1
|
Magnusson G, Engström M, Georgiopoulos C, Cedersund G, Tobieson L, Tisell A. High inspired CO 2 target accuracy in mechanical ventilation and spontaneous breathing using the Additional CO 2 method. Front Med (Lausanne) 2024; 11:1352012. [PMID: 38841571 PMCID: PMC11150593 DOI: 10.3389/fmed.2024.1352012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/16/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Cerebrovascular reactivity imaging (CVR) is a diagnostic method for assessment of alterations in cerebral blood flow in response to a controlled vascular stimulus. The principal utility is the capacity to evaluate the cerebrovascular reserve, thereby elucidating autoregulatory functioning. In CVR, CO2 gas challenge is the most prevalent method, which elicits a vascular response by alterations in inspired CO2 concentrations. While several systems have been proposed in the literature, only a limited number have been devised to operate in tandem with mechanical ventilation, thus constraining the majority CVR investigations to spontaneously breathing individuals. Methods We have developed a new method, denoted Additional CO2, designed to enable CO2 challenge in ventilators. The central idea is the introduction of an additional flow of highly concentrated CO2 into the respiratory circuit, as opposed to administration of the entire gas mixture from a reservoir. By monitoring the main respiratory gas flow emanating from the ventilator, the CO2 concentration in the inspired gas can be manipulated by adjusting the proportion of additional CO2. We evaluated the efficacy of this approach in (1) a ventilator coupled with a test lung and (2) in spontaneously breathing healthy subjects. The method was evaluated by assessment of the precision in attaining target inspired CO2 levels and examination of its performance within a magnetic resonance imaging environment. Results and discussion Our investigations revealed that the Additional CO2 method consistently achieved a high degree of accuracy in reaching target inspired CO2 levels in both mechanical ventilation and spontaneous breathing. We anticipate that these findings will lay the groundwork for a broader implementation of CVR assessments in mechanically ventilated patients.
Collapse
Affiliation(s)
- Gustav Magnusson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Maria Engström
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Charalampos Georgiopoulos
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Diagnostic Radiology, Department of Clinical Sciences, Medical Faculty, Lund University, Lund, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Lovisa Tobieson
- Department of Neurosurgery in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anders Tisell
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Podolyan NP, Agafonova IG, Nippolainen E, Romashko RV, Kuznetsov SL, Zavestovskaya IN, Kamshilin AA. Imaging Photoplethysmography in Green Light for Assessment of Cerebral Hemodynamics through an Intact Skull. BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE 2023; 50:S1511-S1516. [DOI: 10.3103/s1068335623601814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2025]
|
3
|
Differential regional cerebrovascular reactivity to end-tidal gas combinations commonly seen during anaesthesia: A blood oxygenation level-dependent MRI observational study in awake adult subjects. Ugeskr Laeger 2022; 39:774-784. [PMID: 35852545 DOI: 10.1097/eja.0000000000001716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Regional cerebrovascular reactivity (rCVR) is highly variable in the human brain as measured by blood oxygenation level-dependent (BOLD) MRI to changes in both end-tidal CO 2 and O 2 . OBJECTIVES We examined awake participants under carefully controlled end-tidal gas concentrations to assess how regional CVR changes may present with end-tidal gas changes seen commonly with anaesthesia. DESIGN Observational study. SETTING Tertiary care centre, Winnipeg, Canada. The imaging for the study occurred in 2019. SUBJECTS Twelve healthy adult subjects. INTERVENTIONS Cerebral BOLD response was studied under two end-tidal gas paradigms. First end-tidal oxygen (ETO 2 ) maintained stable whereas ETCO 2 increased incrementally from hypocapnia to hypercapnia (CO 2 ramp); second ETCO 2 maintained stable whereas ETO 2 increased from normoxia to hyperoxia (O 2 ramp). BOLD images were modeled with end-tidal gas sequences split into two equal segments to examine regional CVR. MAIN OUTCOME MEASURES The voxel distribution comparing hypocapnia to mild hypercapnia and mild hyperoxia (mean F I O 2 = 0.3) to marked hyperoxia (mean F I O 2 = 0.7) were compared in a paired fashion ( P < 0.005 to reach threshold for voxel display). Additionally, type analysis was conducted on CO 2 ramp data. This stratifies the BOLD response to the CO 2 ramp into four categories of CVR slope based on segmentation (type A; +/+slope: normal response, type B +/-, type C -/-: intracranial steal, type D -/+.) Types B to D represent altered responses to the CO 2 stimulus. RESULTS Differential regional responsiveness was seen for both end-tidal gases. Hypocapnic regional CVR was more marked than hypercapnic CVR in 0.3% of voxels examined ( P < 0.005, paired comparison); the converse occurred in 2.3% of voxels. For O 2 , mild hyperoxia had more marked CVR in 0.2% of voxels compared with greater hyperoxia; the converse occurred in 0.5% of voxels. All subjects had altered regional CO 2 response based on Type Analysis ranging from 4 ± 2 to 7 ± 3% of voxels. CONCLUSION In awake subjects, regional differences and abnormalities in CVR were observed with changes in end-tidal gases common during the conduct of anaesthesia. On the basis of these findings, consideration could be given to minimising regional CVR fluctuations in patients-at-risk of neurological complications by tighter control of end-tidal gases near the individual's resting values.
Collapse
|
4
|
Volynsky MA, Mamontov OV, Osipchuk AV, Zaytsev VV, Sokolov AY, Kamshilin AA. Study of cerebrovascular reactivity to hypercapnia by imaging photoplethysmography to develop a method for intraoperative assessment of the brain functional reserve. BIOMEDICAL OPTICS EXPRESS 2022; 13:184-196. [PMID: 35154863 PMCID: PMC8803018 DOI: 10.1364/boe.443477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/07/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Intraoperative assessment of cerebrovascular reactivity is a relevant problem of neurosurgery. To assess the functional reserve of cerebral blood flow, we suggest using imaging photoplethysmography for measuring changes in cortical perfusion caused by CO2 inhalation. Feasibility of the technique was demonstrated in three groups of anesthetized rats (n=21) with opened and closed cranial windows. Our study for the first time revealed that the hemodynamic response to hypercapnia strongly depends on the cranial state. However, it was shown that regardless of the direction of changes in local and systemic hemodynamics, the ratio of normalized changes in arterial blood pressure and cortical perfusion could be used as a measure of the cerebrovascular functional reserve.
Collapse
Affiliation(s)
- Maxim A. Volynsky
- School of Physics and Engineering, ITMO University, 49 Kronverksky av., 197101 St. Petersburg, Russia
- Laboratory of New Functional Materials for Photonics, Institute of Automation & Control Processes of the Far East Branch of the Russian Academy of Sciences, 5, Radio str., 690041 Vladivostok, Russia
- These authors contributed equally to this work
| | - Oleg V. Mamontov
- Laboratory of New Functional Materials for Photonics, Institute of Automation & Control Processes of the Far East Branch of the Russian Academy of Sciences, 5, Radio str., 690041 Vladivostok, Russia
- Department of Circulation Physiology, Almazov National Medical Research Centre, 2 Akkuratov str., 197341 St. Petersburg, Russia
- These authors contributed equally to this work
| | - Anastasiia V. Osipchuk
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, 6-8 Lev Tolstoy str., 197022 St. Petersburg, Russia
| | - Valery V. Zaytsev
- Laboratory of New Functional Materials for Photonics, Institute of Automation & Control Processes of the Far East Branch of the Russian Academy of Sciences, 5, Radio str., 690041 Vladivostok, Russia
- Department of Circulation Physiology, Almazov National Medical Research Centre, 2 Akkuratov str., 197341 St. Petersburg, Russia
| | - Alexey Y. Sokolov
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, 6-8 Lev Tolstoy str., 197022 St. Petersburg, Russia
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Makarov emb., 199034 St. Petersburg, Russia
| | - Alexei A. Kamshilin
- Laboratory of New Functional Materials for Photonics, Institute of Automation & Control Processes of the Far East Branch of the Russian Academy of Sciences, 5, Radio str., 690041 Vladivostok, Russia
- Department of Circulation Physiology, Almazov National Medical Research Centre, 2 Akkuratov str., 197341 St. Petersburg, Russia
| |
Collapse
|
5
|
Tahhan N, Balanca B, Fierstra J, Waelchli T, Picart T, Dumot C, Eker O, Marinesco S, Radovanovic I, Cotton F, Berhouma M. Intraoperative cerebral blood flow monitoring in neurosurgery: A review of contemporary technologies and emerging perspectives. Neurochirurgie 2021; 68:414-425. [PMID: 34895896 DOI: 10.1016/j.neuchi.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
Intraoperative monitoring of cerebral blood flow (CBF) has become an invaluable adjunct to vascular and oncological neurosurgery, reducing the risk of postoperative morbidity and mortality. Several technologies have been developed during the last two decades, including laser-based techniques, videomicroscopy, intraoperative MRI, indocyanine green angiography, and thermography. Although these technologies have been thoroughly studied and clinically applied outside the operative room, current practice lacks an optimal technology that perfectly fits the workflow within the neurosurgical operative room. The different available technologies have specific strengths but suffer several drawbacks, mainly including limited spatial and/or temporal resolution. An optimal CBF monitoring technology should meet particular criteria for intraoperative use: excellent spatial and temporal resolution, integration in the operative workflow, real-time quantitative monitoring, ease of use, and non-contact technique. We here review the main contemporary technologies for intraoperative CBF monitoring and their current and potential future applications in neurosurgery.
Collapse
Affiliation(s)
- N Tahhan
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, University of Lyon - Hospices Civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France
| | - B Balanca
- Department of Neuro-Anesthesia and Neuro-Critical Care, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, TIGER team and AniRA-Beliv technological platform, Inserm U2018, CNRS UMR 5292, Lyon 1 University, Lyon, France
| | - J Fierstra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - T Waelchli
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - T Picart
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, University of Lyon - Hospices Civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France
| | - C Dumot
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, University of Lyon - Hospices Civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France
| | - O Eker
- Department of Interventional Neuroradiology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - S Marinesco
- Lyon Neuroscience Research Center, TIGER team and AniRA-Beliv technological platform, Inserm U2018, CNRS UMR 5292, Lyon 1 University, Lyon, France
| | - I Radovanovic
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - F Cotton
- Department of Imaging, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France; Creatis Lab - CNRS UMR 5220 - INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France
| | - M Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, University of Lyon - Hospices Civils de Lyon, 59, boulevard Pinel, 69003 Lyon, France; Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada; Creatis Lab - CNRS UMR 5220 - INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France.
| |
Collapse
|
6
|
Intraoperative BOLD-fMRI Cerebrovascular Reactivity Assessment. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021. [PMID: 33973041 DOI: 10.1007/978-3-030-63453-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Blood oxygenation-level dependent cerebrovascular reactivity (BOLD-CVR) has gained attention in recent years as an effective way to investigate CVR, a measure of the hemodynamic state of the brain, with high spatial and temporal resolution. An association between impaired CVR and diverse pathologies has been observed, especially in ischemic cerebrovascular diseases and brain gliomas. The ability to obtain this information intraoperatively is novel and has not been widely tested. We report our first experience with this intraoperative technique in vascular and oncologic neurosurgical patients, discuss the results of its feasibility, and the possible developments of the intraoperative employment of BOLD-CVR.
Collapse
|
7
|
Muscas G, Bas van Niftrik CH, Fierstra J, Piccirelli M, Sebök M, Burkhardt JK, Valavanis A, Pangalu A, Regli L, Bozinov O. Feasibility and safety of intraoperative BOLD functional MRI cerebrovascular reactivity to evaluate extracranial-to-intracranial bypass efficacy. Neurosurg Focus 2020; 46:E7. [PMID: 30717072 DOI: 10.3171/2018.11.focus18502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/06/2018] [Indexed: 11/06/2022]
Abstract
Blood oxygenation level-dependent functional MRI cerebrovascular reactivity (BOLD-CVR) is a contemporary technique to assess brain tissue hemodynamic changes after extracranial- intracranial (EC-IC) bypass flow augmentation surgery. The authors conducted a preliminary study to investigate the feasibility and safety of intraoperative 3-T MRI BOLD-CVR after EC-IC bypass flow augmentation surgery. Five consecutive patients selected for EC-IC bypass revascularization underwent an intraoperative BOLD-CVR examination to assess early hemodynamic changes after revascularization and to confirm the safety of this technique. All patients had a normal postoperative course, and none of the patients exhibited complications or radiological alterations related to prolonged anesthesia time. In addition to intraoperative flow measurements of the bypass graft, BOLD-CVR maps added information on the hemodynamic status and changes at the brain tissue level. Intraoperative BOLD-CVR is feasible and safe in patients undergoing EC-IC bypass revascularization. This technique can offer immediate hemodynamic feedback on brain tissue revascularization after bypass flow augmentation surgery.
Collapse
Affiliation(s)
- Giovanni Muscas
- 1Department of Neurosurgery, University Hospital Zurich, University of Zurich, Switzerland.,2Department of Neurosurgery, Careggi Hospital, University of Florence, Italy.,3Clinical Neuroscience Center, University Hospital Zurich; and
| | - Christiaan Hendrik Bas van Niftrik
- 1Department of Neurosurgery, University Hospital Zurich, University of Zurich, Switzerland.,3Clinical Neuroscience Center, University Hospital Zurich; and
| | - Jorn Fierstra
- 1Department of Neurosurgery, University Hospital Zurich, University of Zurich, Switzerland.,3Clinical Neuroscience Center, University Hospital Zurich; and
| | - Marco Piccirelli
- 3Clinical Neuroscience Center, University Hospital Zurich; and.,4Department of Neuroradiology, University Hospital Zurich, University of Zurich, Switzerland; and
| | - Martina Sebök
- 1Department of Neurosurgery, University Hospital Zurich, University of Zurich, Switzerland.,3Clinical Neuroscience Center, University Hospital Zurich; and
| | - Jan-Karl Burkhardt
- 1Department of Neurosurgery, University Hospital Zurich, University of Zurich, Switzerland.,5Department of Neurosurgery, Baylor College of Medicine Medical Center, Houston, Texas
| | | | - Athina Pangalu
- 3Clinical Neuroscience Center, University Hospital Zurich; and.,4Department of Neuroradiology, University Hospital Zurich, University of Zurich, Switzerland; and
| | - Luca Regli
- 1Department of Neurosurgery, University Hospital Zurich, University of Zurich, Switzerland.,3Clinical Neuroscience Center, University Hospital Zurich; and
| | - Oliver Bozinov
- 1Department of Neurosurgery, University Hospital Zurich, University of Zurich, Switzerland.,3Clinical Neuroscience Center, University Hospital Zurich; and
| |
Collapse
|
8
|
Mitcham T, Taghavi H, Long J, Wood C, Fuentes D, Stefan W, Ward J, Bouchard R. Photoacoustic-based sO 2 estimation through excised bovine prostate tissue with interstitial light delivery. PHOTOACOUSTICS 2017; 7:47-56. [PMID: 28794990 PMCID: PMC5540703 DOI: 10.1016/j.pacs.2017.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 05/08/2023]
Abstract
Photoacoustic (PA) imaging is capable of probing blood oxygen saturation (sO2), which has been shown to correlate with tissue hypoxia, a promising cancer biomarker. However, wavelength-dependent local fluence changes can compromise sO2 estimation accuracy in tissue. This work investigates using PA imaging with interstitial irradiation and local fluence correction to assess precision and accuracy of sO2 estimation of blood samples through ex vivo bovine prostate tissue ranging from 14% to 100% sO2. Study results for bovine blood samples at distances up to 20 mm from the irradiation source show that local fluence correction improved average sO2 estimation error from 16.8% to 3.2% and maintained an average precision of 2.3% when compared to matched CO-oximeter sO2 measurements. This work demonstrates the potential for future clinical translation of using fluence-corrected and interstitially driven PA imaging to accurately and precisely assess sO2 at depth in tissue with high resolution.
Collapse
Affiliation(s)
- Trevor Mitcham
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Houra Taghavi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James Long
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cayla Wood
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - David Fuentes
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Wolfgang Stefan
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John Ward
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard Bouchard
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Corresponding author at: Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Postoperative Neurosurgical Infection Rates After Shared-Resource Intraoperative Magnetic Resonance Imaging: A Single-Center Experience with 195 Cases. World Neurosurg 2017; 103:275-282. [PMID: 28363833 DOI: 10.1016/j.wneu.2017.03.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To determine the rate of surgical-site infections (SSI) in neurosurgical procedures involving a shared-resource intraoperative magnetic resonance imaging (ioMRI) scanner at a single institution derived from a prospective clinical quality management database. METHODS All consecutive neurosurgical procedures that were performed with a high-field, 2-room ioMRI between April 2013 and June 2016 were included (N = 195; 109 craniotomies and 86 endoscopic transsphenoidal procedures). The incidence of SSIs within 3 months after surgery was assessed for both operative groups (craniotomies vs. transsphenoidal approach). RESULTS Of the 109 craniotomies, 6 patients developed an SSI (5.5%, 95% confidence interval [CI] 1.2-9.8%), including 1 superficial SSI, 2 cases of bone flap osteitis, 1 intracranial abscess, and 2 cases of meningitis/ventriculitis. Wound revision surgery due to infection was necessary in 4 patients (4%). Of the 86 transsphenoidal skull base surgeries, 6 patients (7.0%, 95% CI 1.5-12.4%) developed an infection, including 2 non-central nervous system intranasal SSIs (3%) and 4 cases of meningitis (5%). Logistic regression analysis revealed that the likelihood of infection significantly decreased with the number of operations in the new operational setting (odds ratio 0.982, 95% CI 0.969-0.995, P = 0.008). CONCLUSIONS The use of a shared-resource ioMRI in neurosurgery did not demonstrate increased rates of infection compared with the current available literature. The likelihood of infection decreased with the accumulating number of operations, underlining the importance of surgical staff training after the introduction of a shared-resource ioMRI.
Collapse
|