1
|
Stewart NJ, Higano NS, Wucherpfennig L, Triphan SM, Simmons A, Smith LJ, Wielpütz MO, Woods JC, Wild JM. Pulmonary MRI in Newborns and Children. J Magn Reson Imaging 2025; 61:2094-2115. [PMID: 39639777 PMCID: PMC11987788 DOI: 10.1002/jmri.29669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Lung MRI is an important tool in the assessment and monitoring of pediatric and neonatal lung disorders. MRI can provide both similar and complementary image contrast to computed tomography for imaging the lung macrostructure, and beyond this, a number of techniques have been developed for imaging the key functions of the lungs, namely ventilation, perfusion, and gas exchange, through the use of free-breathing proton and hyperpolarized gas MRI. Here, we review the state-of-the-art in MRI methods that have found utility in pediatric and neonatal lung imaging, the structural and physiological information that can be gleaned from such images, and strategies that have been developed to deal with respiratory (and cardiac) motion, and other technological challenges. The application of lung MRI in neonatal and pediatric lung conditions, in particular bronchopulmonary dysplasia, cystic fibrosis, and asthma, is reviewed, highlighting our collective experiences in the clinical translation of these methods and technology, and the key current and future potential avenues for clinical utility of this methodology. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Neil J. Stewart
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of HealthThe University of SheffieldSheffieldUK
- Insigneo Institute of In Silico Medicine, The University of SheffieldSheffieldUK
| | - Nara S. Higano
- Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Department of RadiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Lena Wucherpfennig
- Department of Diagnostic and Interventional RadiologyUniversity Hospital HeidelbergHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL)HeidelbergGermany
- Department of Diagnostic and Interventional Radiology with Nuclear MedicineThoraxklinik at University Hospital HeidelbergHeidelbergGermany
| | - Simon M.F. Triphan
- Department of Diagnostic and Interventional RadiologyUniversity Hospital HeidelbergHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL)HeidelbergGermany
- Department of Diagnostic and Interventional Radiology with Nuclear MedicineThoraxklinik at University Hospital HeidelbergHeidelbergGermany
| | - Amy Simmons
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of HealthThe University of SheffieldSheffieldUK
| | - Laurie J. Smith
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of HealthThe University of SheffieldSheffieldUK
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional RadiologyUniversity Hospital HeidelbergHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL)HeidelbergGermany
- Department of Diagnostic and Interventional Radiology with Nuclear MedicineThoraxklinik at University Hospital HeidelbergHeidelbergGermany
| | - Jason C. Woods
- Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Department of RadiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Jim M. Wild
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of HealthThe University of SheffieldSheffieldUK
- Insigneo Institute of In Silico Medicine, The University of SheffieldSheffieldUK
| |
Collapse
|
2
|
Yang Y, Yue S, Shen L, Dong H, Li H, Zhao X, Guo Q, Zhou X. Ultrasensitive 129Xe Magnetic Resonance Imaging: From Clinical Monitoring to Molecular Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413426. [PMID: 39836636 DOI: 10.1002/advs.202413426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Indexed: 01/23/2025]
Abstract
Magnetic resonance imaging (MRI) is a cornerstone technology in clinical diagnostics and in vivo research, offering unparalleled visualization capabilities. Despite significant advancements in the past century, traditional 1H MRI still faces sensitivity limitations that hinder its further development. To overcome this challenge, hyperpolarization methods have been introduced, disrupting the thermal equilibrium of nuclear spins and leading to an increased proportion of hyperpolarized spins, thereby enhancing sensitivity by hundreds to tens of thousands of times. Among these methods, hyperpolarized (HP) 129Xe MRI, also known as ultrasensitive 129Xe MRI, stands out for achieving the highest polarization enhancement and has recently received clinical approval. It effectively tackles the challenge of weak MRI signals from low proton density in the lungs. HP 129Xe MRI is valuable for assessing structural and functional changes in lung physiology during pulmonary disease progression, tracking cells, and detecting target molecules at pico-molar concentrations. This review summarizes recent developments in HP 129Xe MRI, including its physical principles, manufacturing methods, in vivo characteristics, and diverse applications in biomedical, chemical, and material sciences. In addition, it carefully discusses potential technical improvements and future prospects for enhancing its utility in these fields, further establishing HP 129Xe MRI's importance in advancing medical imaging and research.
Collapse
Affiliation(s)
- Yuqi Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sen Yue
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyang Shen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiling Dong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Rao Q, Li H, Zhou Q, Zhang M, Zhao X, Shi L, Xie J, Fan L, Han Y, Guo F, Liu S, Zhou X. Assessment of pulmonary physiological changes caused by aging, cigarette smoking, and COPD with hyperpolarized 129Xe magnetic resonance. Eur Radiol 2024; 34:7450-7459. [PMID: 38748243 DOI: 10.1007/s00330-024-10800-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE To comprehensively assess the impact of aging, cigarette smoking, and chronic obstructive pulmonary disease (COPD) on pulmonary physiology using 129Xe MR. METHODS A total of 90 subjects were categorized into four groups, including healthy young (HY, n = 20), age-matched control (AMC, n = 20), asymptomatic smokers (AS, n = 28), and COPD patients (n = 22). 129Xe MR was utilized to obtain pulmonary physiological parameters, including ventilation defect percent (VDP), alveolar sleeve depth (h), apparent diffusion coefficient (ADC), total septal wall thickness (d), and ratio of xenon signal from red blood cells and interstitial tissue/plasma (RBC/TP). RESULTS Significant differences were found in the measured VDP (p = 0.035), h (p = 0.003), and RBC/TP (p = 0.003) between the HY and AMC groups. Compared with the AMC group, higher VDP (p = 0.020) and d (p = 0.048) were found in the AS group; higher VDP (p < 0.001), d (p < 0.001) and ADC (p < 0.001), and lower h (p < 0.001) and RBC/TP (p < 0.001) were found in the COPD group. Moreover, significant differences were also found in the measured VDP (p < 0.001), h (p < 0.001), ADC (p < 0.001), d (p = 0.008), and RBC/TP (p = 0.032) between the AS and COPD groups. CONCLUSION Our findings indicate that pulmonary structure and functional changes caused by aging, cigarette smoking, and COPD are various, and show a progressive deterioration with the accumulation of these risk factors, including cigarette smoking and COPD. CLINICAL RELEVANCE STATEMENT Pathophysiological changes can be difficult to comprehensively understand due to limitations in common techniques and multifactorial etiologies. 129Xe MRI can demonstrate structural and functional changes caused by several common factors and can be used to better understand patients' underlying pathology. KEY POINTS Standard techniques for assessing pathophysiological lung function changes, spirometry, and chest CT come with limitations. 129Xe MR demonstrated progressive deterioration with accumulation of the investigated risk factors, without these limitations. 129Xe MR can assess lung changes related to these risk factors to stage and evaluate the etiology of the disease.
Collapse
Affiliation(s)
- Qiuchen Rao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Ming Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Shi
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junshuai Xie
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Fan
- Department of Radiology, Changzheng Hospital of the Second Military Medical University, Shanghai, 200003, China
| | - Yeqing Han
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fumin Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital of the Second Military Medical University, Shanghai, 200003, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10:1060940. [PMID: 37181360 PMCID: PMC10166823 DOI: 10.3389/fmed.2023.1060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability in the world. While early diagnosis is key, this has proven difficult due to the lack of sensitive and non-invasive tools. Computed tomography is regarded as the gold standard for structural lung imaging but lacks functional information and involves significant radiation exposure. Lung magnetic resonance imaging (MRI) has historically been challenging due to its short T2 and low proton density. Hyperpolarised gas MRI is an emerging technique that is able to overcome these difficulties, permitting the functional and microstructural evaluation of the lung. Other novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, Fourier decomposition MRI and phase-resolved functional lung imaging can also be used to interrogate lung function though they are currently at varying stages of development. This article provides a clinically focused review of these contrast and non-contrast MR imaging techniques and their current applications in lung disease.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Thoracic Medicine, Peninsula Health, Frankston, VIC, Australia
| | - Bruce R. Thompson
- Melbourne School of Health Science, Melbourne University, Melbourne, VIC, Australia
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Zhou Q, Li H, Rao Q, Zhang M, Zhao X, Shen L, Fang Y, Li H, Liu X, Xiao S, Shi L, Han Y, Ye C, Zhou X. Assessment of pulmonary morphometry using hyperpolarized 129 Xe diffusion-weighted MRI with variable-sampling-ratio compressed sensing patterns. Med Phys 2023; 50:867-878. [PMID: 36196039 DOI: 10.1002/mp.16018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/26/2022] [Accepted: 09/24/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hyperpolarized (HP) 129 Xe multiple b-values diffusion-weighted magnetic resonance imaging (DW-MRI) has been widely used for quantifying pulmonary microstructural morphometry. However, the technique requires long acquisition times, making it hard to apply in patients with severe pulmonary diseases, who cannot sustain long breath holds. PURPOSE To develop and evaluate the technique of variable-sampling-ratio compressed sensing (VCS) patterns for accelerating HP 129 Xe multiple b-values DW-MRI in humans. METHODS Optimal variable sampling ratios and corresponding k-space undersampling patterns for each b-value were obtained by retrospective simulations based on the fully sampled (FS) DW-MRI dataset acquired from six young healthy volunteers. Then, the FS datasets were retrospectively undersampled using both VCS patterns and conventional compressed sensing (CS) pattern with a similar average acceleration factor. The quality of reconstructed images with retrospective VCS (rVCS) and CS (rCS) datasets were quantified using mean absolute error (MAE) and structural similarity (SSIM). Pulmonary morphometric parameters were also evaluated between rVCS and FS datasets. In addition, prospective VCS multiple b-values 129 Xe DW-MRI datasets were acquired from 14 cigarette smokers and 13 age-matched healthy volunteers. The differences of lung morphological parameters obtained with the proposed method were compared between the groups using independent samples t-test. Pearson correlation coefficient was also utilized for evaluating the correlation of the pulmonary physiological parameters obtained with VCS DW-MRI and pulmonary function tests. RESULTS Lower MAE and higher SSIM values were found in the reconstructed images with rVCS measurement when compared to those using conventional rCS measurement. The details and quality of the images obtained with rVCS and FS measurements were found to be comparable. The mean values of the morphological parameters derived from rVCS and FS datasets showed no significant differences (p > 0.05), and the mean differences of measured acinar duct radius, mean linear intercept, surface-to-volume ratio, and apparent diffusion coefficient with cylinder model were -0.87%, -2.42%, 2.04%, and -0.50%, respectively. By using the VCS technique, significant differences were delineated between the pulmonary morphometric parameters of healthy volunteers and cigarette smokers (p < 0.001), while the acquisition time was reduced by four times. CONCLUSION A fourfold reduction in acquisition time was achieved using the proposed VCS method while preserving good image quality. Our preliminary results demonstrated that the proposed method can be used for evaluating pulmonary injuries caused by cigarette smoking and may prove to be helpful in diagnosing lung diseases in clinical practice.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiuchen Rao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Ming Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Luyang Shen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Yuan Fang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Hongchuang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoling Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sa Xiao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei Shi
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yeqing Han
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Sembhi R, Ranota T, Fox M, Couch M, Li T, Ball I, Ouriadov A. Feasibility of Dynamic Inhaled Gas MRI-Based Measurements Using Acceleration Combined with the Stretched Exponential Model. Diagnostics (Basel) 2023; 13:diagnostics13030506. [PMID: 36766611 PMCID: PMC9914115 DOI: 10.3390/diagnostics13030506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Dynamic inhaled gas (3He/129Xe/19F) MRI permits the acquisition of regional fractional-ventilation which is useful for detecting gas-trapping in lung-diseases such as lung fibrosis and COPD. Deninger's approach used for analyzing the wash-out data can be substituted with the stretched-exponential-model (SEM) because signal-intensity is attenuated as a function of wash-out-breath in 19F lung imaging. Thirteen normal-rats were studied using 3He/129Xe and 19F MRI and the ventilation measurements were performed using two 3T clinical-scanners. Two Cartesian-sampling-schemes (Fast-Gradient-Recalled-Echo/X-Centric) were used to test the proposed method. The fully sampled dynamic wash-out images were retrospectively under-sampled (acceleration-factors (AF) of 10/14) using a varying-sampling-pattern in the wash-out direction. Mean fractional-ventilation maps using Deninger's and SEM-based approaches were generated. The mean fractional-ventilation-values generated for the fully sampled k-space case using the Deninger method were not significantly different from other fractional-ventilation-values generated for the non-accelerated/accelerated data using both Deninger and SEM methods (p > 0.05 for all cases/gases). We demonstrated the feasibility of the SEM-based approach using retrospective under-sampling, mimicking AF = 10/14 in a small-animal-cohort from the previously reported dynamic-lung studies. A pixel-by-pixel comparison of the Deninger-derived and SEM-derived fractional-ventilation-estimates obtained for AF = 10/14 (≤16% difference) has confirmed that even at AF = 14, the accuracy of the estimates is high enough to consider this method for prospective measurements.
Collapse
Affiliation(s)
- Ramanpreet Sembhi
- Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Tuneesh Ranota
- Faculty of Engineering, School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Matthew Fox
- Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Marcus Couch
- Siemens Healthcare Limited, Montreal, QC H4R 2N9, Canada
| | - Tao Li
- Department of Chemistry, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Iain Ball
- Philips Australia and New Zealand, Sydney 2113, Australia
| | - Alexei Ouriadov
- Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada
- Faculty of Engineering, School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
- Correspondence:
| |
Collapse
|
7
|
Chan HF, Smith LJ, Biancardi AM, Bray J, Marshall H, Hughes PJC, Collier GJ, Rao M, Norquay G, Swift AJ, Hart K, Cousins M, Watkins WJ, Wild JM, Kotecha S. Image Phenotyping of Preterm-Born Children Using Hyperpolarized 129Xe Lung Magnetic Resonance Imaging and Multiple-Breath Washout. Am J Respir Crit Care Med 2023; 207:89-100. [PMID: 35972833 PMCID: PMC9952860 DOI: 10.1164/rccm.202203-0606oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/16/2022] [Indexed: 02/03/2023] Open
Abstract
Rationale: Preterm birth is associated with low lung function in childhood, but little is known about the lung microstructure in childhood. Objectives: We assessed the differential associations between the historical diagnosis of bronchopulmonary dysplasia (BPD) and current lung function phenotypes on lung ventilation and microstructure in preterm-born children using hyperpolarized 129Xe ventilation and diffusion-weighted magnetic resonance imaging (MRI) and multiple-breath washout (MBW). Methods: Data were available from 63 children (aged 9-13 yr), including 44 born preterm (⩽34 weeks' gestation) and 19 term-born control subjects (⩾37 weeks' gestation). Preterm-born children were classified, using spirometry, as prematurity-associated obstructive lung disease (POLD; FEV1 < lower limit of normal [LLN] and FEV1/FVC < LLN), prematurity-associated preserved ratio of impaired spirometry (FEV1 < LLN and FEV1/FVC ⩾ LLN), preterm-(FEV1 ⩾ LLN) and term-born control subjects, and those with and without BPD. Ventilation heterogeneity metrics were derived from 129Xe ventilation MRI and SF6 MBW. Alveolar microstructural dimensions were derived from 129Xe diffusion-weighted MRI. Measurements and Main Results: 129Xe ventilation defect percentage and ventilation heterogeneity index were significantly increased in preterm-born children with POLD. In contrast, mean 129Xe apparent diffusion coefficient, 129Xe apparent diffusion coefficient interquartile range, and 129Xe mean alveolar dimension interquartile range were significantly increased in preterm-born children with BPD, suggesting changes of alveolar dimensions. MBW metrics were all significantly increased in the POLD group compared with preterm- and term-born control subjects. Linear regression confirmed the differential effects of obstructive disease on ventilation defects and BPD on lung microstructure. Conclusion: We show that ventilation abnormalities are associated with POLD, and BPD in infancy is associated with abnormal lung microstructure.
Collapse
Affiliation(s)
- Ho-Fung Chan
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Laurie J. Smith
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Alberto M. Biancardi
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jody Bray
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Helen Marshall
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Paul J. C. Hughes
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Guilhem J. Collier
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Graham Norquay
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J. Swift
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Kylie Hart
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Neonatal Unit, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Michael Cousins
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Neonatal Unit, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - W. John Watkins
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jim M. Wild
- Pulmonary, Lung and Respiratory Imaging Sheffield (POLARIS), Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Sailesh Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Neonatal Unit, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| |
Collapse
|
8
|
Anikeeva M, Sangal M, Speck O, Norquay G, Zuhayra M, Lützen U, Peters J, Jansen O, Hövener JB. Nichtinvasive funktionelle Lungenbildgebung mit hyperpolarisiertem Xenon. ZEITSCHRIFT FÜR PNEUMOLOGIE 2022. [PMCID: PMC9387426 DOI: 10.1007/s10405-022-00462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hintergrund Die Magnetresonanztomographie (MRT) ist ein nichtinvasives Verfahren mit hervorragendem Weichteilkontrast. Aufgrund der geringen Protonendichte und vielen Luft-Gewebe-Übergängen ist die Anwendung in der Lunge jedoch eingeschränkt, so dass hier häufig röntgenbasierte Methoden eingesetzt werden (mit den bekannten Nachteilen ionisierender Strahlung). Fragestellung In dieser Übersichtsarbeit wird die Lungen-MRT mit hyperpolarisiertem Xenon-129 (Xe-MRT) dargestellt. Die Xe-MRT erlaubt einzigartige wertvolle Einblicke in die Mikrostruktur und Funktion der Lunge, einschließlich des Gasaustauschs mit roten Blutkörperchen – Parameter, die mit klinischen Standardmethoden nicht zugänglich sind. Material und Methoden Durch die magnetische Markierung, die Hyperpolarisierung, wird das Signal von Xenon-129 um bis zu 100.000-fach verstärkt. Hierbei werden die Elektronen von Rubidium mittels Laserlicht zunächst auf 100 % polarisiert und dann durch Stöße auf Xenon übertragen. Danach wird das hyperpolarisierte Gas in einem Beutel zum Patienten gebracht und eingeatmet, kurz bevor die MRT-Aufnahmen beginnen. Ergebnisse Durch spezielle Programmierungen (Sequenzen) in der MRT kann die Ventilation, Mikrostruktur oder der Gasaustausch der Lunge in 3‑D dargestellt werden. Dies ermöglicht z. B. die quantitative Darstellung von Belüftungsdefekten, der Größe der Alveolen, der Gasaufnahme im Gewebe und des Gastransfers ins Blut. Schlussfolgerung Die Xe-MRT liefert einzigartige Informationen über den Zustand der Lunge – nichtinvasiv, in vivo und in weniger als einer Minute.
Collapse
Affiliation(s)
- Mariia Anikeeva
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118 Kiel, Deutschland
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Maitreyi Sangal
- Abteilung Biomedizinische Magnetresonanz, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Deutschland
| | - Oliver Speck
- Abteilung Biomedizinische Magnetresonanz, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Deutschland
| | - Graham Norquay
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, Großbritannien
| | - Maaz Zuhayra
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Ulf Lützen
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Josh Peters
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118 Kiel, Deutschland
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Olav Jansen
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Jan-Bernd Hövener
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118 Kiel, Deutschland
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| |
Collapse
|
9
|
Anikeeva M, Sangal M, Speck O, Norquay G, Zuhayra M, Lützen U, Peters J, Jansen O, Hövener JB. Nichtinvasive funktionelle Lungenbildgebung mit hyperpolarisiertem Xenon. Radiologe 2022; 62:475-485. [PMID: 35403905 PMCID: PMC8996207 DOI: 10.1007/s00117-022-00993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Mariia Anikeeva
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118, Kiel, Deutschland.
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland.
| | - Maitreyi Sangal
- Abteilung Biomedizinische Magnetresonanz, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Deutschland
| | - Oliver Speck
- Abteilung Biomedizinische Magnetresonanz, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Deutschland
| | - Graham Norquay
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, Großbritannien
| | - Maaz Zuhayra
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Ulf Lützen
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Josh Peters
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118, Kiel, Deutschland
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Olav Jansen
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Jan-Bernd Hövener
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118, Kiel, Deutschland.
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland.
| |
Collapse
|
10
|
Stewart NJ, Smith LJ, Chan HF, Eaden JA, Rajaram S, Swift AJ, Weatherley ND, Biancardi A, Collier GJ, Hughes D, Klafkowski G, Johns CS, West N, Ugonna K, Bianchi SM, Lawson R, Sabroe I, Marshall H, Wild JM. Lung MRI with hyperpolarised gases: current & future clinical perspectives. Br J Radiol 2022; 95:20210207. [PMID: 34106792 PMCID: PMC9153706 DOI: 10.1259/bjr.20210207] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of pulmonary MRI in a clinical setting has historically been limited. Whilst CT remains the gold-standard for structural lung imaging in many clinical indications, technical developments in ultrashort and zero echo time MRI techniques are beginning to help realise non-ionising structural imaging in certain lung disorders. In this invited review, we discuss a complementary technique - hyperpolarised (HP) gas MRI with inhaled 3He and 129Xe - a method for functional and microstructural imaging of the lung that has great potential as a clinical tool for early detection and improved understanding of pathophysiology in many lung diseases. HP gas MRI now has the potential to make an impact on clinical management by enabling safe, sensitive monitoring of disease progression and response to therapy. With reference to the significant evidence base gathered over the last two decades, we review HP gas MRI studies in patients with a range of pulmonary disorders, including COPD/emphysema, asthma, cystic fibrosis, and interstitial lung disease. We provide several examples of our experience in Sheffield of using these techniques in a diagnostic clinical setting in challenging adult and paediatric lung diseases.
Collapse
Affiliation(s)
- Neil J Stewart
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Laurie J Smith
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ho-Fung Chan
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - James A Eaden
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Smitha Rajaram
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Andrew J Swift
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Nicholas D Weatherley
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Alberto Biancardi
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - David Hughes
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | | | - Christopher S Johns
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Noreen West
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Kelechi Ugonna
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Stephen M Bianchi
- Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Rod Lawson
- Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Ian Sabroe
- Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Helen Marshall
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
11
|
Niedbalski PJ, Choi J, Hall CS, Castro M. Imaging in Asthma Management. Semin Respir Crit Care Med 2022; 43:613-626. [PMID: 35211923 DOI: 10.1055/s-0042-1743289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation that affects more than 300 million people worldwide. Clinically, asthma has a widely variable presentation and is defined based on a history of respiratory symptoms alongside airflow limitation. Imaging is not needed to confirm a diagnosis of asthma, and thus the use of imaging in asthma has historically been limited to excluding alternative diagnoses. However, significant advances continue to be made in novel imaging methodologies, which have been increasingly used to better understand respiratory impairment in asthma. As a disease primarily impacting the airways, asthma is best understood by imaging methods with the ability to elucidate airway impairment. Techniques such as computed tomography, magnetic resonance imaging with gaseous contrast agents, and positron emission tomography enable assessment of the small airways. Others, such as optical coherence tomography and endobronchial ultrasound enable high-resolution imaging of the large airways accessible to bronchoscopy. These imaging techniques are providing new insights in the pathophysiology and treatments of asthma and are poised to impact the clinical management of asthma.
Collapse
Affiliation(s)
- Peter J Niedbalski
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jiwoong Choi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Chase S Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
12
|
Accelerate gas diffusion-weighted MRI for lung morphometry with deep learning. Eur Radiol 2022; 32:702-713. [PMID: 34255160 PMCID: PMC8276538 DOI: 10.1007/s00330-021-08126-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/14/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Multiple b-value gas diffusion-weighted MRI (DW-MRI) enables non-invasive and quantitative assessment of lung morphometry, but its long acquisition time is not well-tolerated by patients. We aimed to accelerate multiple b-value gas DW-MRI for lung morphometry using deep learning. METHODS A deep cascade of residual dense network (DC-RDN) was developed to reconstruct high-quality DW images from highly undersampled k-space data. Hyperpolarized 129Xe lung ventilation images were acquired from 101 participants and were retrospectively collected to generate synthetic DW-MRI data to train the DC-RDN. Afterwards, the performance of the DC-RDN was evaluated on retrospectively and prospectively undersampled multiple b-value 129Xe MRI datasets. RESULTS Each slice with size of 64 × 64 × 5 could be reconstructed within 7.2 ms. For the retrospective test data, the DC-RDN showed significant improvement on all quantitative metrics compared with the conventional reconstruction methods (p < 0.05). The apparent diffusion coefficient (ADC) and morphometry parameters were not significantly different between the fully sampled and DC-RDN reconstructed images (p > 0.05). For the prospectively accelerated acquisition, the required breath-holding time was reduced from 17.8 to 4.7 s with an acceleration factor of 4. Meanwhile, the prospectively reconstructed results showed good agreement with the fully sampled images, with a mean difference of -0.72% and -0.74% regarding global mean ADC and mean linear intercept (Lm) values. CONCLUSIONS DC-RDN is effective in accelerating multiple b-value gas DW-MRI while maintaining accurate estimation of lung microstructural morphometry, facilitating the clinical potential of studying lung diseases with hyperpolarized DW-MRI. KEY POINTS • The deep cascade of residual dense network allowed fast and high-quality reconstruction of multiple b-value gas diffusion-weighted MRI at an acceleration factor of 4. • The apparent diffusion coefficient and morphometry parameters were not significantly different between the fully sampled images and the reconstructed results (p > 0.05). • The required breath-holding time was reduced from 17.8 to 4.7 s and each slice with size of 64 × 64 × 5 could be reconstructed within 7.2 ms.
Collapse
|
13
|
Niedbalski PJ, Hall CS, Castro M, Eddy RL, Rayment JH, Svenningsen S, Parraga G, Zanette B, Santyr GE, Thomen RP, Stewart NJ, Collier GJ, Chan HF, Wild JM, Fain SB, Miller GW, Mata JF, Mugler JP, Driehuys B, Willmering MM, Cleveland ZI, Woods JC. Protocols for multi-site trials using hyperpolarized 129 Xe MRI for imaging of ventilation, alveolar-airspace size, and gas exchange: A position paper from the 129 Xe MRI clinical trials consortium. Magn Reson Med 2021; 86:2966-2986. [PMID: 34478584 DOI: 10.1002/mrm.28985] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
Hyperpolarized (HP) 129 Xe MRI uniquely images pulmonary ventilation, gas exchange, and terminal airway morphology rapidly and safely, providing novel information not possible using conventional imaging modalities or pulmonary function tests. As such, there is mounting interest in expanding the use of biomarkers derived from HP 129 Xe MRI as outcome measures in multi-site clinical trials across a range of pulmonary disorders. Until recently, HP 129 Xe MRI techniques have been developed largely independently at a limited number of academic centers, without harmonizing acquisition strategies. To promote uniformity and adoption of HP 129 Xe MRI more widely in translational research, multi-site trials, and ultimately clinical practice, this position paper from the 129 Xe MRI Clinical Trials Consortium (https://cpir.cchmc.org/XeMRICTC) recommends standard protocols to harmonize methods for image acquisition in HP 129 Xe MRI. Recommendations are described for the most common HP gas MRI techniques-calibration, ventilation, alveolar-airspace size, and gas exchange-across MRI scanner manufacturers most used for this application. Moreover, recommendations are described for 129 Xe dose volumes and breath-hold standardization to further foster consistency of imaging studies. The intention is that sites with HP 129 Xe MRI capabilities can readily implement these methods to obtain consistent high-quality images that provide regional insight into lung structure and function. While this document represents consensus at a snapshot in time, a roadmap for technical developments is provided that will further increase image quality and efficiency. These standardized dosing and imaging protocols will facilitate the wider adoption of HP 129 Xe MRI for multi-site pulmonary research.
Collapse
Affiliation(s)
- Peter J Niedbalski
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chase S Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Rachel L Eddy
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan H Rayment
- Division of Respiratory Medicine, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah Svenningsen
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Brandon Zanette
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giles E Santyr
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Robert P Thomen
- Departments of Radiology and Bioengineering, University of Missouri, Columbia, Missouri, USA
| | - Neil J Stewart
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ho-Fung Chan
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Sean B Fain
- Departments of Medical Physics, Radiology, and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - G Wilson Miller
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Jaime F Mata
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - John P Mugler
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Bastiaan Driehuys
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew M Willmering
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Departments of Pediatrics (Pulmonary Medicine) and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Departments of Pediatrics (Pulmonary Medicine) and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
14
|
Hamedani H, Kadlecek S, Ruppert K, Xin Y, Duncan I, Rizi RR. Ventilation heterogeneity imaged by multibreath wash-ins of hyperpolarized 3 He and 129 Xe in healthy rabbits. J Physiol 2021; 599:4197-4223. [PMID: 34256417 DOI: 10.1113/jp281584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Multibreath imaging to estimate regional gas mixing efficiency is superior to intensity-based single-breath ventilation markers, as it is capable of revealing minute but essential measures of ventilation heterogeneity which may be sensitive to subclinical alterations in the early stages of both obstructive and restrictive respiratory disorders. Large-scale convective stratification of ventilation in central-to-peripheral directions is the dominant feature of observed ventilation heterogeneity when imaging a heavy/less diffusive xenon gas mixture; smaller-scale patchiness, probably originating from asymmetric lung function at bronchial airway branching due to the interaction of convective and diffusive flows, is the dominant feature when imaging a lighter/more diffusive helium gas mixture. Since detecting low regional ventilation is crucial for characterizing diseased lungs, our results suggest that dilution with natural abundance helium and imaging at higher lung volumes seem advisable when imaging with hyperpolarized 129 Xe; this will allow the imaging gas to reach slow-filling and/or non-dependent lung regions, which might otherwise be impossible to distinguish from total ventilation shunt regions. The ability to differentiate these regions from those of total shunt is worse with typical single-breath imaging techniques. ABSTRACT The mixing of freshly inhaled gas with gas already present in the lung can be directly assessed with heretofore unachievable precision via magnetic resonance imaging of signal build-up resulting from multiple wash-ins of a hyperpolarized (HP) gas. Here, we used normoxic HP 3 He and 129 Xe mixtures to study regional ventilation at different spatial scales in five healthy mechanically ventilated supine rabbits at two different inspired volumes. To decouple the respective effects of density and diffusion rates on ventilation heterogeneity, two additional studies were performed: one in which 3 He was diluted with an equal fraction of natural abundance xenon, and one in which 129 Xe was diluted with an equal fraction of 4 He. We observed systematic differences in the spatial scale of specific ventilation heterogeneity between HP 3 He and 129 Xe. We found that large-scale, central-to-peripheral convective ventilation inhomogeneity is the dominant cause of observed heterogeneity when breathing a normoxic xenon gas mixture. In contrast, small-scale ventilation heterogeneity in the form of patchiness, probably originating from asymmetric lung function at bronchial airway branching due to interactions between convective and diffusive flows, is the dominant feature when breathing a normoxic helium gas mixture, for which the critical zone occurs more proximally and at an imageable spatial scale. We also showed that the existence of particular underventilated non-dependent lung regions when breathing a heavy gas mixture is the result of the density of that mixture - rather than, for example, its diffusion rate or viscosity. Finally, we showed that gravity-dependent ventilation heterogeneity becomes substantially more uniform at higher inspired volumes for xenon gas mixtures compared to helium mixtures.
Collapse
Affiliation(s)
- Hooman Hamedani
- Department of Radiology, Functional and Metabolic Imaging Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen Kadlecek
- Department of Radiology, Functional and Metabolic Imaging Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kai Ruppert
- Department of Radiology, Functional and Metabolic Imaging Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi Xin
- Department of Radiology, Functional and Metabolic Imaging Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian Duncan
- Department of Radiology, Functional and Metabolic Imaging Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rahim R Rizi
- Department of Radiology, Functional and Metabolic Imaging Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Tanaka Y, Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Iwase A, Fukuba T, Hattori H, Murayama K, Yoshikawa T, Takenaka D, Koyama H, Toyama H. State-of-the-art MR Imaging for Thoracic Diseases. Magn Reson Med Sci 2021; 21:212-234. [PMID: 33952785 PMCID: PMC9199970 DOI: 10.2463/mrms.rev.2020-0184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT and positron emission tomography (PET)/CT. However, in many countries and states and for specific indications, MR imaging has recently become practicable. In addition, recently developed pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been introduced as being capable of assessing pulmonary function. It should be borne in mind, however, that these applications have so far been academically and clinically used only for healthy volunteers, but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the Fleischner Society published a new report, which provides consensus expert opinions regarding appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2) promising but requiring further validation or evaluation, and 3) developments warranting research investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively visualize lung structural and functional abnormalities without ionizing radiation and thus provide an alternative to CT. MR imaging is considered as a tool for providing unique information. Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare MR imaging with conventional methods to determine whether the former has equal or superior clinical relevance. The results of these trials together with continued improvements are expected to update or modify recommendations for the use of MRI in near future.
Collapse
Affiliation(s)
- Yumi Tanaka
- Department of Radiology, Fujita Health University School of Medicine
| | - Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine.,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine
| | - Yuki Obama
- Department of Radiology, Fujita Health University School of Medicine
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine
| | - Akiyoshi Iwase
- Department of Radiology, Fujita Health University Hospital
| | - Takashi Fukuba
- Department of Radiology, Fujita Health University Hospital
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University School of Medicine
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | | | | | | | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine
| |
Collapse
|
16
|
Niedbalski PJ, Cochran AS, Freeman MS, Guo J, Fugate EM, Davis CB, Dahlke J, Quirk JD, Varisco BM, Woods JC, Cleveland ZI. Validating in vivo hyperpolarized 129 Xe diffusion MRI and diffusion morphometry in the mouse lung. Magn Reson Med 2021; 85:2160-2173. [PMID: 33017076 PMCID: PMC8544163 DOI: 10.1002/mrm.28539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE Diffusion and lung morphometry imaging using hyperpolarized gases are promising tools to quantify pulmonary microstructure noninvasively in humans and in animal models. These techniques assume the motion encoded is exclusively diffusive gas displacement, but the impact of cardiac motion on measurements has never been explored. Furthermore, although diffusion morphometry has been validated against histology in humans and mice using 3 He, it has never been validated in mice for 129 Xe. Here, we examine the effect of cardiac motion on diffusion imaging and validate 129 Xe diffusion morphometry in mice. THEORY AND METHODS Mice were imaged using gradient-echo-based diffusion imaging, and apparent diffusion-coefficient (ADC) maps were generated with and without cardiac gating. Diffusion-weighted images were fit to a previously developed theoretical model using Bayesian probability theory, producing morphometric parameters that were compared with conventional histology. RESULTS Cardiac gating had no significant impact on ADC measurements (dual-gating: ADC = 0.020 cm2 /s, single-gating: ADC = 0.020 cm2 /s; P = .38). Diffusion-morphometry-generated maps of ADC (mean, 0.0165 ± 0.0001 cm2 /s) and acinar dimensions (alveolar sleeve depth [h] = 44 µm, acinar duct radii [R] = 99 µm, mean linear intercept [Lm ] = 74 µm) that agreed well with conventional histology (h = 45 µm, R = 108 µm, Lm = 63 µm). CONCLUSION Cardiac motion has negligible impact on 129 Xe ADC measurements in mice, arguing its impact will be similarly minimal in humans, where relative cardiac motion is reduced. Hyperpolarized 129 Xe diffusion morphometry accurately and noninvasively maps the dimensions of lung microstructure, suggesting it can quantify the pulmonary microstructure in mouse models of lung disease.
Collapse
Affiliation(s)
- Peter J. Niedbalski
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Alexander S. Cochran
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH
| | - Matthew S. Freeman
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH
| | - Jinbang Guo
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Elizabeth M. Fugate
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Cory B. Davis
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Physics, West Texas A&M University, Canyon, TX
| | - Jerry Dahlke
- Department of Radiology, Duke University School of Medicine, Durham, NC
| | - James D. Quirk
- Department of Radiology, Washington University, St. Louis, MO
| | - Brian M. Varisco
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Jason C. Woods
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Radiology, Washington University, St. Louis, MO
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Zackary I. Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
17
|
Chan HF, Collier GJ, Parra-Robles J, Wild JM. Finite element simulations of hyperpolarized gas DWI in micro-CT meshes of acinar airways: validating the cylinder and stretched exponential models of lung microstructural length scales. Magn Reson Med 2021; 86:514-525. [PMID: 33624325 DOI: 10.1002/mrm.28703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/07/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE This work assesses the accuracy of the stretched exponential (SEM) and cylinder models of lung microstructural length scales that can be derived from hyperpolarized gas DWI. This was achieved by simulating 3 He and 129 Xe DWI signals within two micro-CT-derived realistic acinar airspace meshes that represent healthy and idiopathic pulmonary fibrosis lungs. METHODS The healthy and idiopathic pulmonary fibrosis acinar airway meshes were derived from segmentations of 3D micro-CT images of excised human lungs and meshed for finite element simulations of the Bloch-Torrey equations. 3 He and 129 Xe multiple b value DWI experiments across a range of diffusion times (3 He Δ = 1.6 ms; 129 Xe Δ = 5 to 20 ms) were simulated in each mesh. Global SEM mean diffusive length scale and cylinder model mean chord length value was derived from each finite element simulation and compared against each mesh's mean linear intercept length, calculated from intercept length measurements within micro-CT segmentation masks. RESULTS The SEM-derived mean diffusive length scale was within ±10% of the mean linear intercept length for simulations with both 3 He (Δ = 1.6 ms) and 129 Xe (Δ = 7 to 13 ms) in the healthy mesh, and with 129 Xe (Δ = 13 to 20 ms) for the idiopathic pulmonary fibrosis mesh, whereas for the cylinder model-derived mean chord length the closest agreement with mean linear intercept length (11.7% and 22.6% difference) was at 129 Xe Δ = 20 ms for both healthy and IPF meshes, respectively. CONCLUSION This work validates the use of the SEM for accurate estimation of acinar dimensions and indicates that the SEM is relatively robust across a range of experimental conditions and acinar length scales.
Collapse
Affiliation(s)
- Ho-Fung Chan
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Guilhem J Collier
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Juan Parra-Robles
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Jim M Wild
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,Insigneo, Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
18
|
Marshall H, Stewart NJ, Chan HF, Rao M, Norquay G, Wild JM. In vivo methods and applications of xenon-129 magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:42-62. [PMID: 33632417 PMCID: PMC7933823 DOI: 10.1016/j.pnmrs.2020.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 05/28/2023]
Abstract
Hyperpolarised gas lung MRI using xenon-129 can provide detailed 3D images of the ventilated lung airspaces, and can be applied to quantify lung microstructure and detailed aspects of lung function such as gas exchange. It is sensitive to functional and structural changes in early lung disease and can be used in longitudinal studies of disease progression and therapy response. The ability of 129Xe to dissolve into the blood stream and its chemical shift sensitivity to its local environment allow monitoring of gas exchange in the lungs, perfusion of the brain and kidneys, and blood oxygenation. This article reviews the methods and applications of in vivo129Xe MR in humans, with a focus on the physics of polarisation by optical pumping, radiofrequency coil and pulse sequence design, and the in vivo applications of 129Xe MRI and MRS to examine lung ventilation, microstructure and gas exchange, blood oxygenation, and perfusion of the brain and kidneys.
Collapse
Affiliation(s)
- Helen Marshall
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Neil J Stewart
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ho-Fung Chan
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Graham Norquay
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jim M Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
19
|
Hatabu H, Ohno Y, Gefter WB, Parraga G, Madore B, Lee KS, Altes TA, Lynch DA, Mayo JR, Seo JB, Wild JM, van Beek EJR, Schiebler ML, Kauczor HU. Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders: Fleischner Society Position Paper. Radiology 2020; 297:286-301. [PMID: 32870136 DOI: 10.1148/radiol.2020201138] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pulmonary MRI provides structural and quantitative functional images of the lungs without ionizing radiation, but it has had limited clinical use due to low signal intensity from the lung parenchyma. The lack of radiation makes pulmonary MRI an ideal modality for pediatric examinations, pregnant women, and patients requiring serial and longitudinal follow-up. Fortunately, recent MRI techniques, including ultrashort echo time and zero echo time, are expanding clinical opportunities for pulmonary MRI. With the use of multicoil parallel acquisitions and acceleration methods, these techniques make pulmonary MRI practical for evaluating lung parenchymal and pulmonary vascular diseases. The purpose of this Fleischner Society position paper is to familiarize radiologists and other interested clinicians with these advances in pulmonary MRI and to stratify the Society recommendations for the clinical use of pulmonary MRI into three categories: (a) suggested for current clinical use, (b) promising but requiring further validation or regulatory approval, and (c) appropriate for research investigations. This position paper also provides recommendations for vendors and infrastructure, identifies methods for hypothesis-driven research, and suggests opportunities for prospective, randomized multicenter trials to investigate and validate lung MRI methods.
Collapse
Affiliation(s)
- Hiroto Hatabu
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Yoshiharu Ohno
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Warren B Gefter
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Grace Parraga
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Bruno Madore
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Kyung Soo Lee
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Talissa A Altes
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - David A Lynch
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - John R Mayo
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Joon Beom Seo
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Jim M Wild
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Edwin J R van Beek
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Mark L Schiebler
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Hans-Ulrich Kauczor
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | -
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| |
Collapse
|
20
|
Application of a stretched-exponential model for morphometric analysis of accelerated diffusion-weighted 129Xe MRI of the rat lung. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:73-84. [PMID: 32632748 DOI: 10.1007/s10334-020-00860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Diffusion-weighted, hyperpolarized 129Xe MRI is useful for the characterization of microstructural changes in the lung. A stretched exponential model was proposed for morphometric extraction of the mean chord length (Lm) from diffusion-weighted data. The stretched exponential model enables accelerated mapping of Lm in a single-breathhold using compressed sensing. Our purpose was to compare Lm maps obtained from stretched-exponential model analysis of accelerated versus unaccelerated diffusion-weighted 129Xe MRI data obtained from healthy/injured rat lungs. MATERIAL AND METHODS Lm maps were generated using a stretched-exponential model analysis of previously acquired fully sampled diffusion-weighted 129Xe rat data (b values = 0 … 110 s/cm2) and compared to Lm maps generated from retrospectively undersampled data simulating acceleration factors of 7/10. The data included four control rats and five rats receiving whole-lung irradiation to mimic radiation-induced lung injury. Mean Lm obtained from the accelerated/unaccelerated maps were compared to histological mean linear intercept. RESULTS Accelerated Lm estimates were similar to unaccelerated Lm estimates in all rats, and similar to those previously reported (< 12% different). Lm was significantly reduced (p < 0.001) in the irradiated rat cohort (90 ± 20 µm/90 ± 20 µm) compared to the control rats (110 ± 20 µm/100 ± 15 µm) and agreed well with histological mean linear intercept. DISCUSSION Accelerated mapping of Lm using a stretched-exponential model analysis is feasible, accurate and agrees with histological mean linear intercept. Acceleration reduces scan time, thus should be considered for the characterization of lung microstructural changes in humans where breath-hold duration is short.
Collapse
|
21
|
Utzschneider M, Behl NGR, Lachner S, Gast LV, Maier A, Uder M, Nagel AM. Accelerated quantification of tissue sodium concentration in skeletal muscle tissue: quantitative capability of dictionary learning compressed sensing. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 33:495-505. [DOI: 10.1007/s10334-019-00819-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
|
22
|
Ouriadov A, Guo F, McCormack DG, Parraga G. Accelerated 129 Xe MRI morphometry of terminal airspace enlargement: Feasibility in volunteers and those with alpha-1 antitrypsin deficiency. Magn Reson Med 2019; 84:416-426. [PMID: 31765497 DOI: 10.1002/mrm.28091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Multi-b diffusion-weighted hyperpolarized inhaled-gas MRI provides imaging biomarkers of terminal airspace enlargement including ADC and mean linear intercept (Lm ), but clinical translation has been limited because image acquisition requires relatively long or multiple breath-holds that are not well-tolerated by patients. Therefore, we aimed to accelerate single breath-hold 3D multi-b diffusion-weighted 129 Xe MRI, using k-space undersampling in imaging direction using a different undersampling pattern for different b-values combined with the stretched exponential model to generate maps of ventilation, apparent transverse relaxation time constant ( T 2 ∗ ), ADC, and Lm values in a single, short breath-hold; accelerated and non-accelerated measurements were directly compared. METHODS We evaluated multi-b (0, 12, 20, 30, and 45.5 s/cm2 ) diffusion-weighted 129 Xe T 2 ∗ /ADC/morphometry estimates using acceleration factor (AF = 1 and 7) and multi-breath sampling in 3 volunteers (HV), and 6 participants with alpha-1 antitrypsin deficiency (AATD). RESULTS For the HV subgroup, mean differences of 5%, 2%, and 8% were observed between fully sampled and undersampled k-space for ADC, Lm , and T 2 ∗ values, respectively. For the AATD subgroup, mean differences were 9%, 6%, and 12% between fully sampled and undersampled k-space for ADC, Lm and T 2 ∗ values, respectively. Although mean differences of 1% and 4.5% were observed between accelerated and multi-breath sampled ADC and Lm values, respectively, mean ADC/Lm estimates were not significantly different from corresponding mean ADCM /Lm M or mean ADCA /Lm A estimates (all P > 0.60 , A = undersampled and M = multi-breath sampled). CONCLUSIONS Accelerated multi-b diffusion-weighted 129 Xe MRI is feasible at AF = 7 for generating pulmonary ADC and Lm in AATD and normal lung.
Collapse
Affiliation(s)
- Alexei Ouriadov
- Department of Physics and Astronomy, The University of Western Ontario, London, Canada.,Lawson Health Research Institute, London, Canada
| | - Fumin Guo
- Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - David G McCormack
- Division of Respirology, Department of Medicine, The University of Western Ontario, London, Canada
| | - Grace Parraga
- Division of Respirology, Department of Medicine, The University of Western Ontario, London, Canada.,Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada
| |
Collapse
|