1
|
Ruck L, Egger N, Wilferth T, Schirmer J, Gast LV, Nagelstraßer S, Wildenberg S, Bitz A, Lanz T, Platt T, Konstandin S, Kopp C, Uder M, Nagel AM. Interleaved 23Na/ 1H MRI of the human heart at 7 T using a combined 23Na/ 1H coil setup and 1H parallel transmission. Magn Reson Med 2025; 94:231-241. [PMID: 40065602 PMCID: PMC12021321 DOI: 10.1002/mrm.30426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 04/26/2025]
Abstract
PURPOSE To evaluate the feasibility of interleaved 23Na/1H cardiac MRI at 7 T using 1H parallel transmission (pTx) pulses. METHODS A combined setup consisting of a 23Na volume coil and two 1H transceiver arrays was employed and the transmit and receive characteristics were compared in vitro with those of the uncombined radiofrequency coils. Furthermore, the implemented interleaved 23Na/1H pTx sequence was validated in phantom measurements and applied to four healthy subjects. For the latter, three customized 1H excitation pulses (universal and individual phase shims (UPS/IPS) and individual 4kT pulses (4kT)) were employed in the interleaved 23Na/1H pTx sequence and compared with the vendor-provided default cardiac phase shim (DPS). RESULTS Combining both coils resulted in a reduction of the mean 23Na transmit field (B1 +) efficiency and 23Na signal-to-noise ratio by 18.9% and 15.4% for the combined setup, whereas the 1H B1 + efficiency was less influenced (-4.7%). Compared with single-nuclear acquisitions, interleaved dual-nuclear 23Na/1H MRI showed negligible influence on 23Na and 1H image quality. For all three customized 1H pTx pulses the B1 + homogeneity was improved (coefficients of variation: CVUPS = 0.30, CVIPS = 0.23, CV4kT = 0.15) and no 1H signal dropouts occurred compared with the vendor-provided default phase shim (CVDPS = 0.37). CONCLUSION The incorporation of customized 1H pTx pulses in an interleaved 23Na/1H sequence scheme was successfully demonstrated at 7 T and improvements of the 1H B1 + homogeneity within the heart were shown. Combining interleaved 23Na/1H MRI with 1H pTx is an important tool to enable robust quantification of myocardial tissue sodium concentrations at 7 T within clinically acceptable acquisition times.
Collapse
Affiliation(s)
- Laurent Ruck
- Institute of Radiology, University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen–NürnbergErlangenGermany
| | - Nico Egger
- Institute of Radiology, University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen–NürnbergErlangenGermany
| | - Tobias Wilferth
- Institute of Radiology, University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen–NürnbergErlangenGermany
| | - Judith Schirmer
- Institute of Radiology, University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen–NürnbergErlangenGermany
| | - Lena Vanessa Gast
- Institute of Radiology, University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen–NürnbergErlangenGermany
| | - Sophia Nagelstraßer
- Institute of Radiology, University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen–NürnbergErlangenGermany
| | - Saskia Wildenberg
- Institute of Radiology, University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen–NürnbergErlangenGermany
- Electrical Engineering and Information TechnologyUniversity of Applied Sciences – FH AachenAachenGermany
| | - Andreas Bitz
- Electrical Engineering and Information TechnologyUniversity of Applied Sciences – FH AachenAachenGermany
| | | | - Tanja Platt
- Division of Medical Physics in RadiologyGerman Cancer Research Centre (DKFZ)HeidelbergGermany
| | | | - Christoph Kopp
- Department of Nephrology and HypertensionFriedrich‐Alexander‐Universität Erlangen–NürnbergErlangenGermany
| | - Michael Uder
- Institute of Radiology, University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen–NürnbergErlangenGermany
| | - Armin Michael Nagel
- Institute of Radiology, University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen–NürnbergErlangenGermany
- Division of Medical Physics in RadiologyGerman Cancer Research Centre (DKFZ)HeidelbergGermany
| |
Collapse
|
2
|
Gursan A, Kahraman‐Agir B, Gosselink M, Welting D, Froeling M, Hoogduin H, Wiegers E, Prompers J, Klomp D. Development of a Double Tuned 2H/ 31P Whole-Body Birdcage Transmit Coil for 2H and 31P MR Applications From Head to Toe at 7 T. NMR IN BIOMEDICINE 2025; 38:e5325. [PMID: 39888087 PMCID: PMC11783138 DOI: 10.1002/nbm.5325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 02/01/2025]
Abstract
Deuterium (2H) and phosphorus (31P) magnetic resonance spectroscopy (MRS) are complementary methods for evaluating tissue metabolism noninvasively in vivo. Combined 2H and 31P MRS would therefore be of interest for various applications, from cancer to diabetes. Loop coils are commonly used in X-nuclei studies in the human body for both transmit and receive. However, loop coils suffer from limited penetration depth and inhomogeneous B1 + field. The purpose of this work is to develop a double tuned 2H/31P whole-body birdcage transmit coil for 7 T for 2H and 31P MRS imaging (MRSI) with homogeneous excitation over a large field-of-view. The performance of the 2H/31P birdcage coil was assessed on B1 + fields over a body-sized phantom at 2H and 31P frequencies using an 8-channel 2H/31P receive array. Using two elements of the 2H/31P receive array, natural abundance 2H and 31P 3D MRSI data at rest were acquired consecutively in the brain and lower leg muscles. Additionally, 2H and 31P 3D MRSI data were acquired from one volunteer 90 min after [6,6'-2H2]-glucose intake, using 8-channel 2H/31P receive array around the abdomen. The B1 + variation of the whole-body birdcage coil over the phantom was 12.1% for 2H and 19.2% for 31P. High-quality 2H and 31P 3D MRSI data were acquired from the brain and the lower leg. Whole liver coverage was achieved in both 2H and 31P 3D MRSI data. The developed 2H/31P whole-body birdcage transmit coil allows simultaneous 3D mapping of glucose and energy metabolism and membrane turnover throughout the human body.
Collapse
Affiliation(s)
- Ayhan Gursan
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Busra Kahraman‐Agir
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Mark Gosselink
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Dimitri Welting
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Martijn Froeling
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Hans Hoogduin
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Evita C. Wiegers
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jeanine J. Prompers
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
- Departments of Human Biology and Imaging, NUTRIM Institute of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Dennis W. J. Klomp
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
3
|
Birchall JR, Horvat-Menih I, Kaggie JD, Riemer F, Benjamin AJV, Graves MJ, Wilkinson I, Gallagher FA, McLean MA. Quantitative 23Na magnetic resonance imaging in the abdomen at 3 T. MAGMA (NEW YORK, N.Y.) 2024; 37:737-748. [PMID: 38822992 PMCID: PMC11417083 DOI: 10.1007/s10334-024-01167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVES To assess the feasibility of sodium-23 MRI for performing quantitative and non-invasive measurements of total sodium concentration (TSC) and relaxation in a variety of abdominal organs. MATERIALS AND METHODS Proton and sodium imaging of the abdomen was performed in 19 healthy volunteers using a 3D cones sequence and a sodium-tuned 4-rung transmit/receive body coil on a clinical 3 T system. The effects of B1 non-uniformity on TSC measurements were corrected using the double-angle method. The long-component of 23Na T2* relaxation time was measured using a series of variable echo-times. RESULTS The mean and standard deviation of TSC and long-component 23Na T2* values were calculated across the healthy volunteer group in the kidneys, cerebrospinal fluid (CSF), liver, gallbladder, spleen, aorta, and inferior vena cava. DISCUSSION Mean TSC values in the kidneys, liver, and spleen were similar to those reported using 23Na-MRI previously in the literature. Measurements in the CSF and gallbladder were lower, potentially due to the reduced spatial resolution achievable in a clinically acceptable scan time. Mean long-component 23Na T2* values were consistent with previous reports from the kidneys and CSF. Intra-population standard error was larger in smaller, fluid-filled structures due to fluid motion and partial volume effects.
Collapse
Affiliation(s)
| | | | | | - Frank Riemer
- Department of Radiology, Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital Helse Bergen, Bergen, Norway
| | | | | | - Ian Wilkinson
- Cambridge Cardiovascular, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
4
|
Dietrich KA, Klüter S, Dinkel F, Echner G, Brons S, Orzada S, Debus J, Ladd ME, Platt T. An essentially radiation-transparent body coil integrated with a patient rotation system for MR-guided particle therapy. Med Phys 2024; 51:4028-4043. [PMID: 38656549 DOI: 10.1002/mp.17065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/28/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND The pursuit of adaptive radiotherapy using MR imaging for better precision in patient positioning puts stringent demands on the hardware components of the MR scanner. Particularly in particle therapy, the dose distribution and thus the efficacy of the treatment is susceptible to beam attenuation from interfering materials in the irradiation path. This severely limits the usefulness of conventional imaging coils, which contain highly attenuating parts such as capacitors and preamplifiers in an unknown position, and requires development of a dedicated radiofrequency (RF) coil with close consideration of the materials and components used. PURPOSE In MR-guided radiation therapy in the human torso, imaging coils with a large FOV and homogeneous B1 field distribution are required for reliable tissue classification. In this work, an imaging coil for MR-guided particle therapy was developed with minimal ion attenuation while maintaining flexibility in treatment. METHODS A birdcage coil consisting of nearly radiation-transparent materials was designed and constructed for a closed-bore 1.5 T MR system. Additionally, the coil was mounted on a rotatable patient capsule for flexible positioning of the patient relative to the beam. The ion attenuation of the RF coil was investigated in theory and via measurements of the Bragg peak position. To characterize the imaging quality of the RF coil, transmit and receive field distributions were simulated and measured inside a homogeneous tissue-simulating phantom for various rotation angles of the patient capsule ranging from 0° to 345° in steps of 15°. Furthermore, simulations with a heterogeneous human voxel model were performed to better estimate the effect of real patient loading, and the RF coil was compared to the internal body coil in terms of SNR for a full rotation of the patient capsule. RESULTS The RF coil (total water equivalent thickness (WET) ≈ 420 µm, WET of conductor ≈ 210 µm) can be considered to be radiation-transparent, and a measured transmit power efficiency (B1 +/P $\sqrt {\mathrm{P}} $ ) between 0.17 µT/W $\sqrt {\mathrm{W}} $ and 0.26 µT/W $\sqrt {\mathrm{W}} $ could be achieved in a volume (Δz = 216 mm, complete x and y range) for the 24 investigated rotation angles of the patient capsule. Furthermore, homogeneous transmit and receive field distributions were measured and simulated in the transverse, coronal and sagittal planes in a homogeneous phantom and a human voxel model. In addition, the SNR of the radiation-transparent RF coil varied between 103 and 150, in the volume (Δz = 216 mm) of a homogeneous phantom and surpasses the SNR of the internal body coil for all rotation angles of the patient capsule. CONCLUSIONS A radiation-transparent RF coil was developed and built that enables flexible patient to beam positioning via full rotation capability of the RF coil and patient relative to the beam, with results providing promising potential for adaptive MR-guided particle therapy.
Collapse
Affiliation(s)
- Kilian A Dietrich
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Fabian Dinkel
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gernot Echner
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Orzada
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Physics, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Tanja Platt
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Chen Q, Worthoff WA, Shah NJ. Accelerated multiple-quantum-filtered sodium magnetic resonance imaging using compressed sensing at 7 T. Magn Reson Imaging 2024; 107:138-148. [PMID: 38171423 DOI: 10.1016/j.mri.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/17/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Multiple-quantum-filtered (MQF) sodium magnetic resonance imaging (MRI), such as enhanced single-quantum and triple-quantum-filtered imaging of 23Na (eSISTINA), enables images to be weighted towards restricted sodium, a promising biomarker in clinical practice, but often suffers from clinically infeasible acquisition times and low image quality. This study aims to mitigate the above limitation by implementing a novel eSISTINA sequence at 7 T with the application of compressed sensing (CS) to accelerate eSISTINA acquisitions without a noticeable loss of information. METHODS A novel eSISTINA sequence with a 3D spiral-based sampling scheme was implemented at 7 T for the application of CS. Fully sampled datasets were obtained from one phantom and ten healthy subjects, and were then retrospectively undersampled by various undersampling factors. CS undersampled reconstructions were compared to fully sampled and undersampled nonuniform fast Fourier transform (NUFFT) reconstructions. Reconstruction performance was evaluated based on structural similarity (SSIM), signal-to-noise ratio (SNR), weightings towards total and compartmental sodium, and in vivo quantitative estimates. RESULTS CS-based phantom and in vivo images have less noise and better structural delineation while maintaining the weightings towards total, non-restricted (predominantly extracellular), and restricted (primarily intracellular) sodium. CS generally outperforms NUFFT with a higher SNR and a better SSIM, except for the SSIM in TQ brain images, which is likely due to substantial noise contamination. CS enables in vivo quantitative estimates with <15% errors at an undersampling factor of up to two. CONCLUSIONS Successful implementation of an eSISTINA sequence with an incoherent sampling scheme at 7 T was demonstrated. CS can accelerate eSISTINA by up to twofold at 7 T with reduced noise levels compared to NUFFT, while maintaining major structural information, reasonable weightings towards total and compartmental sodium, and relatively reliable in vivo quantification. The associated reduction in acquisition time has the potential to facilitate the clinical applicability of MQF sodium MRI.
Collapse
Affiliation(s)
- Qingping Chen
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH, Jülich, Germany; Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH, Jülich, Germany; Institute of Neuroscience and Medicine - 11, Forschungszentrum Jülich GmbH, Jülich, Germany; JARA-BRAIN-Translational Medicine, Aachen, Germany; Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Gast LV, Platt T, Nagel AM, Gerhalter T. Recent technical developments and clinical research applications of sodium ( 23Na) MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:1-51. [PMID: 38065665 DOI: 10.1016/j.pnmrs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 12/18/2023]
Abstract
Sodium is an essential ion that plays a central role in many physiological processes including the transmembrane electrochemical gradient and the maintenance of the body's homeostasis. Due to the crucial role of sodium in the human body, the sodium nucleus is a promising candidate for non-invasively assessing (patho-)physiological changes. Almost 10 years ago, Madelin et al. provided a comprehensive review of methods and applications of sodium (23Na) MRI (Madelin et al., 2014) [1]. More recent review articles have focused mainly on specific applications of 23Na MRI. For example, several articles covered 23Na MRI applications for diseases such as osteoarthritis (Zbyn et al., 2016, Zaric et al., 2020) [2,3], multiple sclerosis (Petracca et al., 2016, Huhn et al., 2019) [4,5] and brain tumors (Schepkin, 2016) [6], or for imaging certain organs such as the kidneys (Zollner et al., 2016) [7], the brain (Shah et al., 2016, Thulborn et al., 2018) [8,9], and the heart (Bottomley, 2016) [10]. Other articles have reviewed technical developments such as radiofrequency (RF) coils for 23Na MRI (Wiggins et al., 2016, Bangerter et al., 2016) [11,12], pulse sequences (Konstandin et al., 2014) [13], image reconstruction methods (Chen et al., 2021) [14], and interleaved/simultaneous imaging techniques (Lopez Kolkovsky et al., 2022) [15]. In addition, 23Na MRI topics have been covered in review articles with broader topics such as multinuclear MRI or ultra-high-field MRI (Niesporek et al., 2019, Hu et al., 2019, Ladd et al., 2018) [16-18]. During the past decade, various research groups have continued working on technical improvements to sodium MRI and have investigated its potential to serve as a diagnostic and prognostic tool. Clinical research applications of 23Na MRI have covered a broad spectrum of diseases, mainly focusing on the brain, cartilage, and skeletal muscle (see Fig. 1). In this article, we aim to provide a comprehensive summary of methodological and hardware developments, as well as a review of various clinical research applications of sodium (23Na) MRI in the last decade (i.e., published from the beginning of 2013 to the end of 2022).
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Tanja Platt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Teresa Gerhalter
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
7
|
Sanchez‐Heredia JD, Olin RB, Grist JT, Wang W, Bøgh N, Zhurbenko V, Hansen ES, Schulte RF, Tyler D, Laustsen C, Ardenkjær‐Larsen JH. RF coil design for accurate parallel imaging on 13 C MRSI using 23 Na sensitivity profiles. Magn Reson Med 2022; 88:1391-1405. [PMID: 35635156 PMCID: PMC9328386 DOI: 10.1002/mrm.29259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To develop a coil-based method to obtain accurate sensitivity profiles in 13 C MRI at 3T from the endogenous 23 Na. An eight-channel array is designed for 13 C MR acquisitions. As application examples, the array is used for two-fold accelerated acquisitions of both hyperpolarized 13 C metabolic imaging of pig kidneys and the human brain. METHODS A flexible coil array was tuned optimally for 13 C at 3T (32.1 MHz), with the coil coupling coefficients matched to be nearly identical at the resonance frequency of 23 Na (33.8 MHz). This is done by enforcing a high decoupling (obtained through highly mismatched preamplifiers) and adjusting the coupling frequency response. The SNR performance is compared to reference coils. RESULTS The measured sensitivity profiles on a phantom showed high spatial similarity for 13 C and 23 Na resonances, with average noise correlation of 9 and 11%, respectively. For acceleration factors 2, 3, and 4, the obtained maximum g-factors were 1.0, 1.1, and 2.6, respectively. The 23 Na profiles obtained in vivo could be used successfully to perform two-fold acceleration of hyperpolarized 13 C 3D acquisitions of both pig kidneys and a healthy human brain. CONCLUSION A receive array has been developed in such a way that the 13 C sensitivity profiles could be accurately obtained from measurements at the 23 Na frequency. This technique facilitates accelerated acquisitions for hyperpolarized 13 C imaging. The SNR performance obtained at the 13 C frequency, compares well to other state-of-the-art coils for the same purpose, showing slightly better superficial and central SNR.
Collapse
Affiliation(s)
| | - Rie B. Olin
- Department of Health TechnologyTechnical University of DenmarkKgs. LyngbyDenmark
| | - James T. Grist
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of OxfordOxfordUK
- Department of RadiologyOxford University Hospitals TrustOxfordUK
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Wenjun Wang
- National Space InstituteTechnical University of DenmarkKgs. LyngbyDenmark
| | - Nikolaj Bøgh
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Vitaliy Zhurbenko
- National Space InstituteTechnical University of DenmarkKgs. LyngbyDenmark
| | - Esben S. Hansen
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Damian Tyler
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of OxfordOxfordUK
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | |
Collapse
|
8
|
Wilferth T, Müller M, Gast LV, Ruck L, Meyerspeer M, Lopez Kolkovsky AL, Uder M, Dörfler A, Nagel AM. Motion‐corrected
23
Na MRI
of the human brain using interleaved
1
H 3D
navigator images. Magn Reson Med 2022; 88:309-321. [DOI: 10.1002/mrm.29221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Tobias Wilferth
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Max Müller
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Lena V. Gast
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Laurent Ruck
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Martin Meyerspeer
- High‐Field MR Center, Center for Medical Physics and Biomedical Engineering Medical University of Vienna Vienna Austria
| | - Alfredo L. Lopez Kolkovsky
- NMR Laboratory, Neuromuscular Investigation Center Institute of Myology Paris France
- NMR Laboratory CEA/DRF/IBFJ/Molecular Imaging Research Center Paris France
| | - Michael Uder
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Arnd Dörfler
- Department of Neuroradiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Armin M. Nagel
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
9
|
Chen Q, Shah NJ, Worthoff WA. Compressed Sensing in Sodium Magnetic Resonance Imaging: Techniques, Applications, and Future Prospects. J Magn Reson Imaging 2021; 55:1340-1356. [PMID: 34918429 DOI: 10.1002/jmri.28029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022] Open
Abstract
Sodium (23 Na) yields the second strongest nuclear magnetic resonance (NMR) signal in biological tissues and plays a vital role in cell physiology. Sodium magnetic resonance imaging (MRI) can provide insights into cell integrity and tissue viability relative to pathologies without significant anatomical alternations, and thus it is considered to be a potential surrogate biomarker that provides complementary information for standard hydrogen (1 H) MRI in a noninvasive and quantitative manner. However, sodium MRI suffers from a relatively low signal-to-noise ratio and long acquisition times due to its relatively low NMR sensitivity. Compressed sensing-based (CS-based) methods have been shown to accelerate sodium imaging and/or improve sodium image quality significantly. In this manuscript, the basic concepts of CS and how CS might be applied to improve sodium MRI are described, and the historical milestones of CS-based sodium MRI are briefly presented. Representative advanced techniques and evaluation methods are discussed in detail, followed by an expose of clinical applications in multiple anatomical regions and diseases as well as thoughts and suggestions on potential future research prospects of CS in sodium MRI. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Qingping Chen
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany.,Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
10
|
Platt T, Ladd ME, Paech D. 7 Tesla and Beyond: Advanced Methods and Clinical Applications in Magnetic Resonance Imaging. Invest Radiol 2021; 56:705-725. [PMID: 34510098 PMCID: PMC8505159 DOI: 10.1097/rli.0000000000000820] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT Ultrahigh magnetic fields offer significantly higher signal-to-noise ratio, and several magnetic resonance applications additionally benefit from a higher contrast-to-noise ratio, with static magnetic field strengths of B0 ≥ 7 T currently being referred to as ultrahigh fields (UHFs). The advantages of UHF can be used to resolve structures more precisely or to visualize physiological/pathophysiological effects that would be difficult or even impossible to detect at lower field strengths. However, with these advantages also come challenges, such as inhomogeneities applying standard radiofrequency excitation techniques, higher energy deposition in the human body, and enhanced B0 field inhomogeneities. The advantages but also the challenges of UHF as well as promising advanced methodological developments and clinical applications that particularly benefit from UHF are discussed in this review article.
Collapse
Affiliation(s)
- Tanja Platt
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
| | - Mark E. Ladd
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
- Faculty of Physics and Astronomy
- Faculty of Medicine, University of Heidelberg, Heidelberg
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
- Clinic for Neuroradiology, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Kaggie JD, Lanz T, McLean MA, Riemer F, Schulte RF, Benjamin AJV, Kessler DA, Sun C, Gilbert FJ, Graves MJ, Gallagher FA. Combined 23 Na and 13 C imaging at 3.0 Tesla using a single-tuned large FOV birdcage coil. Magn Reson Med 2021; 86:1734-1745. [PMID: 33934383 DOI: 10.1002/mrm.28772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/07/2021] [Accepted: 02/24/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE An unmet need in carbon-13 (13 C)-MRI is a transmit system that provides uniform excitation across a large FOV and can accommodate patients of wide-ranging body habitus. Due to the small difference between the resonant frequencies, sodium-23 (23 Na) coil developments can inform 13 C coil design while being simpler to assess due to the higher naturally abundant 23 Na signal. Here we present a removable 23 Na birdcage, which also allows operation as a 13 C abdominal coil. METHODS We demonstrate a quadrature-driven 4-rung 23 Na birdcage coil of 50 cm in length for both 23 Na and 13 C abdominal imaging. The coil transmit efficiencies and B 1 + maps were compared to a linearly driven 13 C Helmholtz-based (clamshell) coil. SNR was investigated with 23 Na and 13 C data using an 8-channel 13 C receive array within the 23 Na birdcage. RESULTS The 23 Na birdcage longitudinal FOV was > 40 cm, whereas the 13 C clamshell was < 32 cm. The transmit efficiency of the birdcage at the 23 Na frequency was 0.65 µT/sqrt(W), similar to the clamshell for 13 C. However, the coefficient of variation of 23 Na- B 1 + was 16%, nearly half that with the 13 C clamshell. The 8-channel 13 C receive array combined with the 23 Na birdcage coil generated a greater than twofold increase in 23 Na-SNR from the central abdomen compared with the birdcage alone. DISCUSSION This 23 Na birdcage coil has a larger FOV and improved B 1 + uniformity when compared to the widely used clamshell coil design while also providing similar transmit efficiency. The coil has the potential to be used for both 23 Na and 13 C imaging.
Collapse
Affiliation(s)
- Joshua D Kaggie
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | | | - Mary A McLean
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Frank Riemer
- Mohn Medical Imaging and Visualisation Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | | | - Arnold J V Benjamin
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Dimitri A Kessler
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Chang Sun
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Fiedler TM, Orzada S, Flöser M, Rietsch SHG, Quick HH, Ladd ME, Bitz AK. Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T. NMR IN BIOMEDICINE 2021; 34:e4515. [PMID: 33942938 DOI: 10.1002/nbm.4515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 05/12/2023]
Abstract
The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit elements. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual observation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the deviation from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, especially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homogeneous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study.
Collapse
Affiliation(s)
- Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Orzada
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Martina Flöser
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan H G Rietsch
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, Aachen, Germany
| |
Collapse
|
13
|
Berner S, Schmidt AB, Ellermann F, Korchak S, Chekmenev EY, Glöggler S, von Elverfeldt D, Hennig J, Hövener JB. High field parahydrogen induced polarization of succinate and phospholactate. Phys Chem Chem Phys 2021; 23:2320-2330. [PMID: 33449978 DOI: 10.1039/d0cp06281b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The signal enhancement provided by the hyperpolarization of nuclear spins of metabolites is a promising technique for diagnostic magnetic resonance imaging (MRI). To date, most 13C-contrast agents are hyperpolarized utilizing a complex or cost-intensive polarizer. Recently, the in situ parahydrogen-induced 13C hyperpolarization was demonstrated. Hydrogenation, spin order transfer (SOT) by a pulsed NMR sequence, in vivo administration, and detection was achieved within the magnet bore of a 7 Tesla MRI system. So far, the hyperpolarization of the xenobiotic molecule 1-13C-hydroxyethylpropionate (HEP) and the biomolecule 1-13C-succinate (SUC) through the PH-INEPT+ sequence and a SOT scheme proposed by Goldman et al., respectively, was shown. Here, we investigate further the hyperpolarization of SUC at 7 Tesla and study the performance of two additional SOT sequences. Moreover, we present first results of the hyperpolarization at high magnetic field of 1-13C-phospholactate (PLAC), a derivate to obtain the metabolite lactate, employing the PH-INEPT+ sequence. For SUC and PLAC, 13C polarizations of about 1-2% were achieved within seconds and with minimal equipment. Effects that potentially may explain loss of 13C polarization have been identified, i.e. low hydrogenation yield, fast T1/T2 relaxation and the rarely considered 13C isotope labeling effect.
Collapse
Affiliation(s)
- Stephan Berner
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Feasibility study of a double resonant (1H/23Na) abdominal RF setup at 3 T. Z Med Phys 2019; 29:359-367. [DOI: 10.1016/j.zemedi.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/14/2018] [Accepted: 12/08/2018] [Indexed: 01/27/2023]
|
15
|
Gast LV, Henning A, Hensel B, Uder M, Nagel AM. Localized
B
0
shimming based on
23
Na MRI at 7 T. Magn Reson Med 2019; 83:1339-1347. [DOI: 10.1002/mrm.28011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/07/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Lena V. Gast
- Institute of Radiology University Hospital Erlangen Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Anke Henning
- Max Planck Institute for Biological Cybernetics Tübingen Germany
- Advanced Imaging Research Center UT Southwestern Medical Center Dallas Texas
| | - Bernhard Hensel
- Center for Medical Physics and Engineering Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Michael Uder
- Institute of Radiology University Hospital Erlangen Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Armin M. Nagel
- Institute of Radiology University Hospital Erlangen Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Institute of Medical Physics Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| |
Collapse
|
16
|
Lu A, Atkinson IC, Thulborn KR. Motion reduction for quantitative brain sodium MR imaging with a navigated flexible twisted projection imaging sequence at 9.4 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 307:106582. [PMID: 31499470 DOI: 10.1016/j.jmr.2019.106582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Quantitative measurement of the tissue sodium concentration (TSC) provides a metric for tissue cell volume fraction for monitoring tumor responses to therapy and neurodegeneration in the brain as well as applications outside the central nervous system such as the fixed charge density in cartilage. Despite the low detection sensitivity of the sodium MR signal compared to the proton signal and the requirement for a long repetition time to minimize longitudinal magnetization saturation, acquisition time has been reduced to less than 10 min for a nominal isotropic voxel size of 3.3 mm with the improved acquisition efficiency of twisted projection imaging (TPI) at 9.4 T. However, patient motion can degrade the accuracy of the quantification even within these acquisition times. Our goal has been to improve the robustness of quantitative sodium MR imaging by minimizing the impact of motion that may occur even in cooperative patients. We present a method to spatially encode a lower resolution navigator echo after encoding the free induction decay signal for the quantitative image at no time penalty. Both the imaging and navigator data are sampled with flexTPI readout trajectories. Navigator images are generated at a higher temporal resolution (∼1 min) albeit at lower spatial resolution (8 mm) than the quantitative high-resolution images. The multiple volumes of navigator echo images are then aligned to extract the translational and rotational motion parameters assuming rigid-body motion. These parameters are used to align the k-space data during the acquisition of each volume of the quantitative images. Our results show significantly reduced image blurring with this method when the subject's head moved randomly by up to 7° between the navigator acquisitions.
Collapse
Affiliation(s)
- Aiming Lu
- Department of Radiology, Mayo Clinic, Rochester, MN 55901, United States.
| | - Ian C Atkinson
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
17
|
Zimmermann F, Korzowski A, Breitling J, Meissner J, Schuenke P, Loi L, Zaiss M, Bickelhaupt S, Schott S, Schlemmer H, Paech D, Ladd ME, Bachert P, Goerke S. A novel normalization for amide proton transfer CEST MRI to correct for fat signal–induced artifacts: application to human breast cancer imaging. Magn Reson Med 2019; 83:920-934. [DOI: 10.1002/mrm.27983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/24/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Ferdinand Zimmermann
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
| | - Andreas Korzowski
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Johannes Breitling
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
- Max‐Planck‐Institute for Nuclear Physics Heidelberg Germany
| | - Jan‐Eric Meissner
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Patrick Schuenke
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Lisa Loi
- Department of Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Medicine University of Heidelberg Heidelberg Germany
| | - Moritz Zaiss
- Department of High‐field Magnetic Resonance Max‐Planck‐Institute for Biological Cybernetics Tübingen Germany
| | - Sebastian Bickelhaupt
- Medical Imaging and Radiology ‐ Cancer Prevention German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Sarah Schott
- Department of Obstetrics and Gynecology University Hospital Heidelberg Heidelberg Germany
| | - Heinz‐Peter Schlemmer
- Department of Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Medicine University of Heidelberg Heidelberg Germany
| | - Daniel Paech
- Department of Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Mark E. Ladd
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
- Faculty of Medicine University of Heidelberg Heidelberg Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
| | - Steffen Goerke
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
18
|
Wenz D, Nagel AM, Lott J, Kuehne A, Niesporek SC, Niendorf T. In vivo potassium MRI of the human heart. Magn Reson Med 2019; 83:203-213. [DOI: 10.1002/mrm.27951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel Wenz
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Armin Michael Nagel
- Institute of Radiology University Hospital Erlangen Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
- Institute of Medical Physics University of Erlangen Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
- Division of Medical Physics in Radiology German Cancer Research Centre (DKFZ) Heidelberg Germany
| | - Johanna Lott
- Division of Medical Physics in Radiology German Cancer Research Centre (DKFZ) Heidelberg Germany
| | | | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine in the Helmholtz Association Berlin Germany
- MRI.TOOLS GmbH Berlin Germany
| |
Collapse
|
19
|
Boehmert L, Kuehne A, Waiczies H, Wenz D, Eigentler TW, Funk S, Knobelsdorff‐Brenkenhoff F, Schulz‐Menger J, Nagel AM, Seeliger E, Niendorf T. Cardiorenal sodium MRI at 7.0 Tesla using a 4/4 channel
1
H/
23
Na radiofrequency antenna array. Magn Reson Med 2019; 82:2343-2356. [DOI: 10.1002/mrm.27880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Laura Boehmert
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | | | | | - Daniel Wenz
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Thomas Wilhelm Eigentler
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Stephanie Funk
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine Helios Clinics Berlin‐Buch Berlin Germany
| | - Florian Knobelsdorff‐Brenkenhoff
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine Helios Clinics Berlin‐Buch Berlin Germany
- Clinic Agatharied, Dept. of Cardiology Academic Teaching Hospital of the Ludwig‐Maximilians‐University Munich Hausham Germany
| | - Jeanette Schulz‐Menger
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine Helios Clinics Berlin‐Buch Berlin Germany
- DZHK (German Centre for Cardiovascular Research) partner site Berlin Germany
| | - Armin M. Nagel
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
- Division of Medical Physics in Radiology German Cancer Research Centre (DKFZ) Heidelberg Germany
- Institute of Medical Physics University of Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Erdmann Seeliger
- Institute of Vegetative Physiology Charité University Medicine Berlin Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
- MRI.TOOLS GmbH Berlin Germany
- DZHK (German Centre for Cardiovascular Research) partner site Berlin Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine Berlin Germany
| |
Collapse
|
20
|
Berner S, Schmidt AB, Zimmermann M, Pravdivtsev AN, Glöggler S, Hennig J, von Elverfeldt D, Hövener J. SAMBADENA Hyperpolarization of 13C-Succinate in an MRI: Singlet-Triplet Mixing Causes Polarization Loss. ChemistryOpen 2019; 8:728-736. [PMID: 31275794 PMCID: PMC6587320 DOI: 10.1002/open.201900139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 12/30/2022] Open
Abstract
The signal enhancement provided by the hyperpolarization of nuclear spins of biological molecules is a highly promising technique for diagnostic imaging. To date, most 13C-contrast agents had to be polarized in an extra, complex or cost intensive polarizer. Recently, the in situ hyperpolarization of a 13C contrast agent to >20 % was demonstrated without a polarizer but within the bore of an MRI system. This approach addresses some of the challenges of MRI with hyperpolarized tracers, i. e. elevated cost, long production times, and loss of polarization during transfer to the detection site. Here, we demonstrate the first hyperpolarization of a biomolecule in aqueous solution in the bore of an MRI at field strength of 7 T within seconds. The 13C nucleus of 1-13C, 2,3-2H2-succinate was polarized to 11 % corresponding to a signal enhancement of approximately 18.000. Interesting effects during the process of the hydrogenation reaction which lead to a significant loss of polarization have been observed.
Collapse
Affiliation(s)
- Stephan Berner
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgKillianstraße 5a79106FreiburgGermany
- German Consortium for Cancer Research (DKTK) partner site Freiburg
- German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Andreas B. Schmidt
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgKillianstraße 5a79106FreiburgGermany
- Department of Radiology and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig-HolsteinUniversity of KielAm Botanischen Garten 1424118KielGermany
| | - Mirko Zimmermann
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgKillianstraße 5a79106FreiburgGermany
| | - Andrey N. Pravdivtsev
- Department of Radiology and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig-HolsteinUniversity of KielAm Botanischen Garten 1424118KielGermany
| | - Stefan Glöggler
- Max Planck Institute for Biophysical Chemistry Am Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of NeurodegenerationVon-Siebold-Straße 3a37075GöttingenGermany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgKillianstraße 5a79106FreiburgGermany
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgKillianstraße 5a79106FreiburgGermany
| | - Jan‐Bernd Hövener
- Department of Radiology and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig-HolsteinUniversity of KielAm Botanischen Garten 1424118KielGermany
| |
Collapse
|
21
|
Abstract
In this article, an overview of the current developments and research applications for non-proton magnetic resonance imaging (MRI) at ultrahigh magnetic fields (UHFs) is given. Due to technical and methodical advances, efficient MRI of physiologically relevant nuclei, such as Na, Cl, Cl, K, O, or P has become feasible and is of interest to obtain spatially and temporally resolved information that can be used for biomedical and diagnostic applications. Sodium (Na) MRI is the most widespread multinuclear imaging method with applications ranging over all regions of the human body. Na MRI yields the second largest in vivo NMR signal after the clinically used proton signal (H). However, other nuclei such as O and P (energy metabolism) or Cl and K (cell viability) are used in an increasing number of MRI studies at UHF. One major advancement has been the increased availability of whole-body MR scanners with UHFs (B0 ≥7T) expanding the range of detectable nuclei. Nevertheless, efforts in terms of pulse sequence and post-processing developments as well as hardware designs must be made to obtain valuable information in clinically feasible measurement times. This review summarizes the available methods in the field of non-proton UHF MRI, especially for Na MRI, as well as introduces potential applications in clinical research.
Collapse
Affiliation(s)
- Sebastian C Niesporek
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin M Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tanja Platt
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Malzacher M, Chacon-Caldera J, Paschke N, Schad LR. Feasibility study of a double resonant 8-channel 1H/ 8-channel 23Na receive-only head coil at 3 Tesla. Magn Reson Imaging 2019; 59:97-104. [PMID: 30880113 DOI: 10.1016/j.mri.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 01/12/2023]
Abstract
Sodium (23Na) magnetic resonance imaging (MRI), especially brain applications are increasingly interesting since sodium MRI can provide additional information about tissue viability and vitality. In order to include sodium MRI in the clinical routine, a single RF setup is preferable which provides high sodium sensitivity and full proton performance in terms of signal-to-noise ratio (SNR) and parallel imaging performance. The aim of this work was to evaluate the feasibility of a double resonant receive (Rx) coil array for proton and sodium head MRI. The coil was designed to provide high sodium SNR and full proton performance comparable to commercial coils which are optimized for sodium MRI or for proton MRI, respectively. A measurement setup was built which comprised an 8-channel Rx degenerate Birdcage for sodium imaging and an 8-channel Rx array for proton imaging. The performance of the coil was evaluated against commercial sodium and proton coils using phantom and in-vivo measurements of two healthy volunteers.
Collapse
Affiliation(s)
- Matthias Malzacher
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Jorge Chacon-Caldera
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadia Paschke
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
23
|
Lott J, Platt T, Niesporek SC, Paech D, G. R. Behl N, Niendorf T, Bachert P, Ladd ME, Nagel AM. Corrections of myocardial tissue sodium concentration measurements in human cardiac
23
Na MRI at 7 Tesla. Magn Reson Med 2019; 82:159-173. [DOI: 10.1002/mrm.27703] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Johanna Lott
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy Heidelberg Germany
| | - Tanja Platt
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
| | | | - Daniel Paech
- German Cancer Research Center (DKFZ) Radiology, Heidelberg Germany
| | - Nicolas G. R. Behl
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
| | - Thoralf Niendorf
- Max Delbrueck Center for Molecular Medicine in the Helmholtz Association Berlin Germany
- MRI. TOOLS GmbH Berlin Germany
| | - Peter Bachert
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy Heidelberg Germany
| | - Mark E. Ladd
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy Heidelberg Germany
- University of Heidelberg Faculty of Medicine Heidelberg Germany
| | - Armin M. Nagel
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
- Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU), University Hospital Erlangen Institute of Radiology Erlangen Germany
- Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Institute of Medical Physics Erlangen Germany
| |
Collapse
|
24
|
Gast LV, Gerhalter T, Hensel B, Uder M, Nagel AM. Double quantum filtered 23 Na MRI with magic angle excitation of human skeletal muscle in the presence of B 0 and B 1 inhomogeneities. NMR IN BIOMEDICINE 2018; 31:e4010. [PMID: 30290039 DOI: 10.1002/nbm.4010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Double quantum filtered 23 Na MRI with magic angle excitation (DQF-MA) can be used to selectively detect sodium ions located within anisotropic structures such as muscle fibers. It might therefore be a promising tool to analyze the microscopic environment of sodium ions, for example in the context of osmotically neutral sodium retention. However, DQF-MA imaging is challenging due to various signal dependences, on both measurement parameters and external influences. The aim of this work was to examine how B0 in combination with B1 inhomogeneities alter the DQF-MA signal intensity. We showed that, in the presence of B0 inhomogeneities, flip angle schemes with only one 54.7° pulse can be favorable compared with the classical 90°-54.7°-54.7° scheme. DQF-MA images of the human lower leg were acquired at B0 = 3 T with a nominal spatial resolution of 12 × 12 × 36 mm3 within an acquisition time of TAcq < 10 min, and compared with spin density weighted (DW), as well as triple quantum filtration (TQF) 23 Na images. We found mean normalized signal-to-noise ratios of TQF/DW = 13.7 ± 2.3% (tibialis anterior), 11.9 ± 2.3% (soleus) and 11.4 ± 2.2% (gastrocnemius medialis), as well as DQF-MA/DW = 4.7 ± 1.1% (tibialis anterior), 3.3 ± 0.73% (soleus) and 3.4 ± 0.6% (gastrocnemius medialis). These ratios might serve as additional measures in future clinical studies of sodium retention within human skeletal muscle. However, the influence of B0 and B1 inhomogeneities should be considered when interpreting DQF-MA images.
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Teresa Gerhalter
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- NMR laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
- NMR laboratory, CEA/IBFJ/MIRCen, Paris, France
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
25
|
Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, Schmitter S, Speck O, Straub S, Zaiss M. Pros and cons of ultra-high-field MRI/MRS for human application. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:1-50. [PMID: 30527132 DOI: 10.1016/j.pnmrs.2018.06.001] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging and spectroscopic techniques are widely used in humans both for clinical diagnostic applications and in basic research areas such as cognitive neuroimaging. In recent years, new human MR systems have become available operating at static magnetic fields of 7 T or higher (≥300 MHz proton frequency). Imaging human-sized objects at such high frequencies presents several challenges including non-uniform radiofrequency fields, enhanced susceptibility artifacts, and higher radiofrequency energy deposition in the tissue. On the other side of the scale are gains in signal-to-noise or contrast-to-noise ratio that allow finer structures to be visualized and smaller physiological effects to be detected. This review presents an overview of some of the latest methodological developments in human ultra-high field MRI/MRS as well as associated clinical and scientific applications. Emphasis is given to techniques that particularly benefit from the changing physical characteristics at high magnetic fields, including susceptibility-weighted imaging and phase-contrast techniques, imaging with X-nuclei, MR spectroscopy, CEST imaging, as well as functional MRI. In addition, more general methodological developments such as parallel transmission and motion correction will be discussed that are required to leverage the full potential of higher magnetic fields, and an overview of relevant physiological considerations of human high magnetic field exposure is provided.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Sina Straub
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Moritz Zaiss
- High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|