1
|
Jung KJ, Cui C, Lee SH, Park CH, Chun JW, Kim DH. Investigation of electrical conductivity changes during brain functional activity in 3T MRI. Neuroimage 2025; 311:121174. [PMID: 40164344 DOI: 10.1016/j.neuroimage.2025.121174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Blood oxygenation level-dependent functional magnetic resonance imaging (fMRI) is widely used to visualize brain activation regions by detecting hemodynamic responses associated with increased metabolic demand. Although alternative MRI methods have been employed to monitor functional activities, the investigation of in-vivo electrical property changes during brain function remains limited. In this study, the relationship between fMRI signals and electrical conductivity (measured at the Larmor frequency) changes was explored using phase-based electrical property tomography. Results revealed consistent patterns: conductivity changes showed negative correlations, with conductivity decreasing in functionally active regions whereas B1 phase mapping exhibited positive correlations around the activation regions. These observations were consistent across the motor and visual cortex activations To further substantiate these findings, electromagnetic radio-frequency simulations that modeled activation states with varying conductivities were conducted, demonstrating trends similar to in-vivo results for B1 phase and conductivity. Notably, we observed that false-positive activation signals could occur depending on the level of noise and the reconstruction method applied. These findings suggested that in-vivo electrical conductivity changes can indeed be measured during brain activity. However, further investigation is needed to fully understand the underlying mechanisms driving these measurements.
Collapse
Affiliation(s)
- Kyu-Jin Jung
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Chuanjiang Cui
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Soo-Hyung Lee
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Chan-Hee Park
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ji-Won Chun
- Department of Medical Informatics, Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Giannakopoulos II, Carluccio G, Keerthivasan MB, Koerzdoerfer G, Lakshmanan K, De Moura HL, Serrallés JEC, Lattanzi R. MR electrical properties mapping using vision transformers and canny edge detectors. Magn Reson Med 2025; 93:1117-1131. [PMID: 39415436 PMCID: PMC11955224 DOI: 10.1002/mrm.30338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
PURPOSE We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements. THEORY AND METHODS Our network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the object boundaries as inputs to compute the EP maps. We trained our network on a dataset of 10 000 synthetic tissue-mimicking phantoms and fine-tuned it on a dataset of 11 000 realistic head models. We assessed performance in-distribution simulated data and out-of-distribution head models, with and without synthetic lesions. We further evaluated our network in experiments for an inhomogeneous phantom and a volunteer. RESULTS The conductivity and permittivity maps had an average peak normalized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms, respectively. For the realistic heads, the average PNAE for the conductivity and permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions was accurately identified, with reconstructed conductivity and permittivity values within 15% and 25% of the ground-truth, respectively. The conductivity and permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs with respect to probe-measured values, respectively. The in vivo EP reconstruction truthfully preserved the subject's anatomy with average values over the entire head similar to the expected literature values. CONCLUSION We introduced a new learning-based approach for reconstructing EP from MR measurements obtained with a birdcage coil, marking an important step towards the development of clinically-usable in vivo EP reconstruction protocols.
Collapse
Affiliation(s)
- Ilias I. Giannakopoulos
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | | | | | | | - Karthik Lakshmanan
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Hector L. De Moura
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - José E. Cruz Serrallés
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Riccardo Lattanzi
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Jung KJ, Meerbothe TG, Cui C, Park M, van den Berg CAT, Mandija S, Kim DH. A joint three-plane physics-constrained deep learning based polynomial fitting approach for MR electrical properties tomography. Neuroimage 2025; 307:121054. [PMID: 39863005 DOI: 10.1016/j.neuroimage.2025.121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 01/27/2025] Open
Abstract
Magnetic resonance electrical properties tomography can extract the electrical properties of in-vivo tissue. To estimate tissue electrical properties, various reconstruction algorithms have been proposed. However, physics-based reconstructions are prone to various artifacts such as noise amplification and boundary artifact. Deep learning-based approaches are robust to these artifacts but need extensive training datasets and suffer from generalization to unseen data. To address these issues, we introduce a joint three-plane physics-constrained deep learning framework for polynomial fitting MR-EPT by merging physics-based weighted polynomial fitting with deep learning. Within this framework, deep learning is used to discern the optimal polynomial fitting weights for a physics based polynomial fitting reconstruction on the complex B1+ data. For the prediction of optimal fitting coefficients, three neural networks were separately trained on simulated heterogeneous brain models to predict optimal polynomial weighting parameters in three orthogonal planes. Then, the network weights were jointly optimized to estimate the polynomial weights in each plane for a combined conductivity reconstruction. Based on this physics-constrained deep learning approach, we achieved an improvement of conductivity estimation accuracy in comparison to a single plane estimation and a reduction of computational load. The results demonstrate that the proposed method based on 3D data exhibits superior performance in comparison to conventional polynomial fitting methods in terms of capturing anatomical detail and homogeneity. Crucially, in-vivo application of the proposed method showed that the method generalizes well to in-vivo data, without introducing significant errors or artifacts. This generalization makes the presented method a promising candidate for use in clinical applications.
Collapse
Affiliation(s)
- Kyu-Jin Jung
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Thierry G Meerbothe
- Computational Imaging Group for MR Therapy and Diagnostics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chuanjiang Cui
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Mina Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Cornelis A T van den Berg
- Computational Imaging Group for MR Therapy and Diagnostics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefano Mandija
- Computational Imaging Group for MR Therapy and Diagnostics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Cui C, Jung KJ, Al-Masni MA, Kim JH, Kim SY, Park M, Huang SY, Chun SY, Kim DH. Deep Network Regularization for Phase-Based Magnetic Resonance Electrical Properties Tomography With Stein's Unbiased Risk Estimator. IEEE Trans Biomed Eng 2025; 72:43-55. [PMID: 39102318 DOI: 10.1109/tbme.2024.3438270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Magnetic resonance imaging (MRI) can estimate tissue conductivity values using phase-based magnetic resonance electrical properties tomography (MR-EPT). However, this method is prone to noise amplification due to the Laplacian operator's sensitivity. To address this issue, we propose a novel unsupervised preprocessing denoiser for MRI transceive phase images. Our approach draws inspiration from the deep image prior (DIP) technique, utilizing the random initialization of a convolutional neural network (CNN) to enforce implicit regularization. Additionally, we incorporate Stein.s unbiased risk estimator (SURE) to optimize the network, which serves as an unbiased estimator of mean square error, thereby eliminating the need for labeled data. This modification mitigates the overfitting commonly associated with the DIP approach, enabling a fully unsupervised framework. Furthermore, we process real and imaginary images instead of phase images, aligning more closely with the theoretical basis of the risk estimator. Our generative model does not require pre-training or extensive training datasets, maintaining adaptability across different resolutions and signal-to-noise ratio levels. In our evaluations, the proposed method significantly reduced residual noise in phase maps, improving both quantitative and qualitative outcomes in phantom and simulated brain data. It also outperformed existing denoising techniques by reducing noise amplification and boundary errors. Applied to data from healthy volunteers and patients, our method yielded conductivity maps with reduced errors and values consistent with established literature. To our knowledge, this is the first blind, fully unsupervised approach capable of implementing a 2D phase-based MR-EPT reconstruction algorithm.
Collapse
|
5
|
Meerbothe TG, Florczak S, van den Berg CAT, Levato R, Mandija S. A reusable 3D printed brain-like phantom for benchmarking electrical properties tomography reconstructions. Magn Reson Med 2024; 92:2271-2279. [PMID: 38852180 DOI: 10.1002/mrm.30189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE In MR electrical properties tomography (MR-EPT), electrical properties (EPs, conductivity and permittivity) are reconstructed from MR measurements. Phantom measurements are important to characterize the performance of MR-EPT reconstruction methods, since they allow knowledge of reference EPs values. To assess reconstruction methods in a more realistic scenario, it is important to test the methods using phantoms with realistic shapes, internal structures, and dielectric properties. In this work, we present a 3D printing procedure for the creation of realistic brain-like phantoms to benchmark MR-EPT reconstructions. METHODS We created two brain-like geometries with three different compartments using 3D printing. The first geometry was filled once, while the second geometry was filled three times with different saline-gelatin solutions, resulting in a total of four phantoms with different EPs. The saline solutions were characterized using a probe. 3D MR-EPT reconstructions were performed from MR measurements at 3T. The reconstructed conductivity values were compared to reference values of the saline-gelatin solutions. The measured fields were also compared to simulated fields using the same phantom geometry and electrical properties. RESULTS The measured fields were consistent with simulated fields. Reconstructed conductivity values were consistent with the reference (probe) conductivity values. This indicated the suitability of such phantoms for benchmarking MR-EPT reconstructions. CONCLUSION We presented a new workflow to 3D print realistic brain-like phantoms in an easy and affordable way. These phantoms are suitable to benchmark MR-EPT reconstructions, but can also be used for benchmarking other quantitative MR methods.
Collapse
Affiliation(s)
- T G Meerbothe
- Department of Radiotherapy, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Therapy and Diagnostics, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Florczak
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - C A T van den Berg
- Department of Radiotherapy, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Therapy and Diagnostics, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - S Mandija
- Department of Radiotherapy, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Therapy and Diagnostics, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Ruan G, Wang Z, Liu C, Xia L, Wang H, Qi L, Chen W. Magnetic Resonance Electrical Properties Tomography Based on Modified Physics- Informed Neural Network and Multiconstraints. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3263-3278. [PMID: 38640054 DOI: 10.1109/tmi.2024.3391651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
This paper presents a novel method based on leveraging physics-informed neural networks for magnetic resonance electrical property tomography (MREPT). MREPT is a noninvasive technique that can retrieve the spatial distribution of electrical properties (EPs) of scanned tissues from measured transmit radiofrequency (RF) in magnetic resonance imaging (MRI) systems. The reconstruction of EP values in MREPT is achieved by solving a partial differential equation derived from Maxwell's equations that lacks a direct solution. Most conventional MREPT methods suffer from artifacts caused by the invalidation of the assumption applied for simplification of the problem and numerical errors caused by numerical differentiation. Existing deep learning-based (DL-based) MREPT methods comprise data-driven methods that need to collect massive datasets for training or model-driven methods that are only validated in trivial cases. Hence we proposed a model-driven method that learns mapping from a measured RF, its spatial gradient and Laplacian to EPs using fully connected networks (FCNNs). The spatial gradient of EP can be computed through the automatic differentiation of FCNNs and the chain rule. FCNNs are optimized using the residual of the central physical equation of convection-reaction MREPT as the loss function ( L) . To alleviate the ill condition of the problem, we added multiconstraints, including the similarity constraint between permittivity and conductivity and the l1 norm of spatial gradients of permittivity and conductivity, to the L . We demonstrate the proposed method with a three-dimensional realistic head model, a digital phantom simulation, and a practical phantom experiment at a 9.4T animal MRI system.
Collapse
|
7
|
He Z, Soullié P, Lefebvre P, Ambarki K, Felblinger J, Odille F. Changes of in vivo electrical conductivity in the brain and torso related to age, fat fraction and sex using MRI. Sci Rep 2024; 14:16109. [PMID: 38997324 PMCID: PMC11245625 DOI: 10.1038/s41598-024-67014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
This work was inspired by the observation that a majority of MR-electrical properties tomography studies are based on direct comparisons with ex vivo measurements carried out on post-mortem samples in the 90's. As a result, the in vivo conductivity values obtained from MRI in the megahertz range in different types of tissues (brain, liver, tumors, muscles, etc.) found in the literature may not correspond to their ex vivo equivalent, which still serves as a reference for electromagnetic modelling. This study aims to pave the way for improving current databases since the definition of personalized electromagnetic models (e.g. for Specific Absorption Rate estimation) would benefit from better estimation. Seventeen healthy volunteers underwent MRI of both brain and thorax/abdomen using a three-dimensional ultrashort echo-time (UTE) sequence. We estimated conductivity (S/m) in several classes of macroscopic tissue using a customized reconstruction method from complex UTE images, and give general statistics for each of these regions (mean-median-standard deviation). These values are used to find possible correlations with biological parameters such as age, sex, body mass index and/or fat volume fraction, using linear regression analysis. In short, the collected in vivo values show significant deviations from the ex vivo values in conventional databases, and we show significant relationships with the latter parameters in certain organs for the first time, e.g. a decrease in brain conductivity with age.
Collapse
Affiliation(s)
- Zhongzheng He
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
| | - Paul Soullié
- IADI U1254, INSERM and Université de Lorraine, Nancy, France.
| | | | | | - Jacques Felblinger
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
- CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France
| | - Freddy Odille
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
- CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France
| |
Collapse
|
8
|
Wang J, Gao Y, Xin SX. Using the Probability Density Function-Based Channel-Combination Bloch-Siegert Method Realizes Permittivity Imaging at 3T. Bioengineering (Basel) 2024; 11:699. [PMID: 39061781 PMCID: PMC11274052 DOI: 10.3390/bioengineering11070699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Magnetic resonance electrical properties tomography (MR EPT) can retrieve permittivity from the B1+ magnitude. However, the accuracy of the permittivity measurement using MR EPT is still not ideal due to the low signal-to-noise ratio (SNR) of B1+ magnitude. In this study, the probability density function (PDF)-based channel-combination Bloch-Siegert (BSS) method was firstly introduced to MR EPT for improving the accuracy of the permittivity measurement. MRI experiments were performed using a 3T scanner with an eight-channel receiver coil. The homogeneous water phantom was scanned for assessing the spatial distribution of B1+ magnitude obtained from the PDF-based channel-combination BSS method. Gadolinium (Gd) phantom and rats were scanned for assessing the feasibility of the PDF-based channel-combination BSS method in MR EPT. The Helmholtz-based EPT reconstruction algorithm was selected. For quantitative comparison, the permittivity measured by the open-ended coaxial probe method was considered as the ground-truth value. The accuracy of the permittivity measurement was estimated by the relative error between the reconstructed value and the ground-truth value. The reconstructed relative permittivity of Gd phantom was 52.413, while that of rat leg muscle was 54.053. The ground-truth values of relative permittivity of Gd phantom and rat leg muscle were 78.86 and 49.04, respectively. The relative error of average permittivity was 33.53% for Gd and 10.22% for rat leg muscle. The results indicated the high accuracy of the permittivity measurement using the PDF-based channel-combination BSS method in MR EPT. This improvement may promote the clinical application of MR EPT technology, such as in the early diagnosis of cancers.
Collapse
Affiliation(s)
| | | | - Sherman Xuegang Xin
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
He Z, Lefebvre PM, Soullié P, Doguet M, Ambarki K, Chen B, Odille F. Phantom evaluation of electrical conductivity mapping by MRI: Comparison to vector network analyzer measurements and spatial resolution assessment. Magn Reson Med 2024; 91:2374-2390. [PMID: 38225861 DOI: 10.1002/mrm.30009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE To evaluate the performance of various MR electrical properties tomography (MR-EPT) methods at 3 T in terms of absolute quantification and spatial resolution limit for electrical conductivity. METHODS Absolute quantification as well as spatial resolution performance were evaluated on homogeneous phantoms and a phantom with holes of different sizes, respectively. Ground-truth conductivities were measured with an open-ended coaxial probe connected to a vector network analyzer (VNA). Four widely used MR-EPT reconstruction methods were investigated: phase-based Helmholtz (PB), phase-based convection-reaction (PB-cr), image-based (IB), and generalized-image-based (GIB). These methods were compared using the same complex images from a 1 mm-isotropic UTE sequence. Alternative transceive phase acquisition sequences were also compared in PB and PB-cr. RESULTS In large homogeneous phantoms, all methods showed a strong correlation with ground truth conductivities (r > 0.99); however, GIB was the best in terms of accuracy, spatial uniformity, and robustness to boundary artifacts. In the resolution phantom, the normalized root-mean-squared error of all methods grew rapidly (>0.40) when the hole size was below 10 mm, with simplified methods (PB and IB), or below 5 mm, with generalized methods (PB-cr and GIB). CONCLUSION VNA measurements are essential to assess the accuracy of MR-EPT. In this study, all tested MR-EPT methods correlated strongly with the VNA measurements. The UTE sequence is recommended for MR-EPT, with the GIB method providing good accuracy for structures down to 5 mm. Structures below 5 mm may still be detected in the conductivity maps, but with significantly lower accuracy.
Collapse
Affiliation(s)
- Zhongzheng He
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
| | | | - Paul Soullié
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
| | - Martin Doguet
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
- BioSerenity, Paris, France
| | | | - Bailiang Chen
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
- CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France
| | - Freddy Odille
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
- CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France
| |
Collapse
|
10
|
Zumbo S, Mandija S, Meliadò EF, Stijnman P, Meerbothe TG, van den Berg CA, Isernia T, Bevacqua MT. Unrolled Optimization via Physics-Assisted Convolutional Neural Network for MR-Based Electrical Properties Tomography: A Numerical Investigation. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:505-513. [PMID: 39050972 PMCID: PMC11268945 DOI: 10.1109/ojemb.2024.3402998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 07/27/2024] Open
Abstract
Magnetic Resonance imaging based Electrical Properties Tomography (MR-EPT) is a non-invasive technique that measures the electrical properties (EPs) of biological tissues. In this work, we present and numerically investigate the performance of an unrolled, physics-assisted method for 2D MR-EPT reconstructions, where a cascade of Convolutional Neural Networks is used to compute the contrast update. Each network takes in input the EPs and the gradient descent direction (encoding the physics underlying the adopted scattering model) and returns as output the updated contrast function. The network is trained and tested in silico using 2D slices of realistic brain models at 128 MHz. Results show the capability of the proposed procedure to reconstruct EPs maps with quality comparable to that of the popular Contrast Source Inversion-EPT, while significantly reducing the computational time.
Collapse
Affiliation(s)
- Sabrina Zumbo
- Department DIIESUniversità Mediterranea di Reggio Calabria89124Reggio CalabriaItaly
| | - Stefano Mandija
- Department of Radiotherapy, Division of Imaging & OncologyUniversity Medical Center Utrecht3584 CXUtrechtThe Netherlands
- Computational Imaging Group for MR Diagnostics & Therapy, Center for Image SciencesUtrecht University3584 CSUtrechtThe Netherlands
| | - Ettore F. Meliadò
- Computational Imaging Group for MR Diagnostics & Therapy, Center for Image SciencesUtrecht University3584 CSUtrechtThe Netherlands
| | - Peter Stijnman
- Department of Radiotherapy, Division of Imaging & OncologyUniversity Medical Center Utrecht3584 CXUtrechtThe Netherlands
- Computational Imaging Group for MR Diagnostics & Therapy, Center for Image SciencesUtrecht University3584 CSUtrechtThe Netherlands
| | - Thierry G. Meerbothe
- Department of Radiotherapy, Division of Imaging & OncologyUniversity Medical Center Utrecht3584 CXUtrechtThe Netherlands
- Computational Imaging Group for MR Diagnostics & Therapy, Center for Image SciencesUtrecht University3584 CSUtrechtThe Netherlands
| | - Cornelis A.T. van den Berg
- Department of Radiotherapy, Division of Imaging & OncologyUniversity Medical Center Utrecht3584 CXUtrechtThe Netherlands
- Computational Imaging Group for MR Diagnostics & Therapy, Center for Image SciencesUtrecht University3584 CSUtrechtThe Netherlands
| | - Tommaso Isernia
- Department DIIESUniversità Mediterranea di Reggio Calabria89124Reggio CalabriaItaly
| | - Martina T. Bevacqua
- Department DIIESUniversità Mediterranea di Reggio Calabria89124Reggio CalabriaItaly
| |
Collapse
|
11
|
Kim JH, Kim SY, Cui C, Ji H, Yoen H, Cho N, Kim DH. Problem Solving MRI to Reduce False-Positive Biopsy Related to Breast US: Conductivity vs. DWI vs. Abbreviated Contrast-Enhanced MRI. J Magn Reson Imaging 2024; 59:1218-1228. [PMID: 37477575 DOI: 10.1002/jmri.28884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND While breast ultrasound (US) is a useful tool for diagnosing breast masses, it can entail false-positive biopsy results because of some overlapping features between benign and malignant breast masses and subjective interpretation. PURPOSE To evaluate the performance of conductivity imaging for reducing false-positive biopsy results related to breast US, as compared to diffusion-weighted imaging (DWI) and abbreviated MRI consisting of one pre- and one post-contrast T1-weighted imaging. STUDY TYPE Prospective. SUBJECTS Seventy-nine women (median age, 44 years) with 86 Breast Imaging Reporting and Data System (BI-RADS) category 4 masses as detected by breast US. FIELD STRENGTH/SEQUENCE 3-T, T2-weighted turbo spin echo sequence, DWI, and abbreviated contrast-enhanced MRI (T1-weighted gradient echo sequence). ASSESSMENT US-guided biopsy (reference standard) was obtained on the same day as MRI. The maximum and mean conductivity parameters from whole and single regions of interest (ROIs) were measured. Apparent diffusion coefficient (ADC) values were obtained from an area with the lowest signal within a lesion on the ADC map. The performance of conductivity, ADC, and abbreviated MRI for reducing false-positive biopsies was evaluated using the following criteria: lowest conductivity and highest ADC values among malignant breast lesions and BI-RADS categories 2 or 3 on abbreviated MRI. STATISTICAL TESTS One conductivity parameter with the maximum area under the curve (AUC) from receiver operating characteristics was selected. A P-value <0.05 was considered statistically significant. RESULTS US-guided biopsy revealed 65 benign lesions and 21 malignant lesions. The mean conductivity parameter of the single ROI method was selected (AUC = 0.74). Considering conductivity (≤0.10 S/m), ADC (≥1.60 × 10-3 mm2 /sec), and BI-RADS categories 2 or 3 reduced false-positive biopsies by 23% (15 of 65), 38% (25 of 65), and 43% (28 of 65), respectively, without missing malignant lesions. DATA CONCLUSION Conductivity imaging may show lower performance than DWI and abbreviated MRI in reducing unnecessary biopsies. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jun-Hyeong Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Soo-Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Chuanjiang Cui
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Hye Ji
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Heera Yoen
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Nariya Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Meerbothe TG, Meliado EF, Stijnman PRS, van den Berg CAT, Mandija S. A database for MR-based electrical properties tomography with in silico brain data-ADEPT. Magn Reson Med 2024; 91:1190-1199. [PMID: 37876351 DOI: 10.1002/mrm.29904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
PURPOSE Several reconstruction methods for MR-based electrical properties tomography (EPT) have been developed. However, the lack of common data makes it difficult to objectively compare their performances. This is, however, a necessary precursor for standardizing and introducing this technique in the clinical setting. To enable objective comparison of the performances of reconstruction methods and provide common data for their training and testing, we created ADEPT, a database of simulated data for brain MR-EPT reconstructions. METHODS ADEPT is a database containing in silico data for brain EPT reconstructions. This database was created from 25 different brain models, with and without tumors. Rigid geometric augmentations were applied, and different electrical properties were assigned to white matter, gray matter, CSF, and tumors to generate 120 different brain models. These models were used as input for finite-difference time-domain simulations in Sim4Life, used to compute the electromagnetic fields needed for MR-EPT reconstructions. RESULTS Electromagnetic fields from 84 healthy and 36 tumor brain models were simulated. The simulated fields relevant for MR-EPT reconstructions (transmit and receive RF fields and transceive phase) and their ground-truth electrical properties are made publicly available through ADEPT. Additionally, nonattainable fields such as the total magnetic field and the electric field are available upon request. CONCLUSION ADEPT will serve as reference database for objective comparisons of reconstruction methods and will be a first step toward standardization of MR-EPT reconstructions. Furthermore, it provides a large amount of data that can be exploited to train data-driven methods. It can be accessed from https://doi.org/10.34894/V0HBJ8.
Collapse
Affiliation(s)
- T G Meerbothe
- Department of Radiotherapy, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Therapy and Diagnostics, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E F Meliado
- Department of Radiotherapy, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Therapy and Diagnostics, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P R S Stijnman
- Department of Radiotherapy, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Therapy and Diagnostics, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C A T van den Berg
- Department of Radiotherapy, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Therapy and Diagnostics, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Mandija
- Department of Radiotherapy, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Therapy and Diagnostics, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Yu X, Serrallés JEC, Giannakopoulos II, Liu Z, Daniel L, Lattanzi R, Zhang Z. PIFON-EPT: MR-Based Electrical Property Tomography Using Physics-Informed Fourier Networks. IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES 2023; 9:49-60. [PMID: 39463749 PMCID: PMC11501079 DOI: 10.1109/jmmct.2023.3345798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We propose Physics-Informed Fourier Networks for Electrical Properties (EP) Tomography (PIFON-EPT), a novel deep learning-based method for EP reconstruction using noisy and/or incomplete magnetic resonance (MR) measurements. Our approach leverages the Helmholtz equation to constrain two networks, responsible for the denoising and completion of the transmit fields, and the estimation of the object's EP, respectively. We embed a random Fourier features mapping into our networks to enable efficient learning of high-frequency details encoded in the transmit fields. We demonstrated the efficacy of PIFON-EPT through several simulated experiments at 3 and 7 tesla(T) MR imaging, and showed that our method can reconstruct physically consistent EP and transmit fields. Specifically, when only 20% of the noisy measured fields were used as inputs, PIFON-EPT reconstructed the EP of a phantom with ≤ 5% error, and denoised and completed the measurements with ≤ 1% error. Additionally, we adapted PIFON-EPT to solve the generalized Helmholtz equation that accounts for gradients of EP between inhomogeneities. This yielded improved results at interfaces between different materials without explicit knowledge of boundary conditions. PIFON-EPT is the first method that can simultaneously reconstruct EP and transmit fields from incomplete noisy MR measurements, providing new opportunities for EPT research.
Collapse
Affiliation(s)
- Xinling Yu
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106 USA
| | - José E C Serrallés
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Ilias I Giannakopoulos
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, NY 10016 USA
| | - Ziyue Liu
- Department of Statistics and Applied Probability, University of California, Santa Barbara, CA 93106 USA
| | - Luca Daniel
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAIR), and with the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, NY 10016 USA
| | - Zheng Zhang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106 USA
| |
Collapse
|
14
|
Jung K, Mandija S, Cui C, Kim J, Al‐masni MA, Meerbothe TG, Park M, van den Berg CAT, Kim D. Data-driven electrical conductivity brain imaging using 3 T MRI. Hum Brain Mapp 2023; 44:4986-5001. [PMID: 37466309 PMCID: PMC10502651 DOI: 10.1002/hbm.26421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Magnetic resonance electrical properties tomography (MR-EPT) is a non-invasive measurement technique that derives the electrical properties (EPs, e.g., conductivity or permittivity) of tissues in the radiofrequency range (64 MHz for 1.5 T and 128 MHz for 3 T MR systems). Clinical studies have shown the potential of tissue conductivity as a biomarker. To date, model-based conductivity reconstructions rely on numerical assumptions and approximations, leading to inaccuracies in the reconstructed maps. To address such limitations, we propose an artificial neural network (ANN)-based non-linear conductivity estimator trained on simulated data for conductivity brain imaging. Network training was performed on 201 synthesized T2-weighted spin-echo (SE) data obtained from the finite-difference time-domain (FDTD) electromagnetic (EM) simulation. The dataset was composed of an approximated T2-w SE magnitude and transceive phase information. The proposed method was tested three in-silico and in-vivo on two volunteers and three patients' data. For comparison purposes, various conventional phase-based EPT reconstruction methods were used that ignoreB 1 + magnitude information, such as Savitzky-Golay kernel combined with Gaussian filter (S-G Kernel), phase-based convection-reaction EPT (cr-EPT), magnitude-weighted polynomial-fitting phase-based EPT (Poly-Fit), and integral-based phase-based EPT (Integral-based). From the in-silico experiments, quantitative analysis showed that the proposed method provides more accurate and improved quality (e.g., high structural preservation) conductivity maps compared to conventional reconstruction methods. Representatively, in the healthy brain in-silico phantom experiment, the proposed method yielded mean conductivity values of 1.97 ± 0.20 S/m for CSF, 0.33 ± 0.04 S/m for WM, and 0.52 ± 0.08 S/m for GM, which were closer to the ground-truth conductivity (2.00, 0.30, 0.50 S/m) than the integral-based method (2.56 ± 2.31, 0.39 ± 0.12, 0.68 ± 0.33 S/m). In-vivo ANN-based conductivity reconstructions were also of improved quality compared to conventional reconstructions and demonstrated network generalizability and robustness to in-vivo data and pathologies. The reported in-vivo brain conductivity values were in agreement with literatures. In addition, the proposed method was observed for various SNR levels (SNR levels = 10, 20, 40, and 58) and repeatability conditions (the eight acquisitions with the number of signal averages = 1). The preliminary investigations on brain tumor patient datasets suggest that the network trained on simulated dataset can generalize to unforeseen in-vivo pathologies, thus demonstrating its potential for clinical applications.
Collapse
Affiliation(s)
- Kyu‐Jin Jung
- Department of Electrical and Electronic EngineeringYonsei UniversitySeoulRepublic of Korea
| | - Stefano Mandija
- Computational Imaging Group for MR Therapy and DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Chuanjiang Cui
- Department of Electrical and Electronic EngineeringYonsei UniversitySeoulRepublic of Korea
| | - Jun‐Hyeong Kim
- Department of Electrical and Electronic EngineeringYonsei UniversitySeoulRepublic of Korea
| | - Mohammed A. Al‐masni
- Department of Artificial IntelligenceCollege of Software & Convergence Technology, Daeyang AI Center, Sejong UniversitySeoulRepublic of Korea
| | - Thierry G. Meerbothe
- Computational Imaging Group for MR Therapy and DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Mina Park
- Department of Radiology, Gangnam Severance HospitalYonsei University College of MedicineSeoulRepublic of Korea
| | - Cornelis A. T. van den Berg
- Computational Imaging Group for MR Therapy and DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Dong‐Hyun Kim
- Department of Electrical and Electronic EngineeringYonsei UniversitySeoulRepublic of Korea
| |
Collapse
|
15
|
He Z, Chen B, Lefebvre PM, Odille F. An Adaptative Savitzky-Golay Kernel for Laplacian Estimation in Magnetic Resonance Electrical Property Tomography . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083553 DOI: 10.1109/embc40787.2023.10341200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Magnetic Resonance electrical property tomography (MR-EPT) is a non-invasive imaging modality that reconstructs the living biological tissue's conductivity σ and εr permittivity using spatial derivatives of the measured RF field, also termed B1 data, in a magnetic resonance imaging system. The spatial derivative operator, particularly the Laplacian, amplifies the noise in the reconstructed electrical property (EP) maps, hence decreasing accuracy and increasing boundary artifacts. We propose a novel adaptative convolution kernel for generating numerical derivatives based on 3D Savitzky-Golay (SG) filters and local segmentation in a magnitude image. In comparison to typical SG kernel, the proposed kernel allows arbitrary shapes and sizes to vary with local tissue. It provides an automatic trade-off between noise and resolution, thereby significantly enhancing reconstruction accuracy and eliminating boundary artifacts.
Collapse
|
16
|
Qin R, Garcia Inda AJ, Zhou Z, Enomoto Y, Yang T, Imamoglu N, Gomez-Tames J, Huang S, Yu W. REC-NN: A reconstruction error compensation neural network for Magnetic Resonance Electrical Property Tomography (MREPT). ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082583 DOI: 10.1109/embc40787.2023.10340423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Electrical properties (EPs) are expected as biomarkers for early cancer detection. Magnetic resonance electrical properties tomography (MREPT) is a technique to non-invasively estimate the EPs of tissues from MRI measurements. While noise sensitivity and artifact problems of MREPT are being solved progressively through recent efforts, the loss of tissue contrast emerges as an obstacle to the clinical applications of MREPT. To solve the problem, we propose a reconstruction error compensation neural network scheme (REC-NN) for a typical analytic MREPT method, Stab-EPT. Two NN structures: one with only ResNet blocks, and the other hybridizing ResNet blocks with an encoder-decoder structure. Results of experiments with digital brain phantoms show that, compared with Stab-EPT, and conventional NN based reconstruction, REC-NN improves both reconstruction accuracy and tissue contrast. It is found that, the encoder-decoder structure could improve the compensation accuracy of EPs in homogeneous region but showed worse reconstruction than only ResNet structure for tumorous tissues unseen in the training samples. Future research is required to address overcompensation problems, optimization of NN structure and application to clinical data.
Collapse
|
17
|
Arduino A, Pennecchi F, Katscher U, Cox M, Zilberti L. Repeatability and Reproducibility Uncertainty in Magnetic Resonance-Based Electric Properties Tomography of a Homogeneous Phantom. Tomography 2023; 9:420-435. [PMID: 36828386 PMCID: PMC9961522 DOI: 10.3390/tomography9010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Uncertainty assessment is a fundamental step in quantitative magnetic resonance imaging because it makes comparable, in a strict metrological sense, the results of different scans, for example during a longitudinal study. Magnetic resonance-based electric properties tomography (EPT) is a quantitative imaging technique that retrieves, non-invasively, a map of the electric properties inside a human body. Although EPT has been used in some early clinical studies, a rigorous experimental assessment of the associated uncertainty has not yet been performed. This paper aims at evaluating the repeatability and reproducibility uncertainties in phase-based Helmholtz-EPT applied on homogeneous phantom data acquired with a clinical 3 T scanner. The law of propagation of uncertainty is used to evaluate the uncertainty in the estimated conductivity values starting from the uncertainty in the acquired scans, which is quantified through a robust James-Stein shrinkage estimator to deal with the dimensionality of the problem. Repeatable errors are detected in the estimated conductivity maps and are quantified for various values of the tunable parameters of the EPT implementation. The spatial dispersion of the estimated electric conductivity maps is found to be a good approximation of the reproducibility uncertainty, evaluated by changing the position of the phantom after each scan. The results underpin the use of the average conductivity (calculated by weighting the local conductivity values by their uncertainty and taking into account the spatial correlation) as an estimate of the conductivity of the homogeneous phantom.
Collapse
Affiliation(s)
- Alessandro Arduino
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
- Correspondence:
| | - Francesca Pennecchi
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
| | | | - Maurice Cox
- National Physical Laboratory, Teddington TW11 0LW, UK
| | - Luca Zilberti
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
| |
Collapse
|
18
|
Inda AJG, Huang SY, İmamoğlu N, Qin R, Yang T, Chen T, Yuan Z, Yu W. Physics Informed Neural Networks (PINN) for Low Snr Magnetic Resonance Electrical Properties Tomography (MREPT). Diagnostics (Basel) 2022; 12:2627. [PMID: 36359471 PMCID: PMC9689361 DOI: 10.3390/diagnostics12112627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 12/26/2023] Open
Abstract
Electrical properties (EPs) of tissues facilitate early detection of cancerous tissues. Magnetic resonance electrical properties tomography (MREPT) is a technique to non-invasively probe the EPs of tissues from MRI measurements. Most MREPT methods rely on numerical differentiation (ND) to solve partial differential Equations (PDEs) to reconstruct the EPs. However, they are not practical for clinical data because ND is noise sensitive and the MRI measurements for MREPT are noisy in nature. Recently, Physics informed neural networks (PINNs) have been introduced to solve PDEs by substituting ND with automatic differentiation (AD). To the best of our knowledge, it has not been applied to MREPT due to the challenges in using PINN on MREPT as (i) a PINN requires part of ground-truth EPs as collocation points to optimize the network's AD, (ii) the noisy input data disrupts the optimization of PINNs despite the noise-filtering nature of NNs and additional denoising processes. In this work, we propose a PINN-MREPT model based on a canonical analytic MREPT model. A reference padding layer with known EPs was added to surround the region of interest for providing additive collocation points. Moreover, an optimizable diffusion coefficient was embedded in the analytic MREPT model used in the PINN-MREPT. The noise robustness of the proposed PINN-MREPT for single-sample reconstruction was tested by using numerical phantoms of human brain with extra tumor-like tissues at different noise levels. The results of numerical experiments show that PINN-MREPT outperforms two typical numerical MREPT methods in terms of reconstruction accuracy, sensitivity to the extra tissues, and the correlations of line profiles in the regions of interest. The advantage of the PINN-MREPT is shown by the results of an experiment on phantom measurement, too. Moreover, it is found that the diffusion term plays an important role to achieve a noise-robust PINN-MREPT. This is an important step moving forward to a clinical application of MREPT.
Collapse
Affiliation(s)
| | - Shao Ying Huang
- Department of Surgery, National University of Singapore, Singapore 119077, Singapore
- Engineering Product Development Department, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Nevrez İmamoğlu
- Digital Architecture Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Ruian Qin
- Department of Medical Engineering, Chiba University, Chiba 263-8522, Japan
| | - Tianyi Yang
- Department of Medical Engineering, Chiba University, Chiba 263-8522, Japan
| | - Tiao Chen
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
| | - Zilong Yuan
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
| | - Wenwei Yu
- Department of Medical Engineering, Chiba University, Chiba 263-8522, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
19
|
Garcia Inda AJ, Huang SY, Imamoglu N, Yu W. Physics-Coupled Neural Network Magnetic Resonance Electrical Property Tomography (MREPT) for Conductivity Reconstruction. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:3463-3478. [PMID: 35533164 DOI: 10.1109/tip.2022.3172220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The electrical property (EP) of human tissues is a quantitative biomarker that facilitates early diagnosis of cancerous tissues. Magnetic resonance electrical properties tomography (MREPT) is an imaging modality that reconstructs EPs by the radio-frequency field in an MRI system. MREPT reconstructs EPs by solving analytic models numerically based on Maxwell's equations. Most MREPT methods suffer from artifacts caused by inaccuracy of the hypotheses behind the models, and/or numerical errors. These artifacts can be mitigated by adding coefficients to stabilize the models, however, the selection of such coefficient has been empirical, which limit its medical application. Alternatively, end-to-end Neural networks-based MREPT (NN-MREPT) learns to reconstruct the EPs from training samples, circumventing Maxwell's equations. However, due to its pattern-matching nature, it is difficult for NN-MREPT to produce accurate reconstructions for new samples. In this work, we proposed a physics-coupled NN for MREPT (PCNN-MREPT), in which an analytic model, cr-MREPT, works with diffusion and convection coefficients, learned by NNs from the difference between the reconstructed and ground-truth EPs to reduce artifacts. With two simulated datasets, three generalization experiments in which test samples deviate gradually from the training samples, and one noise-robustness experiment were conducted. The results show that the proposed PCNN-MREPT achieves higher accuracy than two representative analytic methods. Moreover, compared with an end-to-end NN-MREPT, the proposed method attained higher accuracy in two critical generalization tests. This is an important step to practical MREPT medical diagnoses.
Collapse
|
20
|
Leijsen R, van den Berg C, Webb A, Remis R, Mandija S. Combining deep learning and 3D contrast source inversion in MR-based electrical properties tomography. NMR IN BIOMEDICINE 2022; 35:e4211. [PMID: 31840897 PMCID: PMC9285035 DOI: 10.1002/nbm.4211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 05/28/2023]
Abstract
Magnetic resonance electrical properties tomography (MR-EPT) is a technique used to estimate the conductivity and permittivity of tissues from MR measurements of the transmit magnetic field. Different reconstruction methods are available; however, all these methods present several limitations, which hamper the clinical applicability. Standard Helmholtz-based MR-EPT methods are severely affected by noise. Iterative reconstruction methods such as contrast source inversion electrical properties tomography (CSI-EPT) are typically time-consuming and are dependent on their initialization. Deep learning (DL) based methods require a large amount of training data before sufficient generalization can be achieved. Here, we investigate the benefits achievable using a hybrid approach, that is, using MR-EPT or DL-EPT as initialization guesses for standard 3D CSI-EPT. Using realistic electromagnetic simulations at 3 and 7 T, the accuracy and precision of hybrid CSI reconstructions are compared with those of standard 3D CSI-EPT reconstructions. Our results indicate that a hybrid method consisting of an initial DL-EPT reconstruction followed by a 3D CSI-EPT reconstruction would be beneficial. DL-EPT combined with standard 3D CSI-EPT exploits the power of data-driven DL-based EPT reconstructions, while the subsequent CSI-EPT facilitates a better generalization by providing data consistency.
Collapse
Affiliation(s)
- Reijer Leijsen
- Department of Radiology, C.J. Gorter Center for High Field MRILeiden University Medical CenterLeidenThe Netherlands
| | - Cornelis van den Berg
- Department of Radiotherapy, Division of Imaging & OncologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Computational Imaging Group for MR Diagnostics & Therapy, Center for Image SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Andrew Webb
- Department of Radiology, C.J. Gorter Center for High Field MRILeiden University Medical CenterLeidenThe Netherlands
| | - Rob Remis
- Circuits and Systems Group, Faculty of Electrical Engineering, Mathematics and Computer ScienceDelft University of TechnologyDelftThe Netherlands
| | - Stefano Mandija
- Department of Radiotherapy, Division of Imaging & OncologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Computational Imaging Group for MR Diagnostics & Therapy, Center for Image SciencesUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
21
|
Katscher U, Minhas AS, Katoch N. Magnetic Resonance Electrical Properties Tomography (MREPT). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1380:185-202. [DOI: 10.1007/978-3-031-03873-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Jung KJ, Mandija S, Kim JH, Ryu K, Jung S, Cui C, Kim SY, Park M, van den Berg CAT, Kim DH. Improving phase-based conductivity reconstruction by means of deep learning-based denoising of B 1 + phase data for 3T MRI. Magn Reson Med 2021; 86:2084-2094. [PMID: 33949721 DOI: 10.1002/mrm.28826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/28/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE To denoise B 1 + phase using a deep learning method for phase-based in vivo electrical conductivity reconstruction in a 3T MR system. METHODS For B 1 + phase deep-learning denoising, a convolutional neural network (U-net) was chosen. Training was performed on data sets from 10 healthy volunteers. Input data were the real and imaginary components of single averaged spin-echo data (SNR = 45), which was used to approximate the B 1 + phase. For label data, multiple signal-averaged spin-echo data (SNR = 128) were used. Testing was performed on in silico and in vivo data. Reconstructed conductivity maps were derived using phase-based conductivity reconstructions. Additionally, we investigated the usability of the network to various SNR levels, imaging contrasts, and anatomical sites (ie, T1 , T2 , and proton density-weighted brain images and proton density-weighted breast images. In addition, conductivity reconstructions from deep learning-based denoised data were compared with conventional image filters, which were used for data denoising in electrical properties tomography (ie, the Gaussian filtering and the Savitzky-Golay filtering). RESULTS The proposed deep learning-based denoising approach showed improvement for B 1 + phase for both in silico and in vivo experiments with reduced quantitative error measures compared with other methods. Subsequently, this resulted in an improvement of reconstructed conductivity maps from the denoised B 1 + phase with deep learning. CONCLUSION The results suggest that the proposed approach can be used as an alternative preprocessing method to denoise B 1 + maps for phase-based conductivity reconstruction without relying on image filters or signal averaging.
Collapse
Affiliation(s)
- Kyu-Jin Jung
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Stefano Mandija
- Computational Imaging Group for MR Diagnostic & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jun-Hyeong Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kanghyun Ryu
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Soozy Jung
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Chuanjiang Cui
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Soo-Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Mina Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Cornelis A T van den Berg
- Computational Imaging Group for MR Diagnostic & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Stijnman PRS, Stefano Mandija, Fuchs PS, van den Berg CAT, Remis RF. Transceive phase corrected 2D contrast source inversion-electrical properties tomography. Magn Reson Med 2021; 85:2856-2868. [PMID: 33280166 PMCID: PMC7898605 DOI: 10.1002/mrm.28619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/08/2020] [Accepted: 11/05/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE To remove the necessity of the tranceive phase assumption for CSI-EPT and show electrical properties maps reconstructed from measured data obtained using a standard 3T birdcage body coil setup. METHODS The existing CSI-EPT algorithm is reformulated to use the transceive phase rather than relying on the transceive phase assumption. Furthermore, the radio frequency (RF)-shield is numerically implemented to accurately model the RF fields inside the MRI scanner. We verify that the reformulated two-dimensional (2D) CSI-EPT algorithm can reconstruct electrical properties maps given 2D electromagnetic simulations. Afterward, the algorithm is tested with three-dimensional (3D) FDTD simulations to investigate if the 2D CSI-EPT can retrieve the electrical properties for 3D RF fields. Finally, an MR experiment at 3T with a phantom is performed. RESULTS From the results of the 2D simulations, it is seen that CSI-EPT can reconstruct the electrical properties using MRI accessible quantities. For 3D simulations, it is observed that the electrical properties are underestimated, nonetheless, CSI-EPT has a lower standard deviation than the standard Helmholtz based methods. Finally, the first CSI-EPT reconstructions based on measured data are presented showing comparable accuracy and precision to reconstructions based on simulated data, and demonstrating the feasibility of CSI-EPT. CONCLUSIONS The CSI-EPT algorithm was rewritten to use MRI accessible quantities. This allows for CSI-EPT to fully exploit the benefits of the higher static magnetic field strengths with a standard quadrature birdcage coil setup.
Collapse
Affiliation(s)
- Peter R. S. Stijnman
- Computational Imaging Group for MRI Diagnostics and TherapyCentre for Image Sciences UMC UtrechtUtrechtThe Netherlands
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Stefano Mandija
- Computational Imaging Group for MRI Diagnostics and TherapyCentre for Image Sciences UMC UtrechtUtrechtThe Netherlands
| | - Patrick S. Fuchs
- Circuit & Systems Group of the Electrical EngineeringDelft University of TechnologyDelftThe Netherlands
| | - Cornelis A. T. van den Berg
- Computational Imaging Group for MRI Diagnostics and TherapyCentre for Image Sciences UMC UtrechtUtrechtThe Netherlands
| | - Rob F. Remis
- Circuit & Systems Group of the Electrical EngineeringDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
24
|
Leijsen R, Brink W, van den Berg C, Webb A, Remis R. Electrical Properties Tomography: A Methodological Review. Diagnostics (Basel) 2021; 11:176. [PMID: 33530587 PMCID: PMC7910937 DOI: 10.3390/diagnostics11020176] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 11/25/2022] Open
Abstract
Electrical properties tomography (EPT) is an imaging method that uses a magnetic resonance (MR) system to non-invasively determine the spatial distribution of the conductivity and permittivity of the imaged object. This manuscript starts by providing clear definitions about the data required for, and acquired in, EPT, followed by comprehensively formulating the physical equations underlying a large number of analytical EPT techniques. This thorough mathematical overview of EPT harmonizes several EPT techniques in a single type of formulation and gives insight into how they act on the data and what their data requirements are. Furthermore, the review describes machine learning-based algorithms. Matlab code of several differential and iterative integral methods is available upon request.
Collapse
Affiliation(s)
- Reijer Leijsen
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (R.L.); (W.B.); (A.W.)
| | - Wyger Brink
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (R.L.); (W.B.); (A.W.)
| | - Cornelis van den Berg
- Computational Imaging Group for MRI Diagnostics and Therapy, Centre for Image Sciences, University Medical Centre Utrecht, 3508GA Utrecht, The Netherlands;
| | - Andrew Webb
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (R.L.); (W.B.); (A.W.)
| | - Rob Remis
- Circuits and Systems Group, Faculty of Electrical Engineering, Mathematics and Computes Science, Delft University of Technology, 2628CD Delft, The Netherlands
| |
Collapse
|
25
|
Mandija S, Petrov PI, Vink JJT, Neggers SFW, van den Berg CAT. Brain Tissue Conductivity Measurements with MR-Electrical Properties Tomography: An In Vivo Study. Brain Topogr 2021; 34:56-63. [PMID: 33289858 PMCID: PMC7803705 DOI: 10.1007/s10548-020-00813-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/28/2020] [Indexed: 01/19/2023]
Abstract
First in vivo brain conductivity reconstructions using Helmholtz MR-Electrical Properties Tomography (MR-EPT) have been published. However, a large variation in the reconstructed conductivity values is reported and these values differ from ex vivo conductivity measurements. Given this lack of agreement, we performed an in vivo study on eight healthy subjects to provide reference in vivo brain conductivity values. MR-EPT reconstructions were performed at 3 T for eight healthy subjects. Mean conductivity and standard deviation values in the white matter, gray matter and cerebrospinal fluid (σWM, σGM, and σCSF) were computed for each subject before and after erosion of regions at tissue boundaries, which are affected by typical MR-EPT reconstruction errors. The obtained values were compared to the reported ex vivo literature values. To benchmark the accuracy of in vivo conductivity reconstructions, the same pipeline was applied to simulated data, which allow knowledge of ground truth conductivity. Provided sufficient boundary erosion, the in vivo σWM and σGM values obtained in this study agree for the first time with literature values measured ex vivo. This could not be verified for the CSF due to its limited spatial extension. Conductivity reconstructions from simulated data verified conductivity reconstructions from in vivo data and demonstrated the importance of discarding voxels at tissue boundaries. The presented σWM and σGM values can therefore be used for comparison in future studies employing different MR-EPT techniques.
Collapse
Affiliation(s)
- Stefano Mandija
- Computational Imaging Group for MR Diagnostic & Therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
- Division of Imaging & Oncology, Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
| | - Petar I Petrov
- Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Jord J T Vink
- Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Sebastian F W Neggers
- Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Cornelis A T van den Berg
- Computational Imaging Group for MR Diagnostic & Therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
- Division of Imaging & Oncology, Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| |
Collapse
|
26
|
Soullié P, Missoffe A, Ambarki K, Felblinger J, Odille F. MR electrical properties imaging using a generalized image-based method. Magn Reson Med 2020; 85:762-776. [PMID: 32783236 DOI: 10.1002/mrm.28458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/12/2022]
Abstract
PURPOSE To develop a fast and easy-to-use electrical properties tomography (EPT) method based on a single MR scan, avoiding both the need of a B1 -map and transceive phase assumption, and that is robust against noise. THEORY Derived from Maxwell's equations, conductivity, and permittivity are reconstructed from a new partial differential equation involving the product of the RF fields and its derivatives. This also allows us to clarify and revisit the relevance of common assumptions of MREPT. METHODS Our new governing equation is solved using a 3D finite-difference scheme and compared to previous frameworks. The benefits of our method over selected existing MREPT methods are demonstrated for different simulation models, as well as for both an inhomogeneous agar phantom gel and in vivo brain data at 3T. RESULTS Simulation and experimental results are illustrated to highlight the merits of the proposed method over existing methods. We show the validity of our algorithm in versatile configurations, with many transition regions notably. Complex admittivity maps are also provided as a complementary MR contrast. CONCLUSION Because it avoids time-consuming RF field mapping and generalizes the use of standard MR image for electrical properties reconstruction, this contribution is promising as a new step forward for clinical applications.
Collapse
Affiliation(s)
- Paul Soullié
- IADI, INSERM U1254, Université de Lorraine, Nancy, France
| | | | | | - Jacques Felblinger
- IADI, INSERM U1254, Université de Lorraine, Nancy, France.,CIC-IT 1433, INSERM, Université de Lorraine and CHRU de Nancy, Nancy, France
| | - Freddy Odille
- IADI, INSERM U1254, Université de Lorraine, Nancy, France.,CIC-IT 1433, INSERM, Université de Lorraine and CHRU de Nancy, Nancy, France
| |
Collapse
|
27
|
Hampe N, Katscher U, van den Berg CAT, Tha KK, Mandija S. Investigating the challenges and generalizability of deep learning brain conductivity mapping. ACTA ACUST UNITED AC 2020; 65:135001. [DOI: 10.1088/1361-6560/ab9356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Giannakopoulos II, Serralles JEC, Daniel L, Sodickson DK, Polimeridis AG, White JK, Lattanzi R. Magnetic-Resonance-Based Electrical Property Mapping Using Global Maxwell Tomography With an 8-Channel Head Coil at 7 Tesla: A Simulation Study. IEEE Trans Biomed Eng 2020; 68:236-246. [PMID: 32365014 DOI: 10.1109/tbme.2020.2991399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Global Maxwell Tomography (GMT) is a recently introduced volumetric technique for noninvasive estimation of electrical properties (EP) from magnetic resonance measurements. Previous work evaluated GMT using ideal radiofrequency (RF) excitations. The aim of this simulation study was to assess GMT performance with a realistic RF coil. METHODS We designed a transmit-receive RF coil with 8 decoupled channels for 7T head imaging. We calculated the RF transmit field ( B1+) inside heterogeneous head models for different RF shimming approaches, and used them as input for GMT to reconstruct EP for all voxels. RESULTS Coil tuning/decoupling remained relatively stable when the coil was loaded with different head models. Mean error in EP estimation changed from [Formula: see text] to [Formula: see text] and from [Formula: see text] to [Formula: see text] for relative permittivity and conductivity, respectively, when changing head model without re-tuning the coil. Results slightly improved when an SVD-based RF shimming algorithm was applied, in place of excitation with one coil at a time. Despite errors in EP, RF transmit field ( B1+) and absorbed power could be predicted with less than [Formula: see text] error over the entire head. GMT could accurately detect a numerically inserted tumor. CONCLUSION This work demonstrates that GMT can reliably reconstruct EP in realistic simulated scenarios using a tailored 8-channel RF coil design at 7T. Future work will focus on construction of the coil and optimization of GMT's robustness to noise, to enable in-vivo GMT experiments. SIGNIFICANCE GMT could provide accurate estimations of tissue EP, which could be used as biomarkers and could enable patient-specific estimation of RF power deposition, which is an unsolved problem for ultra-high-field magnetic resonance imaging.
Collapse
|
29
|
Gavazzi S, van den Berg CAT, Savenije MHF, Kok HP, de Boer P, Stalpers LJA, Lagendijk JJW, Crezee H, van Lier ALHMW. Deep learning-based reconstruction of in vivo pelvis conductivity with a 3D patch-based convolutional neural network trained on simulated MR data. Magn Reson Med 2020; 84:2772-2787. [PMID: 32314825 PMCID: PMC7402024 DOI: 10.1002/mrm.28285] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE To demonstrate that mapping pelvis conductivity at 3T with deep learning (DL) is feasible. METHODS 210 dielectric pelvic models were generated based on CT scans of 42 cervical cancer patients. For all dielectric models, electromagnetic and MR simulations with realistic accuracy and precision were performed to obtain B 1 + and transceive phase (ϕ± ). Simulated B 1 + and ϕ± served as input to a 3D patch-based convolutional neural network, which was trained in a supervised fashion to retrieve the conductivity. The same network architecture was retrained using only ϕ± in input. Both network configurations were tested on simulated MR data and their conductivity reconstruction accuracy and precision were assessed. Furthermore, both network configurations were used to reconstruct conductivity maps from a healthy volunteer and two cervical cancer patients. DL-based conductivity was compared in vivo and in silico to Helmholtz-based (H-EPT) conductivity. RESULTS Conductivity maps obtained from both network configurations were comparable. Accuracy was assessed by mean error (ME) with respect to ground truth conductivity. On average, ME < 0.1 Sm-1 for all tissues. Maximum MEs were 0.2 Sm-1 for muscle and tumour, and 0.4 Sm-1 for bladder. Precision was indicated with the difference between 90th and 10th conductivity percentiles, and was below 0.1 Sm-1 for fat, bone and muscle, 0.2 Sm-1 for tumour and 0.3 Sm-1 for bladder. In vivo, DL-based conductivity had median values in agreement with H-EPT values, but a higher precision. CONCLUSION Anatomically detailed, noise-robust 3D conductivity maps with good sensitivity to tissue conductivity variations were reconstructed in the pelvis with DL.
Collapse
Affiliation(s)
- Soraya Gavazzi
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands.,Computational Imaging Group for MR diagnostics and therapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark H F Savenije
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands.,Computational Imaging Group for MR diagnostics and therapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Peter de Boer
- Radiotherapy Institute Friesland, Leeuwarden, The Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jan J W Lagendijk
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
30
|
Sun X, Lu L, Qi L, Mei Y, Liu X, Chen W. A robust electrical conductivity imaging method with total variation and wavelet regularization. Magn Reson Imaging 2020; 69:28-39. [PMID: 32145270 DOI: 10.1016/j.mri.2020.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/23/2020] [Accepted: 02/27/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE This study aims to develop and evaluate a robust conductivity imaging method that combines total variation and wavelet regularization to enhance the accuracy of conductivity maps. THEORY AND METHODS The proposed approach is based on a gradient-based method. The central equation is derived from Maxwell's equation and describes the relationship between conductivity and the transceive phase. A linear system equation is obtained via a finite-difference method and solved using a least-squares method. Total variation and wavelet transform regularization terms are added to the minimization problem and solved using the Split Bregman method to improve reconstruction stability. The proposed approach is compared with conventional and gradient-based methods. Numerical simulations are performed to validate the accuracy of the developed method, and the effects of noise are determined. Phantom and in vivo experiments are conducted at 3 T to verify the clinical applicability of the proposed method. RESULTS Numerical simulations show that the proposed method is more robust than other methods and can suppress the effects of noise. The quantitative conductivity value of the phantom experiment agrees with the measured value. The in vivo experiment results present a clear structure, and the conductivity value of the tumor region is significantly higher than that around healthy tissues. CONCLUSION The proposed electrical conductivity imaging method can improve the quality of conductivity reconstruction, and thus, has future clinical applications.
Collapse
Affiliation(s)
- Xiangdong Sun
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Lijun Lu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Li Qi
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yingjie Mei
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyun Liu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wufan Chen
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
31
|
Amouzandeh G, Mentink-Vigier F, Helsper S, Bagdasarian FA, Rosenberg JT, Grant SC. Magnetic resonance electrical property mapping at 21.1 T: a study of conductivity and permittivity in phantoms, ex vivo tissue and in vivo ischemia. Phys Med Biol 2020; 65:055007. [PMID: 31307020 PMCID: PMC7223161 DOI: 10.1088/1361-6560/ab3259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electrical properties (EP), namely conductivity and permittivity, can provide endogenous contrast for tissue characterization. Using electrical property tomography (EPT), maps of EP can be generated from conventional MRI data. This report investigates the feasibility and accuracy of EPT at 21.1 T for multiple RF coils and modes of operation using phantoms. Additionally, it demonstrates the EP of the in vivo rat brain with and without ischemia. Helmholtz-based EPT was implemented in its Full-form, which demands the complex [Formula: see text] field, and a simplified form requiring either just the [Formula: see text] field phase for conductivity or the [Formula: see text] field magnitude for permittivity. Experiments were conducted at 21.1 T using birdcage and saddle coils operated in linear or quadrature transceive mode, respectively. EPT approaches were evaluated using a phantom, ex and in vivo Sprague-Dawley rats under naïve conditions and ischemic stroke via transient middle cerebral artery occlusion. Different conductivity reconstruction approaches applied to the phantom displayed average errors of 12%-73% to the target acquired from dielectric probe measurements. Permittivity reconstructions showed higher agreement and an average 3%-8% error to the target depending on reconstruction approach. Conductivity and permittivity of ex and in vivo rodent brain were measured. Elevated EP in the ischemia region correlated with the increased sodium content and the influx of water intracellularly following ischemia in the lesion were detected. The Full-form technique generated from the linear birdcage provided the best accuracy for EP of the phantom. Phase-based conductivity and magnitude-based permittivity mapping provided reasonable estimates but also demonstrated the limitations of Helmholtz-based EPT at 21.1 T. Permittivity reconstruction was improved significantly over lower fields, suggesting a novel metric for in vivo brain studies. EPT applied to ischemic rat brain proved sensitivity to physiological changes, motivating the future application of more advanced reconstruction approaches.
Collapse
Affiliation(s)
- Ghoncheh Amouzandeh
- Department of Physics, Florida State University, Tallahassee, FL, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | | | - Shannon Helsper
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - F. Andrew Bagdasarian
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - Jens T. Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Samuel C. Grant
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| |
Collapse
|
32
|
Duan S, Zhu Y, Liu F, Xin SX. Numerical Experiments on the Contrast Capability of Magnetic Resonance Electrical Property Tomography. Magn Reson Med Sci 2020; 19:77-85. [PMID: 31019159 PMCID: PMC7067912 DOI: 10.2463/mrms.mp.2018-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose: Magnetic resonance electrical property tomography (MR EPT) is a technique for non-invasively obtaining the electric property (EP) distribution of biological tissues, with a promising potential for application in the early detection of tumors. However, the contrast capability (CC) of this technique has not been fully studied. This work aims to theoretically explore the CC for detecting the variation of EP values and the size of the imaging region. Methods: A simulation scheme was specifically designed to evaluate the CC of MR EPT. The simulation study has the advantage that the magnetic field can be accurately obtained. EP maps of the designed phantom embedded with target regions of designated various sizes and EPs were reconstructed using the homogeneous Helmholtz equation based on B1+ with different signal-to-noise ratios (SNRs). The CC was estimated by determining the smallest detectable EP contrast when the target region size was as large as the Laplacian kernel and the smallest detectable target region size when the EP contrast was the same as the difference between healthy and malignant tissues in the brain, based on the reconstructed EP maps. Results: Using noise free B1+, the smallest detectable contrastσ and contrastεr were 1% and 3%, respectively, and the smallest detectable target region size was 1 mesh unit (the base unit size used in the simulation) for conductivity and relative permittivity. The smallest detectable EP contrast and target region size were decreased as the B1+ SNR increased. Conclusion: The CC of MR EPT was related with the SNR of the magnetic field. A small EP contrast and size were necessary for detection at a high-SNR magnetic field. Obtaining a high-SNR magnetic field is important for improving the CC of MR EPT.
Collapse
Affiliation(s)
- Song Duan
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Yurong Zhu
- Department of Biomedical Engineering, Southern Medical University
| | - Feng Liu
- School of Information Technology and Electrical Engineering, University of Queensland
| | - Sherman Xuegang Xin
- School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre
| |
Collapse
|
33
|
Gavazzi S, Shcherbakova Y, Bartels LW, Stalpers LJA, Lagendijk JJW, Crezee H, van den Berg CAT, van Lier ALHMW. Transceive phase mapping using the PLANET method and its application for conductivity mapping in the brain. Magn Reson Med 2019; 83:590-607. [PMID: 31483520 PMCID: PMC6900152 DOI: 10.1002/mrm.27958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022]
Abstract
Purpose To demonstrate feasibility of transceive phase mapping with the PLANET method and its application for conductivity reconstruction in the brain. Methods Accuracy and precision of transceive phase (ϕ±) estimation with PLANET, an ellipse fitting approach to phase‐cycled balanced steady state free precession (bSSFP) data, were assessed with simulations and measurements and compared to standard bSSFP. Measurements were conducted on a homogeneous phantom and in the brain of healthy volunteers at 3 tesla. Conductivity maps were reconstructed with Helmholtz‐based electrical properties tomography. In measurements, PLANET was also compared to a reference technique for transceive phase mapping, i.e., spin echo. Results Accuracy and precision of ϕ± estimated with PLANET depended on the chosen flip angle and TR. PLANET‐based ϕ± was less sensitive to perturbations induced by off‐resonance effects and partial volume (e.g., white matter + myelin) than bSSFP‐based ϕ±. For flip angle = 25° and TR = 4.6 ms, PLANET showed an accuracy comparable to that of reference spin echo but a higher precision than bSSFP and spin echo (factor of 2 and 3, respectively). The acquisition time for PLANET was ~5 min; 2 min faster than spin echo and 8 times slower than bSSFP. However, PLANET simultaneously reconstructed T1, T2, B0 maps besides mapping ϕ±. In the phantom, PLANET‐based conductivity matched the true value and had the smallest spread of the three methods. In vivo, PLANET‐based conductivity was similar to spin echo‐based conductivity. Conclusion Provided that appropriate sequence parameters are used, PLANET delivers accurate and precise ϕ± maps, which can be used to reconstruct brain tissue conductivity while simultaneously recovering T1, T2, and B0 maps.
Collapse
Affiliation(s)
- Soraya Gavazzi
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yulia Shcherbakova
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lambertus W Bartels
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.,Image Sciences Institute, Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lukas J A Stalpers
- Department of Radiotherapy, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J W Lagendijk
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Crezee
- Department of Radiotherapy, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
34
|
Automated gradient-based electrical properties tomography in the human brain using 7 Tesla MRI. Magn Reson Imaging 2019; 63:258-266. [PMID: 31425805 DOI: 10.1016/j.mri.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Electrical properties of the brain tissues may yield useful biomarkers for neurological disorders and diseases, as well as contribute to safety assurance of ultra-high-field MRI. It has been reported that using B1 maps from a multi-channel RF coil, the spatial variation of the electrical properties can be robustly retrieved. The absolute electrical property values can then be obtained by spatial integration, given that an integration seed point is assigned. In this study, we propose to exploit automatically detected seed points based on tissue piece-wise homogeneity (Helmholtz equation) for spatial integration. Numerical simulations of a numerical brain model and experiments involving 12 healthy volunteers were performed to demonstrate its feasibility and robustness in various noisy conditions and head positions. For in vivo imaging, we consistently observed higher conductivity and permittivity values in the white and gray matter compared to tabulated ex vivo probe measurement results found in the literature, a discrepancy that may be attributed to ex vivo experimental constraints. Our results suggest that the proposed technique produces consistent brain electrical properties in vivo that may contribute to improving diagnostic and therapeutic decisions.
Collapse
|
35
|
Mandija S, Meliadò EF, Huttinga NRF, Luijten PR, van den Berg CAT. Opening a new window on MR-based Electrical Properties Tomography with deep learning. Sci Rep 2019; 9:8895. [PMID: 31222055 PMCID: PMC6586684 DOI: 10.1038/s41598-019-45382-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/04/2019] [Indexed: 11/09/2022] Open
Abstract
In the radiofrequency (RF) range, the electrical properties of tissues (EPs: conductivity and permittivity) are modulated by the ionic and water content, which change for pathological conditions. Information on tissues EPs can be used e.g. in oncology as a biomarker. The inability of MR-Electrical Properties Tomography techniques (MR-EPT) to accurately reconstruct tissue EPs by relating MR measurements of the transmit RF field to the EPs limits their clinical applicability. Instead of employing electromagnetic models posing strict requirements on the measured MRI quantities, we propose a data driven approach where the electrical properties reconstruction problem can be casted as a supervised deep learning task (DL-EPT). DL-EPT reconstructions for simulations and MR measurements at 3 Tesla on phantoms and human brains using a conditional generative adversarial network demonstrate high quality EPs reconstructions and greatly improved precision compared to conventional MR-EPT. The supervised learning approach leverages the strength of electromagnetic simulations, allowing circumvention of inaccessible MR electromagnetic quantities. Since DL-EPT is more noise-robust than MR-EPT, the requirements for MR acquisitions can be relaxed. This could be a major step forward to turn electrical properties tomography into a reliable biomarker where pathological conditions can be revealed and characterized by abnormalities in tissue electrical properties.
Collapse
Affiliation(s)
- Stefano Mandija
- Computational Imaging Group for MR diagnostic & therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
- Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
| | - Ettore F Meliadò
- Computational Imaging Group for MR diagnostic & therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Niek R F Huttinga
- Computational Imaging Group for MR diagnostic & therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
- Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Peter R Luijten
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Cornelis A T van den Berg
- Computational Imaging Group for MR diagnostic & therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
- Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| |
Collapse
|
36
|
Serralles JEC, Giannakopoulos II, Zhang B, Ianniello C, Cloos MA, Polimeridis AG, White JK, Sodickson DK, Daniel L, Lattanzi R. Noninvasive Estimation of Electrical Properties From Magnetic Resonance Measurements via Global Maxwell Tomography and Match Regularization. IEEE Trans Biomed Eng 2019; 67:3-15. [PMID: 30908189 DOI: 10.1109/tbme.2019.2907442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE In this paper, we introduce global Maxwell tomography (GMT), a novel volumetric technique that estimates electric conductivity and permittivity by solving an inverse scattering problem based on magnetic resonance measurements. METHODS GMT relies on a fast volume integral equation solver, MARIE, for the forward path, and a novel regularization method, match regularization, designed specifically for electrical property estimation from noisy measurements. We performed simulations with three different tissue-mimicking numerical phantoms of different complexity, using synthetic transmit sensitivity maps with realistic noise levels as the measurements. We performed an experiment at 7 T using an eight-channel coil and a uniform phantom. RESULTS We showed that GMT could estimate relative permittivity and conductivity from noisy magnetic resonance measurements with an average error as low as 0.3% and 0.2%, respectively, over the entire volume of the numerical phantom. Voxel resolution did not affect GMT performance and is currently limited only by the memory of the graphics processing unit. In the experiment, GMT could estimate electrical properties within 5% of the values measured with a dielectric probe. CONCLUSION This work demonstrated the feasibility of GMT with match regularization, suggesting that it could be effective for accurate in vivo electrical property estimation. GMT does not rely on any symmetry assumption for the electromagnetic field, and can be generalized to estimate also the spin magnetization, at the expense of increased computational complexity. SIGNIFICANCE GMT could provide insight into the distribution of electromagnetic fields inside the body, which represents one of the key ongoing challenges for various diagnostic and therapeutic applications.
Collapse
|
37
|
Wang Y, Shao Q, Van de Moortele PF, Racila E, Liu J, Bischof J, He B. Mapping electrical properties heterogeneity of tumor using boundary informed electrical properties tomography (BIEPT) at 7T. Magn Reson Med 2019; 81:393-409. [PMID: 30230603 PMCID: PMC6258314 DOI: 10.1002/mrm.27414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 11/06/2022]
Abstract
PURPOSES To develop and evaluate a boundary informed electrical properties tomography (BIEPT) technique for high-resolution imaging of tumor electrical properties (EPs) heterogeneity on a rodent tumor xenograft model. METHODS Tumor EP distributions were inferred from a reference area external to the tumor, as well as internal EP spatial variations derived from a plurality of relative transmit B1 measurements at 7T. Edge sparsity constraint was enforced to enhance numerical stability. Phantom experiments were performed to determine the imaging accuracy and sensitivity for structures of various EP values, as well as geometrical sizes down to 1.5 mm. Numerical simulation of a realistic rodent model was used to quantify the algorithm performance in the presence of noise. Eleven athymic rats with human breast cancer xenograft were imaged in vivo, and representative pathological samples were acquired for comparison. RESULTS Reconstructed EPs of the phantoms correspond well to the ground truth acquired from dielectric probe measurements, with the smallest structure reliably detectable being 3 mm. EPs heterogeneity inside a tumor is successfully retrieved in both simulated and experimental cases. In vivo tumor imaging results demonstrate similar local features and spatial patterns to anatomical MRI and pathological slides. The imaged conductivity of necrotic tissue is higher than that of viable tissues, which agrees with our expectation. CONCLUSION BIEPT enables robust detection of tumor EPs heterogeneity with high accuracy and sensitivity to small structures. The retrieved quantitative EPs reflect tumor pathological features (e.g., necrosis). These results provide strong rationale to further expand BIEPT studies toward pathological conditions where EPs may yield valuable, non-invasive biomarkers.
Collapse
Affiliation(s)
- Yicun Wang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Qi Shao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
| | | | - Emilian Racila
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Jiaen Liu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - John Bischof
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Bin He
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
- Department of Biomedical Engineering, Carnegie Mellon University, PA 15213, USA
| |
Collapse
|
38
|
Shin J, Kim JH, Kim DH. Redesign of the Laplacian kernel for improvements in conductivity imaging using MRI. Magn Reson Med 2018; 81:2167-2175. [PMID: 30298524 DOI: 10.1002/mrm.27528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/08/2018] [Accepted: 08/22/2018] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop an electrical property tomography reconstruction method that achieves improvements over standard method by redesigning the Laplacian kernel. THEORY AND METHODS A decomposition property of the governing PET equation shows the possibility of redesigning the Laplacian kernel for conductivity reconstruction. Hence, the discrete Laplacian operator used for electrical property tomography reconstruction is redesigned to have a Gaussian-like envelope, which enables manipulation of the spatial and spectral response. The characteristics of the proposed kernel are investigated through numerical simulations and in vivo brain experiments. RESULTS The proposed method reduces textured noise, which hampers observing features of the conductivity image. Furthermore, the proposed scheme can mitigate the propagation of local phase error such as flow-induced phase. By doing so, the proposed method can recover feature information in conductivity (or resistivity) images. Lastly, the proposed kernel can be extended to other electrical property tomography reconstructions, improving the quality of images. CONCLUSION An alternative design of the Laplacian kernel for conductivity imaging has been developed to mitigate the textured noise and the propagation of local phase artifact.
Collapse
Affiliation(s)
- Jaewook Shin
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jun-Hyeong Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|