1
|
Pas K, Benjamini D, Basser P, Rohde G. Data Processing in Multidimensional MRI For Biomarker Identification: Is It Necessary? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645236. [PMID: 40196512 PMCID: PMC11974882 DOI: 10.1101/2025.03.25.645236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Multidimensional MRI (MD-MRI) is an emerging technique that holds promise for identifying tissue characteristics that could be indicative of pathologies. Before these characteristics can be interpreted, MD-MRI measurements are converted into an spectrum. These spectra are then utilized to obtain some understanding of the underlying tissue microstructure, often through the use of statistical, machine learning, and mathematical modeling methods. The aim of this study was to compare outcomes of using unprocessed MDMRI signals for statistical regression in comparison to the corresponding spectra. Backed by a theoretical argument, we described an experimental procedure regressing both MDMRI signals and spectra to histological outcomes intrasubject. Through using multiple conventional ML methods, and a proposed method using convex sets, we aimed to see which yielded the highest accuracy. Both theory and experimental evidence suggest that, without a priori information, statistical regression was best performed on the MDMRI signal. We conclude, barring any a priori information regarding tissue changes, there is no significant advantage to performing regression analysis on reconstructed spectra in the process of biomarker identification.
Collapse
Affiliation(s)
- Kristofor Pas
- Department of Biomedical Engineering, University of Virginia
| | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH
| | - Peter Basser
- Section on Quantitative Imaging and Tissue Sciences, National Institutes of Health, NIH
| | - Gustavo Rohde
- Department of Biomedical Engineering, University of Virginia
| |
Collapse
|
2
|
Or PSK, Yon M, Narvaez O, Manninen E, Malm T, Sierra A, Topgaard D, Benjamini D. Ex vivo massively multidimensional diffusion-relaxation correlation MRI: scan-rescan reproducibility and caveats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643705. [PMID: 40166222 PMCID: PMC11957013 DOI: 10.1101/2025.03.17.643705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Massively multidimensional diffusion-relaxation correlation MRI (MMD-MRI) provides information beyond the traditional voxel-averaged metric that may better characterize the microstructural characteristics of biological tissues. MMD-MRI reproducibility has been established in clinical settings, but has yet to be thoroughly evaluated under preclinical conditions, where superior hardware and modulated gradient waveforms enhance its performance. In this study, we investigate the reproducibility of MMD-MRI on a micro-imaging system using ex vivo mouse brains. Notably, the estimated signal fractions of intra-voxel spectral components in the MD-MRI distribution, corresponding to white and gray matter, along with the frequency-dependent parameters, demonstrated high reproducibility. We identified bias between scan and rescan in some of the metrics, which we attribute to the time gap between repeated scans pointing to a long-time progressive fixation effect. We compare our results with in vivo results from clinical scanners and show the reproducibility of diffusion frequency-dependent metrics to benefit from the improved gradient hardware on our preclinical setup. Our results inform future micro-imaging ex vivo MMD-MRI studies of the reproducibility of MMD-MRI metrics and their dependence on fixation time.
Collapse
Affiliation(s)
- Pak Shing Kenneth Or
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
- Department of Chemistry, Lund University, Lund, Sweden
| | - Maxime Yon
- Department of Chemistry, Lund University, Lund, Sweden
- Laboratoire Traitement du Signal et de l’Image, Rennes University, Rennes, France
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Omar Narvaez
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eppu Manninen
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
3
|
Liu Q, Gagoski B, Shaik IA, Westin CF, Wilde EA, Schneider W, Bilgic B, Grissom W, Nielsen JF, Zaitsev M, Rathi Y, Ning L. Time-division multiplexing (TDM) sequence removes bias in T 2 estimation and relaxation-diffusion measurements. Magn Reson Med 2024; 92:2506-2519. [PMID: 39136245 PMCID: PMC11436305 DOI: 10.1002/mrm.30246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE To compare the performance of multi-echo (ME) and time-division multiplexing (TDM) sequences for accelerated relaxation-diffusion MRI (rdMRI) acquisition and to examine their reliability in estimating accurate rdMRI microstructure measures. METHOD The ME, TDM, and the reference single-echo (SE) sequences with six TEs were implemented using Pulseq with single-band (SB) and multi-band 2 (MB2) acceleration factors. On a diffusion phantom, the image intensities of the three sequences were compared, and the differences were quantified using the normalized RMS error (NRMSE). Shinnar-Le Roux (SLR) pulses were implemented for the SB-ME and SB-SE sequences to investigate the impact of slice profiles on ME sequences. For the in-vivo brain scan, besides the image intensity comparison and T2-estimates, different methods were used to assess sequence-related effects on microstructure estimation, including the relaxation diffusion imaging moment (REDIM) and the maximum-entropy relaxation diffusion distribution (MaxEnt-RDD). RESULTS TDM performance was similar to the gold standard SE acquisition, whereas ME showed greater biases (3-4× larger NRMSEs for phantom, 2× for in-vivo). T2 values obtained from TDM closely matched SE, whereas ME sequences underestimated the T2 relaxation time. TDM provided similar diffusion and relaxation parameters as SE using REDIM, whereas SB-ME exhibited a 60% larger bias in the map and on average 3.5× larger bias in the covariance between relaxation-diffusion coefficients. CONCLUSION Our analysis demonstrates that TDM provides a more accurate estimation of relaxation-diffusion measurements while accelerating the acquisitions by a factor of 2 to 3.
Collapse
Affiliation(s)
- Qiang Liu
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, United States
| | - Imam Ahmed Shaik
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Carl-Fredrik Westin
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elisabeth A. Wilde
- Va Salt Lake City Health Care System, Informatics, Decision-Enhancement and Analytic Sciences Center, Salt Lake City, Utah, USA
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | | | - Berkin Bilgic
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States
| | - William Grissom
- Department of Biomedical Engineering, Case School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jon-Fredrik Nielsen
- Functional MRI Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yogesh Rathi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Lipeng Ning
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Fokkinga E, Hernandez-Tamames JA, Ianus A, Nilsson M, Tax CMW, Perez-Lopez R, Grussu F. Advanced Diffusion-Weighted MRI for Cancer Microstructure Assessment in Body Imaging, and Its Relationship With Histology. J Magn Reson Imaging 2024; 60:1278-1304. [PMID: 38032021 DOI: 10.1002/jmri.29144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) aims to disentangle multiple biological signal sources in each imaging voxel, enabling the computation of innovative maps of tissue microstructure. DW-MRI model development has been dominated by brain applications. More recently, advanced methods with high fidelity to histology are gaining momentum in other contexts, for example, in oncological applications of body imaging, where new biomarkers are urgently needed. The objective of this article is to review the state-of-the-art of DW-MRI in body imaging (ie, not including the nervous system) in oncology, and to analyze its value as compared to reference colocalized histology measurements, given that demonstrating the histological validity of any new DW-MRI method is essential. In this article, we review the current landscape of DW-MRI techniques that extend standard apparent diffusion coefficient (ADC), describing their acquisition protocols, signal models, fitting settings, microstructural parameters, and relationship with histology. Preclinical, clinical, and in/ex vivo studies were included. The most used techniques were intravoxel incoherent motion (IVIM; 36.3% of used techniques), diffusion kurtosis imaging (DKI; 16.7%), vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT; 13.3%), and imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED; 11.7%). Another notable category of techniques relates to innovative b-tensor diffusion encoding or joint diffusion-relaxometry. The reviewed approaches provide histologically meaningful indices of cancer microstructure (eg, vascularization/cellularity) which, while not necessarily accurate numerically, may still provide useful sensitivity to microscopic pathological processes. Future work of the community should focus on improving the inter-/intra-scanner robustness, and on assessing histological validity in broader contexts. LEVEL OF EVIDENCE: NA TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ella Fokkinga
- Biomedical Engineering, Track Medical Physics, Delft University of Technology, Delft, The Netherlands
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan A Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Andrada Ianus
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Markus Nilsson
- Department of Diagnostic Radiology, Clinical Sciences Lund, Lund, Sweden
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Center (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francesco Grussu
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
5
|
Xu J, Sheng Y, Li H, Yang Z, Ren Y, Wang H. A data-driven intravoxel mean diffusivities distribution approach for molecular classifications and MIB-1 prediction of gliomas. Med Phys 2024; 51:7332-7344. [PMID: 38949565 DOI: 10.1002/mp.17280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Measuring non-parametric intravoxel mean diffusivity distributions (MDDs) using magnetic resonance imaging (MRI) is a sensitive method for detecting intracellular diffusivity changes during physiological alterations. Histological and molecular glioma classifications are essential for prognosis and treatment, with distinct water diffusion dynamics among subtypes. PURPOSE We developed a data-driven approach using a fully connected network (FCN) to enhance the speed and stability of calculating MDDs across varying SNRs, enable tumor microstructural mapping, and test its reliability in identifying MIB-1 labeling index (LI) levels and molecular status of gliomas. METHODS An FCN was trained to learn the mapping between the simulated diffusion decay curves and the ground truth MDDs. We performed 5 000 000 simulation curves with various diffusivity components and random SNR∈ [ 30 , 300 ] $ \in [ {30,\ 300} ]$ . Eighty percent of simulation curves were used for the FCN training, 10% for validation, and the others were external tests for the FCN performance evaluation. In vivo data were collected to evaluate its clinical reliability. One hundred one patients (44 years ± $ \pm $ 14, 67 men) with gliomas and six healthy controls underwent a 3.0 T MRI examination with a spin echo-echo planar imaging (SE-EPI) diffusion-weighted imaging (DWI) sequence. The trained FCN was employed to calculate MDDs of each brain voxel by voxel. We used the Fuzzy C-means algorithm to cluster the MDDs of tumor voxels, facilitating the characterization of distinct glioma tissues. Quantitative assessments were conducted through sectional integrals of the MDDs, demarcated by six bands to derive signal fractions (f n , n = 1 - 6 ${{f}_n},\ n = 1 -6$ ) and diffusivities of the maximum peaks (D p e a k ${{D}_{peak}}$ ). Cosine similarity scores (CSS) were used for MDD similarity. ANOVA and Mann-Whitney U test were used for difference analysis. Logistic regression and area under the receiver operator characteristic curve (AUC) were used for classification evaluation. RESULTS The simulation results showed that the FCN-based MDD approach (FCN-MDD) achieved higher CSS than non-negative least squares-based MDD (NNLS-MDD). For in vivo data, the spectra of ET and NET obtained by FCN-MDD are more distinguishable than NNLS-MDD. Fraction maps delineate the characteristics of different tumor tissues (enhancing and non-enhancing tumor, edema, and necrosis).f 3 , f 4 , D p e a k ${{f}_3},\ {{f}_4},{{D}_{peak}}$ showed a positive and negative correlation with MIB-1 respectively (r = 0.568 , r = - 0.521 , r = - 0.654 $r = 0.568,\ r = - 0.521,\ r = - 0.654$ , allp < 0.001 $p < 0.001$ ). The AUC ofD p e a k ${{D}_{peak}}$ for predicting MIB-1 LI levels was 0.900 (95% CI, 0.826-0.974), versus 0.781 (0.677-0.886) of ADC. The highest AUC of isocitrate dehydrogenase (IDH) mutation status, assessed by a logistic regression model (f 1 + f 3 ${{f}_1} + {{f}_3}$ ) was 0.873 (95% CI, 0.802-0.944). CONCLUSION The proposed FCN-MDD method was more robust to variations in SNR and less reliant on empirically set regularization values than the NNLS-MDD method. FCN-MDD also enabled qualitative and quantitative evaluation of the composition of gliomas.
Collapse
Affiliation(s)
- Junqi Xu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yaru Sheng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hao Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zidong Yang
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
- Laboratory of FMRI Technology, USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Radiology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Baidya Kayal E, Ganguly S, Kandasamy D, Khare K, Sharma R, Bakhshi S, Mehndiratta A. Reproducibility of spatial penalty-based methodologies for intravoxel incoherent motion analysis with diffusion MRI. Sci Rep 2024; 14:22811. [PMID: 39354013 PMCID: PMC11445472 DOI: 10.1038/s41598-024-71173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Objective was to assess the precision and reproducibility of spatial penalty-based intravoxel incoherent motion (IVIM) methods in comparison to the conventional bi-exponential (BE) model-based IVIM methods. IVIM-MRI (11 b-values; 0-800 s/mm2) of forty patients (N = 40; Age = 17.7 ± 5.9 years; Male:Female = 30:10) with biopsy-proven osteosarcoma were acquired on a 1.5 Tesla scanner at 3 time-points: (i) baseline, (ii) after 1-cycle and (iii) after 3-cycles of neoadjuvant chemotherapy. Diffusion coefficient (D), Perfusion coefficient (D*) and Perfusion fraction (f) were estimated at three time-points in whole tumor and healthy muscle tissue using five methodologies (1) BE with three-parameter-fitting (BE), (2) Segmented-BE with two-parameter-fitting (BESeg-2), (3) Segmented-BE with one-parameter-fitting (BESeg-1), (4) BE with adaptive Total-Variation-penalty (BE + TV) and (5) BE with adaptive Huber-penalty (BE + HPF). Within-subject coefficient-of-variation (wCV) and between-subject coefficient-of-variation (bCV) of IVIM parameters were measured in healthy and tumor tissue. For precision and reproducibility, intra-scan comparison of wCV and bCV among five IVIM methods were performed using Friedman test followed by Wilcoxon-signed-ranks (WSR) post-hoc test. Experimental results demonstrated that BE + TV and BE + HPF showed significantly (p < 10-3) lower wCV and bCV for D (wCV: 24-32%; bCV: 22-31%) than BE method (wCV: 38-49%; bCV: 36-46%) across three time-points in healthy muscle and tumor. BE + TV and BE + HPF also demonstrated significantly (p < 10-3) lower wCV and bCV for estimating D* (wCV: 89-108%; bCV: 83-102%) and f (wCV: 55-60%; bCV: 56-60%) than BE, BESeg-2 and BESeg-1 methods (D*-wCV: 102-122%; D*-bCV: 98-114% and f-wCV: 96-130%; f-bCV: 94-125%) in both tumor and healthy tissue across three time-points. Spatial penalty based IVIM analysis methods BE + TV and BE + HPF demonstrated lower variability and improved precision and reproducibility in the current clinical settings.
Collapse
Affiliation(s)
- Esha Baidya Kayal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Shuvadeep Ganguly
- Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | | | - Kedar Khare
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Raju Sharma
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Mehndiratta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
7
|
Liu Q, Gagoski B, Shaik IA, Westin CF, Wilde EA, Schneider W, Bilgic B, Grissom W, Nielsen JF, Zaitsev M, Rathi Y, Ning L. Time-division multiplexing (TDM) sequence removes bias in T2 estimation and relaxation-diffusion measurements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597138. [PMID: 38895252 PMCID: PMC11185580 DOI: 10.1101/2024.06.03.597138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Purpose To compare the performance of multi-echo (ME) and time-division multiplexing (TDM) sequences for accelerated relaxation-diffusion MRI (rdMRI) acquisition and to examine their reliability in estimating accurate rdMRI microstructure measures. Method The ME, TDM, and the reference single-echo (SE) sequences with six echo times (TE) were implemented using Pulseq with single-band (SB-) and multi-band 2 (MB2-) acceleration factors. On a diffusion phantom, the image intensities of the three sequences were compared, and the differences were quantified using the normalized root mean squared error (NRMSE). For the in-vivo brain scan, besides the image intensity comparison and T2-estimates, different methods were used to assess sequence-related effects on microstructure estimation, including the relaxation diffusion imaging moment (REDIM) and the maximum-entropy relaxation diffusion distribution (MaxEnt-RDD). Results TDM performance was similar to the gold standard SE acquisition, whereas ME showed greater biases (3-4× larger NRMSEs for phantom, 2× for in-vivo). T2 values obtained from TDM closely matched SE, whereas ME sequences underestimated the T2 relaxation time. TDM provided similar diffusion and relaxation parameters as SE using REDIM, whereas SB-ME exhibited a 60% larger bias in the map and on average 3.5× larger bias in the covariance between relaxation-diffusion coefficients. Conclusion Our analysis demonstrates that TDM provides a more accurate estimation of relaxation-diffusion measurements while accelerating the acquisitions by a factor of 2 to 3.
Collapse
Affiliation(s)
- Qiang Liu
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, United States
| | - Imam Ahmed Shaik
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Carl-Fredrik Westin
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elisabeth A. Wilde
- Va Salt Lake City Health Care System, Informatics, Decision-Enhancement and Analytic Sciences Center, Salt Lake City, Utah, USA
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | | | - Berkin Bilgic
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States
| | - William Grissom
- Department of Biomedical Engineering, Case School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jon-Fredrik Nielsen
- Functional MRI Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yogesh Rathi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Lipeng Ning
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Dai Y, Zhu M, Hu W, Wu D, He S, Luo Y, Wei X, Zhou Y, Wu G, Hu P. To characterize small renal cell carcinoma using diffusion relaxation correlation spectroscopic imaging and apparent diffusion coefficient based histogram analysis: a preliminary study. LA RADIOLOGIA MEDICA 2024; 129:834-844. [PMID: 38662246 DOI: 10.1007/s11547-024-01819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE To study the capability of diffusion-relaxation correlation spectroscopic imaging (DR-CSI) on subtype classification and grade differentiation for small renal cell carcinoma (RCC). Histogram analysis for apparent diffusion coefficient (ADC) was studied for comparison. MATERIALS AND METHODS A total of 61 patients with small RCC (< 4 cm) were included in the retrospective study. MRI data were reviewed, including a multi-b (0-1500 s/mm2) multi-TE (51-200 ms) diffusion weighted imaging (DWI) sequence. Region of interest (ROI) was delineated manually on DWI to include solid tumor. For each patient, a D-T2 spectrum was fitted and segmented into 5 compartments, and the volume fractions VA, VB, VC, VD, VE were obtained. ADC mapping was calculated, and histogram parameters ADC 90th, 10th, median, standard deviation, skewness and kurtosis were obtained. All MRI metrices were compared between clear cell RCC (ccRCC) and non-ccRCC group, and between high-grade and low-grade group. Receiver operator curve analysis was used to assess the corresponding diagnostic performance. RESULTS Significantly higher ADC 90th, ADC 10th and ADC median, and significantly lower DR-CSI VB was found for ccRCC compared to non-ccRCC. Significantly lower ADC 90th, ADC median and significantly higher VB was found for high-grade RCC compared to low-grade. For identifying ccRCC from non-ccRCC, VB showed the highest area under curve (AUC, 0.861) and specificity (0.882). For differentiating high- from low-grade, ADC 90th showed the highest AUC (0.726) and specificity (0.786), while VB also displayed a moderate AUC (0.715). CONCLUSION DR-CSI may offer improved accuracy in subtype identification for small RCC, while do not show better performance for small RCC grading compared to ADC histogram.
Collapse
Affiliation(s)
- Yongming Dai
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China
| | - Mengying Zhu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wentao Hu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Shenyun He
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuansheng Luo
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaobin Wei
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyu Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Peng Hu
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
9
|
Zong F, Wang L, Liu H, Xue B, Bai R, Liu Y. A genetic optimisation and iterative reconstruction framework for sparse multi-dimensional diffusion-relaxation correlation MRI. Comput Biol Med 2024; 175:108508. [PMID: 38678941 DOI: 10.1016/j.compbiomed.2024.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
Multi-dimensional diffusion-relaxation correlation (DRC) magnetic resonance imaging (MRI) techniques have recently been developed to investigate tissue microstructures. Sub-voxel tissue heterogeneity is resolved from the local correlation distributions of relaxation time and molecular diffusivity. However, the implementation of these techniques considerably increases the total acquisition time, and simply reducing the scan time may be at the expense of detailed structural resolution. To overcome these limitations, an optimised framework was proposed for acquiring microstructural maps of the human brain on a clinically feasible timescale. First, the acquisition parameters of the multi-dimensional DRC MRI method were sparsely optimised using a genetic algorithm with a fitness function according to the spectral resolution of the correlation map, hardware requirements, and total scan time. Next, the acquired DRC MRI data were processed using a proposed numerical algorithm based on the dynamic inverse Laplace transform (ILT). Prior knowledge from one-dimensional data was then utilised in the iterative procedure to improve the spectral resolution. Finally, the proposed framework was validated using Monte Carlo simulations and experimental data acquired from healthy participants on an MRI scanner. The results demonstrated that the suggested approach is feasible for offering high-resolution DRC maps that correspond to distinct microstructures with a limited amount of optimised acquisition data from two-dimensional DRC sampling space. By significantly reducing scan time while retaining structural resolution, this approach may enable multi-dimensional DRC MRI to be more widely used for quantitative evaluation in biological and medical settings.
Collapse
Affiliation(s)
- Fangrong Zong
- School of Artificial Intelligence, Beijing University of Post and Telecommunication, Beijing, 100876, China.
| | - Lixian Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huabing Liu
- Beijing Limecho Technology Co., Ltd., Beijing, 102200, China
| | - Bing Xue
- School of Engineering and Computer Science, Victoria University of Wellington, Victoria, 6140, New Zealand
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310020, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310030, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Post and Telecommunication, Beijing, 100876, China.
| |
Collapse
|
10
|
Chen W, Geng D, Xu XQ, Hu WT, Dai YM, Wu FY, Zhu LN. Characterization of parotid gland tumors using diffusion-relaxation correlation spectrum imaging: a preliminary study. Clin Radiol 2024; 79:e878-e884. [PMID: 38582630 DOI: 10.1016/j.crad.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/19/2024] [Accepted: 02/20/2024] [Indexed: 04/08/2024]
Abstract
AIM To assess the performance of diffusion-relaxation correlation spectrum imaging (DR-CSI) in the characterization of parotid gland tumors. MATERIALS AND METHODS Twenty-five pleomorphic adenomas (PA) patients, 9 Warthin's tumors (WT) patients and 7 malignant tumors (MT) patients were prospectively recruited. DR-CSI (7 b-values combined with 5 TEs, totally 35 diffusion-weighted images) was scanned for pre-treatment assessment. Diffusion (D)-T2 signal spectrum summating all voxels were built for each patient, characterized by D-axis with range 0∼5 × 10-3 mm2/s, and T2-axis with range 0∼300ms. With boundaries of 0.5 and 2.5 × 10-3 mm2/s for D, all spectra were divided into three compartments labeled A (low D), B (mediate D) and C (high D). Volume fractions acquired from each compartment (VA, VB, VC) were compared among PA, WT and MT. Diagnostic performance was assessed using receiver operating characteristic analysis and area under the curve (AUC). RESULTS Each subtype of parotid tumors had their specific D-T2 spectrum. PA showed significantly lower VA (8.85 ± 4.77% vs 20.68 ± 10.85%), higher VB (63.40 ± 8.18% vs 43.05 ± 7.16%), and lower VC (27.75 ± 8.51% vs 36.27 ± 11.09) than WT (all p<0.05). VB showed optimal diagnostic performance (AUC 0.969, sensitivity 92.00%, specificity 100.00%). MT showed significantly higher VA (21.23 ± 12.36%), lower VB (37.09 ± 6.43%), and higher VC (41.68 ± 13.72%) than PA (all p<0.05). Similarly, VB showed optimal diagnostic performance (AUC 0.994, sensitivity 96.00%, specificity 100.00%). No significant difference of VA, VB and VC was found between WT and MT. CONCLUSIONS DR-CSI might be a promising and non-invasive way for characterizing parotid gland tumors.
Collapse
Affiliation(s)
- W Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - D Geng
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - X-Q Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - W-T Hu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Y-M Dai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - F-Y Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - L-N Zhu
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Barsoum S, Latimer CS, Nolan AL, Barrett A, Chang K, Troncoso J, Keene CD, Benjamini D. Resiliency to Alzheimer's disease neuropathology can be distinguished from dementia using cortical astrogliosis imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592719. [PMID: 38766087 PMCID: PMC11100587 DOI: 10.1101/2024.05.06.592719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Despite the presence of significant Alzheimer's disease (AD) pathology, characterized by amyloid β (Aβ) plaques and phosphorylated tau (pTau) tangles, some cognitively normal elderly individuals do not inevitably develop dementia. These findings give rise to the notion of cognitive 'resilience', suggesting maintained cognitive function despite the presence of AD neuropathology, highlighting the influence of factors beyond classical pathology. Cortical astroglial inflammation, a ubiquitous feature of symptomatic AD, shows a strong correlation with cognitive impairment severity, potentially contributing to the diversity of clinical presentations. However, noninvasively imaging neuroinflammation, particularly astrogliosis, using MRI remains a significant challenge. Here we sought to address this challenge and to leverage multidimensional (MD) MRI, a powerful approach that combines relaxation with diffusion MR contrasts, to map cortical astrogliosis in the human brain by accessing sub-voxel information. Our goal was to test whether MD-MRI can map astroglial pathology in the cerebral cortex, and if so, whether it can distinguish cognitive resiliency from dementia in the presence of hallmark AD neuropathological changes. We adopted a multimodal approach by integrating histological and MRI analyses using human postmortem brain samples. Ex vivo cerebral cortical tissue specimens derived from three groups comprised of non-demented individuals with significant AD pathology postmortem, individuals with both AD pathology and dementia, and non-demented individuals with minimal AD pathology postmortem as controls, underwent MRI at 7 T. We acquired and processed MD-MRI, diffusion tensor, and quantitative T 1 and T 2 MRI data, followed by histopathological processing on slices from the same tissue. By carefully co-registering MRI and microscopy data, we performed quantitative multimodal analyses, leveraging targeted immunostaining to assess MD-MRI sensitivity and specificity towards Aβ, pTau, and glial fibrillary acidic protein (GFAP), a marker for astrogliosis. Our findings reveal a distinct MD-MRI signature of cortical astrogliosis, enabling the creation of predictive maps for cognitive resilience amid AD neuropathological changes. Multiple linear regression linked histological values to MRI changes, revealing that the MD-MRI cortical astrogliosis biomarker was significantly associated with GFAP burden (standardized β=0.658, pFDR<0.0001), but not with Aβ (standardized β=0.009, p FDR =0.913) or pTau (standardized β=-0.196, p FDR =0.051). Conversely, none of the conventional MRI parameters showed significant associations with GFAP burden in the cortex. While the extent to which pathological glial activation contributes to neuronal damage and cognitive impairment in AD is uncertain, developing a noninvasive imaging method to see its affects holds promise from a mechanistic perspective and as a potential predictor of cognitive outcomes.
Collapse
|
12
|
Johnson JTE, Irfanoglu MO, Manninen E, Ross TJ, Yang Y, Laun FB, Martin J, Topgaard D, Benjamini D. In vivo disentanglement of diffusion frequency-dependence, tensor shape, and relaxation using multidimensional MRI. Hum Brain Mapp 2024; 45:e26697. [PMID: 38726888 PMCID: PMC11082920 DOI: 10.1002/hbm.26697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency,ω $$ \omega $$ , in addition to the diffusion tensor,D $$ \mathbf{D} $$ , and relaxation,R 1 $$ {R}_1 $$ ,R 2 $$ {R}_2 $$ , correlations. AD ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on theirD ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.
Collapse
Affiliation(s)
- Jessica T. E. Johnson
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIHBaltimoreMarylandUSA
| | - M. Okan Irfanoglu
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of HealthBethesdaMarylandUSA
| | - Eppu Manninen
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIHBaltimoreMarylandUSA
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of HealthBaltimoreMarylandUSA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of HealthBaltimoreMarylandUSA
| | - Frederik B. Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Jan Martin
- Department of ChemistryLund UniversityLundSweden
| | | | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIHBaltimoreMarylandUSA
| |
Collapse
|
13
|
Tur C, Battiston M, Yiannakas MC, Collorone S, Calvi A, Prados F, Kanber B, Grussu F, Ricciardi A, Pajak P, Martinelli D, Schneider T, Ciccarelli O, Samson RS, Wheeler-Kingshott CAG. What contributes to disability in progressive MS? A brain and cervical cord-matched quantitative MRI study. Mult Scler 2024; 30:516-534. [PMID: 38372019 DOI: 10.1177/13524585241229969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
BACKGROUND We assessed the ability of a brain-and-cord-matched quantitative magnetic resonance imaging (qMRI) protocol to differentiate patients with progressive multiple sclerosis (PMS) from controls, in terms of normal-appearing (NA) tissue abnormalities, and explain disability. METHODS A total of 27 patients and 16 controls were assessed on the Expanded Disability Status Scale (EDSS), 25-foot timed walk (TWT), 9-hole peg (9HPT) and symbol digit modalities (SDMT) tests. All underwent 3T brain and (C2-C3) cord structural imaging and qMRI (relaxometry, quantitative magnetisation transfer, multi-shell diffusion-weighted imaging), using a fast brain-and-cord-matched protocol with brain-and-cord-unified imaging readouts. Lesion and NA-tissue volumes and qMRI metrics reflecting demyelination and axonal loss were obtained. Random forest analyses identified the most relevant volumetric/qMRI measures to clinical outcomes. Confounder-adjusted linear regression estimated the actual MRI-clinical associations. RESULTS Several qMRI/volumetric differences between patients and controls were observed (p < 0.01). Higher NA-deep grey matter quantitative-T1 (EDSS: beta = 7.96, p = 0.006; 9HPT: beta = -0.09, p = 0.004), higher NA-white matter orientation dispersion index (TWT: beta = -3.21, p = 0.005; SDMT: beta = -847.10, p < 0.001), lower whole-cord bound pool fraction (9HPT: beta = 0.79, p = 0.001) and higher NA-cortical grey matter quantitative-T1 (SDMT = -94.31, p < 0.001) emerged as particularly relevant predictors of greater disability. CONCLUSION Fast brain-and-cord-matched qMRI protocols are feasible and identify demyelination - combined with other mechanisms - as key for disability accumulation in PMS.
Collapse
Affiliation(s)
- Carmen Tur
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Multiple Sclerosis Centre of Catalonia (Cemcat). Vall d'Hebron Institute of Research. Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marco Battiston
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Marios C Yiannakas
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Sara Collorone
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Alberto Calvi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic, Barcelona, Spain
| | - Ferran Prados
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- eHealth Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Baris Kanber
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Francesco Grussu
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Antonio Ricciardi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Patrizia Pajak
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Daniele Martinelli
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | | | - Olga Ciccarelli
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- NIHR UCLH Biomedical Research Centre, London, UK
| | - Rebecca S Samson
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Claudia Am Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL (University College London) Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy; Brain Connectivity Research Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
14
|
Dai Y, Hu W, Wu G, Wu D, Zhu M, Luo Y, Wang J, Zhou Y, Hu P. Grading Clear Cell Renal Cell Carcinoma Grade Using Diffusion Relaxation Correlated MR Spectroscopic Imaging. J Magn Reson Imaging 2024; 59:699-710. [PMID: 37209407 DOI: 10.1002/jmri.28777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common subtype of RCC, and accurate grading is crucial for prognosis and treatment selection. Biopsy is the reference standard for grading, but MRI methods can improve and complement the grading procedure. PURPOSE Assess the performance of diffusion relaxation correlation spectroscopic imaging (DR-CSI) in grading ccRCC. STUDY TYPE Prospective. SUBJECTS 79 patients (age: 58.1 +/- 11.5 years; 55 male) with ccRCC confirmed by histopathology (grade 1, 7; grade 2, 45; grade 3, 18; grade 4, 9) following surgery. FIELD STRENGTH/SEQUENCE 3.0 T MRI scanner. DR-CSI with a diffusion-weighted echo-planar imaging sequence and T2-mapping with a multi-echo spin echo sequence. ASSESSMENT DR-CSI results were analyzed for the solid tumor regions of interest using spectrum segmentation with five sub-region volume fraction metrics (VA , VB , VC , VD , and VE ). The regulations for spectrum segmentation were determined based on the D-T2 spectra of distinct macro-components. Tumor size, voxel-wise T2, and apparent diffusion coefficient (ADC) values were obtained. Histopathology assessed tumor grade (G1-G4) for each case. STATISTICAL TESTS One-way ANOVA or Kruskal-Wallis test, Spearman's correlation (coefficient, rho), multivariable logistic regression analysis, receiver operating characteristic curve analysis, and DeLong's test. Significance criteria: P < 0.05. RESULTS Significant differences were found in ADC, T2, DR-CSI VB , and VD among the ccRCC grades. Correlations were found for ccRCC grade to tumor size (rho = 0.419), age (rho = 0.253), VB (rho = 0.553) and VD (rho = -0.378). AUC of VB was slightly larger than ADC in distinguishing low-grade (G1-G2) from high-grade (G3-G4) ccRCC (0.801 vs. 0.762, P = 0.406) and G1 from G2 to G4 (0.796 vs. 0.647, P = 0.175), although not significant. Combining VB , VD , and VE had better diagnostic performance than combining ADC and T2 for differentiating G1 from G2-G4 (AUC: 0.814 vs 0.643). DATA CONCLUSION DR-CSI parameters are correlated with ccRCC grades, and may help to differentiate ccRCC grades. EVIDENCE LEVEL 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Yongming Dai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Wentao Hu
- Department of Radiology, Renji hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyu Wu
- Department of Radiology, Renji hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Mengying Zhu
- Department of Radiology, Renji hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuansheng Luo
- Department of Radiology, Renji hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jieying Wang
- Clinical Research Center, Renji hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Hu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| |
Collapse
|
15
|
Horng DE. Editorial for "Grading Clear Cell Renal Cell Carcinoma Grade Using Diffusion Relaxation Correlated MR Spectroscopic Imaging". J Magn Reson Imaging 2024; 59:711-712. [PMID: 37249092 DOI: 10.1002/jmri.28827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Affiliation(s)
- Debra E Horng
- Deb Horng Consulting LLC, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Luo Y, Zhu M, Wei X, Xu J, Pan S, Liu G, Song Y, Hu W, Dai Y, Wu G. Investigation of clear cell renal cell carcinoma grades using diffusion-relaxation correlation spectroscopic imaging with optimized spatial-spectrum analysis. Br J Radiol 2024; 97:135-141. [PMID: 38263829 PMCID: PMC11008501 DOI: 10.1093/bjr/tqad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVES To differentiate high-grade from low-grade clear cell renal cell carcinoma (ccRCC) using diffusion-relaxation correlation spectroscopic imaging (DR-CSI) spectra in an equal separating analysis. METHODS Eighty patients with 86 pathologically confirmed ccRCCs who underwent DR-CSI were enrolled. Two radiologists delineated the region of interest. The spectrum was derived based on DR-CSI and was further segmented into multiple equal subregions from 2*2 to 9*9. The agreement between the 2 radiologists was assessed by the intraclass correlation coefficient (ICC). Logistic regression was used to establish the regression model for differentiation, and 5-fold cross-validation was used to evaluate its accuracy. McNemar's test was used to compare the diagnostic performance between equipartition models and the traditional parameters, including the apparent diffusion coefficient (ADC) and T2 value. RESULTS The inter-reader agreement decreased as the divisions in the equipartition model increased (overall ICC ranged from 0.859 to 0.920). The accuracy increased from the 2*2 to 9*9 equipartition model (0.68 for 2*2, 0.69 for 3*3 and 4*4, 0.70 for 5*5, 0.71 for 6*6, 0.78 for 7*7, and 0.75 for 8*8 and 9*9). The equipartition models with divisions >7*7 were significantly better than ADC and T2 (vs ADC: P = .002-.008; vs T2: P = .001-.004). CONCLUSIONS The equipartition method has the potential to analyse the DR-CSI spectrum and discriminate between low-grade and high-grade ccRCC. ADVANCES IN KNOWLEDGE The evaluation of DR-CSI relies on prior knowledge, and how to assess the spectrum derived from DR-CSI without prior knowledge has not been well studied.
Collapse
Affiliation(s)
- Yuansheng Luo
- Department of Radiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mengying Zhu
- Department of Radiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaobin Wei
- Department of Radiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianrong Xu
- Department of Radiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shihang Pan
- Department of Radiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guiqin Liu
- Department of Radiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd., 200129 Shanghai, China
| | - Wentao Hu
- Department of Radiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yongming Dai
- School of Biomedical Engineering, Shanghai Tech University, 201210 Shanghai, China
| | - Guangyu Wu
- Department of Radiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Lampinen B, Szczepankiewicz F, Lätt J, Knutsson L, Mårtensson J, Björkman-Burtscher IM, van Westen D, Sundgren PC, Ståhlberg F, Nilsson M. Probing brain tissue microstructure with MRI: principles, challenges, and the role of multidimensional diffusion-relaxation encoding. Neuroimage 2023; 282:120338. [PMID: 37598814 DOI: 10.1016/j.neuroimage.2023.120338] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue. Another challenge is that the tissue microstructure is wildly different within the gray and white matter of the brain. In this review, we use results from multidimensional diffusion encoding techniques to discuss these challenges and their tentative solutions. Multidimensional encoding increases the information content of the data by varying not only the b-value and the encoding direction but also additional experimental parameters such as the shape of the b-tensor and the echo time. Three main insights have emerged from such encoding. First, multidimensional data contradict common model assumptions on diffusion and T2 relaxation, and illustrates how the use of these assumptions cause erroneous interpretations in both healthy brain and pathology. Second, many model assumptions can be dispensed with if data are acquired with multidimensional encoding. The necessary data can be easily acquired in vivo using protocols optimized to minimize Cramér-Rao lower bounds. Third, microscopic diffusion anisotropy reflects the presence of axons but not dendrites. This insight stands in contrast to current 'neurite models' of brain tissue, which assume that axons in white matter and dendrites in gray matter feature highly similar diffusion. Nevertheless, as an axon-based contrast, microscopic anisotropy can differentiate gray and white matter when myelin alterations confound conventional MRI contrasts.
Collapse
Affiliation(s)
- Björn Lampinen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden.
| | | | - Jimmy Lätt
- Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Linda Knutsson
- Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Johan Mårtensson
- Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| | - Isabella M Björkman-Burtscher
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Danielle van Westen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Pia C Sundgren
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden; Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
| | - Freddy Ståhlberg
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Markus Nilsson
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Johnson JT, Irfanoglu MO, Manninen E, Ross TJ, Yang Y, Laun FB, Martin J, Topgaard D, Benjamini D. In vivo disentanglement of diffusion frequency-dependence, tensor shape, and relaxation using multidimensional MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561702. [PMID: 37987005 PMCID: PMC10659440 DOI: 10.1101/2023.10.10.561702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency, ω , in addition to the diffusion tensor, D , and relaxation, R 1 , R 2 , correlations. A D ( ω ) - R 1 - R 2 clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on their D ( ω ) - R 1 - R 2 distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.
Collapse
Affiliation(s)
- Jessica T.E. Johnson
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - M. Okan Irfanoglu
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Eppu Manninen
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Frederik B. Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan Martin
- Department of Chemistry, Lund University, Lund, Sweden
| | | | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
19
|
Kundu S, Barsoum S, Ariza J, Nolan AL, Latimer CS, Keene CD, Basser PJ, Benjamini D. Mapping the individual human cortex using multidimensional MRI and unsupervised learning. Brain Commun 2023; 5:fcad258. [PMID: 37953850 PMCID: PMC10638106 DOI: 10.1093/braincomms/fcad258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Human evolution has seen the development of higher-order cognitive and social capabilities in conjunction with the unique laminar cytoarchitecture of the human cortex. Moreover, early-life cortical maldevelopment has been associated with various neurodevelopmental diseases. Despite these connections, there is currently no noninvasive technique available for imaging the detailed cortical laminar structure. This study aims to address this scientific and clinical gap by introducing an approach for imaging human cortical lamina. This method combines diffusion-relaxation multidimensional MRI with a tailored unsupervised machine learning approach that introduces enhanced microstructural sensitivity. This new imaging method simultaneously encodes the microstructure, the local chemical composition and importantly their correlation within complex and heterogenous tissue. To validate our approach, we compared the intra-cortical layers obtained using our ex vivo MRI-based method with those derived from Nissl staining of postmortem human brain specimens. The integration of unsupervised learning with diffusion-relaxation correlation MRI generated maps that demonstrate sensitivity to areal differences in cytoarchitectonic features observed in histology. Significantly, our observations revealed layer-specific diffusion-relaxation signatures, showing reductions in both relaxation times and diffusivities at the deeper cortical levels. These findings suggest a radial decrease in myelin content and changes in cell size and anisotropy, reflecting variations in both cytoarchitecture and myeloarchitecture. Additionally, we demonstrated that 1D relaxation and high-order diffusion MRI scalar indices, even when aggregated and used jointly in a multimodal fashion, cannot disentangle the cortical layers. Looking ahead, our technique holds the potential to open new avenues of research in human neurodevelopment and the vast array of disorders caused by disruptions in neurodevelopment.
Collapse
Affiliation(s)
- Shinjini Kundu
- Department of Radiology, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Stephanie Barsoum
- Multiscale Imaging and Integrative Biophysics Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jeanelle Ariza
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Amber L Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
20
|
Su CQ, Wang BB, Tang WT, Tao C, Zhao P, Pan MH, Hong XN, Hu WT, Dai YM, Shi HB, Lu SS. Diffusion-relaxation correlation spectrum imaging for predicting tumor consistency and gross total resection in patients with pituitary adenomas: a preliminary study. Eur Radiol 2023; 33:6993-7002. [PMID: 37148353 DOI: 10.1007/s00330-023-09694-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVE To evaluate the ability of diffusion-relaxation correlation spectrum imaging (DR-CSI) to predict the consistency and extent of resection (EOR) of pituitary adenomas (PAs). METHODS Forty-four patients with PAs were prospectively enrolled. Tumor consistency was evaluated at surgery as either soft or hard, followed by histological assessment. In vivo DR-CSI was performed and spectra were segmented following to a peak-based strategy into four compartments, designated A (low ADC), B (mediate ADC, short T2), C (mediate ADC, long T2), and D (high ADC). The corresponding volume fractions ([Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]) along with the ADC and T2 values were calculated and assessed using univariable analysis for discrimination between hard and soft PAs. Predictors of EOR > 95% were analyzed using logistic regression model and receiver-operating-characteristic analysis. RESULTS Tumor consistency was classified as soft (n = 28) or hard (n = 16). Hard PAs presented higher [Formula: see text] (p = 0.001) and lower [Formula: see text] (p = 0.013) than soft PAs, while no significant difference was found in other parameters. [Formula: see text] significantly correlated with the level of collagen content (r = 0.448, p = 0.002). Knosp grade (odds ratio [OR], 0.299; 95% confidence interval [CI], 0.124-0.716; p = 0.007) and [Formula: see text] (OR, 0.834, per 1% increase; 95% CI, 0.731-0.951; p = 0.007) were independently associated with EOR > 95%. A prediction model based on these variables yielded an AUC of 0.934 (sensitivity, 90.9%; specificity, 90.9%), outperforming the Knosp grade alone (AUC, 0.785; p < 0.05). CONCLUSION DR-CSI may serve as a promising tool to predict the consistency and EOR of PAs. CLINICAL RELEVANCE STATEMENT DR-CSI provides an imaging dimension for characterizing tissue microstructure of PAs and may serve as a promising tool to predict the tumor consistency and extent of resection in patients with PAs. KEY POINTS • DR-CSI provides an imaging dimension for characterizing tissue microstructure of PAs by visualizing the volume fraction and corresponding spatial distribution of four compartments ([Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]). • [Formula: see text] correlated with the level of collagen content and may be the best DR-CSI parameter for discrimination between hard and soft PAs. • The combination of Knosp grade and [Formula: see text] achieved an AUC of 0.934 for predicting the total or near-total resection, outperforming the Knosp grade alone (AUC, 0.785).
Collapse
Affiliation(s)
- Chun-Qiu Su
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guang Zhou Road, Gulou District, Nanjing, 210029, Jiangsu Province, China
| | - Bin-Bin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Wen-Tian Tang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guang Zhou Road, Gulou District, Nanjing, 210029, Jiangsu Province, China
| | - Chao Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Peng Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Min-Hong Pan
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Xun-Ning Hong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guang Zhou Road, Gulou District, Nanjing, 210029, Jiangsu Province, China
| | - Wen-Tao Hu
- Central Research Institute, MR Collaboration, United Imaging Healthcare, Shanghai, China
| | - Yong-Ming Dai
- Central Research Institute, MR Collaboration, United Imaging Healthcare, Shanghai, China
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Hai-Bin Shi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guang Zhou Road, Gulou District, Nanjing, 210029, Jiangsu Province, China.
| | - Shan-Shan Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guang Zhou Road, Gulou District, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
21
|
Endt S, Engel M, Naldi E, Assereto R, Molendowska M, Mueller L, Mayrink Verdun C, Pirkl CM, Palombo M, Jones DK, Menzel MI. In Vivo Myelin Water Quantification Using Diffusion-Relaxation Correlation MRI: A Comparison of 1D and 2D Methods. APPLIED MAGNETIC RESONANCE 2023; 54:1571-1588. [PMID: 38037641 PMCID: PMC10682074 DOI: 10.1007/s00723-023-01584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 12/02/2023]
Abstract
Multidimensional Magnetic Resonance Imaging (MRI) is a versatile tool for microstructure mapping. We use a diffusion weighted inversion recovery spin echo (DW-IR-SE) sequence with spiral readouts at ultra-strong gradients to acquire a rich diffusion-relaxation data set with sensitivity to myelin water. We reconstruct 1D and 2D spectra with a two-step convex optimization approach and investigate a variety of multidimensional MRI methods, including 1D multi-component relaxometry, 1D multi-component diffusometry, 2D relaxation correlation imaging, and 2D diffusion-relaxation correlation spectroscopic imaging (DR-CSI), in terms of their potential to quantify tissue microstructure, including the myelin water fraction (MWF). We observe a distinct spectral peak that we attribute to myelin water in multi-component T1 relaxometry, T1-T2 correlation, T1-D correlation, and T2-D correlation imaging. Due to lower achievable echo times compared to diffusometry, MWF maps from relaxometry have higher quality. Whilst 1D multi-component T1 data allows much faster myelin mapping, 2D approaches could offer unique insights into tissue microstructure and especially myelin diffusion.
Collapse
Affiliation(s)
- Sebastian Endt
- Technical University of Munich, Munich, Germany
- AImotion Bavaria, Technische Hochschule Ingolstadt, Ingolstadt, Germany
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Maria Engel
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Emanuele Naldi
- Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Malwina Molendowska
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Lars Mueller
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, United Kingdom
| | - Claudio Mayrink Verdun
- Technical University of Munich, Munich, Germany
- Munich Center for Machine Learning, Munich, Germany
| | | | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Marion I. Menzel
- Technical University of Munich, Munich, Germany
- AImotion Bavaria, Technische Hochschule Ingolstadt, Ingolstadt, Germany
- GE HealthCare, Munich, Germany
| |
Collapse
|
22
|
Luo P, Hu W, Xu R, Wang Y, Li X, Jiang L, Chang S, Wu D, Li G, Dai Y. Enabling early detection of knee osteoarthritis using diffusion-relaxation correlation spectrum imaging. Clin Radiol 2023:S0009-9260(23)00224-6. [PMID: 37336674 DOI: 10.1016/j.crad.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
AIM To present a technique that enables detection of early stage OA of the knee using diffusion-relaxation correlation spectrum imaging (DR-CSI). MATERIALS AND METHODS Fifty-five early osteoarthritis patients (OA, Kellgren-Lawrence [KL] score 1 to 2; mean age, 56.4 years) and 49 healthy volunteers (mean age, 56.7 years) were underwent magnetic resonance imaging (MRI) with T2-mapping and DR-CSI techniques. Maps of mean apparent diffusion coefficient (ADC), T2 relaxation time and volume fraction Vi for DR-CSI compartment i (A, B, C, D) sensitivity, specificity, and positive and negative likelihood ratio (PLR, NLR) were assessed to determine the diagnostic accuracy for detection of early-stage degeneration of knee articular cartilage. The structural abnormalities of articular cartilage were evaluated using modified Whole-Organ MR Imaging Scores (WORMS). RESULTS All intra- and interobserver agreements for DR-CSI compartment volume fractions and modified WORMS of cartilage were excellent. Early OA versus the controls had higher VC, lower VA and VB (p<0.001), but comparable VD (p>0.05). VA, VB and VC had a moderate association with WORMS. No significant correlation was identified between VD and WORMS. VC had better ability than VA,VB, VD, T2 and ADC to discriminate early OA patients from healthy controls (area under the curve, 0.898). Sensitivity, specificity, PLR, and NLR of VC with a cut-off value of 29.9% were 81.8% (95% confidence interval [CI], 69.1-90.9%), 95.9% (86-99.5%), 20.05% (5.13-78.34%), and 0.19% (0.11-0.33%). CONCLUSIONS DR-CSI compartment volume fractions may be sensitive indicators for detecting early-stage degeneration in knee articular cartilage.
Collapse
Affiliation(s)
- P Luo
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - W Hu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - R Xu
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Y Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - X Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - L Jiang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - S Chang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - D Wu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronics Science, East China Normal University, Shanghai 200062, China
| | - G Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Y Dai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
23
|
Sun K, Dan G, Zhong Z, Zhou XJ. Multi-readout DWI with a reduced FOV for studying the coupling between diffusion and T 2 * relaxation in the prostate. Magn Reson Med 2023; 90:250-258. [PMID: 36932652 DOI: 10.1002/mrm.29636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023]
Abstract
PURPOSE To develop a DWI sequence with multiple readout echo-trains in a single shot (multi-readout DWI) over a reduced FOV, and to demonstrate its ability to achieve high data acquisition efficiency in the study of coupling between diffusion and relaxation in the human prostate. METHODS The proposed multi-readout DWI sequence plays out multiple EPI readout echo-trains after a Stejskal-Tanner diffusion preparation module. Each EPI readout echo-train corresponded to a distinct effective TE. To maintain a high spatial resolution with a relatively short echo-train for each readout, a 2D RF pulse was used to limit the FOV. Experiments were performed on the prostate of six healthy subjects to acquire a set of images with three b values (0, 500, and 1000 s/mm2 ) and three TEs (63.0, 78.8, and 94.6 ms), producing three ADC maps at different TEs and three T 2 * $$ {T}_2^{\ast } $$ maps at different b values. RESULTS Multi-readout DWI enabled a threefold acceleration without compromising the spatial resolution when compared with a conventional single-readout sequence. Images with three b values and three TEs were obtained in 3 min 40 s with an adequate SNR (≥ 26.9). The ADC values (1.45 ± 0.13, 1.52 ± 0.14, and 1.58 ± 0.15 μm 2 / ms $$ {\upmu \mathrm{m}}^2/\mathrm{ms} $$ ; P < 0.01) exhibited an increasing trend as TEs increased (63.0 ms, 78.8 ms, and 94.6 ms), whereas T 2 * $$ {T}_2^{\ast } $$ values (74.78 ± 13.21, 63.21 ± 7.84, and 56.61 ± 5.05 ms; P < 0.01) decreases as the b values increased (0, 500, and 1000 s/mm2 ). CONCLUSION The multi-readout DWI sequence over a reduced FOV provides a time-efficient technique to study the coupling between diffusion and relaxation times.
Collapse
Affiliation(s)
- Kaibao Sun
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Guangyu Dan
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zheng Zhong
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiaohong Joe Zhou
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA.,Departments of Radiology and Neurosurgery, University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| |
Collapse
|
24
|
Benjamini D, Priemer DS, Perl DP, Brody DL, Basser PJ. Mapping astrogliosis in the individual human brain using multidimensional MRI. Brain 2023; 146:1212-1226. [PMID: 35953450 PMCID: PMC9976979 DOI: 10.1093/brain/awac298] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/13/2022] [Accepted: 08/06/2022] [Indexed: 11/14/2022] Open
Abstract
There are currently no non-invasive imaging methods available for astrogliosis assessment or mapping in the central nervous system despite its essential role in the response to many disease states, such as infarcts, neurodegenerative conditions, traumatic brain injury and infection. Multidimensional MRI is an increasingly employed imaging modality that maximizes the amount of encoded chemical and microstructural information by probing relaxation (T1 and T2) and diffusion mechanisms simultaneously. Here, we harness the exquisite sensitivity of this imagining modality to derive a signature of astrogliosis and disentangle it from normative brain at the individual level using machine learning. We investigated ex vivo cerebral cortical tissue specimens derived from seven subjects who sustained blast-induced injuries, which resulted in scar-border forming astrogliosis without being accompanied by other types of neuropathological abnormality, and from seven control brain donors. By performing a combined post-mortem radiology and histopathology correlation study we found that astrogliosis induces microstructural and chemical changes that are robustly detected with multidimensional MRI, and which can be attributed to astrogliosis because no axonal damage, demyelination or tauopathy were histologically observed in any of the cases in the study. Importantly, we showed that no one-dimensional T1, T2 or diffusion MRI measurement can disentangle the microscopic alterations caused by this neuropathology. Based on these findings, we developed a within-subject anomaly detection procedure that generates MRI-based astrogliosis biomarker maps ex vivo, which were significantly and strongly correlated with co-registered histological images of increased glial fibrillary acidic protein deposition (r = 0.856, P < 0.0001; r = 0.789, P < 0.0001; r = 0.793, P < 0.0001, for diffusion-T2, diffusion-T1 and T1-T2 multidimensional data sets, respectively). Our findings elucidate the underpinning of MRI signal response from astrogliosis, and the demonstrated high spatial sensitivity and specificity in detecting reactive astrocytes at the individual level, and if reproduced in vivo, will significantly impact neuroimaging studies of injury, disease, repair and aging, in which astrogliosis has so far been an invisible process radiologically.
Collapse
Affiliation(s)
- Dan Benjamini
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20891, USA
- Multiscale Imaging and Integrative Biophysics Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - David S Priemer
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- The Department of Defense/Uniformed Services, University Brain Tissue Repository, Bethesda, MD 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD 20817, USA
| | - Daniel P Perl
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- The Department of Defense/Uniformed Services, University Brain Tissue Repository, Bethesda, MD 20814, USA
| | - David L Brody
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20891, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
25
|
Conlin CC, Feng CH, Digma LA, Rodríguez-Soto AE, Kuperman JM, Rakow-Penner R, Karow DS, White NS, Seibert TM, Hahn ME, Dale AM. A Multicompartmental Diffusion Model for Improved Assessment of Whole-Body Diffusion-weighted Imaging Data and Evaluation of Prostate Cancer Bone Metastases. Radiol Imaging Cancer 2023; 5:e210115. [PMID: 36705559 PMCID: PMC9896230 DOI: 10.1148/rycan.210115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Purpose To develop a multicompartmental signal model for whole-body diffusion-weighted imaging (DWI) and apply it to study the diffusion properties of normal tissue and metastatic prostate cancer bone lesions in vivo. Materials and Methods This prospective study (ClinicalTrials.gov: NCT03440554) included 139 men with prostate cancer (mean age, 70 years ± 9 [SD]). Multicompartmental models with two to four tissue compartments were fit to DWI data from whole-body scans to determine optimal compartmental diffusion coefficients. Bayesian information criterion (BIC) and model-fitting residuals were calculated to quantify model complexity and goodness of fit. Diffusion coefficients for the optimal model (having lowest BIC) were used to compute compartmental signal-contribution maps. The signal intensity ratio (SIR) of bone lesions to normal-appearing bone was measured on these signal-contribution maps and on conventional DWI scans and compared using paired t tests (α = .05). Two-sample t tests (α = .05) were used to compare compartmental signal fractions between lesions and normal-appearing bone. Results Lowest BIC was observed from the four-compartment model, with optimal compartmental diffusion coefficients of 0, 1.1 × 10-3, 2.8 × 10-3, and >3.0 ×10-2 mm2/sec. Fitting residuals from this model were significantly lower than from conventional apparent diffusion coefficient mapping (P < .001). Bone lesion SIR was significantly higher on signal-contribution maps of model compartments 1 and 2 than on conventional DWI scans (P < .008). The fraction of signal from compartments 2, 3, and 4 was also significantly different between metastatic bone lesions and normal-appearing bone tissue (P ≤ .02). Conclusion The four-compartment model best described whole-body diffusion properties. Compartmental signal contributions from this model can be used to examine prostate cancer bone involvement. Keywords: Whole-Body MRI, Diffusion-weighted Imaging, Restriction Spectrum Imaging, Diffusion Signal Model, Bone Metastases, Prostate Cancer Clinical trial registration no. NCT03440554 Supplemental material is available for this article. © RSNA, 2023 See also commentary by Margolis in this issue.
Collapse
|
26
|
Wei X, Zhu L, Zeng Y, Xue K, Dai Y, Xu J, Liu G, Liu F, Xue W, Wu D, Wu G. Detection of prostate cancer using diffusion-relaxation correlation spectrum imaging with support vector machine model - a feasibility study. Cancer Imaging 2022; 22:77. [PMID: 36575555 PMCID: PMC9795630 DOI: 10.1186/s40644-022-00516-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND To evaluate the performance of diffusion-relaxation correlation spectrum imaging (DR-CSI) with support vector machine (SVM) in detecting prostate cancer (PCa). METHODS In total, 114 patients (mean age, 66 years, range, 48-87 years) who received a prostate MRI and underwent biopsy were enrolled in three stages. Thirty-nine were assigned for the exploration stage to establish the model, 18 for the validation stage to choose the appropriate scale for mapping and 57 for the test stage to compare the diagnostic performance of the DR-CSI and PI-RADS. RESULTS In the exploration stage, the DR-CSI model was established and performed better than the ADC and T2 values (both P < 0.001). The validation result shows that at least 2 pixels were required for both the long-axis and short-axis in the mapping procedure. In the test stage, DR-CSI had higher accuracy than PI-RADS ≥ 3 as a positive finding based on patient (84.2% vs. 63.2%, P = 0.004) and lesion (78.8% vs. 57.6%, P = 0.001) as well as PI-RADS ≥ 4 on lesion (76.5% vs. 64.7%, P = 0.029), while there was no significant difference between DR-CSI and PI-RADS ≥ 4 based on patient (P = 0.508). For clinically significant PCa, DR-CSI had higher accuracy than PI-RADS ≥ 3 based on patients (84.2% vs. 63.2%, P = 0.004) and lesions (62.4% vs. 48.2%, P = 0.036). There was no significant difference between DR-CSI and PI-RADS ≥ 4 (P = 1.000 and 0.845 for the patient and lesion levels, respectively). CONCLUSIONS DR-CSI combined with the SVM model may improve the diagnostic accuracy of PCa. TRIAL REGISTRATION This study was approved by the Ethics Committee of our institute (Approval No. KY2018-213). Written informed consent was obtained from all participants.
Collapse
Affiliation(s)
- Xiaobin Wei
- grid.16821.3c0000 0004 0368 8293Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhu
- grid.16821.3c0000 0004 0368 8293Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyan Zeng
- Quanzhou Maternity and Children’s Hospital, Fujian, China
| | - Ke Xue
- grid.497849.fCentral Research Institute, MR Collaboration, United Imaging Healthcare, Shanghai, China
| | - Yongming Dai
- grid.497849.fCentral Research Institute, MR Collaboration, United Imaging Healthcare, Shanghai, China
| | - Jianrong Xu
- grid.16821.3c0000 0004 0368 8293Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guiqin Liu
- grid.16821.3c0000 0004 0368 8293Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Liu
- grid.16821.3c0000 0004 0368 8293Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- grid.16821.3c0000 0004 0368 8293Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongmei Wu
- grid.22069.3f0000 0004 0369 6365Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronics Science, East China Normal University, Shanghai, China
| | - Guangyu Wu
- grid.16821.3c0000 0004 0368 8293Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Avram AV, Saleem KS, Basser PJ. COnstrained Reference frame diffusion TEnsor Correlation Spectroscopic (CORTECS) MRI: A practical framework for high-resolution diffusion tensor distribution imaging. Front Neurosci 2022; 16:1054509. [PMID: 36590291 PMCID: PMC9798222 DOI: 10.3389/fnins.2022.1054509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
High-resolution imaging studies have consistently shown that in cortical tissue water diffuses preferentially along radial and tangential orientations with respect to the cortical surface, in agreement with histology. These dominant orientations do not change significantly even if the relative contributions from microscopic water pools to the net voxel signal vary across experiments that use different diffusion times, b-values, TEs, and TRs. With this in mind, we propose a practical new framework for imaging non-parametric diffusion tensor distributions (DTDs) by constraining the microscopic diffusion tensors of the DTD to be diagonalized using the same orthonormal reference frame of the mesoscopic voxel. In each voxel, the constrained DTD (cDTD) is completely determined by the correlation spectrum of the microscopic principal diffusivities associated with the axes of the voxel reference frame. Consequently, all cDTDs are inherently limited to the domain of positive definite tensors and can be reconstructed efficiently using Inverse Laplace Transform methods. Moreover, the cDTD reconstruction can be performed using only data acquired efficiently with single diffusion encoding, although it also supports datasets with multiple diffusion encoding. In tissues with a well-defined architecture, such as the cortex, we can further constrain the cDTD to contain only cylindrically symmetric diffusion tensors and measure the 2D correlation spectra of principal diffusivities along the radial and tangential orientation with respect to the cortical surface. To demonstrate this framework, we perform numerical simulations and analyze high-resolution dMRI data from a fixed macaque monkey brain. We estimate 2D cDTDs in the cortex and derive, in each voxel, the marginal distributions of the microscopic principal diffusivities, the corresponding distributions of the microscopic fractional anisotropies and mean diffusivities along with their 2D correlation spectra to quantify the cDTD shape-size characteristics. Signal components corresponding to specific bands in these cDTD-derived spectra show high specificity to cortical laminar structures observed with histology. Our framework drastically simplifies the measurement of non-parametric DTDs in high-resolution datasets with mesoscopic voxel sizes much smaller than the radius of curvature of the underlying anatomy, e.g., cortical surface, and can be applied retrospectively to analyze existing diffusion MRI data from fixed cortical tissues.
Collapse
Affiliation(s)
- Alexandru V. Avram
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, United States
| | - Kadharbatcha S. Saleem
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, United States
| | - Peter J. Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Girometti R, Bertolotto M. Editorial for “Exploration of Interstitial Fibrosis in Chronic Kidney Disease by Diffusion‐Relaxation Correlation Spectrum MR Imaging: A Preliminary Study”. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Rossano Girometti
- Institute of Radiology, Department of Medicine (DAME) University of Udine, University Hospital S. Maria della Misericordia – Azienda Sanitaria Universitaria Friuli Centrale (ASU FC) Udine Italy
| | - Michele Bertolotto
- Radiology Unit, Department of Medical, Surgical and Health Sciences University of Trieste, University Hospital Cattinara ‐ Azienda Sanitaria Universitaria Giuliano Isontina (ASU GI) Trieste Italy
| |
Collapse
|
29
|
Liu F, Hu W, Sun Y, Shen Y, Zhou W, Dai Y, Gu L, Zhang M, Zhou Y. Exploration of Interstitial Fibrosis in Chronic Kidney Disease by Diffusion‐Relaxation Correlation Spectrum
MR
Imaging: A Preliminary Study. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Fang Liu
- Department of Radiology Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Wentao Hu
- Central Research Institute, United Imaging Healthcare Shanghai China
| | - Yawen Sun
- Department of Radiology Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Yiwei Shen
- Department of Nephrology Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Wenyan Zhou
- Department of Nephrology Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Yongming Dai
- Central Research Institute, United Imaging Healthcare Shanghai China
| | - Leyi Gu
- Department of Nephrology Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Minfang Zhang
- Department of Nephrology Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Yan Zhou
- Department of Radiology Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
30
|
Rosenberg JT, Grant SC, Topgaard D. Nonparametric 5D D-R 2 distribution imaging with single-shot EPI at 21.1 T: Initial results for in vivo rat brain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 341:107256. [PMID: 35753184 PMCID: PMC9339475 DOI: 10.1016/j.jmr.2022.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In vivo human diffusion MRI is by default performed using single-shot EPI with greater than 50-ms echo times and associated signal loss from transverse relaxation. The individual benefits of the current trends of increasing B0 to boost SNR and employing more advanced signal preparation schemes to improve the specificity for selected microstructural properties eventually may be cancelled by increased relaxation rates at high B0 and echo times with advanced encoding. Here, initial attempts to translate state-of-the-art diffusion-relaxation correlation methods from 3 T to 21.1 T are made to identify hurdles that need to be overcome to fulfill the promises of both high SNR and readily interpretable microstructural information.
Collapse
Affiliation(s)
- Jens T Rosenberg
- National High Magnetic Field Laboratory, Florida State University, Tallahassee FL, United States.
| | - Samuel C Grant
- National High Magnetic Field Laboratory, Florida State University, Tallahassee FL, United States; Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States.
| | | |
Collapse
|
31
|
Bogusz F, Pieciak T, Afzali M, Pizzolato M. Diffusion-relaxation scattered MR signal representation in a multi-parametric sequence. Magn Reson Imaging 2022; 91:52-61. [PMID: 35561868 DOI: 10.1016/j.mri.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
Abstract
This work focuses on obtaining a more general diffusion magnetic resonance imaging (MRI) signal representation that accounts for a longitudinal T1 and transverse T2⋆ relaxations while at the same time integrating directional diffusion in the context of scattered multi-parametric acquisitions, where only a few diffusion gradient directions and b-values are available for each pair of echo and inversion times. The method is based on the three-dimensional simple harmonic oscillator-based reconstruction and estimation (SHORE) representation of the diffusion signal, which enables the estimation of the orientation distribution function and the retrieval of various quantitative indices such as the generalized fractional anisotropy or the return-to-the-origin probability while simultaneously resolving for T1 and T2⋆ relaxation times. Our technique, the Relax-SHORE, has been tested on both in silico and in vivo diffusion-relaxation scattered MR data. The results show that Relax-SHORE is accurate in the context of scattered acquisitions while guaranteeing flexibility in the diffusion signal representation from multi-parametric sequences.
Collapse
Affiliation(s)
- Fabian Bogusz
- AGH University of Science and Technology, Kraków, Poland.
| | - Tomasz Pieciak
- AGH University of Science and Technology, Kraków, Poland; LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Maryam Afzali
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Leeds, United Kingdom; Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Marco Pizzolato
- Department of applied mathematics and computer science, Technical University of Denmark, Kongens Lyngby, Denmark; Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
32
|
Improved diffusion parameter estimation by incorporating T 2 relaxation properties into the DKI-FWE model. Neuroimage 2022; 256:119219. [PMID: 35447354 DOI: 10.1016/j.neuroimage.2022.119219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
The free water elimination (FWE) model and its kurtosis variant (DKI-FWE) can separate tissue and free water signal contributions, thus providing tissue-specific diffusional information. However, a downside of these models is that the associated parameter estimation problem is ill-conditioned, necessitating the use of advanced estimation techniques that can potentially bias the parameter estimates. In this work, we propose the T2-DKI-FWE model that exploits the T2 relaxation properties of both compartments, thereby better conditioning the parameter estimation problem and providing, at the same time, an additional potential biomarker (the T2 of tissue). In our approach, the T2 of tissue is estimated as an unknown parameter, whereas the T2 of free water is assumed known a priori and fixed to a literature value (1573 ms). First, the error propagation of an erroneous assumption on the T2 of free water is studied. Next, the improved conditioning of T2-DKI-FWE compared to DKI-FWE is illustrated using the Cramér-Rao lower bound matrix. Finally, the performance of the T2-DKI-FWE model is compared to that of the DKI-FWE and T2-DKI models on both simulated and real datasets. The error due to a biased approximation of the T2 of free water was found to be relatively small in various diffusion metrics and for a broad range of erroneous assumptions on its underlying ground truth value. Compared to DKI-FWE, using the T2-DKI-FWE model is beneficial for the identifiability of the model parameters. Our results suggest that the T2-DKI-FWE model can achieve precise and accurate diffusion parameter estimates, through effective reduction of free water partial volume effects and by using a standard nonlinear least squares approach. In conclusion, incorporating T2 relaxation properties into the DKI-FWE model improves the conditioning of the model fitting, while only requiring an acquisition scheme with at least two different echo times.
Collapse
|
33
|
Stabilization of parameter estimates from multiexponential decay through extension into higher dimensions. Sci Rep 2022; 12:5773. [PMID: 35388008 PMCID: PMC8986819 DOI: 10.1038/s41598-022-08638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Analysis of multiexponential decay has remained a topic of active research for over 200 years. This attests to the widespread importance of this problem and to the profound difficulties in characterizing the underlying monoexponential decays. Here, we demonstrate the fundamental improvement in stability and conditioning of this classic problem through extension to a second dimension; we present statistical analysis, Monte-Carlo simulations, and experimental magnetic resonance relaxometry data to support this remarkable fact. Our results are readily generalizable to higher dimensions and provide a potential means of circumventing conventional limits on multiexponential parameter estimation.
Collapse
|
34
|
Luo P, Hu W, Jiang L, Chang S, Wu D, Li G, Dai Y. Evaluation of articular cartilage in knee osteoarthritis using hybrid multidimensional MRI. Clin Radiol 2022; 77:e518-e525. [DOI: 10.1016/j.crad.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
|
35
|
Ji Y, Hoge WS, Gagoski B, Westin CF, Rathi Y, Ning L. Accelerating joint relaxation-diffusion MRI by integrating time division multiplexing and simultaneous multi-slice (TDM-SMS) strategies. Magn Reson Med 2022; 87:2697-2709. [PMID: 35092081 DOI: 10.1002/mrm.29160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE To accelerate the acquisition of relaxation-diffusion imaging by integrating time-division multiplexing (TDM) with simultaneous multi-slice (SMS) for EPI and evaluate imaging quality and diffusion measures. METHODS The time-division multiplexing (TDM) technique and SMS method were integrated to achieve a high slice-acceleration (e.g., 6×) factor for acquiring relaxation-diffusion MRI. Two variants of the sequence, referred to as TDM3e-SMS and TDM2s-SMS, were developed to simultaneously acquire slice groups with three distinct TEs and two slice groups with the same TE, respectively. Both sequences were evaluated on a 3T scanner with in vivo human brains and compared with standard single-band (SB) -EPI and SMS-EPI using diffusion measures and tractography results. RESULTS Experimental results showed that the TDM3e-SMS sequence with total slice acceleration of 6 (multiplexing factor (MP) = 3 × multi-band factor (MB) = 2) provided similar image intensity and microstructure measures compared to standard SMS-EPI with MB = 2, and yielded less bias in intensity compared to standard SMS-EPI with MB = 4. The three sequences showed a similar positive correlation between TE and mean kurtosis (MK) and a negative correlation between TE and mean diffusivity (MD) in white matter. Multi-fiber tractography also shows consistency of results in TE-dependent measures between different sequences. The TDM2s-SMS sequence (MP = 2, MB = 2) also provided imaging measures similar to standard SMS-EPI sequences (MB = 2) for single-TE diffusion imaging. CONCLUSIONS The TDM-SMS sequence can provide additional 2× to 3× acceleration to SMS without degrading imaging quality. With the significant reduction in scan time, TDM-SMS makes joint relaxation-diffusion MRI a feasible technique in neuroimaging research to investigate new markers of brain disorders.
Collapse
Affiliation(s)
- Yang Ji
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - W Scott Hoge
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lipeng Ning
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Omer N, Galun M, Stern N, Blumenfeld-Katzir T, Ben-Eliezer N. Data-driven algorithm for myelin water imaging: Probing subvoxel compartmentation based on identification of spatially global tissue features. Magn Reson Med 2021; 87:2521-2535. [PMID: 34958690 DOI: 10.1002/mrm.29125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Multicomponent analysis of MRI T2 relaxation time (mcT2 ) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T2 values. This voxel-based approach is challenging due to the large ambiguity in the multi-T2 space and the low SNR of MRI signals. Herein, we present a data-driven mcT2 analysis, which utilizes the statistical strength of identifying spatially global mcT2 motifs in white matter segments before deconvolving the local signal at each voxel. METHODS Deconvolution is done using a tailored optimization scheme, which incorporates the global mcT2 motifs without additional prior assumptions regarding the number of microscopic components. The end results of this process are voxel-wise myelin water fraction maps. RESULTS Validations are shown for computer-generated signals, uniquely designed subvoxel mcT2 phantoms, and in vivo human brain. Results demonstrated excellent fitting accuracy, both for the numerical and the physical mcT2 phantoms, exhibiting excellent agreement between calculated myelin water fraction and ground truth. Proof-of-concept in vivo validation is done by calculating myelin water fraction maps for white matter segments of the human brain. Interscan stability of myelin water fraction values was also estimated, showing good correlation between scans. CONCLUSION We conclude that studying global tissue motifs prior to performing voxel-wise mcT2 analysis stabilizes the optimization scheme and efficiently overcomes the ambiguity in the T2 space. This new approach can improve myelin water imaging and the investigation of microstructural compartmentation in general.
Collapse
Affiliation(s)
- Noam Omer
- The Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | - Meirav Galun
- Department of Computer Science and Applied Mathematics, Weitzman Institute of Science, Rehovot, Israel
| | - Neta Stern
- The Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | | | - Noam Ben-Eliezer
- The Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
37
|
Nonparametric D-R 1-R 2 distribution MRI of the living human brain. Neuroimage 2021; 245:118753. [PMID: 34852278 DOI: 10.1016/j.neuroimage.2021.118753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
Diffusion-relaxation correlation NMR can simultaneously characterize both the microstructure and the local chemical composition of complex samples that contain multiple populations of water. Recent developments on tensor-valued diffusion encoding and Monte Carlo inversion algorithms have made it possible to transfer diffusion-relaxation correlation NMR from small-bore scanners to clinical MRI systems. Initial studies on clinical MRI systems employed 5D D-R1 and D-R2 correlation to characterize healthy brain in vivo. However, these methods are subject to an inherent bias that originates from not including R2 or R1 in the analysis, respectively. This drawback can be remedied by extending the concept to 6D D-R1-R2 correlation. In this work, we present a sparse acquisition protocol that records all data necessary for in vivo 6D D-R1-R2 correlation MRI across 633 individual measurements within 25 min-a time frame comparable to previous lower-dimensional acquisition protocols. The data were processed with a Monte Carlo inversion algorithm to obtain nonparametric 6D D-R1-R2 distributions. We validated the reproducibility of the method in repeated measurements of healthy volunteers. For a post-therapy glioblastoma case featuring cysts, edema, and partially necrotic remains of tumor, we present representative single-voxel 6D distributions, parameter maps, and artificial contrasts over a wide range of diffusion-, R1-, and R2-weightings based on the rich information contained in the D-R1-R2 distributions.
Collapse
|
38
|
Slator PJ, Palombo M, Miller KL, Westin C, Laun F, Kim D, Haldar JP, Benjamini D, Lemberskiy G, de Almeida Martins JP, Hutter J. Combined diffusion-relaxometry microstructure imaging: Current status and future prospects. Magn Reson Med 2021; 86:2987-3011. [PMID: 34411331 PMCID: PMC8568657 DOI: 10.1002/mrm.28963] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Microstructure imaging seeks to noninvasively measure and map microscopic tissue features by pairing mathematical modeling with tailored MRI protocols. This article reviews an emerging paradigm that has the potential to provide a more detailed assessment of tissue microstructure-combined diffusion-relaxometry imaging. Combined diffusion-relaxometry acquisitions vary multiple MR contrast encodings-such as b-value, gradient direction, inversion time, and echo time-in a multidimensional acquisition space. When paired with suitable analysis techniques, this enables quantification of correlations and coupling between multiple MR parameters-such as diffusivity, T 1 , T 2 , and T 2 ∗ . This opens the possibility of disentangling multiple tissue compartments (within voxels) that are indistinguishable with single-contrast scans, enabling a new generation of microstructural maps with improved biological sensitivity and specificity.
Collapse
Affiliation(s)
- Paddy J. Slator
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonLondonUK
| | - Marco Palombo
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonLondonUK
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Carl‐Fredrik Westin
- Department of RadiologyBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Frederik Laun
- Institute of RadiologyUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Daeun Kim
- Ming Hsieh Department of Electrical and Computer EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
- Signal and Image Processing InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Justin P. Haldar
- Ming Hsieh Department of Electrical and Computer EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
- Signal and Image Processing InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Dan Benjamini
- The Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaMDUSA
- The Center for Neuroscience and Regenerative MedicineUniformed Service University of the Health SciencesBethesdaMDUSA
| | | | - Joao P. de Almeida Martins
- Division of Physical Chemistry, Department of ChemistryLund UniversityLundSweden
- Department of Radiology and Nuclear MedicineSt. Olav’s University HospitalTrondheimNorway
| | - Jana Hutter
- Centre for Biomedical EngineeringSchool of Biomedical Engineering and ImagingKing’s College LondonLondonUK
- Centre for the Developing BrainSchool of Biomedical Engineering and ImagingKing’s College LondonLondonUK
| |
Collapse
|
39
|
Andescavage N, Limperopoulos C. Emerging placental biomarkers of health and disease through advanced magnetic resonance imaging (MRI). Exp Neurol 2021; 347:113868. [PMID: 34562472 DOI: 10.1016/j.expneurol.2021.113868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022]
Abstract
Placental dysfunction is a major cause of fetal demise, fetal growth restriction, and preterm birth, as well as significant maternal morbidity and mortality. Infant survivors of placental dysfunction are at elevatedrisk for lifelong neuropsychiatric morbidity. However, despite the significant consequences of placental disease, there are no clinical tools to directly and non-invasively assess and measure placental function in pregnancy. In this work, we will review advanced MRI techniques applied to the study of the in vivo human placenta in order to better detail placental structure, architecture, and function. We will discuss the potential of these measures to serve as optimal biomarkers of placental dysfunction and review the evidence of these tools in the discrimination of health and disease in pregnancy. Efforts to advance our understanding of in vivo placental development are necessary if we are to optimize healthy pregnancy outcomes and prevent brain injury in successive generations. Current management of many high-risk pregnancies cannot address placental maldevelopment or injury, given the standard tools available to clinicians. Once accurate biomarkers of placental development and function are constructed, the subsequent steps will be to introduce maternal and fetal therapeutics targeting at optimizing placental function. Applying these biomarkers in future studies will allow for real-time assessments of safety and efficacy of novel interventions aimed at improving maternal-fetal well-being.
Collapse
Affiliation(s)
- Nickie Andescavage
- Developing Brain Institute, Department of Radiology, Children's National, Washington DC, USA; Department of Neonatology, Children's National, Washington DC, USA
| | | |
Collapse
|
40
|
Hernando D, Zhang Y, Pirasteh A. Quantitative diffusion MRI of the abdomen and pelvis. Med Phys 2021; 49:2774-2793. [PMID: 34554579 DOI: 10.1002/mp.15246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Diffusion MRI has enormous potential and utility in the evaluation of various abdominal and pelvic disease processes including cancer and noncancer imaging of the liver, prostate, and other organs. Quantitative diffusion MRI is based on acquisitions with multiple diffusion encodings followed by quantitative mapping of diffusion parameters that are sensitive to tissue microstructure. Compared to qualitative diffusion-weighted MRI, quantitative diffusion MRI can improve standardization of tissue characterization as needed for disease detection, staging, and treatment monitoring. However, similar to many other quantitative MRI methods, diffusion MRI faces multiple challenges including acquisition artifacts, signal modeling limitations, and biological variability. In abdominal and pelvic diffusion MRI, technical acquisition challenges include physiologic motion (respiratory, peristaltic, and pulsatile), image distortions, and low signal-to-noise ratio. If unaddressed, these challenges lead to poor technical performance (bias and precision) and clinical outcomes of quantitative diffusion MRI. Emerging and novel technical developments seek to address these challenges and may enable reliable quantitative diffusion MRI of the abdomen and pelvis. Through systematic validation in phantoms, volunteers, and patients, including multicenter studies to assess reproducibility, these emerging techniques may finally demonstrate the potential of quantitative diffusion MRI for abdominal and pelvic imaging applications.
Collapse
Affiliation(s)
- Diego Hernando
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yuxin Zhang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ali Pirasteh
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
41
|
Benjamini D, Bouhrara M, Komlosh ME, Iacono D, Perl DP, Brody DL, Basser PJ. Multidimensional MRI for Characterization of Subtle Axonal Injury Accelerated Using an Adaptive Nonlocal Multispectral Filter. FRONTIERS IN PHYSICS 2021; 9:737374. [PMID: 37408700 PMCID: PMC10321473 DOI: 10.3389/fphy.2021.737374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Multidimensional MRI is an emerging approach that simultaneously encodes water relaxation (T1 and T2) and mobility (diffusion) and replaces voxel-averaged values with subvoxel distributions of those MR properties. While conventional (i.e., voxel-averaged) MRI methods cannot adequately quantify the microscopic heterogeneity of biological tissue, using subvoxel information allows to selectively map a specific T1-T2-diffusion spectral range that corresponds to a group of tissue elements. The major obstacle to the adoption of rich, multidimensional MRI protocols for diagnostic or monitoring purposes is the prolonged scan time. Our main goal in the present study is to evaluate the performance of a nonlocal estimation of multispectral magnitudes (NESMA) filter on reduced datasets to limit the total acquisition time required for reliable multidimensional MRI characterization of the brain. Here we focused and reprocessed results from a recent study that identified potential imaging biomarkers of axonal injury pathology from the joint analysis of multidimensional MRI, in particular voxelwise T1-T2 and diffusion-T2 spectra in human Corpus Callosum, and histopathological data. We tested the performance of NESMA and its effect on the accuracy of the injury biomarker maps, relative to the co-registered histological reference. Noise reduction improved the accuracy of the resulting injury biomarker maps, while permitting data reduction of 35.7 and 59.6% from the full dataset for T1-T2 and diffusion-T2 cases, respectively. As successful clinical proof-of-concept applications of multidimensional MRI are continuously being introduced, reliable and robust noise removal and consequent acquisition acceleration would advance the field towards clinically-feasible diagnostic multidimensional MRI protocols.
Collapse
Affiliation(s)
- Dan Benjamini
- Section on Quantitative Imaging and Tissue Sciences, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, United States
| | - Mustapha Bouhrara
- Magnetic Resonance Physics of Aging and Dementia Unit, National Institute of Aging, National Institutes of Health, Baltimore, MD, United States
| | - Michal E. Komlosh
- Section on Quantitative Imaging and Tissue Sciences, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, United States
| | - Diego Iacono
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, United States
- Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, United States
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Neurodegeneration Disorders Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Daniel P. Perl
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, United States
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - David L. Brody
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Peter J. Basser
- Section on Quantitative Imaging and Tissue Sciences, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
42
|
Benjamini D, Iacono D, Komlosh ME, Perl DP, Brody DL, Basser PJ. Diffuse axonal injury has a characteristic multidimensional MRI signature in the human brain. Brain 2021; 144:800-816. [PMID: 33739417 DOI: 10.1093/brain/awaa447] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/11/2020] [Accepted: 10/11/2020] [Indexed: 02/01/2023] Open
Abstract
Axonal injury is a major contributor to the clinical symptomatology in patients with traumatic brain injury. Conventional neuroradiological tools, such as CT and MRI, are insensitive to diffuse axonal injury (DAI) caused by trauma. Diffusion tensor MRI parameters may change in DAI lesions; however, the nature of these changes is inconsistent. Multidimensional MRI is an emerging approach that combines T1, T2, and diffusion, and replaces voxel-averaged values with distributions, which allows selective isolation of specific potential abnormal components. By performing a combined post-mortem multidimensional MRI and histopathology study, we aimed to investigate T1-T2-diffusion changes linked to DAI and to define their histopathological correlates. Corpora callosa derived from eight subjects who had sustained traumatic brain injury, and three control brain donors underwent post-mortem ex vivo MRI at 7 T. Multidimensional, diffusion tensor, and quantitative T1 and T2 MRI data were acquired and processed. Following MRI acquisition, slices from the same tissue were tested for amyloid precursor protein (APP) immunoreactivity to define DAI severity. A robust image co-registration method was applied to accurately match MRI-derived parameters and histopathology, after which 12 regions of interest per tissue block were selected based on APP density, but blind to MRI. We identified abnormal multidimensional T1-T2, diffusion-T2, and diffusion-T1 components that are strongly associated with DAI and used them to generate axonal injury images. We found that compared to control white matter, mild and severe DAI lesions contained significantly larger abnormal T1-T2 component (P = 0.005 and P < 0.001, respectively), and significantly larger abnormal diffusion-T2 component (P = 0.005 and P < 0.001, respectively). Furthermore, within patients with traumatic brain injury the multidimensional MRI biomarkers differentiated normal-appearing white matter from mild and severe DAI lesions, with significantly larger abnormal T1-T2 and diffusion-T2 components (P = 0.003 and P < 0.001, respectively, for T1-T2; P = 0.022 and P < 0.001, respectively, for diffusion-T2). Conversely, none of the conventional quantitative MRI parameters were able to differentiate lesions and normal-appearing white matter. Lastly, we found that the abnormal T1-T2, diffusion-T1, and diffusion-T2 components and their axonal damage images were strongly correlated with quantitative APP staining (r = 0.876, P < 0.001; r = 0.727, P < 0.001; and r = 0.743, P < 0.001, respectively), while producing negligible intensities in grey matter and in normal-appearing white matter. These results suggest that multidimensional MRI may provide non-invasive biomarkers for detection of DAI, which is the pathological substrate for neurological disorders ranging from concussion to severe traumatic brain injury.
Collapse
Affiliation(s)
- Dan Benjamini
- Section on Quantitative Imaging and Tissue Sciences, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
| | - Diego Iacono
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA.,Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.,Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.,Neuroscience Graduate Program, Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.,Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michal E Komlosh
- Section on Quantitative Imaging and Tissue Sciences, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
| | - Daniel P Perl
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
| | - David L Brody
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.,Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
43
|
Ji Y, Gagoski B, Hoge WS, Rathi Y, Ning L. Accelerated diffusion and relaxation-diffusion MRI using time-division multiplexing EPI. Magn Reson Med 2021; 86:2528-2541. [PMID: 34196032 DOI: 10.1002/mrm.28894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE To develop a time-division multiplexing echo-planar imaging (TDM-EPI) sequence for approximately two- to threefold acceleration when acquiring joint relaxation-diffusion MRI data with multiple TEs. METHODS The proposed TDM-EPI sequence interleaves excitation and data collection for up to 3 separate slices at different TEs and uses echo-shifting gradients to disentangle the overlapping echo signals during the readout period. By properly arranging the sequence event blocks for each slice and adjusting the echo-shifting gradients, diffusion-weighted images from separate slices can be acquired. Therefore, we present 2 variants of the sequence. A single-TE TDM-EPI is presented to demonstrate the concept. Next, a multi-TE TDM-EPI is presented to highlight the advantages of the TDM approach for relaxation-diffusion imaging. These sequences were evaluated on a 3 Tesla scanner with a water phantom and in vivo human brain data. RESULTS The single-TE TDM-EPI sequence can simultaneously acquire 2 slices with a maximum b value of 3000 s/mm2 and 2.5 mm isotropic resolution using interleaved readout windows with TE ≈ 78 ms. With the same b value and resolution, the multi-TE TDM-EPI sequence can simultaneously acquire 2 or 3 separate slices using interleaved readout sections with shortest TE ≈ 70 ms and ΔTE ≈ 30 ms. Phantom and in vivo experiments have shown that the proposed TDM-EPI sequences can provide similar image quality and diffusion measures as conventional EPI readouts with multiple echoes but can reduce the overall relaxation-diffusion protocol scan time by approximately two- to threefold. CONCLUSION TDM-EPI is a novel approach to acquire diffusion imaging data at multiple TEs. This enables a significant reduction in acquisition time for relaxation-diffusion MRI experiments but without compromising image quality and diffusion measurements, thus removing a significant barrier to the adoption of relaxation-diffusion MRI in clinical research studies of neurological and mental disorders.
Collapse
Affiliation(s)
- Yang Ji
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - W Scott Hoge
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lipeng Ning
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Avram AV, Sarlls JE, Basser PJ. Whole-Brain Imaging of Subvoxel T1-Diffusion Correlation Spectra in Human Subjects. Front Neurosci 2021; 15:671465. [PMID: 34177451 PMCID: PMC8232058 DOI: 10.3389/fnins.2021.671465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
T1 relaxation and water mobility generate eloquent MRI tissue contrasts with great diagnostic value in many neuroradiological applications. However, conventional methods do not adequately quantify the microscopic heterogeneity of these important biophysical properties within a voxel, and therefore have limited biological specificity. We describe a new correlation spectroscopic (CS) MRI method for measuring how T1 and mean diffusivity (MD) co-vary in microscopic tissue environments. We develop a clinical pulse sequence that combines inversion recovery (IR) with single-shot isotropic diffusion encoding (IDE) to efficiently acquire whole-brain MRIs with a wide range of joint T1-MD weightings. Unlike conventional diffusion encoding, the IDE preparation ensures that all subvoxel water pools are weighted by their MDs regardless of the sizes, shapes, and orientations of their corresponding microscopic diffusion tensors. Accordingly, IR-IDE measurements are well-suited for model-free, quantitative spectroscopic analysis of microscopic water pools. Using numerical simulations, phantom experiments, and data from healthy volunteers we demonstrate how IR-IDE MRIs can be processed to reconstruct maps of two-dimensional joint probability density functions, i.e., correlation spectra, of subvoxel T1-MD values. In vivo T1-MD spectra show distinct cerebrospinal fluid and parenchymal tissue components specific to white matter, cortical gray matter, basal ganglia, and myelinated fiber pathways, suggesting the potential for improved biological specificity. The one-dimensional marginal distributions derived from the T1-MD correlation spectra agree well with results from other relaxation spectroscopic and quantitative MRI studies, validating the T1-MD contrast encoding and the spectral reconstruction. Mapping subvoxel T1-diffusion correlations in patient populations may provide a more nuanced, comprehensive, sensitive, and specific neuroradiological assessment of the non-specific changes seen on fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted MRIs (DWIs) in cancer, ischemic stroke, or brain injury.
Collapse
Affiliation(s)
- Alexandru V Avram
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.,Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Joelle E Sarlls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Peter J Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
45
|
Reymbaut A, Critchley J, Durighel G, Sprenger T, Sughrue M, Bryskhe K, Topgaard D. Toward nonparametric diffusion- T1 characterization of crossing fibers in the human brain. Magn Reson Med 2021; 85:2815-2827. [PMID: 33301195 PMCID: PMC7898694 DOI: 10.1002/mrm.28604] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To estimate T 1 for each distinct fiber population within voxels containing multiple brain tissue types. METHODS A diffusion- T 1 correlation experiment was carried out in an in vivo human brain using tensor-valued diffusion encoding and multiple repetition times. The acquired data were inverted using a Monte Carlo algorithm that retrieves nonparametric distributions P ( D , R 1 ) of diffusion tensors and longitudinal relaxation rates R 1 = 1 / T 1 . Orientation distribution functions (ODFs) of the highly anisotropic components of P ( D , R 1 ) were defined to visualize orientation-specific diffusion-relaxation properties. Finally, Monte Carlo density-peak clustering (MC-DPC) was performed to quantify fiber-specific features and investigate microstructural differences between white matter fiber bundles. RESULTS Parameter maps corresponding to P ( D , R 1 ) 's statistical descriptors were obtained, exhibiting the expected R 1 contrast between brain tissue types. Our ODFs recovered local orientations consistent with the known anatomy and indicated differences in R 1 between major crossing fiber bundles. These differences, confirmed by MC-DPC, were in qualitative agreement with previous model-based works but seem biased by the limitations of our current experimental setup. CONCLUSIONS Our Monte Carlo framework enables the nonparametric estimation of fiber-specific diffusion- T 1 features, thereby showing potential for characterizing developmental or pathological changes in T 1 within a given fiber bundle, and for investigating interbundle T 1 differences.
Collapse
Affiliation(s)
- Alexis Reymbaut
- Department of Physical ChemistryLund UniversityLundSweden
- Random Walk Imaging ABLundSweden
| | | | | | - Tim Sprenger
- Karolinska InstituteStockholmSweden
- GE HealthcareStockholmSweden
| | | | | | - Daniel Topgaard
- Department of Physical ChemistryLund UniversityLundSweden
- Random Walk Imaging ABLundSweden
| |
Collapse
|
46
|
Slator PJ, Hutter J, Marinescu RV, Palombo M, Jackson LH, Ho A, Chappell LC, Rutherford M, Hajnal JV, Alexander DC. Data-Driven multi-Contrast spectral microstructure imaging with InSpect: INtegrated SPECTral component estimation and mapping. Med Image Anal 2021; 71:102045. [PMID: 33934005 PMCID: PMC8543043 DOI: 10.1016/j.media.2021.102045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/08/2021] [Accepted: 03/16/2021] [Indexed: 11/19/2022]
Abstract
Unsupervised learning technique for spectroscopic analysis of quantitative MRI. Shares information across voxels to improve estimation of multi-dimensional or single-dimensional spectra. Spectral maps are dramatically improved compared to existing approaches. Can potentially identify and map tissue environments; in placental diffusion-relaxometry MRI we demonstrate that it identifies components that correspond to distinct tissue types.
We introduce and demonstrate an unsupervised machine learning technique for spectroscopic analysis of quantitative MRI experiments. Our algorithm supports estimation of one-dimensional spectra from single-contrast data, and multidimensional correlation spectra from simultaneous multi-contrast data. These spectrum-based approaches allow model-free investigation of tissue properties, but require regularised inversion of a Laplace transform or Fredholm integral, which is an ill-posed calculation. Here we present a method that addresses this limitation in a data-driven way. The algorithm simultaneously estimates a canonical basis of spectral components and voxelwise maps of their weightings, thereby pooling information across whole images to regularise the ill-posed problem. We show in simulations that our algorithm substantially outperforms current voxelwise spectral approaches. We demonstrate the method on multi-contrast diffusion-relaxometry placental MRI scans, revealing anatomically-relevant sub-structures, and identifying dysfunctional placentas. Our algorithm vastly reduces the data required to reliably estimate spectra, opening up the possibility of quantitative MRI spectroscopy in a wide range of new applications. Our InSpect code is available at github.com/paddyslator/inspect.
Collapse
Affiliation(s)
- Paddy J Slator
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK.
| | - Jana Hutter
- Centre for the Developing Brain, Kings College London, London, UK; Biomedical Engineering Department, Kings College London, London, UK
| | - Razvan V Marinescu
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK
| | - Marco Palombo
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK
| | - Laurence H Jackson
- Centre for the Developing Brain, Kings College London, London, UK; Biomedical Engineering Department, Kings College London, London, UK
| | - Alison Ho
- Women's Health Department, King's College London, London, UK
| | - Lucy C Chappell
- Women's Health Department, King's College London, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, Kings College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, Kings College London, London, UK; Biomedical Engineering Department, Kings College London, London, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK
| |
Collapse
|
47
|
Ramos-Llordén G, Vegas-Sánchez-Ferrero G, Liao C, Westin CF, Setsompop K, Rathi Y. SNR-enhanced diffusion MRI with structure-preserving low-rank denoising in reproducing kernel Hilbert spaces. Magn Reson Med 2021; 86:1614-1632. [PMID: 33834546 PMCID: PMC8497014 DOI: 10.1002/mrm.28752] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/12/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To introduce, develop, and evaluate a novel denoising technique for diffusion MRI that leverages nonlinear redundancy in the data to boost the SNR while preserving signal information. METHODS We exploit nonlinear redundancy of the dMRI data by means of kernel principal component analysis (KPCA), a nonlinear generalization of PCA to reproducing kernel Hilbert spaces. By mapping the signal to a high-dimensional space, a higher level of redundant information is exploited, thereby enabling better denoising than linear PCA. We implement KPCA with a Gaussian kernel, with parameters automatically selected from knowledge of the noise statistics, and validate it on realistic Monte Carlo simulations as well as with in vivo human brain submillimeter and low-resolution dMRI data. We also demonstrate KPCA denoising on multi-coil dMRI data. RESULTS SNR improvements up to 2.7 × were obtained in real in vivo datasets denoised with KPCA, in comparison to SNR gains of up to 1.8 × using a linear PCA denoising technique called Marchenko-Pastur PCA (MPPCA). Compared to gold-standard dataset references created from averaged data, we showed that lower normalized root mean squared error was achieved with KPCA compared to MPPCA. Statistical analysis of residuals shows that anatomical information is preserved and only noise is removed. Improvements in the estimation of diffusion model parameters such as fractional anisotropy, mean diffusivity, and fiber orientation distribution functions were also demonstrated. CONCLUSION Nonlinear redundancy of the dMRI signal can be exploited with KPCA, which allows superior noise reduction/SNR improvements than the MPPCA method, without loss of signal information.
Collapse
Affiliation(s)
- Gabriel Ramos-Llordén
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Congyu Liao
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Leppert IR, Andrews DA, Campbell JSW, Park DJ, Pike GB, Polimeni JR, Tardif CL. Efficient whole-brain tract-specific T 1 mapping at 3T with slice-shuffled inversion-recovery diffusion-weighted imaging. Magn Reson Med 2021; 86:738-753. [PMID: 33749017 DOI: 10.1002/mrm.28734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/31/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Most voxels in white matter contain multiple fiber populations with different orientations and levels of myelination. Conventional T1 mapping measures 1 T1 value per voxel, representing a weighted average of the multiple tract T1 times. Inversion-recovery diffusion-weighted imaging (IR-DWI) allows the T1 times of multiple tracts in a voxel to be disentangled, but the scan time is prohibitively long. Recently, slice-shuffled IR-DWI implementations have been proposed to significantly reduce scan time. In this work, we demonstrate that we can measure tract-specific T1 values in the whole brain using simultaneous multi-slice slice-shuffled IR-DWI at 3T. METHODS We perform simulations to evaluate the accuracy and precision of our crossing fiber IR-DWI signal model for various fiber parameters. The proposed sequence and signal model are tested in a phantom consisting of crossing asparagus pieces doped with gadolinium to vary T1 , and in 2 human subjects. RESULTS Our simulations show that tract-specific T1 times can be estimated within 5% of the nominal fiber T1 values. Tract-specific T1 values were resolved in subvoxel 2 fiber crossings in the asparagus phantom. Tract-specific T1 times were resolved in 2 different tract crossings in the human brain where myelination differences have previously been reported; the crossing of the cingulum and genu of the corpus callosum and the crossing of the corticospinal tract and pontine fibers. CONCLUSION Whole-brain tract-specific T1 mapping is feasible using slice-shuffled IR-DWI at 3T. This technique has the potential to improve the microstructural characterization of specific tracts implicated in neurodevelopment, aging, and demyelinating disorders.
Collapse
Affiliation(s)
- Ilana R Leppert
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Daniel A Andrews
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Jennifer S W Campbell
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Daniel J Park
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - G Bruce Pike
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology and Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine L Tardif
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
49
|
Barakovic M, Tax CMW, Rudrapatna U, Chamberland M, Rafael-Patino J, Granziera C, Thiran JP, Daducci A, Canales-Rodríguez EJ, Jones DK. Resolving bundle-specific intra-axonal T 2 values within a voxel using diffusion-relaxation tract-based estimation. Neuroimage 2021; 227:117617. [PMID: 33301934 PMCID: PMC7615251 DOI: 10.1016/j.neuroimage.2020.117617] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
At the typical spatial resolution of MRI in the human brain, approximately 60-90% of voxels contain multiple fiber populations. Quantifying microstructural properties of distinct fiber populations within a voxel is therefore challenging but necessary. While progress has been made for diffusion and T1-relaxation properties, how to resolve intra-voxel T2 heterogeneity remains an open question. Here a novel framework, named COMMIT-T2, is proposed that uses tractography-based spatial regularization with diffusion-relaxometry data to estimate multiple intra-axonal T2 values within a voxel. Unlike previously-proposed voxel-based T2 estimation methods, which (when applied in white matter) implicitly assume just one fiber bundle in the voxel or the same T2 for all bundles in the voxel, COMMIT-T2 can recover specific T2 values for each unique fiber population passing through the voxel. In this approach, the number of recovered unique T2 values is not determined by a number of model parameters set a priori, but rather by the number of tractography-reconstructed streamlines passing through the voxel. Proof-of-concept is provided in silico and in vivo, including a demonstration that distinct tract-specific T2 profiles can be recovered even in the three-way crossing of the corpus callosum, arcuate fasciculus, and corticospinal tract. We demonstrate the favourable performance of COMMIT-T2 compared to that of voxelwise approaches for mapping intra-axonal T2 exploiting diffusion, including a direction-averaged method and AMICO-T2, a new extension to the previously-proposed Accelerated Microstructure Imaging via Convex Optimization (AMICO) framework.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK; Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK
| | - Jonathan Rafael-Patino
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Erick J Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; FIDMAG Germanes Hospitalàries Research Foundation, CIBERSAM, Barcelona, Spain.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK; Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
50
|
Fair MJ, Liao C, Manhard MK, Setsompop K. Diffusion-PEPTIDE: Distortion- and blurring-free diffusion imaging with self-navigated motion-correction and relaxometry capabilities. Magn Reson Med 2020; 85:2417-2433. [PMID: 33314281 DOI: 10.1002/mrm.28579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To implement the time-resolved relaxometry PEPTIDE technique into a diffusion acquisition to provide self-navigated, distortion- and blurring-free diffusion imaging that is robust to motion, while simultaneously providing T2 and T 2 ∗ mapping. THEORY AND METHODS The PEPTIDE readout was implemented into a spin-echo diffusion acquisition, enabling reconstruction of a time-series of T2 - and T 2 ∗ -weighted images, free from conventional echo planar imaging (EPI) distortion and blurring, for each diffusion-encoding. Robustness of PEPTIDE to motion and shot-to-shot phase variation was examined through a deliberate motion-corrupted diffusion experiment. Two diffusion-relaxometry in vivo brain protocols were also examined: (1)1 × 1 × 3 mm3 across 32 diffusion directions in 20 min, (2)1.5 × 1.5 × 3.0 mm3 across 6 diffusion-weighted images in 3.4 min. T2 , T 2 ∗ , and diffusion parameter maps were calculated from these data. As initial exploration of the rich diffusion-relaxometry data content for use in multi-compartment modeling, PEPTIDE data were acquired of a gadolinium-doped asparagus phantom. These datasets contained two compartments with different relaxation parameters and different diffusion orientation properties, and T2 relaxation variations across these diffusion directions were explored. RESULTS Diffusion-PEPTIDE showed the capability to provide high quality diffusion images and T2 and T 2 ∗ maps from both protocols. The reconstructions were distortion-free, avoided potential resolution losses exceeding 100% in equivalent EPI acquisitions, and showed tolerance to nearly 30° of rotational motion. Expected variation in T2 values as a function of diffusion direction was observed in the two-compartment asparagus phantom (P < .01), demonstrating potential to explore diffusion-PEPTIDE data for multi-compartment modeling. CONCLUSIONS Diffusion-PEPTIDE provides highly robust diffusion and relaxometry data and offers potential for future applications in diffusion-relaxometry multi-compartment modeling.
Collapse
Affiliation(s)
- Merlin J Fair
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Congyu Liao
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary Kate Manhard
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| |
Collapse
|