validate the proposed method. RESULTS TemporalB 0 $$ {\mathrm{B}}_0 $$ variations were found to cause signal loss and phase shifts on the multi-echo images that lead to an underestimation ofT 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ , while PDFF mapping was less affected. TheB 0 $$ {\mathrm{B}}_0 $$ self-navigator captured slowly varying temporalB 0 $$ {\mathrm{B}}_0 $$ drifts and temporal variations caused by respiratory motion. While the 1D correction effectively correctedB 0 $$ {\mathrm{B}}_0 $$ drifts in phantom studies, it was insufficient in vivo due to 3D spatially varying temporalB 0 $$ {\mathrm{B}}_0 $$ variations with amplitudes of up to 25 Hz at 3 T near the lungs. The proposed 3D correction locally improved the correction of field-map andT 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ and reduced image artifacts. CONCLUSION TemporalB 0 $$ {\mathrm{B}}_0 $$ variations particularly affectT 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ mapping in radial stack-of-stars imaging. The self-navigation approach can be applied without modifying the MR acquisition to correct forB 0 $$ {\mathrm{B}}_0 $$ drift and physiological motion-inducedB 0 $$ {\mathrm{B}}_0 $$ variations, especially in the presence of fat.
Collapse
Affiliation(s)
- Jonathan Stelter
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | | | - Mingming Wu
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, Munich, Germany
| | - Johannes Raspe
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Philipp Braun
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christoph Zöllner
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
- Munich Data Science Institute, Technical University of Munich, Garching, Germany
| |
Collapse
|
25
|
Chen J, Pal P, Ahrens ET. Systems Engineering Approach Towards Sensitive Cellular Fluorine-19 MRI. NMR IN BIOMEDICINE 2025; 38:e5298. [PMID: 39648456 DOI: 10.1002/nbm.5298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 12/10/2024]
Abstract
In vivo fluorine-19 MRI using F-based tracer media has shown utility and versatility for a wide range of biomedical uses, particularly immune and stem cell detection, as well as biosensing. As with many advanced MRI acquisition techniques, the sensitivity and limit of detection (LOD) in vivo is a key consideration for a successful study outcome. In this review, we analyze the primary factors that limit cell LOD. The achievable sensitivity is strongly dependent on the specific composition of tracer, cell type of interest, cell activity, data acquisition and reconstruction methods, and MRI hardware design. Recent innovations in molecular 19F tracer design and image acquisition-reconstruction methods have achieved significant leaps in 19F MRI sensitivity, and integration of these new materials and methods into studies can result in > 10-fold improvement in LOD. These developments will help unlock the full potential of clinical 19F MRI for biomedical applications.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA
| | - Piya Pal
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA
| | - Eric T Ahrens
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
26
|
Ming Z, Pogosyan A, Christodoulou AG, Finn JP, Ruan D, Nguyen KL. Dynamic Regularized Adaptive Cluster Optimization (DRACO) for Quantitative Cardiac Cine MRI in Complex Arrhythmias. J Magn Reson Imaging 2025; 61:248-262. [PMID: 38708951 PMCID: PMC11538382 DOI: 10.1002/jmri.29425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Irregular cardiac motion can render conventional segmented cine MRI nondiagnostic. Clustering has been proposed for cardiac motion binning and may be optimized for complex arrhythmias. PURPOSE To develop an adaptive cluster optimization method for irregular cardiac motion, and to generate the corresponding time-resolved cine images. STUDY TYPE Prospective. SUBJECTS Thirteen with atrial fibrillation, four with premature ventricular contractions, and one patient in sinus rhythm. FIELD STRENGTH/SEQUENCE Free-running balanced steady state free precession (bSSFP) with sorted golden-step, reference real-time sequence. ASSESSMENT Each subject underwent both the sorted golden-step bSSFP and the reference Cartesian real-time imaging. Golden-step bSSFP images were reconstructed using the dynamic regularized adaptive cluster optimization (DRACO) method and k-means clustering. Image quality (4-point Likert scale), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge sharpness, and ventricular function were assessed. STATISTICAL TESTS Paired t-tests, Friedman test, regression analysis, Fleiss' Kappa, Bland-Altman analysis. Significance level P < 0.05. RESULTS The DRACO method had the highest percent of images with scores ≥3 (96% for diastolic frame, 93% for systolic frame, and 93% for multiphase cine) and the percentages were significantly higher compared with both the k-means and real-time methods. Image quality scores, SNR, and CNR were significantly different between DRACO vs. k-means and between DRACO vs. real-time. Cardiac function analysis showed no significant differences between DRACO vs. the reference real-time. CONCLUSION DRACO with time-resolved reconstruction generated high quality images and has early promise for quantitative cine cardiac MRI in patients with complex arrhythmias including atrial fibrillation. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Zhengyang Ming
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, CA, USA
| | - Arutyun Pogosyan
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, CA, USA
| | - Anthony G. Christodoulou
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - J. Paul Finn
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, CA, USA
| | - Dan Ruan
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, CA, USA
| | - Kim-Lien Nguyen
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, CA, USA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Chen J, Huang C, Shanbhogue K, Xia D, Bruno M, Huang Y, Block KT, Chandarana H, Feng L. DCE-MRI of the liver with sub-second temporal resolution using GRASP-Pro with navi-stack-of-stars sampling. NMR IN BIOMEDICINE 2024; 37:e5262. [PMID: 39323100 PMCID: PMC11998610 DOI: 10.1002/nbm.5262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Respiratory motion-induced image blurring and artifacts can compromise image quality in dynamic contrast-enhanced MRI (DCE-MRI) of the liver. Despite remarkable advances in respiratory motion detection and compensation in past years, these techniques have not yet seen widespread clinical adoption. The accuracy of image-based motion detection can be especially compromised in the presence of contrast enhancement and/or in situations involving deep and/or irregular breathing patterns. This work proposes a framework that combines GRASP-Pro (Golden-angle RAdial Sparse Parallel MRI with imProved performance) MRI with a new radial sampling scheme called navi-stack-of-stars for free-breathing DCE-MRI of the liver without the need for explicit respiratory motion compensation. A prototype 3D golden-angle radial sequence with a navi-stack-of-stars sampling scheme that intermittently acquires a 2D navigator was implemented. Free-breathing DCE-MRI of the liver was conducted in 24 subjects at 3T including 17 volunteers and 7 patients. GRASP-Pro reconstruction was performed with a temporal resolution of 0.34-0.45 s per volume, whereas standard GRASP reconstruction was performed with a temporal resolution of 15 s per volume. Motion compensation was not performed in all image reconstruction tasks. Liver images in different contrast phases from both GRASP and GRASP-Pro reconstructions were visually scored by two experienced abdominal radiologists for comparison. The nonparametric paired two-tailed Wilcoxon signed-rank test was used to compare image quality scores, and the Cohen's kappa coefficient was calculated to evaluate the inter-reader agreement. GRASP-Pro MRI with sub-second temporal resolution consistently received significantly higher image quality scores (P < 0.05) than standard GRASP MRI throughout all contrast enhancement phases and across all assessment categories. There was a substantial inter-reader agreement for all assessment categories (ranging from 0.67 to 0.89). The proposed technique using GRASP-Pro reconstruction with navi-stack-of-stars sampling holds great promise for free-breathing DCE-MRI of the liver without respiratory motion compensation.
Collapse
Affiliation(s)
- Jingjia Chen
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Chenchan Huang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Krishna Shanbhogue
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ding Xia
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mary Bruno
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Yuhui Huang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kai Tobias Block
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Li Feng
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
28
|
Chen J, Xia D, Huang C, Shanbhogue K, Chandarana H, Feng L. Free-breathing time-resolved 4D MRI with improved T1-weighting contrast. NMR IN BIOMEDICINE 2024; 37:e5247. [PMID: 39183645 DOI: 10.1002/nbm.5247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
This work proposes MP-Grasp4D (magnetization-prepared golden-angle radial sparse parallel 4D) MRI, a free-breathing, inversion recovery (IR)-prepared, time-resolved 4D MRI technique with improved T1-weighted contrast. MP-Grasp4D MRI acquisition incorporates IR preparation into a radial gradient echo sequence. MP-Grasp4D employs a golden-angle navi-stack-of-stars sampling scheme, where imaging data of rotating radial stacks and navigator stacks (acquired at a consistent rotation angle) are alternately acquired. The navigator stacks are used to estimate a temporal basis for low-rank subspace-constrained reconstruction. This allows for the simultaneous capture of both IR-induced contrast changes and respiratory motion. One temporal frame of the imaging volume in MP-Grasp4D MRI is reconstructed from a single stack and an adjacent navigator stack on average, resulting in a nominal temporal resolution of 0.16 seconds per volume. Images corresponding to the optimal inversion time (TI) can be retrospectively selected for providing the best image contrast. Reader studies were conducted to assess the performance of MP-Grasp4D MRI in liver imaging across 30 subjects in comparison with standard Grasp4D MRI without IR preparation. MP-Grasp4D MRI received significantly higher scores (P < 0.05) than Grasp4D in all assessment categories. There was a moderate to almost perfect agreement (kappa coefficient from 0.42 to 0.9) between the two readers for image quality assessment. When the scan time is reduced, MP-Grasp4D MRI preserves image contrast and quality, demonstrating additional acceleration capability. MP-Grasp4D MRI improves T1-weighted contrast for free-breathing time-resolved 4D MRI and eliminates the need for explicit motion compensation. This method is expected to be valuable in different MRI applications such as MR-guided radiotherapy.
Collapse
Affiliation(s)
- Jingjia Chen
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ding Xia
- Icahn School of Medicine at Mount Sinai, Biomedical Engineering and Imaging Institute, New York, New York, USA
| | - Chenchan Huang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Krishna Shanbhogue
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Li Feng
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
29
|
Cohen O, Kargar S, Woo S, Vargas A, Otazo R. DCE-Qnet: deep network quantification of dynamic contrast enhanced (DCE) MRI. MAGMA (NEW YORK, N.Y.) 2024; 37:1077-1090. [PMID: 39112813 PMCID: PMC11996236 DOI: 10.1007/s10334-024-01189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 11/22/2024]
Abstract
INTRODUCTION Quantification of dynamic contrast-enhanced (DCE)-MRI has the potential to provide valuable clinical information, but robust pharmacokinetic modeling remains a challenge for clinical adoption. METHODS A 7-layer neural network called DCE-Qnet was trained on simulated DCE-MRI signals derived from the Extended Tofts model with the Parker arterial input function. Network training incorporated B1 inhomogeneities to estimate perfusion (Ktrans, vp, ve), tissue T1 relaxation, proton density and bolus arrival time (BAT). The accuracy was tested in a digital phantom in comparison to a conventional nonlinear least-squares fitting (NLSQ). In vivo testing was conducted in ten healthy subjects. Regions of interest in the cervix and uterine myometrium were used to calculate the inter-subject variability. The clinical utility was demonstrated on a cervical cancer patient. Test-retest experiments were used to assess reproducibility of the parameter maps in the tumor. RESULTS The DCE-Qnet reconstruction outperformed NLSQ in the phantom. The coefficient of variation (CV) in the healthy cervix varied between 5 and 51% depending on the parameter. Parameter values in the tumor agreed with previous studies despite differences in methodology. The CV in the tumor varied between 1 and 47%. CONCLUSION The proposed approach provides comprehensive DCE-MRI quantification from a single acquisition. DCE-Qnet eliminates the need for separate T1 scan or BAT processing, leading to a reduction of 10 min per scan and more accurate quantification.
Collapse
Affiliation(s)
- Ouri Cohen
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 320 East 61st St 10025, USA.
| | - Soudabeh Kargar
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 320 East 61st St 10025, USA
| | - Sungmin Woo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alberto Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 320 East 61st St 10025, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
30
|
Stelter J, Weiss K, Steinhelfer L, Spieker V, Huaroc Moquillaza E, Zhang W, Makowski MR, Schnabel JA, Kainz B, Braren RF, Karampinos DC. Simultaneous whole-liver water T 1 and T 2 mapping with isotropic resolution during free-breathing. NMR IN BIOMEDICINE 2024; 37:e5216. [PMID: 39099162 DOI: 10.1002/nbm.5216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE To develop and validate a data acquisition scheme combined with a motion-resolved reconstruction and dictionary-matching-based parameter estimation to enable free-breathing isotropic resolution self-navigated whole-liver simultaneous water-specific T 1 ( wT 1 ) and T 2 ( wT 2 ) mapping for the characterization of diffuse and oncological liver diseases. METHODS The proposed data acquisition consists of a magnetization preparation pulse and a two-echo gradient echo readout with a radial stack-of-stars trajectory, repeated with different preparations to achieve different T 1 and T 2 contrasts in a fixed acquisition time of 6 min. Regularized reconstruction was performed using self-navigation to account for motion during the free-breathing acquisition, followed by water-fat separation. Bloch simulations of the sequence were applied to optimize the sequence timing forB 1 insensitivity at 3 T, to correct for relaxation-induced blurring, and to map T 1 and T 2 using a dictionary. The proposed method was validated on a water-fat phantom with varying relaxation properties and in 10 volunteers against imaging and spectroscopy reference values. The performance and robustness of the proposed method were evaluated in five patients with abdominal pathologies. RESULTS Simulations demonstrate goodB 1 insensitivity of the proposed method in measuring T 1 and T 2 values. The proposed method produces co-registered wT 1 and wT 2 maps with a good agreement with reference methods (phantom: wT 1 = 1 . 02 wT 1,ref - 8 . 93 ms , R 2 = 0 . 991 ; wT 2 = 1 . 03 wT 2,ref + 0 . 73 ms , R 2 = 0 . 995 ). The proposed wT 1 and wT 2 mapping exhibits good repeatability and can be robustly performed in patients with pathologies. CONCLUSIONS The proposed method allows whole-liver wT 1 and wT 2 quantification with high accuracy at isotropic resolution in a fixed acquisition time during free-breathing.
Collapse
Affiliation(s)
- Jonathan Stelter
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | | | - Lisa Steinhelfer
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Veronika Spieker
- Institute of Machine Learning for Biomedical Imaging, Helmholtz Munich, Neuherberg, Germany
- School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Elizabeth Huaroc Moquillaza
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Weitong Zhang
- Department of Computing, Imperial College London, London, United Kingdom
| | - Marcus R Makowski
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Julia A Schnabel
- Institute of Machine Learning for Biomedical Imaging, Helmholtz Munich, Neuherberg, Germany
- School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
- School of Biomedical Imaging and Imaging Sciences, King's College London, London, United Kingdom
| | - Bernhard Kainz
- Department of Computing, Imperial College London, London, United Kingdom
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rickmer F Braren
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
- Munich Data Science Institute, Technical University of Munich, Garching, Germany
| |
Collapse
|
31
|
Nosrati R, Calakli F, Afacan O, Pelkola K, Nichols R, Connaughton P, Bedoya MA, Tsai A, Bixby S, Warfield SK. Free-Breathing High-Resolution, Swap-Free, and Motion-Corrected Water/Fat Separation in Pediatric Abdominal MRI. Invest Radiol 2024; 59:805-812. [PMID: 38857418 PMCID: PMC11560742 DOI: 10.1097/rli.0000000000001092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
OBJECTIVES The T1-weighted GRE (gradient recalled echo) sequence with the Dixon technique for water/fat separation is an essential component of abdominal MRI (magnetic resonance imaging), useful in detecting tumors and characterizing hemorrhage/fat content. Unfortunately, the current implementation of this sequence suffers from several problems: (1) low resolution to maintain high pixel bandwidth and minimize chemical shift; (2) image blurring due to respiratory motion; (3) water/fat swapping due to the natural ambiguity between fat and water peaks; and (4) off-resonance fat blurring due to the multipeak nature of the fat spectrum. The goal of this study was to evaluate the image quality of water/fat separation using a high-resolution 3-point Dixon golden angle radial acquisition with retrospective motion compensation and multipeak fat modeling in children undergoing abdominal MRI. MATERIALS AND METHODS Twenty-two pediatric patients (4.2 ± 2.3 years) underwent abdominal MRI on a 3 T scanner with routine abdominal protocol and with a 3-point Dixon radial-VIBE (volumetric interpolated breath-hold examination) sequence. Field maps were calculated using 3D graph-cut optimization followed by fat and water calculation from k-space data by iteratively solving an optimization problem. A 6-peak fat model was used to model chemical shifts in k-space. Residual respiratory motion was corrected through soft-gating by weighting each projection based on the estimated respiratory motion from the center of the k-space. Reconstructed images were reviewed by 3 pediatric radiologists on a PACS (picture archiving and communication systems) workstation. Subjective image quality and water/fat swapping artifact were scored by each pediatric radiologist using a 5-point Likert scale. The VoL (variance of Laplacian) of the reconstructed images was used to objectively quantify image sharpness. RESULTS Based on the overall Likert scores, the images generated using the described method were significantly superior to those reconstructed by the conventional 2-point Dixon technique ( P < 0.05). Water/fat swapping artifact was observed in 14 of 22 patients using 2-point Dixon, and this artifact was not present when using the proposed method. Image sharpness was significantly improved using the proposed framework. CONCLUSIONS In smaller patients, a high-quality water/fat separation with sharp visualization of fine details is critical for diagnostic accuracy. High-resolution golden angle radial-VIBE 3-point Dixon acquisition with 6-peak fat model and soft-gated motion correction offers improved image quality at the expense of an additional ~1-minute acquisition time. Thus, this technique offers the potential to replace the conventional 2-point Dixon technique.
Collapse
Affiliation(s)
- Reyhaneh Nosrati
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Fatih Calakli
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Onur Afacan
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kristina Pelkola
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Reid Nichols
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Pauline Connaughton
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - M. Alejandra Bedoya
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Andy Tsai
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Bixby
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Simon K. Warfield
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Kim S, Park H, Park SH. A review of deep learning-based reconstruction methods for accelerated MRI using spatiotemporal and multi-contrast redundancies. Biomed Eng Lett 2024; 14:1221-1242. [PMID: 39465106 PMCID: PMC11502678 DOI: 10.1007/s13534-024-00425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 10/29/2024] Open
Abstract
Accelerated magnetic resonance imaging (MRI) has played an essential role in reducing data acquisition time for MRI. Acceleration can be achieved by acquiring fewer data points in k-space, which results in various artifacts in the image domain. Conventional reconstruction methods have resolved the artifacts by utilizing multi-coil information, but with limited robustness. Recently, numerous deep learning-based reconstruction methods have been developed, enabling outstanding reconstruction performances with higher acceleration. Advances in hardware and developments of specialized network architectures have produced such achievements. Besides, MRI signals contain various redundant information including multi-coil redundancy, multi-contrast redundancy, and spatiotemporal redundancy. Utilization of the redundant information combined with deep learning approaches allow not only higher acceleration, but also well-preserved details in the reconstructed images. Consequently, this review paper introduces the basic concepts of deep learning and conventional accelerated MRI reconstruction methods, followed by review of recent deep learning-based reconstruction methods that exploit various redundancies. Lastly, the paper concludes by discussing the challenges, limitations, and potential directions of future developments.
Collapse
Affiliation(s)
- Seonghyuk Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - HyunWook Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sung-Hong Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
33
|
Ding Z, She H, Chen Q, Du YP. Reduction of ringing artifacts induced by diaphragm drifting in free-breathing dynamic pulmonary MRI using 3D koosh-ball acquisition. Magn Reson Med 2024; 92:2021-2036. [PMID: 38968132 DOI: 10.1002/mrm.30207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024]
Abstract
PURPOSE To reduce the ringing artifacts of the motion-resolved images in free-breathing dynamic pulmonary MRI. METHODS A golden-step based interleaving (GSI) technique was proposed to reduce ringing artifacts induced by diaphragm drifting. The pulmonary MRI data were acquired using a superior-inferior navigated 3D radial UTE sequence in an interleaved manner during free breathing. Successive interleaves were acquired in an incoherent fashion along the polar direction. Four-dimensional images were reconstructed from the motion-resolved k-space data obtained by retrospectively binning. The reconstruction algorithms included standard nonuniform fast Fourier transform (NUFFT), Voronoi-density-compensated NUFFT, extra-dimensional UTE, and motion-state weighted motion-compensation reconstruction. The proposed interleaving technique was compared with a conventional sequential interleaving (SeqI) technique on a phantom and eight subjects. RESULTS The quantified ringing artifacts level in the motion-resolved image is positively correlated with the quantified nonuniformity level of the corresponding k-space. The nonuniformity levels of the end-expiratory and end-inspiratory k-space binned from GSI data (0.34 ± 0.07, 0.33 ± 0.05) are significantly lower with statistical significance (p < 0.05) than that binned from SeqI data (0.44 ± 0.11, 0.42 ± 0.12). Ringing artifacts are substantially reduced in the dynamic images of eight subjects acquired using the proposed technique in comparison with that acquired using the conventional SeqI technique. CONCLUSION Ringing artifacts in the motion-resolved images induced by diaphragm drifting can be reduced using the proposed GSI technique for free-breathing dynamic pulmonary MRI. This technique has the potential to reduce ringing artifacts in free-breathing liver and kidney MRI based on full-echo interleaved 3D radial acquisition.
Collapse
Affiliation(s)
- Zekang Ding
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Central Research Institute, United Imaging Group, Shanghai, China
| | - Huajun She
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qun Chen
- Central Research Institute, United Imaging Group, Shanghai, China
| | - Yiping P Du
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Zi R, Benkert T, Chandarana H, Lattanzi R, Block KT. Fat suppression using frequency-sweep RF saturation and iterative reconstruction. Magn Reson Med 2024; 92:1995-2006. [PMID: 38888139 PMCID: PMC11341250 DOI: 10.1002/mrm.30199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE To introduce an alternative idea for fat suppression that is suited both for low-field applications where conventional fat-suppression approaches become ineffective due to narrow spectral separation and for applications with strong B0 homogeneities. METHODS Separation of fat and water is achieved by sweeping the frequency of RF saturation pulses during continuous radial acquisition and calculating frequency-resolved images using regularized iterative reconstruction. Voxel-wise signal-response curves are extracted that reflect tissue's response to RF saturation at different frequencies and allow the classification into fat or water. This information is then utilized to generate water-only composite images. The principle is demonstrated in free-breathing abdominal and neck examinations using stack-of-stars 3D balanced SSFP (bSSFP) and gradient-recalled echo (GRE) sequences at 0.55 and 3T. Moreover, a potential extension toward quantitative fat/water separation is described. RESULTS Experiments with a proton density fat fraction (PDFF) phantom validated the reliability of fat/water separation using signal-response curves. As demonstrated for abdominal imaging at 0.55T, the approach resulted in more uniform fat suppression without loss of water signal and in improved CSF-to-fat signal ratio. Moreover, the approach provided consistent fat suppression in 3T neck exams where conventional spectrally-selective fat saturation failed due to strong local B0 inhomogeneities. The feasibility of simultaneous fat/water quantification has been demonstrated in a PDFF phantom. CONCLUSION The proposed principle achieves reliable fat suppression in low-field applications and adapts to high-field applications with strong B0 inhomogeneity. Moreover, the principle potentially provides a basis for developing an alternative approach for PDFF quantification.
Collapse
Affiliation(s)
- Ruoxun Zi
- The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Thomas Benkert
- The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hersh Chandarana
- The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Riccardo Lattanzi
- The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kai Tobias Block
- The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
35
|
Sun J, Wang C, Guo L, Fang Y, Huang J, Qiu B. An unrolled neural network for accelerated dynamic MRI based on second-order half-quadratic splitting model. Magn Reson Imaging 2024; 113:110218. [PMID: 39069026 DOI: 10.1016/j.mri.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The reconstruction of dynamic magnetic resonance images from incomplete k-space data has sparked significant research interest due to its potential to reduce scan time. However, traditional iterative optimization algorithms fail to faithfully reconstruct images at higher acceleration factors and incur long reconstruction time. Furthermore, end-to-end deep learning-based reconstruction algorithms suffer from large model parameters and lack robustness in the reconstruction results. Recently, unrolled deep learning models, have shown immense potential in algorithm stability and applicability flexibility. In this paper, we propose an unrolled deep learning network based on a second-order Half-Quadratic Splitting(HQS) algorithm, where the forward propagation process of this framework strictly follows the computational flow of the HQS algorithm. In particular, we propose a degradation-sense module by associating random sampling patterns with intermediate variables to guide the iterative process. We introduce the Information Fusion Transformer(IFT) to extract both local and non-local prior information from image sequences, thereby removing aliasing artifacts resulting from random undersampling. Finally, we impose low-rank constraints within the HQS algorithm to further enhance the reconstruction results. The experiments demonstrate that each component module of our proposed model contributes to the improvement of the reconstruction task. Our proposed method achieves comparably satisfying performance to the state-of-the-art methods and it exhibits excellent generalization capabilities across different sampling masks. At the low acceleration factor, there is a 0.7% enhancement in the PSNR. Furthermore, when the acceleration factor reached 8 and 12, the PSNR achieves an improvement of 3.4% and 5.8% respectively.
Collapse
Affiliation(s)
- Jiabing Sun
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, Anhui Province, PR China.
| | - Changliang Wang
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, Anhui Province, PR China.
| | - Lei Guo
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, Anhui Province, PR China.
| | - Yongxiang Fang
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, Anhui Province, PR China.
| | - Jiawen Huang
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, Anhui Province, PR China.
| | - Bensheng Qiu
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, Anhui Province, PR China.
| |
Collapse
|
36
|
McGee KP, Cao M, Das IJ, Yu V, Witte RJ, Kishan AU, Valle LF, Wiesinger F, De-Colle C, Cao Y, Breen WG, Traughber BJ. The Use of Magnetic Resonance Imaging in Radiation Therapy Treatment Simulation and Planning. J Magn Reson Imaging 2024; 60:1786-1805. [PMID: 38265188 DOI: 10.1002/jmri.29246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
Ever since its introduction as a diagnostic imaging tool the potential of magnetic resonance imaging (MRI) in radiation therapy (RT) treatment simulation and planning has been recognized. Recent technical advances have addressed many of the impediments to use of this technology and as a result have resulted in rapid and growing adoption of MRI in RT. The purpose of this article is to provide a broad review of the multiple uses of MR in the RT treatment simulation and planning process, identify several of the most used clinical scenarios in which MR is integral to the simulation and planning process, highlight existing limitations and provide multiple unmet needs thereby highlighting opportunities for the diagnostic MR imaging community to contribute and collaborate with our oncology colleagues. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Kiaran P McGee
- Department of Radiology, Mayo Clinic & Foundation, Rochester, Minnesota, USA
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | - Indra J Das
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Victoria Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert J Witte
- Department of Radiology, Mayo Clinic & Foundation, Rochester, Minnesota, USA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | - Luca F Valle
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | | | - Chiara De-Colle
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - William G Breen
- Department of Radiation Oncology, Mayo Clinic & Foundation, Rochester, Minnesota, USA
| | - Bryan J Traughber
- Department of Radiation Oncology, Mayo Clinic & Foundation, Rochester, Minnesota, USA
| |
Collapse
|
37
|
Muslu Y, Tamada D, Roberts NT, Cashen TA, Mandava S, Kecskemeti SR, Hernando D, Reeder SB. Free-breathing, fat-corrected T 1 mapping of the liver with stack-of-stars MRI, and joint estimation of T 1, PDFF, R 2 * , and B 1 + . Magn Reson Med 2024; 92:1913-1932. [PMID: 38923009 DOI: 10.1002/mrm.30182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE Quantitative T1 mapping has the potential to replace biopsy for noninvasive diagnosis and quantitative staging of chronic liver disease. Conventional T1 mapping methods are confounded by fat andB 1 + $$ {B}_1^{+} $$ inhomogeneities, resulting in unreliable T1 estimations. Furthermore, these methods trade off spatial resolution and volumetric coverage for shorter acquisitions with only a few images obtained within a breath-hold. This work proposes a novel, volumetric (3D), free-breathing T1 mapping method to account for multiple confounding factors in a single acquisition. THEORY AND METHODS Free-breathing, confounder-corrected T1 mapping was achieved through the combination of non-Cartesian imaging, magnetization preparation, chemical shift encoding, and a variable flip angle acquisition. A subspace-constrained, locally low-rank image reconstruction algorithm was employed for image reconstruction. The accuracy of the proposed method was evaluated through numerical simulations and phantom experiments with a T1/proton density fat fraction phantom at 3.0 T. Further, the feasibility of the proposed method was investigated through contrast-enhanced imaging in healthy volunteers, also at 3.0 T. RESULTS The method showed excellent agreement with reference measurements in phantoms across a wide range of T1 values (200 to 1000 ms, slope = 0.998 (95% confidence interval (CI) [0.963 to 1.035]), intercept = 27.1 ms (95% CI [0.4 54.6]), r2 = 0.996), and a high level of repeatability. In vivo imaging studies demonstrated moderate agreement (slope = 1.099 (95% CI [1.067 to 1.132]), intercept = -96.3 ms (95% CI [-82.1 to -110.5]), r2 = 0.981) compared to saturation recovery-based T1 maps. CONCLUSION The proposed method produces whole-liver, confounder-corrected T1 maps through simultaneous estimation of T1, proton density fat fraction, andB 1 + $$ {B}_1^{+} $$ in a single, free-breathing acquisition and has excellent agreement with reference measurements in phantoms.
Collapse
Affiliation(s)
- Yavuz Muslu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daiki Tamada
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | | - Diego Hernando
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott B Reeder
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Emergency Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
38
|
Chen Z, Yuan Z, Cheng J, Liu J, Liu F, Chen Z. An adaptive parameter decoupling algorithm-based image reconstruction model (ADAIR) for rapid golden-angle radial DCE-MRI. Phys Med Biol 2024; 69:215012. [PMID: 39383887 DOI: 10.1088/1361-6560/ad8545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Objective. The acceleration of magnetic resonance imaging (MRI) acquisition is crucial for both clinical and research applications, particularly in dynamic MRI. Existing compressed sensing (CS) methods, despite being effective for fast imaging, face limitations such as the need for incoherent sampling and residual noise, which restrict their practical use for rapid MRI.Approach. To overcome these challenges, we propose a novel image reconstruction framework that integrates the MRI physical model with a flexible, self-adjusting, decoupling data-driven model. We validated this method through experiments using both simulated andin vivodynamic contrast-enhanced MRI datasets.Main results. The experimental results demonstrate that the proposed framework achieves high spatial and temporal resolution reconstructions. Additionally, when compared to state-of-the-art image reconstruction approaches, our method significantly enhances acceleration capabilities, enabling sparse and rapid imaging with high resolution.Significance. Our proposed framework offers a promising solution for real-time imaging and image-guided radiation therapy applications by providing superior performance in achieving high spatial and temporal resolution reconstructions, thus addressing the limitations of existing CS schemes.
Collapse
Affiliation(s)
- Zhifeng Chen
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
- Department of Data Science & AI, Faculty of IT, Monash University, Clayton, VIC, Australia
| | - Zhenguo Yuan
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Junying Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jinhai Liu
- College of Information Science and Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Feng Liu
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
- Department of Data Science & AI, Faculty of IT, Monash University, Clayton, VIC, Australia
| |
Collapse
|
39
|
Cheng J, Li Q, Liu N, Yang J, Fu Y, Cui ZX, Wang Z, Li G, Zhang H, Liang D. A dynamic approach for MR T2-weighted pelvic imaging. Phys Med Biol 2024; 69:205019. [PMID: 39362274 DOI: 10.1088/1361-6560/ad8335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
Objective. T2-weighted 2D fast spin echo sequence serves as the standard sequence in clinical pelvic MR imaging protocols. However, motion artifacts and blurring caused by peristalsis present significant challenges. Patient preparation such as administering antiperistaltic agents is often required before examination to reduce artifacts, which discomfort the patients. This work introduce a novel dynamic approach for T2 weighted pelvic imaging to address peristalsis-induced motion issue without any patient preparation.Approach. A rapid dynamic data acquisition strategy with complementary sampling trajectory is designed to enable highly undersampled motion-resistant data sampling, and an unrolling method based on deep equilibrium model is leveraged to reconstruct images from the dynamic sampled k-space data. Moreover, the fix-point convergence of the equilibrium model ensures the stability of the reconstruction. The high acceleration factor in each temporal phase, which is much higher than that in traditional static imaging, has the potential to effectively freeze pelvic motion, thereby transforming the imaging problem from conventional motion prevention or removal to motion reconstruction.Main results. Experiments on both retrospective and prospective data have demonstrated the superior performance of the proposed dynamic approach in reducing motion artifacts and accurately depicting structural details compared to standard static imaging.Significance. The proposed dynamic approach effectively captures motion states through dynamic data acquisition and deep learning-based reconstruction, addressing motion-related challenges in pelvic imaging.
Collapse
Affiliation(s)
- Jing Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Qingneng Li
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Naijia Liu
- Shanghai United Imaging Healthcare Co., Ltd, Shanghai, People's Republic of China
| | - Jun Yang
- Shanghai United Imaging Healthcare Co., Ltd, Shanghai, People's Republic of China
| | - Yu Fu
- The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhuo-Xu Cui
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Zhenkui Wang
- Shanghai United Imaging Healthcare Co., Ltd, Shanghai, People's Republic of China
| | - Guobin Li
- Shanghai United Imaging Healthcare Co., Ltd, Shanghai, People's Republic of China
| | - Huimao Zhang
- The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Dong Liang
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
40
|
Huynh C, Goolaub DS, Macgowan CK. Electric potential energy optimized 3D radial sampling trajectories for MRI. Sci Rep 2024; 14:24084. [PMID: 39406755 PMCID: PMC11480509 DOI: 10.1038/s41598-024-74437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
A novel method for creating "golden" 3D center-out radial MRI sampling trajectories was developed and analyzed. This method, called ELECTRO (ELECTRic potential energy Optimized), uses repulsive forces to minimize electric potential energy. An objective function [Formula: see text], the electric potential energies of all subsets of consecutive readouts in a 3D radial trajectory, and its reduced form were minimized using a multi-stage optimization strategy. A metric called normalized mean nearest neighbor angular distance (NMNA) was proposed for describing distributions of points on a sphere. ELECTRO and other relevant golden trajectories were compared in silico using NMNA and point spread function analysis. Consecutive readouts from an ELECTRO trajectory were well spread out, with consistent NMNA values across sphere sizes (σNMNA = 0.005) and between regions on the sphere (NMNA ≈ 1.49). Conversely, the supergolden trajectory had poor consistency in NMNA values (σNMNA = 0.090) and clustering (NMNA = 1.28 at the pole with 40,000 readouts) that lead to artifact in the point spread function. Multi-stage optimization was faster than single-stage and obtained lower values of [Formula: see text] (e.g., 0.87 vs. 0.91, for a sphere size of 40). In conclusion, ELECTRO trajectories are more golden than other 3D center-out radial trajectories, making them a suitable candidate for dynamic 3D MR imaging.
Collapse
Affiliation(s)
- Christopher Huynh
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | | | - Christopher K Macgowan
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada.
- Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Peter Gilgan Centre for Research and Learning, Rm 08.9714, 686 Bay Street, Toronto, Canada.
| |
Collapse
|
41
|
Maatman IT, Schulz J, Ypma S, Tobias Block K, Schmitter S, Hermans JJ, Smit EJ, Maas MC, Scheenen TWJ. Free-breathing high-resolution respiratory-gated radial stack-of-stars magnetic resonance imaging of the upper abdomen at 7 T. NMR IN BIOMEDICINE 2024; 37:e5180. [PMID: 38775032 PMCID: PMC11998609 DOI: 10.1002/nbm.5180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 10/12/2024]
Abstract
Ultrahigh field magnetic resonance imaging (MRI) (≥ 7 T) has the potential to provide superior spatial resolution and unique image contrast. Apart from radiofrequency transmit inhomogeneities in the body at this field strength, imaging of the upper abdomen faces additional challenges associated with motion-induced ghosting artifacts. To address these challenges, the goal of this work was to develop a technique for high-resolution free-breathing upper abdominal MRI at 7 T with a large field of view. Free-breathing 3D gradient-recalled echo (GRE) water-excited radial stack-of-stars data were acquired in seven healthy volunteers (five males/two females, body mass index: 19.6-24.8 kg/m2) at 7 T using an eight-channel transceive array coil. Two volunteers were also examined at 3 T. In each volunteer, the liver and kidney regions were scanned in two separate acquisitions. To homogenize signal excitation, the time-interleaved acquisition of modes (TIAMO) method was used with personalized pairs of B1 shims, based on a 23-s Cartesian fast low angle shot (FLASH) acquisition. Utilizing free-induction decay navigator signals, respiratory-gated images were reconstructed at a spatial resolution of 0.8 × 0.8 × 1.0 mm3. Two experienced radiologists rated the image quality and the impact of B1 inhomogeneity and motion-related artifacts on multipoint scales. The images of all volunteers showcased effective water excitation and were accurately corrected for respiratory motion. The impact of B1 inhomogeneity on image quality was minimal, underscoring the efficacy of the multitransmit TIAMO shim. The high spatial resolution allowed excellent depiction of small structures such as the adrenal glands, the proximal ureter, the diaphragm, and small blood vessels, although some streaking artifacts persisted in liver image data. In direct comparisons with 3 T performed for two volunteers, 7-T acquisitions demonstrated increases in signal-to-noise ratio of 77% and 58%. Overall, this work demonstrates the feasibility of free-breathing MRI in the upper abdomen at submillimeter spatial resolution at a magnetic field strength of 7 T.
Collapse
Affiliation(s)
- Ivo T. Maatman
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jenni Schulz
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
- Erwin L Hahn Institute for MR Imaging, Essen, Germany
| | - Sjoerd Ypma
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kai Tobias Block
- Department of Radiology, NYU Langone Health, New York, New York, USA
| | | | - John J. Hermans
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ewoud J. Smit
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marnix C. Maas
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom W. J. Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
- Erwin L Hahn Institute for MR Imaging, Essen, Germany
| |
Collapse
|
42
|
Cao T, Hu Z, Mao X, Chen Z, Kwan AC, Xie Y, Berman DS, Li D, Christodoulou AG. Alternating low-rank tensor reconstruction for improved multiparametric mapping with cardiovascular MR Multitasking. Magn Reson Med 2024; 92:1421-1439. [PMID: 38726884 PMCID: PMC11262969 DOI: 10.1002/mrm.30131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 05/15/2024]
Abstract
PURPOSE To develop a novel low-rank tensor reconstruction approach leveraging the complete acquired data set to improve precision and repeatability of multiparametric mapping within the cardiovascular MR Multitasking framework. METHODS A novel approach that alternated between estimation of temporal components and spatial components using the entire data set acquired (i.e., including navigator data and imaging data) was developed to improve reconstruction. The precision and repeatability of the proposed approach were evaluated on numerical simulations, 10 healthy subjects, and 10 cardiomyopathy patients at multiple scan times for 2D myocardial T1/T2 mapping with MR Multitasking and were compared with those of the previous navigator-derived fixed-basis approach. RESULTS In numerical simulations, the proposed approach outperformed the previous fixed-basis approach with lower T1 and T2 error against the ground truth at all scan times studied and showed better motion fidelity. In human subjects, the proposed approach showed no significantly different sharpness or T1/T2 measurement and significantly improved T1 precision by 20%-25%, T2 precision by 10%-15%, T1 repeatability by about 30%, and T2 repeatability by 25%-35% at 90-s and 50-s scan times The proposed approach at the 50-s scan time also showed comparable results with that of the previous fixed-basis approach at the 90-s scan time. CONCLUSION The proposed approach improved precision and repeatability for quantitative imaging with MR Multitasking while maintaining comparable motion fidelity, T1/T2 measurement, and septum sharpness and had the potential for further reducing scan time from 90 s to 50 s.
Collapse
Affiliation(s)
- Tianle Cao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Zheyuan Hu
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Xianglun Mao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zihao Chen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Alan C. Kwan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Departments of Imaging and Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daniel S. Berman
- Departments of Imaging and Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Anthony G. Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
43
|
Shen Q, Wu W, Chiew M, Ji Y, Woods JG, Okell TW. Efficient 3D cone trajectory design for improved combined angiographic and perfusion imaging using arterial spin labeling. Magn Reson Med 2024; 92:1568-1583. [PMID: 38767321 DOI: 10.1002/mrm.30149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE To improve the spatial resolution and repeatability of a non-contrast MRI technique for simultaneous time resolved 3D angiography and perfusion imaging by developing an efficient 3D cone trajectory design. METHODS A novel parameterized 3D cone trajectory design incorporating the 3D golden angle was integrated into 4D combined angiography and perfusion using radial imaging and arterial spin labeling (CAPRIA) to achieve higher spatial resolution and sampling efficiency for both dynamic angiography and perfusion imaging with flexible spatiotemporal resolution. Numerical simulations and physical phantom scanning were used to optimize the cone design. Eight healthy volunteers were scanned to compare the original radial trajectory in 4D CAPRIA with our newly designed cone trajectory. A locally low rank reconstruction method was used to leverage the complementary k-space sampling across time. RESULTS The improved sampling in the periphery of k-space obtained with the optimized 3D cone trajectory resulted in improved spatial resolution compared with the radial trajectory in phantom scans. Improved vessel sharpness and perfusion visualization were also achieved in vivo. Less dephasing was observed in the angiograms because of the short TE of our cone trajectory and the improved k-space sampling efficiency also resulted in higher repeatability compared to the original radial approach. CONCLUSION The proposed 3D cone trajectory combined with 3D golden angle ordering resulted in improved spatial resolution and image quality for both angiography and perfusion imaging and could potentially benefit other applications that require an efficient sampling scheme with flexible spatial and temporal resolution.
Collapse
Affiliation(s)
- Qijia Shen
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yang Ji
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Joseph G Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Rafiee MJ, Eyre K, Leo M, Benovoy M, Friedrich MG, Chetrit M. Comprehensive review of artifacts in cardiac MRI and their mitigation. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:2021-2039. [PMID: 39292396 DOI: 10.1007/s10554-024-03234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Cardiac magnetic resonance imaging (CMR) is an important clinical tool that obtains high-quality images for assessment of cardiac morphology, function, and tissue characteristics. However, the technique may be prone to artifacts that may limit the diagnostic interpretation of images. This article reviews common artifacts which may appear in CMR exams by describing their appearance, the challenges they mitigate true pathology, and offering possible solutions to reduce their impact. Additionally, this article acts as an update to previous CMR artifacts reports by including discussion about new CMR innovations.
Collapse
Affiliation(s)
| | - Katerina Eyre
- Research Institute, McGill University Health Centre, Montreal, Canada
| | - Margherita Leo
- Research Institute, McGill University Health Centre, Montreal, Canada
| | | | - Matthias G Friedrich
- Research Institute, McGill University Health Centre, Montreal, Canada
- Area19 Medical Inc, Montreal, Canada
- Department of Diagnostic Radiology, Division of Cardiology, McGill University Health Centre, Montreal, Canada
| | - Michael Chetrit
- Research Institute, McGill University Health Centre, Montreal, Canada
- Department of Diagnostic Radiology, Division of Cardiology, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
45
|
Holtackers RJ, Stuber M. Free-Running Cardiac and Respiratory Motion-Resolved Imaging: A Paradigm Shift for Managing Motion in Cardiac MRI? Diagnostics (Basel) 2024; 14:1946. [PMID: 39272732 PMCID: PMC11394669 DOI: 10.3390/diagnostics14171946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiac magnetic resonance imaging (MRI) is widely used for non-invasive assessment of cardiac morphology, function, and tissue characteristics due to its exquisite soft-tissue contrast. However, it remains time-consuming and requires proficiency, making it costly and limiting its widespread use. Traditional cardiac MRI is inefficient as signal acquisition is often limited to specific cardiac phases and requires complex view planning, parameter adjustments, and management of both respiratory and cardiac motion. Recent efforts have aimed to make cardiac MRI more efficient and accessible. Among these innovations, the free-running framework enables 5D whole-heart imaging without the need for an electrocardiogram signal, respiratory breath-holding, or complex planning. It uses a fully self-gated approach to extract cardiac and respiratory signals directly from the acquired image data, allowing for more efficient coverage in time and space without the need for electrocardiogram gating, triggering, navigators, or breath-holds. This review provides a comprehensive overview of the free-running framework, detailing its history, concepts, recent improvements, and clinical applications.
Collapse
Affiliation(s)
- Robert J Holtackers
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue de Bugnon 46, 1011 Lausanne, Switzerland
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue de Bugnon 46, 1011 Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), EPFL AVP CP CIBM Station 6, 1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Siddiq S, Murray V, Tyagi N, Borman P, Gui C, Crane C, Wu C, Otazo R. MR signature matching (MRSIGMA) implementation for true real-time free-breathing volumetric imaging with sub-200 ms latency on an MR-Linac. Magn Reson Med 2024; 92:1162-1176. [PMID: 38576131 PMCID: PMC11209806 DOI: 10.1002/mrm.30097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Develop a true real-time implementation of MR signature matching (MRSIGMA) for free-breathing 3D MRI with sub-200 ms latency on the Elekta Unity 1.5T MR-Linac. METHODS MRSIGMA was implemented on an external computer with a network connection to the MR-Linac. Stack-of-stars with partial kz sampling was used to accelerate data acquisition and ReconSocket was employed for simultaneous data transmission. Movienet network computed the 4D MRI motion dictionary and correlation analysis was used for signature matching. A programmable 4D MRI phantom was utilized to evaluate MRSIGMA with respect to a ground-truth translational motion reference. In vivo validation was performed on patients with pancreatic cancer, where 15 patients were employed to train Movienet and 7 patients to test the real-time implementation of MRSIGMA. Dice coefficients between real-time MRSIGMA and a retrospectively computed 4D reference were used to evaluate motion tracking performance. RESULTS Motion dictionary was computed in under 5 s. Signature acquisition and matching presented 173 ms latency on the phantom and 193 ms on patients. MRSIGMA presented a mean error of 1.3-1.6 mm for all phantom experiments, which was below the 2 mm acquisition resolution along the motion direction. The Dice coefficient over time between MRSIGMA and reference contours was 0.88 ± 0.02 (GTV), 0.87 ± 0.02(duodenum-stomach), and 0.78 ± 0.02(small bowel), demonstrating high motion tracking performance for both tumor and organs at risk. CONCLUSION The real-time implementation of MRSIGMA enabled true real-time free-breathing 3D MRI with sub-200 ms imaging latency on a clinical MR-Linac system, which can be used for treatment monitoring, adaptive radiotherapy and dose accumulation mapping in tumors affected by respiratory motion.
Collapse
Affiliation(s)
- Saad Siddiq
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Victor Murray
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pim Borman
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chengcheng Gui
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Can Wu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
47
|
Saucedo A, Thomas MA. Single-shot diffusion trace spectroscopic imaging using radial echo planar trajectories. Magn Reson Med 2024; 92:926-944. [PMID: 38725389 PMCID: PMC11209789 DOI: 10.1002/mrm.30125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/05/2024] [Accepted: 04/04/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE Demonstrate the feasibility and evaluate the performance of single-shot diffusion trace-weighted radial echo planar spectroscopic imaging (Trace DW-REPSI) for quantifying the trace ADC in phantom and in vivo using a 3T clinical scanner. THEORY AND METHODS Trace DW-REPSI datasets were acquired in 10 phantom and 10 healthy volunteers, with a maximum b-value of 1601 s/mm2 and diffusion time of 10.75 ms. The self-navigation properties of radial acquisitions were used for corrections of shot-to-shot phase and frequency shift fluctuations of the raw data. In vivo trace ADCs of total NAA (tNAA), total creatine (tCr), and total choline (tCho) extrapolated to pure gray and white matter fractions were compared, as well as trace ADCs estimated in voxels within white or gray matter-dominant regions. RESULTS Trace ADCs in phantom show excellent agreement with reported values, and in vivo ADCs agree well with the expected differences between gray and white matter. For tNAA, tCr, and tCho, the trace ADCs extrapolated to pure gray and white matter ranged from 0.18-0.27 and 0.26-0.38 μm2/ms, respectively. In sets of gray and white matter-dominant voxels, the values ranged from 0.21 to 0.27 and 0.24 to 0.31 μm2/ms, respectively. The overestimated trace ADCs from this sequence can be attributed to the short diffusion time. CONCLUSION This study presents the first demonstration of the single-shot diffusion trace-weighted spectroscopic imaging sequence using radial echo planar trajectories. The Trace DW-REPSI sequence could provide an estimate of the trace ADC in a much shorter scan time compared to conventional approaches that require three separate measurements.
Collapse
Affiliation(s)
- Andres Saucedo
- Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, United States
- Physics and Biology in Medicine Interdepartmental Graduate Program, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - M. Albert Thomas
- Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, United States
- Physics and Biology in Medicine Interdepartmental Graduate Program, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
- Psychiatry, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
48
|
Zhong X, Nickel MD, Kannengiesser SAR, Dale BM, Han F, Gao C, Shih SF, Dai Q, Curiel O, Tsao TC, Wu HH, Deshpande V. Accelerated free-breathing liver fat and R 2 * quantification using multi-echo stack-of-radial MRI with motion-resolved multidimensional regularized reconstruction: Initial retrospective evaluation. Magn Reson Med 2024; 92:1149-1161. [PMID: 38650444 DOI: 10.1002/mrm.30117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 02/25/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE To improve image quality, mitigate quantification biases and variations for free-breathing liver proton density fat fraction (PDFF) andR 2 * $$ {\mathrm{R}}_2^{\ast } $$ quantification accelerated by radial k-space undersampling. METHODS A free-breathing multi-echo stack-of-radial MRI method was developed with compressed sensing with multidimensional regularization. It was validated in motion phantoms with reference acquisitions without motion and in 11 subjects (6 patients with nonalcoholic fatty liver disease) with reference breath-hold Cartesian acquisitions. Images, PDFF, andR 2 * $$ {\mathrm{R}}_2^{\ast } $$ maps were reconstructed using different radial view k-space sampling factors and reconstruction settings. Results were compared with reference-standard results using Bland-Altman analysis. Using linear mixed-effects model fitting (p < 0.05 considered significant), mean and SD were evaluated for biases and variations of PDFF andR 2 * $$ {\mathrm{R}}_2^{\ast } $$ , respectively, and coefficient of variation on the first echo image was evaluated as a surrogate for image quality. RESULTS Using the empirically determined optimal sampling factor of 0.25 in the accelerated in vivo protocols, mean differences and limits of agreement for the proposed method were [-0.5; -33.6, 32.7] s-1 forR 2 * $$ {\mathrm{R}}_2^{\ast } $$ and [-1.0%; -5.8%, 3.8%] for PDFF, close to those of a previous self-gating method using fully sampled radial views: [-0.1; -27.1, 27.0] s-1 forR 2 * $$ {\mathrm{R}}_2^{\ast } $$ and [-0.4%; -4.5%, 3.7%] for PDFF. The proposed method had significantly lower coefficient of variation than other methods (p < 0.001). Effective acquisition time of 64 s or 59 s was achieved, compared with 171 s or 153 s for two baseline protocols with different radial views corresponding to sampling factor of 1.0. CONCLUSION This proposed method may allow accelerated free-breathing liver PDFF andR 2 * $$ {\mathrm{R}}_2^{\ast } $$ mapping with reduced biases and variations.
Collapse
Affiliation(s)
- Xiaodong Zhong
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Physics and Biology in Medicine Interdepartmental Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, Samueli School of Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Marcel D Nickel
- MR Application Predevelopment, Siemens Healthineers AG, Erlangen, Germany
| | | | - Brian M Dale
- MR R&D Collaborations, Siemens Medical Solutions USA, Inc, Cary, North Carolina, USA
| | - Fei Han
- MR R&D Collaborations, Siemens Medical Solutions USA, Inc, Los Angeles, California, USA
| | - Chang Gao
- MR R&D Collaborations, Siemens Medical Solutions USA, Inc, Los Angeles, California, USA
| | - Shu-Fu Shih
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, Samueli School of Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Qing Dai
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, Samueli School of Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Omar Curiel
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Tsu-Chin Tsao
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Holden H Wu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Physics and Biology in Medicine Interdepartmental Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, Samueli School of Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Vibhas Deshpande
- MR R&D Collaborations, Siemens Medical Solutions USA, Inc, Austin, Texas, USA
| |
Collapse
|
49
|
Arshad SM, Potter LC, Chen C, Liu Y, Chandrasekaran P, Crabtree C, Tong MS, Simonetti OP, Han Y, Ahmad R. Motion-robust free-running volumetric cardiovascular MRI. Magn Reson Med 2024; 92:1248-1262. [PMID: 38733066 PMCID: PMC11209797 DOI: 10.1002/mrm.30123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/13/2024]
Abstract
PURPOSE To present and assess an outlier mitigation method that makes free-running volumetric cardiovascular MRI (CMR) more robust to motion. METHODS The proposed method, called compressive recovery with outlier rejection (CORe), models outliers in the measured data as an additive auxiliary variable. We enforce MR physics-guided group sparsity on the auxiliary variable, and jointly estimate it along with the image using an iterative algorithm. For evaluation, CORe is first compared to traditional compressed sensing (CS), robust regression (RR), and an existing outlier rejection method using two simulation studies. Then, CORe is compared to CS using seven three-dimensional (3D) cine, 12 rest four-dimensional (4D) flow, and eight stress 4D flow imaging datasets. RESULTS Our simulation studies show that CORe outperforms CS, RR, and the existing outlier rejection method in terms of normalized mean square error and structural similarity index across 55 different realizations. The expert reader evaluation of 3D cine images demonstrates that CORe is more effective in suppressing artifacts while maintaining or improving image sharpness. Finally, 4D flow images show that CORe yields more reliable and consistent flow measurements, especially in the presence of involuntary subject motion or exercise stress. CONCLUSION An outlier rejection method is presented and tested using simulated and measured data. This method can help suppress motion artifacts in a wide range of free-running CMR applications.
Collapse
Affiliation(s)
- Syed M. Arshad
- Biomedical Engineering, The Ohio State University, Ohio,
USA
- Electrical & Computer Engineering, The Ohio State
University, Ohio, USA
| | - Lee C. Potter
- Electrical & Computer Engineering, The Ohio State
University, Ohio, USA
- Davis Heart and Lung Research Institute, The Ohio State
University Wexner Medical Center, Ohio, USA
| | - Chong Chen
- Biomedical Engineering, The Ohio State University, Ohio,
USA
- Electrical & Computer Engineering, The Ohio State
University, Ohio, USA
| | - Yingmin Liu
- Davis Heart and Lung Research Institute, The Ohio State
University Wexner Medical Center, Ohio, USA
| | - Preethi Chandrasekaran
- Davis Heart and Lung Research Institute, The Ohio State
University Wexner Medical Center, Ohio, USA
| | | | - Matthew S. Tong
- Internal Medicine, The Ohio State University Wexner Medical
Center, Ohio, USA
| | - Orlando P. Simonetti
- Davis Heart and Lung Research Institute, The Ohio State
University Wexner Medical Center, Ohio, USA
- Internal Medicine, The Ohio State University Wexner Medical
Center, Ohio, USA
| | - Yuchi Han
- Internal Medicine, The Ohio State University Wexner Medical
Center, Ohio, USA
| | - Rizwan Ahmad
- Biomedical Engineering, The Ohio State University, Ohio,
USA
- Electrical & Computer Engineering, The Ohio State
University, Ohio, USA
- Davis Heart and Lung Research Institute, The Ohio State
University Wexner Medical Center, Ohio, USA
| |
Collapse
|
50
|
Shang Y, Simegn GL, Gillen K, Yang HJ, Han H. Advancements in MR hardware systems and magnetic field control: B 0 shimming, RF coils, and gradient techniques for enhancing magnetic resonance imaging and spectroscopy. PSYCHORADIOLOGY 2024; 4:kkae013. [PMID: 39258223 PMCID: PMC11384915 DOI: 10.1093/psyrad/kkae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/02/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
High magnetic field homogeneity is critical for magnetic resonance imaging (MRI), functional MRI, and magnetic resonance spectroscopy (MRS) applications. B0 inhomogeneity during MR scans is a long-standing problem resulting from magnet imperfections and site conditions, with the main issue being the inhomogeneity across the human body caused by differences in magnetic susceptibilities between tissues, resulting in signal loss, image distortion, and poor spectral resolution. Through a combination of passive and active shim techniques, as well as technological advances employing multi-coil techniques, optimal coil design, motion tracking, and real-time modifications, improved field homogeneity and image quality have been achieved in MRI/MRS. The integration of RF and shim coils brings a high shim efficiency due to the proximity of participants. This technique will potentially be applied to high-density RF coils with a high-density shim array for improved B0 homogeneity. Simultaneous shimming and image encoding can be achieved using multi-coil array, which also enables the development of novel encoding methods using advanced magnetic field control. Field monitoring enables the capture and real-time compensation for dynamic field perturbance beyond the static background inhomogeneity. These advancements have the potential to better use the scanner performance to enhance diagnostic capabilities and broaden applications of MRI/MRS in a variety of clinical and research settings. The purpose of this paper is to provide an overview of the latest advances in B0 magnetic field shimming and magnetic field control techniques as well as MR hardware, and to emphasize their significance and potential impact on improving the data quality of MRI/MRS.
Collapse
Affiliation(s)
- Yun Shang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, United States
| | - Gizeaddis Lamesgin Simegn
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, United States
| | - Kelly Gillen
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, United States
| | - Hsin-Jung Yang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA 90048, United States
| | - Hui Han
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, United States
| |
Collapse
|