1
|
Romero B, Hoque P, Robinson KG, Lee SK, Sinha T, Panda A, Shrader MW, Parashar V, Akins RE, Batish M. The circular RNA circNFIX regulates MEF2C expression in muscle satellite cells in spastic cerebral palsy. J Biol Chem 2024; 300:107987. [PMID: 39542245 PMCID: PMC11697776 DOI: 10.1016/j.jbc.2024.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Cerebral palsy (CP) is a pediatric onset disorder with poorly understood molecular causes and progression, making early diagnosis difficult. Circular RNAs are regulatory RNAs that show promise as biomarkers in various diseases but the role of circular RNAs in CP is beginning to be understood. This study identified the role of circNFIX in regulating the expression of myocyte-specific enhancer factor 2C (MEF2C), an important transcription factor for sarcomere development. We found that circNFIX is downregulated in the muscle cells of individuals with CP, and its localization shifts toward the nucleus as visualized using single-molecule resolution imaging. The decreased expression of circNFIX, MEF2C, and MEF2C targets persisted throughout myoblasts to myotubes differentiation, and in the skeletal muscle tissue. Bioinformatic and experimental validation confirmed that circNFIX acts as a sponge for miR373-3p, a microRNA that represses MEF2C translation. In normal muscle, circNFIX derepresses MEF2C translation by sponging miR373-3p, allowing for normal sarcomere generation. In CP, reduced circNFIX expression results in loss of miRNA sponging, leading to lower MEF2C expression and downregulation of sarcomere genes, potentially causing shortened and dysfunctional muscle fibers. Knockdown (KD) of circNFIX reduced myogenic capacity of myoblasts to fuse and form myotubes similar to CP cells evident from the lower fusion index in CP and KD as compared to control myotubes. This is the first study reporting reduction of MEF2C in CP and single-molecule resolution imaging of circNFIX's subcellular distribution and its role in CP, suggesting circNFIX as a potential therapeutic target and biomarker for early CP diagnosis.
Collapse
Affiliation(s)
- Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Parsa Hoque
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Karyn G Robinson
- Nemours Children's Research, Nemours Children's Health System, Wilmington, Delaware, USA
| | - Stephanie K Lee
- Nemours Children's Research, Nemours Children's Health System, Wilmington, Delaware, USA
| | - Tanvi Sinha
- Institute of Life Science (ILS), Nalco Square, Bhubaneswar, Odisha, India
| | - Amaresh Panda
- Institute of Life Science (ILS), Nalco Square, Bhubaneswar, Odisha, India
| | - Michael W Shrader
- Nemours Children's Research, Nemours Children's Health System, Wilmington, Delaware, USA
| | - Vijay Parashar
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Robert E Akins
- Nemours Children's Research, Nemours Children's Health System, Wilmington, Delaware, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
2
|
Fridén J, Lieber RL. Wrist extensor pathomechanics: implications for tendon and nerve transfer. J Hand Surg Eur Vol 2024; 49:1047-1050. [PMID: 38190974 DOI: 10.1177/17531934231224737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Central and peripheral nervous system lesions may disrupt the intricate balance of the prime movers of the wrist. In spasticity, hyperactive wrist flexors create a flexion moment and, if untreated, can lead to flexion contractures. In patients with C6 spinal cord injury and tetraplegia, the posterior interosseus nerve is typically affected by a complex pattern of upper and/or lower motoneuron lesions causing radial deviation of the wrist due to loss of ulnar deviation actuators. In this report, we illustrate severe pathomechanics that may occur even with relatively modest changes in wrist balance. These results illustrate how thorough understanding of muscle-tendon-joint interaction aids in designing tendon and nerve reconstructive surgeries to normalize wrist positions and balance in neuromuscular conditions.
Collapse
Affiliation(s)
- Jan Fridén
- Department of Tetrahand Surgery and Hand Surgery (Nottwil Tetrahand), Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Richard L Lieber
- Departments of Physical Medicine and Rehabilitation, Physiology and Biomedical Engineering, Northwestern University, Chicago, IL, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Hines V. A. Medical Center, Maywood, IL, USA
| |
Collapse
|
3
|
Wohlgemuth RP, Kulkarni VA, Villalba M, Davids JR, Smith LR. Collagen architecture and biomechanics of gracilis and adductor longus muscles from children with cerebral palsy. J Physiol 2024; 602:3489-3504. [PMID: 39008710 PMCID: PMC11849552 DOI: 10.1113/jp285988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
Cerebral palsy (CP) describes some upper motoneuron disorders due to non-progressive disturbances occurring in the developing brain that cause progressive changes to muscle. While longer sarcomeres increase muscle stiffness in patients with CP compared to typically developing (TD) patients, changes in extracellular matrix (ECM) architecture can increase stiffness. Our goal was to investigate how changes in muscle and ECM architecture impact muscle stiffness, gait and joint function in CP. Gracilis and adductor longus biopsies were collected from children with CP undergoing tendon lengthening surgery for hamstring and hip adduction contractures, respectively. Gracilis biopsies were collected from TD patients undergoing anterior cruciate ligament reconstruction surgery with hamstring autograft. Muscle mechanical testing, two-photon imaging and hydroxyproline assay were performed on biopsies. Corresponding data were compared to radiographic hip displacement in CP adductors (CPA), gait kinematics in CP hamstrings (CPH), and joint range of motion in CPA and CPH. We found at matched sarcomere lengths muscle stiffness and collagen architecture were similar between TD and CP hamstrings. However, CPH stiffness (R2 = 0.1973), collagen content (R2 = 0.5099) and cross-linking (R2 = 0.3233) were correlated to decreased knee range of motion. Additionally, we observed collagen fibres within the muscle ECM increase alignment during muscular stretching. These data demonstrate that while ECM architecture is similar between TD and CP hamstrings, collagen fibres biomechanics are sensitive to muscle strain and may be altered at longer in vivo sarcomere lengths in CP muscle. Future studies could evaluate the impact of ECM architecture on TD and CP muscle stiffness across in vivo operating ranges. KEY POINTS: At matched sarcomere lengths, gracilis muscle mechanics and collagen architecture are similar in TD patients and patients with CP. In both TD and CP muscles, collagen fibres dynamically increase their alignment during muscle stretching. Aspects of muscle mechanics and collagen architecture are predictive of in vivo knee joint motion and radiographic hip displacement in patients with CP. Longer sarcomere lengths in CP muscle in vivo may alter collagen architecture and biomechanics to drive deficits in joint mobility and gait function.
Collapse
Affiliation(s)
- Ross P Wohlgemuth
- Department of Neurobiology, Physiology, & Behavior, University of California Davis, Davis, CA, USA
| | - Vedant A Kulkarni
- Department of Orthopaedic Surgery, Shriners Children's Northern California, Sacramento, CA, USA
| | - Marie Villalba
- Department of Orthopaedic Surgery, Shriners Children's Northern California, Sacramento, CA, USA
| | - Jon R Davids
- Department of Orthopaedic Surgery, Shriners Children's Northern California, Sacramento, CA, USA
| | - Lucas R Smith
- Department of Neurobiology, Physiology, & Behavior, University of California Davis, Davis, CA, USA
- Department of Physical Medicine and Rehabilitation, University of California Davis, Davis, CA, USA
| |
Collapse
|
4
|
Ludovice MC, Saul KR, Kamper DG. Use of computational modeling to examine fingertip force production in children with hemiplegic cerebral palsy. J Biomech 2024; 172:112198. [PMID: 38964009 DOI: 10.1016/j.jbiomech.2024.112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Most children with hemiplegic cerebral palsy (HCP), one of the most prevalent subtypes of cerebral palsy, struggle with grasping and manipulating objects. This impairment may arise from a diminished capacity to properly direct forces created with the finger pad due to aberrant force application. Children with HCP were asked to create maximal force with the index finger pad in the palmar (normal) direction with both the paretic and non-paretic hands. The resulting forces and finger postures were then applied to a computational musculoskeletal model of the hand to estimate the corresponding muscle activation patterns. Subjects tended to create greater shear force relative to normal force with the paretic hand (p < 0.05). The resultant force was directed 33.6°±10.8° away from the instructed palmar direction in the paretic hand, but only 8.0°±7.3° in the non-paretic hand. Additionally, participants created greater palmar force with the non-paretic hand than with the paretic hand (p < 0.05). These differences in force production are likely due to differences in muscle activation pattern, as our computational models showed differences in which muscles are active and their relative activations when recreating the measured force vectors for the two hands (p < 0.01). The models predicted reduced activation in the extrinsic and greater reductions in activation in the intrinsic finger muscles, potentially due to reduced voluntary activation or muscle atrophy. As the large shear forces could lead to objects slipping from grasp, muscle activation patterns may provide an important target for therapeutic treatment in children with HCP.
Collapse
Affiliation(s)
- Miranda C Ludovice
- The Joint Department of Biomedical Engineering, the University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, United States.
| | - Katherine R Saul
- The Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Derek G Kamper
- The Joint Department of Biomedical Engineering, the University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
5
|
Panahi F, Ebrahimi S, Rojhani-Shirazi Z, Shakibafard A, Hemmati L. Effects of neurorehabilitation with and without dry needling technique on muscle thickness, reflex torque, spasticity and functional performance in chronic ischemic stroke patients with spastic upper extremity muscles: a blinded randomized sham-controlled clinical trial. Disabil Rehabil 2024; 46:1092-1102. [PMID: 36970837 DOI: 10.1080/09638288.2023.2190168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Evaluation the effects of dry needling on sonographic, biomechanical and functional parameters of spastic upper extremity muscles. METHODS Twenty-four patients (35-65 years) with spastic hand were randomly allocated into two equal groups: intervention and sham-controlled groups. The treatment protocol was 12-sessions neurorehabilitation for both groups and 4-sessions dry needling or sham-needling for the intervention group and sham-controlled group respectively on wrist and fingers flexor muscles. The outcomes were muscle thickness, spasticity, upper extremity motor function, hand dexterity and reflex torque which were assessed before, after the 12th session, and after one-month follow-up by a blinded assessor. RESULTS The analysis showed that there was a significant reduction in muscle thickness, spasticity and reflex torque and a significant increment in motor function and dexterity in both groups after treatment (p < 0.01). However, these changes were significantly higher in the intervention group (p < 0.01) except for spasticity. Moreover, a significant improvement was seen in all outcomes measured one-month after the end of the treatment in the intervention group (p < 0.01). CONCLUSIONS Dry needling plus neurorehabilitation could decrease muscle thickness, spasticity and reflex torque and improve upper-extremity motor performance and dexterity in chronic stroke patients. These changes were lasted one-month after treatment.Trial Registration Number: IRCT20200904048609N1IMPLICATION FOR REHABILITATIONUpper extremity spasticity is one of the stroke consequences which interfere with motor function and dexterity of patient hand in activity of daily livingApplying the dry needling accompanied with neurorehabilitation program in post-stroke patients with muscle spasticity can reduce the muscle thickness, spasticity and reflex torque and improve upper extremity functions.
Collapse
Affiliation(s)
- Fatemeh Panahi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Ebrahimi
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Rehabilitation Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rojhani-Shirazi
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Rehabilitation Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ladan Hemmati
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Robinson KG, Marsh AG, Lee SK, Hicks J, Romero B, Batish M, Crowgey EL, Shrader MW, Akins RE. DNA Methylation Analysis Reveals Distinct Patterns in Satellite Cell-Derived Myogenic Progenitor Cells of Subjects with Spastic Cerebral Palsy. J Pers Med 2022; 12:jpm12121978. [PMID: 36556199 PMCID: PMC9780849 DOI: 10.3390/jpm12121978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Spastic type cerebral palsy (CP) is a complex neuromuscular disorder that involves altered skeletal muscle microanatomy and growth, but little is known about the mechanisms contributing to muscle pathophysiology and dysfunction. Traditional genomic approaches have provided limited insight regarding disease onset and severity, but recent epigenomic studies indicate that DNA methylation patterns can be altered in CP. Here, we examined whether a diagnosis of spastic CP is associated with intrinsic DNA methylation differences in myoblasts and myotubes derived from muscle resident stem cell populations (satellite cells; SCs). Twelve subjects were enrolled (6 CP; 6 control) with informed consent/assent. Skeletal muscle biopsies were obtained during orthopedic surgeries, and SCs were isolated and cultured to establish patient-specific myoblast cell lines capable of proliferation and differentiation in culture. DNA methylation analyses indicated significant differences at 525 individual CpG sites in proliferating SC-derived myoblasts (MB) and 1774 CpG sites in differentiating SC-derived myotubes (MT). Of these, 79 CpG sites were common in both culture types. The distribution of differentially methylated 1 Mbp chromosomal segments indicated distinct regional hypo- and hyper-methylation patterns, and significant enrichment of differentially methylated sites on chromosomes 12, 13, 14, 15, 18, and 20. Average methylation load across 2000 bp regions flanking transcriptional start sites was significantly different in 3 genes in MBs, and 10 genes in MTs. SC derived MBs isolated from study participants with spastic CP exhibited fundamental differences in DNA methylation compared to controls at multiple levels of organization that may reveal new targets for studies of mechanisms contributing to muscle dysregulation in spastic CP.
Collapse
Affiliation(s)
- Karyn G. Robinson
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
| | - Adam G. Marsh
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Stephanie K. Lee
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
| | - Jonathan Hicks
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Brigette Romero
- Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erin L. Crowgey
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
| | - M. Wade Shrader
- Department of Orthopedics, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA
| | - Robert E. Akins
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
- Correspondence: ; Tel.: +1-302-651-6779
| |
Collapse
|
7
|
Lieber RL. Técnicas quirúrgicas y biológicas en parálisis cerebral. Rehabilitacion (Madr) 2022; 57:100761. [PMID: 36336483 DOI: 10.1016/j.rh.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- R L Lieber
- Shirley Ryan Ability Lab, Northwestern University, Edward Hines, Jr. VA Hospital, Chicago, IL, Estados Unidos.
| |
Collapse
|
8
|
Nikolaou S, Garcia MC, Long JT, Allgier AJ, Goh Q, Cornwall R. Brachial plexus birth injury and cerebral palsy lead to a common contracture phenotype characterized by reduced functional muscle length and strength. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:983159. [PMID: 36188997 PMCID: PMC9397713 DOI: 10.3389/fresc.2022.983159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022]
Abstract
Introduction Brachial plexus birth injury (BPBI) and cerebral palsy (CP) both cause disabling contractures for which no curative treatments exist, largely because contracture pathophysiology is incompletely understood. The distinct neurologic nature of BPBI and CP suggest different potential contracture etiologies, although imbalanced muscle strength and insufficient muscle length have been variably implicated. The current study directly compares the muscle phenotype of elbow flexion contractures in human subjects with BPBI and CP to test the hypothesis that both conditions cause contractures characterized by a deficit in muscle length rather than an excess in muscle strength. Methods Subjects over 6 years of age with unilateral BPBI or hemiplegic CP, and with elbow flexion contractures greater than 10 degrees on the affected side, underwent bilateral elbow flexion isokinetic strength testing to identify peak torque and impulse, or area under the torque-angle curve. Subjects then underwent needle microendoscopic sarcomere length measurement of bilateral biceps brachii muscles at symmetric joint angles. Results In five subjects with unilateral BPBI and five with hemiplegic CP, peak torque and impulse were significantly lower on the affected versus unaffected sides, with no differences between BPBI and CP subjects in the percent reduction of either strength measurement. In both BPBI and CP, the percent reduction of impulse was significantly greater than that of peak torque, consistent with functionally shorter muscles. Similarly, in both conditions, affected muscles had significantly longer sarcomeres than unaffected muscles at symmetric joint angles, indicating fewer sarcomeres in series, with no differences between BPBI and CP subjects in relative sarcomere overstretch. Discussion The current study reveals a common phenotype of muscle contracture in BPBI and CP, with contractures in both conditions characterized by a similar deficit in muscle length rather than an excess in muscle strength. These findings support contracture treatments that lengthen rather than weaken affected muscles. Moreover, the discovery of a common contracture phenotype between CP and BPBI challenges the presumed dichotomy between upper and lower motor neuron lesions in contracture pathogenesis, instead revealing the broader concept of “myobrevopathy”, or disorder of short muscle, warranting increased investigation into the poorly understood mechanisms regulating muscle length.
Collapse
Affiliation(s)
- Sia Nikolaou
- Cornwall/Goh Lab, Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Micah C. Garcia
- Motion Analysis Lab, Division of Occupational Therapy and Physical Therapy, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jason T. Long
- Motion Analysis Lab, Division of Occupational Therapy and Physical Therapy, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Orthopedic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Allison J. Allgier
- Cornwall/Goh Lab, Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Qingnian Goh
- Cornwall/Goh Lab, Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Orthopedic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Roger Cornwall
- Cornwall/Goh Lab, Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Orthopedic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Correspondence: Roger Cornwall
| |
Collapse
|
9
|
MOREAU NOELLEG, LIEBER RICHARDL. Effects of voluntary exercise on muscle structure and function in cerebral palsy. Dev Med Child Neurol 2022; 64:700-708. [PMID: 35142371 PMCID: PMC9086177 DOI: 10.1111/dmcn.15173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/16/2022]
Abstract
Skeletal muscles are required for functional movement and force production. While it is clear that cerebral palsy (CP) results in loss of muscle strength and bodily function, and that much of this loss is caused by injury to the central nervous system, muscle is a very plastic tissue that is also dramatically affected. In many studies, it is assumed that voluntary exercise will cause the muscle to respond in the same way that typically developing muscle does, but there are scarce data demonstrating that this is true. The purpose of this review is to briefly describe muscle architectural adaptation to various forms of exercise with specific reference to voluntary exercise performed in children with CP. Exercise itself is not generic but can vary by intensity, duration, and the exact nature of the muscle length change and velocity imposed during the exercise. Our goal is to stimulate discussion in this area by pointing out salient experimental variables and, ultimately, to improve activity and participation in children with CP.
Collapse
Affiliation(s)
- NOELLE G MOREAU
- Department of Physical Therapy, Louisiana State University Health Sciences Center, New Orleans, LA
| | - RICHARD L LIEBER
- Shirley Ryan AbilityLab and Department of Physiology, Northwestern University, Hines VA Medical Center, Chicago IL, USA
| |
Collapse
|
10
|
Cha SM, Shin HD, Shin JW. Primary repair of extensor pollicis longus rupture after volar locking plating for distal radial fracture. HAND SURGERY & REHABILITATION 2022; 41:500-507. [DOI: 10.1016/j.hansur.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/26/2022] [Accepted: 05/07/2022] [Indexed: 12/01/2022]
|
11
|
Effect of Lower Extremity Muscle Strength on Aerobic Capacity in Adults with Cerebral Palsy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study is to analyze the effect of lower extremity muscle strength of HIP joint and KNEE joint on the aerobic capacity to provide the basic data for developing an exercise program that can effectively improve the aerobic capacity of adults with cerebral palsy (CP) by identifying the part of the lower extremity muscle. A total of 18 ambulant adults with CP were recruited for this study. Seven ambulant adults with CP were excluded because they did not achieve the criteria of maximal exercise. The data from 11 subjects (11 men) with CP were used for the analysis. The mean (±SD) age, height, weight, and BMI of the subjects were 37.00 ± 12.72 years, 170.45 ± 6.37 cm, 67.02 ± 8.62 kg, and 23.09 ± 2.78 kg/m2, respectively. To measure the muscle strength of HIP joint and KNEE joint in lower extremities, the variables of the isokinetic muscle strength and the muscular endurance were performed using the isokinetic equipment (Biodex Co., Shirley, NY, USA). For the isokinetic muscle strength measurement of HIP joint, the 45°/sprotocol indicating the muscle power and the 300°/s protocol indicating the muscle endurance were used. Additionally, the measurement of KNEE joint was performed once on the left and right side, using the protocol of 60°/s indicating the muscle power and 300°/s indicating the muscular endurance. Progressive exercise tests were conducted on the treadmill (Quinton model—4500) using previously developed protocols targeting CP. The initial protocol speeds were 5 km/h−1 and 2 km/h−1 for the subjects who have been classified as Gross Motor Function Classification System (GMFCS) level I and II, respectively. Using a portable cardiopulmonary indirect breath-by-breath calorimetry system (MetaMax 3B; Cortex Biophysik, Leipzig, Germany), pulmonary ventilation (VE), respiratory exchange ratio (RER), and oxygen uptake (VO2) have been persistently measured. HR monitor (Polar Electro, Kempele, Finland polar Co. RS-800) was used to measure heart rate (HR). A correlation analysis was conducted to find out how the lower extremity muscle strength and aerobic capacity with cerebral palsy are related. Therefore, as a result, VO2peak among aerobic capacity displayed a significant positive correlation in 45° and 300°/s peak torque/BW of HIP joint, and with 60° and 300°/s peak torque/BW of KNEE joint. It was the same with 60°/s Agon/Antag ratio of KNEE Joint (p < 0.05). VEpeak showed a significant positive correlation with 45° and 300°/s peak torque/BW of HIP joint, as well as correlation with 60° and 300°/s peak torque/BW and 60°/s Agon/Antag ratio of KNEE joint (p < 0.05). However, HRpeak showed a significant positive correlation only in 45°/s peak torque/BW of HIP joint (p < 0.05). The result of step-wise analysis was to find out which muscle strength significantly affects VO2peak and HRpeak among aerobic abilities in the lower extremity muscles of those disabled with cerebral palsy. Among the muscle functions of lower extremity muscle strength, 300°/s peak torque/BW of KNEE Joint was found to have the greatest effect on VO2peak (p < 0.001). As a result, 300°/s peak torque/BW of KNEE Joint was found to be the predictable factor that could explain the VO2peak in the disabled people with cerebral palsy at 67% (R2 = 0.661). In particular, among the muscle functions of lower extremity muscle strength at 45°/s peak, torque/BW of HIP Joint was found to have the greatest effect on HRpeak (p < 0.001). As a result, this factor was found to be the predictable factor that could explain the HRpeak in disabled people with cerebral palsy at 39% (R2 = 0.392). In this study, the muscle strength of the lower extremity of CP was closely related to the aerobic capacity, and the muscle endurance of KNEE Joint and the muscle power of HIP Joint were found to be important factors to predict the aerobic capacity of CP.
Collapse
|
12
|
Handsfield GG, Williams S, Khuu S, Lichtwark G, Stott NS. Muscle architecture, growth, and biological Remodelling in cerebral palsy: a narrative review. BMC Musculoskelet Disord 2022; 23:233. [PMID: 35272643 PMCID: PMC8908685 DOI: 10.1186/s12891-022-05110-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral palsy (CP) is caused by a static lesion to the brain occurring in utero or up to the first 2 years of life; it often manifests as musculoskeletal impairments and movement disorders including spasticity and contractures. Variable manifestation of the pathology across individuals, coupled with differing mechanics and treatments, leads to a heterogeneous collection of clinical phenotypes that affect muscles and individuals differently. Growth of muscles in CP deviates from typical development, evident as early as 15 months of age. Muscles in CP may be reduced in volume by as much as 40%, may be shorter in length, present longer tendons, and may have fewer sarcomeres in series that are overstretched compared to typical. Macroscale and functional deficits are likely mediated by dysfunction at the cellular level, which manifests as impaired growth. Within muscle fibres, satellite cells are decreased by as much as 40-70% and the regenerative capacity of remaining satellite cells appears compromised. Impaired muscle regeneration in CP is coupled with extracellular matrix expansion and increased pro-inflammatory gene expression; resultant muscles are smaller, stiffer, and weaker than typical muscle. These differences may contribute to individuals with CP participating in less physical activity, thus decreasing opportunities for mechanical loading, commencing a vicious cycle of muscle disuse and secondary sarcopenia. This narrative review describes the effects of CP on skeletal muscles encompassing substantive changes from whole muscle function to cell-level effects and the effects of common treatments. We discuss growth and mechanics of skeletal muscles in CP and propose areas where future work is needed to understand these interactions, particularly the link between neural insult and cell-level manifestation of CP.
Collapse
Affiliation(s)
- Geoffrey G Handsfield
- Auckland Bioengineering Institute, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand.
| | - Sîan Williams
- Liggins Institute, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand
- School of Allied Health, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Stephanie Khuu
- Auckland Bioengineering Institute, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand
| | - Glen Lichtwark
- School of Human Movement and Nutrition Sciences, University of Queensland, QLD, St Lucia, 4072, Australia
| | - N Susan Stott
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand
| |
Collapse
|
13
|
Chen YT, Liu Y, Zhang C, Magat E, Zhou P, Zhang Y, Li S. Comprehensive Assessment of the Time Course of Biomechanical, Electrophysiological and Neuro-Motor Effects after Botulinum Toxin Injections in Elbow Flexors of Chronic Stroke Survivors with Spastic Hemiplegia: A Cross Sectional Observation Study. Toxins (Basel) 2022; 14:toxins14020104. [PMID: 35202132 PMCID: PMC8875179 DOI: 10.3390/toxins14020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is commonly used to manage focal spasticity in stroke survivors. This study aimed to a perform comprehensive assessment of the effects of BoNT injection. Twelve stroke subjects with spastic hemiplegia (age: 52.0 ± 10.1 year; 5 females) received 100 units of BoNT to the spastic biceps brachii muscles. Clinical, biomechanical, electrophysiological, and neuro-motor assessments were performed one week (wk) before (pre-injection), 3 weeks (wks) after, and 3 months (mons) after BoNT injection. BoNT injection significantly reduced spasticity, muscle strength, reflex torque, and compound muscle action potential (CMAP) amplitude of spastic elbow flexors (all p < 0.05) during the 3-wks visit, and these values return to the pre-injection level during the 3-mons visit. Furthermore, the degree of reflex torque change was negatively correlated to the amount of non-reflex component of elbow flexor resistance torque. However, voluntary force control and non-reflex resistance torque remained unchanged throughout. Our results revealed parallel changes in clinical, neurophysiological and biomechanical assessment after BoNT injection; BoNT injection would be more effective if hypertonia was mainly mediated by underlying neural mechanisms. BoNT did not affect voluntary force control of spastic muscles.
Collapse
Affiliation(s)
- Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-T.C.); (E.M.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
- Department of Health and Kinesiology, Northeastern State University, Broken Arrow, OK 74014, USA
| | - Yang Liu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (Y.L.); (C.Z.); (Y.Z.)
| | - Chuan Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (Y.L.); (C.Z.); (Y.Z.)
| | - Elaine Magat
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-T.C.); (E.M.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Ping Zhou
- Faculty of Biomedical and Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China;
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (Y.L.); (C.Z.); (Y.Z.)
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-T.C.); (E.M.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
14
|
Konno RN, Nigam N, Wakeling JM, Ross SA. The Contributions of Extracellular Matrix and Sarcomere Properties to Passive Muscle Stiffness in Cerebral Palsy. Front Physiol 2022; 12:804188. [PMID: 35153814 PMCID: PMC8827041 DOI: 10.3389/fphys.2021.804188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Cerebral palsy results from an upper motor neuron lesion and significantly affects skeletal muscle stiffness. The increased stiffness that occurs is partly a result of changes in the microstructural components of muscle. In particular, alterations in extracellular matrix, sarcomere length, fibre diameter, and fat content have been reported; however, experimental studies have shown wide variability in the degree of alteration. Many studies have reported changes in the extracellular matrix, while others have reported no differences. A consistent finding is increased sarcomere length in cerebral palsy affected muscle. Often many components are altered simultaneously, making it difficult to determine the individual effects on muscle stiffness. In this study, we use a three dimensional modelling approach to isolate individual effects of microstructural alterations typically occurring due to cerebral palsy on whole muscle behaviour; in particular, the effects of extracellular matrix volume fraction, stiffness, and sarcomere length. Causation between the changes to the microstructure and the overall muscle response is difficult to determine experimentally, since components of muscle cannot be manipulated individually; however, utilising a modelling approach allows greater control over each factor. We find that extracellular matrix volume fraction has the largest effect on whole muscle stiffness and mitigates effects from sarcomere length.
Collapse
Affiliation(s)
- Ryan N. Konno
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Ryan N. Konno
| | - Nilima Nigam
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - James M. Wakeling
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Stephanie A. Ross
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
15
|
McCall JV, Ludovice MC, Elliott C, Kamper DG. Hand function development of children with hemiplegic cerebral palsy: A scoping review. J Pediatr Rehabil Med 2022; 15:211-228. [PMID: 34864699 DOI: 10.3233/prm-200714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Hemiplegic cerebral palsy (hCP) typically impacts sensorimotor control of the hand, but comprehensive assessments of the hands of children with hCP are relatively rare. This scoping review summarizes the development of hand function for children with hCP. METHODS This scoping review focused on the development of hand function in children with hCP. Electronic databases (PubMed, PEDro, Web of Science, CINAHL, and SpringerLink) were searched to identify studies assessing hand function in children with hCP. The search was performed using keywords (e.g., "hemiplegia"). An iterative approach verified by two authors was used to select the studies. Articles which reported quantitative data for children with hCP on any items of a specified set of hand evaluations were included. Measures were sorted into three categories: quantitative neuromechanics, clinical assessments, and clinical functional evaluations. RESULTS Initial searches returned 1536 articles, 131 of which were included in the final review. Trends between assessment scores and age were examined for both hands. CONCLUSION While several studies have evaluated hand function in children with hCP, the majority relied on clinical scales, assessments, or qualitative descriptions. Further assessments of kinematics, kinetics, and muscle activation patterns are needed to identify the underlying impairment mechanisms that should be targeted for treatment.
Collapse
Affiliation(s)
- James V McCall
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miranda C Ludovice
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catherine Elliott
- School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, Australia
- Child and Adolescent Health Services, Perth Children's Hospital, Perth, Australia
| | - Derek G Kamper
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Effectiveness of a New 3D-Printed Dynamic Hand-Wrist Splint on Hand Motor Function and Spasticity in Chronic Stroke Patients. J Clin Med 2021; 10:jcm10194549. [PMID: 34640564 PMCID: PMC8509791 DOI: 10.3390/jcm10194549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Spasticity, a common stroke complication, can result in impairments and limitations in the performance of activities and participation. In this study, we investigated the effectiveness of a new dynamic splint on wrist and finger flexor muscle spasticity in chronic stroke survivors, using a randomized controlled trial. Thirty chronic stroke survivors were recruited and randomly allocated to either an experimental or control group; 25 completed the 6-week intervention program. The participants in the experimental group were asked to wear the dynamic splint at least 6 h/day at home, for the entire intervention. The participants in the control group did not wear any splint. All the participants were evaluated 1 week before, immediately, and after 3 and 6 weeks of splint use, with the modified Ashworth scale and the Fugl−Meyer assessment for upper extremity. User experience was evaluated by a self-reported questionnaire after the 6-week intervention. The timed within-group assessments showed a significant reduction in spasticity and improvements in functional movements in the experimental group. We found differences, in favor of the experimental group, between the groups after the intervention. The splint users indicated a very good satisfaction rating for muscle tone reduction, comfort, and ease of use. Therefore, this new splint can be used for at-home rehabilitation in chronic stroke patients with hemiparesis.
Collapse
|
17
|
In vivo non-invasive near-infrared spectroscopy distinguishes normal, post-stroke, and botulinum toxin treated human muscles. Sci Rep 2021; 11:17631. [PMID: 34480037 PMCID: PMC8417034 DOI: 10.1038/s41598-021-96547-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/12/2021] [Indexed: 12/22/2022] Open
Abstract
In post-stroke hemiparesis, neural impairment alters muscle control, causing abnormal movement and posture in the affected limbs. A decrease in voluntary use of the paretic arm and flexed posture during rest also induce secondary tissue transformation in the upper limb muscles. To obtain a specific, accurate, and reproducible marker of the current biological status of muscles, we collected visible (VIS) and short-wave Infrared (SWIR) reflectance spectra in vivo using a portable spectroradiometer (350–2500 nm), which provided the spectral fingerprints of the elbow flexors and extensors. We compared the spectra for the affected and unaffected sides in 23 patients with post-stroke hemiparesis (25–87 years, 8 women) and eight healthy controls (33–87 years, 5 women). In eight patients, spectra were collected before and after botulinum toxin injection. Spectra underwent off-line preprocessing, principal component analysis, and partial least-squares discriminant analysis. Spectral fingerprints discriminated the muscle (biceps vs. triceps), neurological condition (normal vs. affected vs. unaffected), and effect of botulinum toxin treatment (before vs. 30 to 40 days vs. 110 to 120 days after injection). VIS-SWIR spectroscopy proved valuable for non-invasive assessment of optical properties in muscles, enabled more comprehensive evaluation of hemiparetic muscles, and provided optimal monitoring of the effectiveness of medication.
Collapse
|
18
|
Lieber RL, Theologis T. Muscle-tendon unit in children with cerebral palsy. Dev Med Child Neurol 2021; 63:908-913. [PMID: 33426691 DOI: 10.1111/dmcn.14807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Muscle-tendon unit surgery for correction of deformities and movement dysfunction in children with cerebral palsy (CP) is fairly complicated. An understanding of basic muscle-tendon unit properties and their adaptation to both CP and surgery are important to develop advances in this field. In this review, we provide information to therapists, surgeons, and scientists regarding the short- and long-term adaptations of the muscle-tendon unit. Surgical releases, lengthening, and transpositions are discussed, as are some of the tissue, cellular, and molecular adaptations. What this paper adds Muscle strength, tone, and control must be considered in surgical interventions for cerebral palsy (CP). Muscle-tendon unit lengthening causes significant and lasting weakness requiring prolonged rehabilitation. Sarcomere length increases in CP muscle may be one of the underlying causes of muscle weakness. Muscle satellite cells are decreased and epigenetically modified in a way that may limit muscle growth in CP.
Collapse
Affiliation(s)
- Richard L Lieber
- Shirley Ryan AbilityLab, Chicago, IL, USA.,Northwestern University, Chicago, IL, USA.,Hines VA Medical Center, Maywood, IL, USA
| | | |
Collapse
|
19
|
Dykstra PB, Dayanidhi S, Chambers HG, Lieber RL. Stretch-induced satellite cell deformation incontracturedmuscles in children with cerebral palsy. J Biomech 2021; 126:110635. [PMID: 34303895 DOI: 10.1016/j.jbiomech.2021.110635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
Satellite cells (SCs) are quiescent, adult skeletal muscle stem cells responsible for postnatal muscle growth and repair. Children with cerebral palsy (CP) have muscle contractures with reduced SC abundance, extracellular matrix abnormalities and reduced serial sarcomere number resulting in greatly increased in vivo sarcomere length, perhaps due to impaired sarcomere addition, compared to children with typical development (TD). Stretch is a strong activator of SCs that leads to addition of sarcomeres during bone-muscle growth. Mechanical loading and subsequent deformation of intracellular structures can lead to activation and proliferation, perhaps by cytoskeletal transmissions of extracellular mechanical signals to the nuclei. The primary aim of this study was to determine the effect of ex vivo stretch-induced sarcomere length change on SC deformation in children with CP and TD. Muscle biopsies were obtained from twelve children (7 CP, 5 TD) during surgery. Fiber bundles were labeled with fluorescent antibodies for Pax7 (SC), DRAQ5 (nuclei), and alpha-actinin (sarcomere protein). Fibers were stretched using a custom jig and imaged using confocal microscopy. SC nuclear length, height and aspect ratio underwent increased deformation with increasing sarcomere length (p < 0.05) in both groups. Slopes of association for SC nuclear length, aspect ratio and sarcomere lengths were similar between CP and TD. Our results indicate that SC in children with CP undergo similar deformation as TD across sarcomere lengths.
Collapse
Affiliation(s)
- Peter B Dykstra
- Department of Bioengineering, University of California, San Diego, CA, USA; Department of Orthopaedic Surgery, University of California, San Diego, CA, USA
| | - Sudarshan Dayanidhi
- Department of Orthopaedic Surgery, University of California, San Diego, CA, USA; Department of Veterans Affairs Medical Center, San Diego, CA, USA; Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Henry G Chambers
- Department of Orthopaedics, Rady Children's Hospital, San Diego, CA, USA
| | - Richard L Lieber
- Department of Bioengineering, University of California, San Diego, CA, USA; Department of Orthopaedic Surgery, University of California, San Diego, CA, USA; Department of Orthopaedics, Rady Children's Hospital, San Diego, CA, USA; Shirley Ryan AbilityLab, Chicago, IL, USA; Edward G Hines VA Medical Center, Maywood, IL, USA.
| |
Collapse
|
20
|
Smith LR, Pichika R, Meza RC, Gillies AR, Baliki MN, Chambers HG, Lieber RL. Contribution of extracellular matrix components to the stiffness of skeletal muscle contractures in patients with cerebral palsy. Connect Tissue Res 2021; 62:287-298. [PMID: 31779492 PMCID: PMC7253322 DOI: 10.1080/03008207.2019.1694011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Joint contractures in children with cerebral palsy contain muscle tissue that is mechanically stiffer with higher collagen content than typically developing children. Interestingly, the correlation between collagen content and stiffness is weak. To date, no data are available on collagen types or other extracellular matrix proteins in these muscles, nor any information regarding their function. Thus, our purpose was to measure specific extracellular protein composition in cerebral palsy and typically developing human muscles along with structural aspects of extracellular matrix architecture to determine the extent to which these explain mechanical properties. Materials and Methods: Biopsies were collected from children with cerebral palsy undergoing muscle lengthening procedures and typically developing children undergoing anterior cruciate ligament reconstruction. Tissue was prepared for the determination of collagen types I, III, IV, and VI, proteoglycan, biglycan, decorin, hyaluronic acid/uronic acid and collagen crosslinking. Results: All collagen types increased in cerebral palsy along with pyridinoline crosslinks, total proteoglycan, and uronic acid. In all cases, type I or total collagen and total proteoglycan were positive predictors, while biglycan was a negative predictor of stiffness. Together these parameters accounted for a greater degree of variance within groups than across groups, demonstrating an altered relationship between extracellular matrix and stiffness with cerebral palsy. Further, stereological analysis revealed a significant increase in collagen fibrils organized in cables and an increased volume fraction of fibroblasts in CP muscle. Conclusions: These data demonstrate a novel adaptation of muscle extracellular matrix in children with cerebral palsy that includes alterations in extracellular matrix protein composition and structure related to mechanical function.
Collapse
Affiliation(s)
- Lucas R. Smith
- Departments of Neurobiology, Physiology, and Behavior and Physical Medicine and Rehabilitation, University of California, Davis, CA, 95616, USA
| | - Rajeswari Pichika
- Shirley Ryan AbilityLab and Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
| | - Rachel C. Meza
- Department of Orthopaedic Surgery, University of California San Diego,La Jolla, CA, 92093-0863, USA,Department of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Allison R. Gillies
- Department of Orthopaedic Surgery, University of California San Diego,La Jolla, CA, 92093-0863, USA
| | - Marwan N. Baliki
- Shirley Ryan AbilityLab and Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
| | - Henry G. Chambers
- Department of Orthopaedics, Rady Children’s Hospital, San Diego, CA, USA
| | - Richard L. Lieber
- Shirley Ryan AbilityLab and Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA,Department of Orthopaedic Surgery, University of California San Diego,La Jolla, CA, 92093-0863, USA,Hines V.A. Medical Center, Maywood, IL, USA
| |
Collapse
|
21
|
Carraro U, Yablonka-Reuveni Z. Translational research on Myology and Mobility Medicine: 2021 semi-virtual PDM3 from Thermae of Euganean Hills, May 26 - 29, 2021. Eur J Transl Myol 2021; 31:9743. [PMID: 33733717 PMCID: PMC8056169 DOI: 10.4081/ejtm.2021.9743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
On 19-21 November 2020, the meeting of the 30 years of the Padova Muscle Days was virtually held while the SARS-CoV-2 epidemic was hitting the world after a seemingly quiet summer. During the 2020-2021 winter, the epidemic is still active, despite the start of vaccinations. The organizers hope to hold the 2021 Padua Days on Myology and Mobility Medicine in a semi-virtual form (2021 S-V PDM3) from May 26 to May 29 at the Thermae of Euganean Hills, Padova, Italy. Here the program and the Collection of Abstracts are presented. Despite numerous world problems, the number of submitted/selected presentations (lectures and oral presentations) has increased, prompting the organizers to extend the program to four dense days.
Collapse
Affiliation(s)
- Ugo Carraro
- Department of Biomedical Sciences of the University of Padova, Italy; CIR-Myo - Myology Centre, University of Padova, Italy; A-C Mioni-Carraro Foundation for Translational Myology, Padova.
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
22
|
Pingel J, Kampmann ML, Andersen JD, Wong C, Døssing S, Børsting C, Nielsen JB. Gene expressions in cerebral palsy subjects reveal structural and functional changes in the gastrocnemius muscle that are closely associated with passive muscle stiffness. Cell Tissue Res 2021; 384:513-526. [PMID: 33515289 DOI: 10.1007/s00441-020-03399-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/11/2020] [Indexed: 01/20/2023]
Abstract
Cerebral palsy (CP) is a non-progressive motor disorder that affects posture and gait due to contracture development. The purpose of this study is to analyze a possible relation between muscle stiffness and gene expression levels in muscle tissue of children with CP. Next-generation sequencing (NGS) of gene transcripts was carried out in muscle biopsies from gastrocnemius muscle (n = 13 children with CP and n = 13 typical developed (TD) children). Passive stiffness of the ankle plantarflexors was measured. Structural changes of the basement membranes and the sarcomere length were measured. Twelve pre-defined gene target sub-categories of muscle function, structure and metabolism showed significant differences between muscle tissue of CP and TD children. Passive stiffness was significantly correlated to gene expression levels of HSPG2 (p = 0.02; R2 = 0.67), PRELP (p = 0.002; R2 = 0.84), RYR3 (p = 0.04; R2 = 0.66), C COL5A3 (p = 0.0007; R2 = 0.88), ASPH (p = 0.002; R2 = 0.82) and COL4A6 (p = 0.03; R2 = 0.97). Morphological differences in the basement membrane were observed between children with CP and TD children. The sarcomere length was significantly increased in children with CP when compared with TD (p = 0.04). These findings show that gene targets in the categories: calcium handling, basement membrane and collagens, were significantly correlated to passive muscle stiffness. A Reactome pathway analysis showed that pathways involved in DNA repair, ECM proteoglycans and ion homeostasis were amongst the most upregulated pathways in CP, while pathways involved in collagen fibril crosslinking, collagen fibril assembly and collagen turnover were amongst the most downregulated pathways when compared with TD children. These results underline that contracture formation and motor impairment in CP is an interplay between multiple factors.
Collapse
Affiliation(s)
- Jessica Pingel
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Marie-Louise Kampmann
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Christian Wong
- Department of Orthopedic Surgery, Copenhagen University Hospital Hvidovre, 2650, Hvidovre, Denmark
| | - Simon Døssing
- Institute of Sports Medicine, Department of Orthopedic Surgery, Copenhagen University Hospital Bispebjerg, 2400, Copenhagen, Denmark
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark.,Institute of Sports Medicine, Department of Orthopedic Surgery, Copenhagen University Hospital Bispebjerg, 2400, Copenhagen, Denmark
| | - Jens Bo Nielsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Helene Elsass Center, Research & Development, 2920, Charlottenlund, Denmark
| |
Collapse
|
23
|
Miller T, Ying M, Sau Lan Tsang C, Huang M, Pang MYC. Reliability and Validity of Ultrasound Elastography for Evaluating Muscle Stiffness in Neurological Populations: A Systematic Review and Meta-Analysis. Phys Ther 2021; 101:5928445. [PMID: 33508855 DOI: 10.1093/ptj/pzaa188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/04/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Ultrasound elastography is an emerging diagnostic technology used to investigate the biomechanical properties of the musculoskeletal system. The purpose of this study was to systematically review the psychometric properties of ultrasound elastography techniques for evaluating muscle stiffness in people with neurological conditions. METHODS A systematic search of MEDLINE, EMBASE, CINAHL, and Cochrane Library databases was performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Using software, reviewers independently screened citations for inclusion. Peer-reviewed studies that evaluated in vivo muscle stiffness in people with neurological conditions and reported relevant psychometric properties were considered for inclusion. Twenty-one articles were included for final review. Data relevant to measurement technique, site, and neurological condition were extracted. The Consensus-Based Standards for the Selection of Health Measurement Instruments checklist was used to rate the methodological quality of included studies. The level of evidence for specific measurement outcomes was determined using a best-evidence synthesis approach. RESULTS Reliability varied across populations, ultrasound systems, and assessment conditions (ie, joint/body positions, active/passive muscle conditions, probe orientation), with most studies indicating moderate to good reliability (ICC = 0.5-0.9, n = 13). Meta-analysis results showed a good overall correlation across studies (r = 0.78, 95% confidence interval = 0.64-0.86), with no between-group difference based on population (Q1 = 0.00). Convergent validity was demonstrated by strong correlations between stiffness values and measures of spasticity (n = 5), functional motor recovery or impairment (n = 5), and grayscale or color histogram pixel intensities (n = 3). Discriminant or known-groups validity was also established for multiple studies and indicated either significant between-group differences in stiffness values (n = 12) or within-group differences between more and less affected limbs (n = 6). Responsiveness was observed in all intervention studies reporting posttreatment stiffness changes (n = 6). CONCLUSIONS Overall, ultrasound elastography techniques showed moderate reliability in evaluating in vivo muscle stiffness, good convergent validity with relevant clinical assessments, and good divergent validity in discriminating tissue changes within and between groups. IMPACT Ultrasound elastography has clinical utility in assessing muscle stiffness, monitoring its temporal changes, and measuring the response to intervention in people with neurological conditions.
Collapse
Affiliation(s)
- Tiev Miller
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong, S.A.R
| | - Michael Ying
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, S.A.R
| | - Charlotte Sau Lan Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong, S.A.R
| | - Meizhen Huang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong, S.A.R
| | - Marco Y C Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong, S.A.R
| |
Collapse
|
24
|
Cankaya AO, Pamuk U, Yucesoy CA. The effects of an activation-dependent increase in titin stiffness on whole muscle properties using finite element modeling. J Biomech 2020; 116:110197. [PMID: 33412436 DOI: 10.1016/j.jbiomech.2020.110197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 11/28/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022]
Abstract
Active state titin's effects have been studied predominantly in sarcomere or muscle fiber segment level and an understanding of its functional effects in the context of a whole muscle, and the mechanism of those is lacking. By representing experimentally observed calcium induced stiffening and actin-titin interaction induced reduced free spring length effects of active state titin in our linked fiber-matrix mesh finite element model, our aim was to study the mechanism of effects and particularly to determine the functionally more effective active state titin model. Isolated EDL muscle of the rat was modeled and three cases were studied: passive state titin (no change in titin constitutive equation in the active state), active state titin-I (constitutive equation involves a higher stiffness in the active state) and active state titin-II (constitutive equation also involves a strain shift coefficient accounting for titin's reduced free spring length). Isometric muscle lengthening was imposed (initial to long length, lm = 28.7 mm to 32.7 mm). Compared to passive state titin, (i) active state titin-I and II elevates muscle total (lm = 32.7 mm: 14% and 29%, respectively) and active (lm = 32.7 mm: 37.5% and 77.4%, respectively) forces, (ii) active state titin-II also shifts muscle's optimum length to a longer length (lm = 29.6 mm), (iii) active state titin-I and II limits sarcomere shortening (lm = 32.7 mm: up to 10% and 20%, respectively). Such shorter sarcomere effect characterizes active state titin's mechanism of effects. These effects become more pronounced and functionally more effective if not only calcium induced stiffening but also a reduced free spring length of titin is accounted for.
Collapse
Affiliation(s)
- Alican O Cankaya
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Uluç Pamuk
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Can A Yucesoy
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
25
|
Tsai LC, Wu YN, Liu SQ, Zhang LQ. Changes in Muscle Stress and Sarcomere Adaptation in Mice Following Ischemic Stroke. Front Physiol 2020; 11:581846. [PMID: 33408638 PMCID: PMC7781356 DOI: 10.3389/fphys.2020.581846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
While abnormal muscle tone has been observed in people with stroke, how these changes in muscle tension affect sarcomere morphology remains unclear. The purpose of this study was to examine time-course changes in passive muscle fiber tension and sarcomeric adaptation to these changes post-ischemic stroke in a mouse model by using a novel in-vivo force microscope. Twenty-one mice were evenly divided into three groups based on the time point of testing: 3 days (D3), 10 days (D10), and 20 days (D20) following right middle cerebral artery ligation. At each testing time, the muscle length, width, and estimated volume of the isolated soleus muscle were recorded, subsequently followed by in-vivo muscle tension and sarcomere length measurement. The mass of the soleus muscle was measured at the end of testing to calculate muscle density. Two-way ANOVA with repeated measures was used to examine the differences in each of the dependent variable among the three time-point groups and between the two legs. The passive muscle stress of the impaired limbs in the D3 group (27.65 ± 8.37 kPa) was significantly lower than the less involved limbs (42.03 ± 18.61 kPa; p = 0.05) and the impaired limbs of the D10 (48.92 ± 14.73; p = 0.03) and D20 (53.28 ± 20.54 kPa; p = 0.01) groups. The soleus muscle density of the impaired limbs in the D3 group (0.69 ± 0.12 g/cm3) was significantly lower than the less involved limbs (0.80 ± 0.09 g/cm3; p = 0.04) and the impaired limbs of the D10 (0.87 ± 0.12 g/cm3; p = 0.02) and D20 (1.00 ± 0.14 g/cm3; p < 0.01) groups. The D3 group had a shorter sarcomere length (2.55 ± 0.26 μm) than the D10 (2.83 ± 0.20 μm; p = 0.03) and D20 group (2.81 ± 0.15 μm; p = 0.04). These results suggest that, while ischemic stroke may cause considerable changes in muscle tension and stress, sarcomere additions under increased mechanical loadings may be absent or disrupted post-stroke, which may contribute to muscle spasticity and/or joint contracture commonly observed in patients following stroke.
Collapse
Affiliation(s)
- Liang-Ching Tsai
- Department of Physical Therapy, Georgia State University, Atlanta, GA, United States
| | - Yi-Ning Wu
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States
| | - Shu Q. Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Li-Qun Zhang
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, MD, United States
- Department of Orthopaedics, University of Maryland, Baltimore, MD, United States
- Department of Bioengineering, University of Maryland, College Park, MD, United States
| |
Collapse
|
26
|
The mechanisms of adaptation for muscle fascicle length changes with exercise: Implications for spastic muscle. Med Hypotheses 2020; 144:110199. [PMID: 33254508 DOI: 10.1016/j.mehy.2020.110199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 11/23/2022]
Abstract
We are proposing optimal training conditions that can lead to an increase in the number of serial sarcomeres (SSN) and muscle fascicle length (FL) in spastic muscles. Therapeutic interventions for increasing FL in clinical populations with neurological origin, in whom relative shortness of muscle fascicles contributed to the presentation of symptoms such as spasticity, contracture, and limited functional abilities, do not generally meet these conditions, and therefore, result in less than satisfactory outcomes. Based on a review of literature, we argue that protocols of exercise interventions that led to sarcomerogenesis, and increases in SSN and FL in healthy animal and human models satisfied three criteria: 1) all involved eccentric exercise at appropriately high velocity; 2) resulted in positive strain of muscle fascicles; and 3) momentary deactivation in the stretched muscle. Accordingly, to increase FL in spastic muscles, new exercise protocols in which the three presumed criteria are satisfied, must be developed, and long-term muscle architectural and functional adaptations to such trainings must be examined.
Collapse
|
27
|
Chirurgische Therapieoptionen bei spastischen Bewegungsstörungen der Extremitäten. Monatsschr Kinderheilkd 2020. [DOI: 10.1007/s00112-020-01033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Zusammenfassung
Hintergrund
Schäden des 1. Motoneurons führen zu spastischen Lähmungen an den Extremitäten, die bei Kindern und Erwachsenen einschneidende Veränderungen der Bewegungsfähigkeit zur Folge haben und Lebensqualität sowie -teilhabe durch Funktionsverlust und Schmerzen einschränken.
Methode
Auf Grundlage eigener Behandlungserfahrungen in Verbindung mit einer PubMed-Literaturrecherche werden aktuelle Diagnose- und Behandlungsverfahren sowie deren Kombinationen vorgestellt.
Ergebnisse
Prinzipiell stehen Physio- und Ergotherapie mit vereinbarten alltagsrelevanten Therapiezielen, Medikamente (Botulinumtoxin und Baclofen) und Orthetik im Vordergrund. Chirurgische Maßnahmen an Muskeln, Sehnen, Gelenken und Knochen können dem betroffenen Patienten zu verbesserter Beweglichkeit, Wachstumskorrektur und vereinfachter Alltagsbewältigung verhelfen. Die selektive Neurektomie bei fokaler Spastik erlebt derzeit eine Renaissance. Die intrathekale Baclofentherapie kann bei entsprechend hoher Katheterlage auch eine Tonusreduktion an der oberen Extremität erreichen.
Collapse
|
28
|
Hösl M, Kruse A, Tilp M, Svehlik M, Böhm H, Zehentbauer A, Arampatzis A. Impact of Altered Gastrocnemius Morphometrics and Fascicle Behavior on Walking Patterns in Children With Spastic Cerebral Palsy. Front Physiol 2020; 11:518134. [PMID: 33178029 PMCID: PMC7597072 DOI: 10.3389/fphys.2020.518134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/27/2020] [Indexed: 11/13/2022] Open
Abstract
Spastic cerebral palsy (SCP) affects neural control, deteriorates muscle morphometrics, and may progressively impair functional walking ability. Upon passive testing, gastrocnemius medialis (GM) muscle bellies or fascicles are typically shorter, thinner, and less extensible. Relationships between muscle and gait parameters might help to understand gait pathology and pathogenesis of spastic muscles. The current aim was to link resting and dynamic GM morphometrics and contractile fascicle behavior (both excursion and velocity) during walking to determinants of gait. We explored the associations between gait variables and ultrasonography of the GM muscle belly captured during rest and during gait in children with SCP [n = 15, gross motor function classification system (GMFCS) levels I and II, age: 7–16 years] and age-matched healthy peers (n = 17). The SCP children’s plantar flexors were 27% weaker. They walked 12% slower with more knee flexion produced 42% less peak ankle push-off power (all p < 0.05) and 7/15 landed on their forefoot. During the stance phase, fascicles in SCP on average operated on 9% shorter length (normalized to rest length) and displayed less and slower fascicle shortening (37 and 30.6%, respectively) during push-off (all p ≤ 0.024). Correlation analyses in SCP patients revealed that (1) longer-resting fascicles and thicker muscle bellies are positively correlated with walking speed and negatively to knee flexion (r = 0.60–0.69, p < 0.0127) but not to better ankle kinematics; (2) reduced muscle strength was associated with the extent of eccentric fascicle excursion (r = −0.57, p = 0.015); and (3) a shorter operating length of the fascicles was correlated with push-off power (r = −0.58, p = 0.013). Only in controls, a correlation (r = 0.61, p = 0.0054) between slower fascicle shortening velocity and push-off power was found. Our results indicate that a thicker gastrocnemius muscle belly and longer gastrocnemius muscle fascicles may be reasonable morphometric properties that should be targeted in interventions for individuals with SCP, since GM muscle atrophy may be related to decreases in walking speed and undesired knee flexion during gait. Furthermore, children with SCP and weaker gastrocnemius muscle may be more susceptible to chronic eccentric muscle overloading. The relationship between shorter operating length of the fascicles and push-off power may further support the idea of a compensation mechanism for the longer sarcomeres found in children with SCP. Nevertheless, more studies are needed to support our explorative findings.
Collapse
Affiliation(s)
- Matthias Hösl
- Gait and Motion Analysis Laboratory, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Annika Kruse
- Department of Biomechanics, Movement and Training Sciences, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Markus Tilp
- Department of Biomechanics, Movement and Training Sciences, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Martin Svehlik
- Paediatric Orthopaedics Unit, Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Harald Böhm
- Gait Laboratory, Orthopedic Children's Hospital Aschau, Aschau im Chiemgau, Germany
| | - Antonia Zehentbauer
- Human Movement Science, Faculty of Sports Science, Ruhr University Bochum, Bochum, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt University of Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
29
|
Gallinger TL, Fletcher JR, MacIntosh BR. Mechanisms of reduced plantarflexor function in Cerebral palsy: smaller triceps surae moment arm and reduced muscle force. J Biomech 2020; 110:109959. [PMID: 32827781 DOI: 10.1016/j.jbiomech.2020.109959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 11/26/2022]
Abstract
Both muscle forces, and moment arm (MA) could contribute to reduced muscle moment in people with Cerebral Palsy (CP). Current reports in CP are conflicting. The tendon travel method of estimating MA requires constant force, but passive force is high and variable in CP, and range of motion is limited. Therefore, the purpose of this study was to examine triceps surae muscle MA in 12 subjects with mild to moderate CP (15-32 years) and 10 typically developing peers (TD, 17-26 years) by tendon travel and by visually measuring the apparent MA. MA was calculated at 90° and at a reference angle (∼106°) with zero net passive moment. The tendon travel (28.8 ± 5.6 mm) and visual methods (29.1 ± 5.5 mm) yielded similar MA in CP (p = 0.94) at the reference angle. TD had significantly larger triceps surae muscle MA than CP subjects (p = 0.002), 35.4 ± 4.1 mm at the reference angle for tendon travel and 35.4 ± 3.6 mm by the visual method. Test/retest revealed less bias (0.8 mm) using the visual method. Calculated active peak isometric force was significantly less in CP (1983.8 ± 887.0 N) than TD (4104.9 ± 1154.9 N, p < 0.001). There are challenges in estimating MA in CP, but the visual method is more reliable. Although a shorter moment arm would reduce the joint moment, joint angular velocity for a given velocity of muscle shortening would be enhanced. Strength training may mitigate the effects of the smaller moment arm and reduced joint moment generated in those with CP.
Collapse
Affiliation(s)
- Tessa L Gallinger
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| | - Jared R Fletcher
- Department of Health and Physical Education, Mount Royal University, Calgary, Alberta, Canada
| | - Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Xu D, Wu YN, Gaebler-Spira D, Gao F, Clegg NJ, Delgado MR, Zhang LQ. Neural and non-neural contributions to ankle spasticity in children with cerebral palsy. Dev Med Child Neurol 2020; 62:1040-1046. [PMID: 32147834 DOI: 10.1111/dmcn.14506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 11/30/2022]
Abstract
AIM To assess the neural and non-neural contributions to spasticity in the impaired ankle of children with cerebral palsy (CP). METHOD Instrumented tapping of the Achilles tendon was done isometrically to minimize non-neural contributions and elicit neural contributions. Robot-controlled ankle stretching was done at various velocities, including slow stretching, with minimized neural contributions. Spasticity was assessed as having neural (phasic and tonic stretch reflex torque, tendon reflex gain, contraction rate, and half relaxation rate) and non-neural origin (elastic stiffness and viscous damping) in 17 children with CP (six females and 11 males; mean age [SD] 10y 8mo [3y 11mo], range 4y-18y) and 17 typically developing children (six females and 11 males; mean age [SD] 12y 7mo [2y 9mo], range 7y-18y). All torques were normalized to weight×height. RESULTS Children with CP showed increased phasic and tonic stretch reflex torque (p=0.004 and p=0.001 respectively), tendon reflex gain (p=0.02), contraction rate (p=0.038), half relaxation rate (p=0.02), elastic stiffness (p=0.01), and viscous damping (p=0.01) compared to typically developing children. INTERPRETATION Controlled stretching and instrumented tendon tapping allow the systematic quantification of various neural and non-neural changes in CP, which can be used to guide impairment-specific treatment. WHAT THIS PAPER ADDS Ankle spasticity is associated with increased phasic and tonic stretch reflexes, tendon reflex gain, and contraction and half relaxation rates. Ankle spasticity is also associated with increased elastic stiffness and viscous damping.
Collapse
Affiliation(s)
- Dali Xu
- Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, MD, USA
| | - Yi-Ning Wu
- Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, USA
| | | | - Fan Gao
- Kinesiology, University of Kentucky, Lexington, KY, USA
| | - Nancy J Clegg
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Mauricio R Delgado
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA.,Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li-Qun Zhang
- Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, MD, USA.,Orthopaedics, University of Maryland, Baltimore, MD, USA.,Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
31
|
Dayanidhi S, Kinney MC, Dykstra PB, Lieber RL. Does a Reduced Number of Muscle Stem Cells Impair the Addition of Sarcomeres and Recovery from a Skeletal Muscle Contracture? A Transgenic Mouse Model. Clin Orthop Relat Res 2020; 478:886-899. [PMID: 32011372 PMCID: PMC7282569 DOI: 10.1097/corr.0000000000001134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Children with cerebral palsy have impaired muscle growth and muscular contractures that limit their ROM. Contractures have a decreased number of serial sarcomeres and overstretched lengths, suggesting an association with a reduced ability to add the serial sarcomeres required for normal postnatal growth. Contractures also show a markedly reduced number of satellite cells-the muscle stem cells that are indispensable for postnatal muscle growth, repair, and regeneration. The potential role of the reduced number of muscle stem cells in impaired sarcomere addition leading to contractures must be evaluated. QUESTIONS/PURPOSES (1) Does a reduced satellite cell number impair the addition of serial sarcomeres during recovery from an immobilization-induced contracture? (2) Is the severity of contracture due to the decreased number of serial sarcomeres or increased collagen content? METHODS The hindlimbs of satellite cell-specific Cre-inducible mice (Pax7; Rosa26; n = 10) were maintained in plantarflexion with plaster casts for 2 weeks so that the soleus was chronically shortened and the number of its serial sarcomeres was reduced by approximately 20%. Subsequently, mice were treated with either tamoxifen to reduce the number of satellite cells or a vehicle (an injection and handling control). The transgenic mouse model with satellite cell ablation combined with a casting model to reduce serial sarcomere number recreates two features observed in muscular contractures in children with cerebral palsy. After 30 days, the casts were removed, the mice ankles were in plantarflexion, and the mice's ability to recover its ankle ROM by cage remobilization for 30 days were evaluated. We quantified the number of serial sarcomeres, myofiber area, and collagen content of the soleus muscle as well as maximal ankle dorsiflexion at the end of the recovery period. RESULTS Mice with reduced satellite cell numbers did not regain normal ankle ROM in dorsiflexion; that is, the muscles remained in plantarflexion contracture (-16° ± 13° versus 31° ± 39° for the control group, -47 [95% confidence interval -89 to -5]; p = 0.03). Serial sarcomere number of the soleus was lower on the casted side than the contralateral side of the mice with a reduced number of satellite cells (2214 ± 333 versus 2543 ± 206, -329 [95% CI -650 to -9]; p = 0.04) but not different in the control group (2644 ± 194 versus 2729 ± 249, -85 [95% CI -406 to 236]; p = 0.97). The degree of contracture was strongly associated with the number of sarcomeres and myofiber area (r =0.80; P < 0.01) rather than collagen content. No differences were seen between groups in terms of collagen content and the fraction of muscle area. CONCLUSIONS We found that a reduced number of muscle stem cells in a transgenic mouse model impaired the muscle's ability to add sarcomeres in series and thus to recover from an immobilization-induced contracture. CLINICAL RELEVANCE The results of our study in transgenic mouse muscle suggests there may be a mechanistic relationship between a reduced number of satellite cells and a reduced number of serial sarcomeres. Contracture development, secondary to impaired sarcomere addition in muscles in children with cerebral palsy may be due to a reduced number of muscle stem cells.
Collapse
|
32
|
Nuckolls GH, Kinnett K, Dayanidhi S, Domenighetti AA, Duong T, Hathout Y, Lawlor MW, Lee SSM, Magnusson SP, McDonald CM, McNally EM, Miller NF, Olwin BB, Raghavan P, Roberts TJ, Rutkove SB, Sarwark JF, Senesac CR, Vogel LF, Walter GA, Willcocks RJ, Rymer WZ, Lieber RL. Conference report on contractures in musculoskeletal and neurological conditions. Muscle Nerve 2020; 61:740-744. [PMID: 32108365 DOI: 10.1002/mus.26845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/03/2020] [Accepted: 02/23/2020] [Indexed: 12/18/2022]
Abstract
Limb contractures are debilitating complications associated with various muscle and nervous system disorders. This report summarizes presentations at a conference at the Shirley Ryan AbilityLab in Chicago, Illinois, on April 19-20, 2018, involving researchers and physicians from diverse disciplines who convened to discuss current clinical and preclinical understanding of contractures in Duchenne muscular dystrophy, stroke, cerebral palsy, and other conditions. Presenters described changes in muscle architecture, activation, extracellular matrix, satellite cells, and muscle fiber sarcomeric structure that accompany or predispose muscles to contracture. Participants identified ongoing and future research directions that may lead to understanding of the intersecting factors that trigger contractures. These include additional studies of changes in muscle, tendon, joint, and neuronal tissues during contracture development with imaging, molecular, and physiologic approaches. Participants identified the requirement for improved biomarkers and outcome measures to identify patients likely to develop contractures and to accurately measure efficacy of treatments currently available and under development.
Collapse
Affiliation(s)
- Glen H Nuckolls
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Kathi Kinnett
- Parent Project Muscular Dystrophy, Hackensack, New Jersey
| | | | | | - Tina Duong
- Department of Neurology, Stanford University, Palo Alto, California
| | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Johnson City, New York
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sabrina S M Lee
- Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - S Peter Magnusson
- Department of Physical and Occupational Therapy, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.,Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Orthopedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Craig M McDonald
- Department of Physical Medicine & Rehabilitation, University of California Davis School of Medicine, Sacramento, California.,Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Natalie F Miller
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, Ohio
| | - Bradley B Olwin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Colorado
| | - Preeti Raghavan
- Rusk Rehabilitation, New York University School of Medicine, New York, New York
| | - Thomas J Roberts
- Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - John F Sarwark
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Claudia R Senesac
- Physical Therapy Department, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Leslie F Vogel
- Department of Rehabilitation, Seattle Children's Hospital, Seattle, Washington
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Rebecca J Willcocks
- Physical Therapy Department, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | | | | |
Collapse
|
33
|
Kalkman BM, Bar-On L, O'Brien TD, Maganaris CN. Stretching Interventions in Children With Cerebral Palsy: Why Are They Ineffective in Improving Muscle Function and How Can We Better Their Outcome? Front Physiol 2020; 11:131. [PMID: 32153428 PMCID: PMC7047287 DOI: 10.3389/fphys.2020.00131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/06/2020] [Indexed: 12/27/2022] Open
Abstract
Hyper-resistance at the joint is one of the most common symptoms in children with cerebral palsy (CP). Alterations to the structure and mechanical properties of the musculoskeletal system, such as a decreased muscle length and an increased joint stiffness are typically managed conservatively, by means of physiotherapy involving stretching exercises. However, the effectiveness of stretching-based interventions for improving function is poor. This may be due to the behavior of a spastic muscle during stretch, which is poorly understood. The main aim of this paper is to provide a mechanistic explanation as to why the effectiveness of stretching is limited in children with CP and consider clinically relevant means by which this shortcoming can be tackled. To do this, we review the current literature regarding muscle and tendon plasticity in response to stretching in children with CP. First, we discuss how muscle and tendon interact based on their morphology and mechanical properties to provide a certain range of motion at the joint. We then consider the effect of traditional stretching exercises on these muscle and tendon properties. Finally, we examine possible strategies to increase the effectiveness of stretching therapies and we highlight areas of further research that have the potential to improve the outcome of non-invasive interventions in children with cerebral palsy.
Collapse
Affiliation(s)
- Barbara M Kalkman
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lynn Bar-On
- Department of Rehabilitation Medicine, VC University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Thomas D O'Brien
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Constantinos N Maganaris
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
34
|
Cherni Y, Ballaz L, Girardin-Vignola G, Begon M. Intra- and inter-tester reliability of spasticity assessment in standing position in children and adolescents with cerebral palsy using a paediatric exoskeleton. Disabil Rehabil 2019; 43:1001-1007. [PMID: 31368379 DOI: 10.1080/09638288.2019.1646814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND The L-STIFF tool of the Lokomat evaluates the hip and knee flexors and extensors spasticity in a standing position. It moves the lower limb at a controlled velocity, measuring joint resistance to passive movements. Since its reliability in children with cerebral palsy remains unknown, our goal was to evaluate the relative and absolute reliability of L-STIFF in children with cerebral palsy. METHODS Reliability was determined in 16 children with cerebral palsy by two experienced therapists. The changes in resistive torque in hip and knee in both flexion and extension were measured. Relative and absolute reliability were estimated using the intraclass correlation coefficient, standard error of measurement, and minimal detectable change. Reliability was assessed on three levels: (1) intra- and (2) inter-tester within session, and (3) intra-tester between sessions. RESULTS Intraclass correlation coefficients were moderate to excellent for intra-tester reliability (all p ≤ 0.01). The standard error of measurement ranged from 0.005 to 0.021 Nm/° (i.e., 7-16%) and minimal detectable change from 0.014 to 0.059 Nm/°. Inter-tester intraclass correlation coefficients ranged from 0.32 to 0.70 (all p ≤ 0.01), standard error of measurement ranged from 0.012 to 0.029 Nm/° (i.e., 6-39%), and minimal detectable change ranged from 0.033 to 0.082 Nm/°. L-STIFF reliability was better during fast and medium movement speeds compared to slow speeds. CONCLUSIONS The assessment tool L-STIFF is a promising tool for quantifying lower limb spasticity in children with cerebral palsy in a standing position. However, the results should be interpreted carefully.Implications for RehabilitationL-STIFF is a promising tool for evaluating lower limb spasticity in standing position.A special care must be given to the installation and alignment of the participant into the Lokomat to minimize erroneous spasticity measurement.Relative standard error of measurement and minimal detectable change should be used to analyze changes spasticity.
Collapse
Affiliation(s)
- Yosra Cherni
- École de kinésiologie et des sciences de l'activité physique, Faculté de Médecine, Université de Montréal, Montréal, Canada.,Centre de réadaptation Marie-Enfant, CHU Sainte-Justine, Montréal, Canada
| | - Laurent Ballaz
- Centre de réadaptation Marie-Enfant, CHU Sainte-Justine, Montréal, Canada.,Département des sciences de l'activité physique, Université de Québec à Montréal, Montréal, Canada
| | | | - Mickael Begon
- École de kinésiologie et des sciences de l'activité physique, Faculté de Médecine, Université de Montréal, Montréal, Canada.,Centre de réadaptation Marie-Enfant, CHU Sainte-Justine, Montréal, Canada
| |
Collapse
|
35
|
D'Souza A, Bolsterlee B, Lancaster A, Herbert RD. Muscle architecture in children with cerebral palsy and ankle contractures: an investigation using diffusion tensor imaging. Clin Biomech (Bristol, Avon) 2019; 68:205-211. [PMID: 31255994 DOI: 10.1016/j.clinbiomech.2019.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/27/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Children with cerebral palsy frequently have ankle contractures which may be caused by changes in architecture of calf muscles. Here, we compared the architecture of medial gastrocnemius muscles in children with unilateral cerebral palsy and typically developing children using novel imaging techniques. METHODS AND PROCEDURES Muscle volumes, fascicle lengths, pennation angles and physiological cross-sectional areas were measured from diffusion tensor images and mDixon scans obtained from 20 ambulant children with unilateral spastic cerebral palsy who had ankle contractures (age 11 ± 3 years; mean ± standard deviation) and 20 typically developing children (11 ± 4 years). FINDINGS In children with cerebral palsy, the more-affected side had, on average, 13° less dorsiflexion range and the medial gastrocnemius muscle had 4.9 mm shorter fascicles, 50 cm3 smaller volume and 9.5 cm2 smaller physiological cross-sectional area than the less-affected side. Compared to typically developing children, the more-affected side had 10° less dorsiflexion range and the medial gastrocnemius muscle had 4.2 mm shorter fascicles, 51 cm3 smaller volume and 10 cm2 smaller physiological cross-sectional area. We did not detect differences between the less-affected and typically developing legs. INTERPRETATION Three-dimensional measurement of whole medial gastrocnemius muscles confirmed that the architecture of muscles on the more-affected side of children with cerebral palsy differs from the less-affected side and from muscles of typically developing children. Reductions in fascicle length, muscle volume and physiological cross-sectional area may contribute to muscle contracture.
Collapse
Affiliation(s)
- Arkiev D'Souza
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia; University of New South Wales, Randwick, NSW, Australia.
| | - Bart Bolsterlee
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia; University of New South Wales, Randwick, NSW, Australia.
| | - Ann Lancaster
- Rehab2Kids, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Robert D Herbert
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia; University of New South Wales, Randwick, NSW, Australia.
| |
Collapse
|
36
|
Mechanical and microstructural changes of skeletal muscle following immobilization and/or stroke. Biomech Model Mechanobiol 2019; 19:61-80. [DOI: 10.1007/s10237-019-01196-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/26/2019] [Indexed: 11/27/2022]
|
37
|
Quantifying Effect of Onabotulinum Toxin A on Passive Muscle Stiffness in Children with Cerebral Palsy Using Ultrasound Shear Wave Elastography. Am J Phys Med Rehabil 2019; 97:500-506. [PMID: 29406405 DOI: 10.1097/phm.0000000000000907] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE A pilot study was conducted to longitudinally quantify effect of onabotulinum toxin A (BoNT-A) on passive muscle properties in children with cerebral palsy using ultrasound shear wave elastography. DESIGN This was a prospective longitudinal cohort study. RESULTS Between 1 and 3 mos post-BoNT-A, a significant improvement in the shear modulus of the lateral gastrocnemius was found at 10-degrees plantar flexion (PF) (-7.57 [-10.98, -5.07], P = 0.02) and 0-degrees PF (-14.74 [-18.21, -9.38], P = 0.03). There was a notable, but nonsignificant, difference in shear modulus at 20-degrees PF, 10-degrees PF, and 0-degrees PF between pre-BoNT-A and 1 mo post-BoNT-A. Pre-BoNT-A shear modulus was not significantly different from 3 mos post-BoNT-A at all foot positions. No significant differences in ankle passive range of motion or spasticity were found. CONCLUSION Despite no significant change in ankle range of motion or spasticity, shear wave elastography was able to detect a difference in lateral gastrocnemius passive muscle properties in children with cerebral palsy after BoNT-A injections. The difference in passive muscle properties resolved by 3 mos post-BoNT-A.
Collapse
|
38
|
The Effects of Functional Progressive Strength and Power Training in Children With Unilateral Cerebral Palsy. Pediatr Phys Ther 2019; 31:286-295. [PMID: 31220015 DOI: 10.1097/pep.0000000000000628] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE The purpose of this study was to investigate the effects of a novel functional strength and power-training program on gait and gross motor function in participants with unilateral cerebral palsy. METHODS This 12-week trial of functional strength and power training included 30 participants with cerebral palsy, randomly assigned to the experimental or comparison group. The primary outcomes, 1-minute walk test, muscle power, and the Gross Motor Function Measure, were assessed at baseline and 12 weeks after the intervention. Secondary outcomes included dynamic balance as measured by Timed Up and Go, muscle strength, and 1-repetition maximum measures. RESULTS Significantly greater improvements were seen in the experimental group for muscle power, Gross Motor Function Measure E score, and 1-minute walk test (P < .05), as well as for dynamic balance, 1-repetition maximum, and muscle strength. CONCLUSION Functional strength training combined with plyometric exercises improved gait and gross motor function, dynamic balance, muscle strength, and power. VIDEO ABSTRACT For more insights from the authors, access Supplemental Digital Content 1, available at: http://links.lww.com/PPT/A254.
Collapse
|
39
|
Larkin-Kaiser KA, Howard JJ, Leonard T, Joumaa V, Gauthier L, Logan K, Orlik B, El-Hawary R, Herzog W. Relationship of muscle morphology to hip displacement in cerebral palsy: a pilot study investigating changes intrinsic to the sarcomere. J Orthop Surg Res 2019; 14:187. [PMID: 31227002 PMCID: PMC6588916 DOI: 10.1186/s13018-019-1239-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cerebral palsy (CP) is the most common cause of childhood disability, typified by a static encephalopathy with peripheral musculoskeletal manifestations-most commonly related to spasticity-that are progressive with age. Hip displacement is one of the most common manifestations, observed to lead to painful degenerative arthritis over time. Despite the key role that spasticity-related adductor muscle contractures are thought to play in the development of hip displacement in CP, basic science research in this area to date has been limited. This study was initiated to correlate hip adductor muscle changes intrinsic to the sarcomere-specifically, titin isoforms and sarcomere length-to the severity of hip displacement in children with spastic cerebral palsy. METHODS Single gracilis muscle biopsies were obtained from children with CP (Gross Motor Function Classification System (GMFCS) III-V; n = 10) who underwent adductor muscle release surgery for the treatment of hip displacement. Gel electrophoresis was used to estimate titin molecular weight. Sarcomere lengths were measured from muscle fascicles using laser diffraction. The severity of hip displacement was determined by measuring by Reimers migration percentage (MP) from anteroposterior pelvic x-rays. Correlation analyses between titin, sarcomere lengths, and MP were performed. RESULTS The mean molecular weight of titin was 3588 kDa. The mean sarcomere length was 3.51 μm. Increased MP was found to be associated with heavier isoforms of titin (R2 = 0.65, p < 0.05) and with increased sarcomere lengths (R2 = 0.65, p < 0.05). Heavier isoforms of titin were also associated with increased sarcomere lengths (R2 = 0.80, p < 0.05). CONCLUSIONS Our results suggest that both larger titin isoforms and sarcomere lengths are positively correlated with increased severity of hip displacement and may represent adaptations in response to concomitant increases in spasticity and muscle shortening. TRIAL REGISTRATION As this study does not report the results of a health care intervention on human participants, it has not been registered.
Collapse
Affiliation(s)
- Kelly A. Larkin-Kaiser
- Faculty of Kinesiology, University of Calgary, 376 Collegiate Blvd NW, Calgary, AB T2N 4V8 Canada
| | - Jason J. Howard
- Weill Cornell Medicine, Sidra Medicine, Al Gharrafa St, Ar Rayyan, P.O. Box 26999, Doha, Qatar
| | - Timothy Leonard
- Faculty of Kinesiology, University of Calgary, 376 Collegiate Blvd NW, Calgary, AB T2N 4V8 Canada
| | - Venus Joumaa
- Faculty of Kinesiology, University of Calgary, 376 Collegiate Blvd NW, Calgary, AB T2N 4V8 Canada
| | - Luke Gauthier
- IWK Health Centre, 5980 University Ave, Halifax, NS B3K 6R8 Canada
| | - Karl Logan
- IWK Health Centre, 5980 University Ave, Halifax, NS B3K 6R8 Canada
| | - Benjamin Orlik
- IWK Health Centre, 5980 University Ave, Halifax, NS B3K 6R8 Canada
| | - Ron El-Hawary
- IWK Health Centre, 5980 University Ave, Halifax, NS B3K 6R8 Canada
| | - Walter Herzog
- Faculty of Kinesiology, University of Calgary, 376 Collegiate Blvd NW, Calgary, AB T2N 4V8 Canada
| |
Collapse
|
40
|
Hodshon AW, Thomas WB. Transient depression of pelvic limb reflexes in dogs with acute focal thoracolumbar myelopathy. J Am Vet Med Assoc 2019; 253:1022-1031. [PMID: 30272519 DOI: 10.2460/javma.253.8.1022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the prevalence of depressed pelvic limb reflexes and changes in those reflexes over time in dogs with acute thoracolumbar myelopathy. DESIGN Prospective study. ANIMALS 34 dogs. PROCEDURES Dogs with acute pelvic limb paralysis caused by acute noncompressive nucleus pulposus extrusion (ANNPE), fibrocartilaginous embolism (FCE), or compressive intervertebral disk herniation (IVDH) within the T3-L3 spinal cord segments were enrolled in the study. Dogs with depressed or absent pelvic limb withdrawal reflexes as determined by 2 examiners were classified as affected and underwent additional testing to rule out multifocal lesions. Pelvic limb reflexes of affected dogs were reassessed every 12 hours until they returned to normal. Neurologic examinations were performed at 4 and 8 weeks after initial examination for some dogs. RESULTS Compressive IVDH, ANNPE, and FCE were diagnosed in 30, 1, and 3 dogs, respectively. Nine (5 with compressive IVDH and all 4 with FCE or ANNPE) of 34 (26%) dogs were classified as affected. Patellar reflexes were depressed in 2 of 9 affected dogs. The median time required for withdrawal reflexes to return to normal was 60 hours (range, 12 to 156 hours). Onset duration of paralysis was negatively associated with the odds of a dog being classified as affected. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that dogs with focal thoracolumbar spinal cord lesions, especially those with peracute onset of paralysis, can develop transient depression of pelvic limb reflexes. Awareness of this phenomenon is important for veterinarians to accurately localize lesions and develop appropriate diagnostic plans and prognoses.
Collapse
|
41
|
Lieber RL, Fridén J. Muscle contracture and passive mechanics in cerebral palsy. J Appl Physiol (1985) 2019; 126:1492-1501. [PMID: 30571285 PMCID: PMC6589815 DOI: 10.1152/japplphysiol.00278.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/06/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle contractures represent the permanent shortening of a muscle-tendon unit, resulting in loss of elasticity and, in extreme cases, joint deformation. They may result from cerebral palsy, spinal cord injury, stroke, muscular dystrophy, and other neuromuscular disorders. Contractures are the prototypic and most severe clinical presentation of increased passive mechanical muscle force in humans, often requiring surgical correction. Intraoperative experiments demonstrate that high muscle passive force is associated with sarcomeres that are abnormally stretched, although otherwise normal, with fewer sarcomeres in series. Furthermore, changes in the amount and arrangement of collagen in the extracellular matrix also increase muscle stiffness. Structural light and electron microscopy studies demonstrate that large bundles of collagen, referred to as perimysial cables, may be responsible for this increased stiffness and are regulated by interaction of a number of cell types within the extracellular matrix. Loss of muscle satellite cells may be related to changes in both sarcomeres and extracellular matrix. Future studies are required to determine the underlying mechanism for changes in muscle satellite cells and their relationship (if any) to contracture. A more complete understanding of this mechanism may lead to effective nonsurgical treatments to relieve and even prevent muscle contractures.
Collapse
Affiliation(s)
- Richard L Lieber
- Shirley Ryan AbilityLab, Chicago, Illinois
- Departments of Physical Medicine and Rehabilitation and Biomedical Engineering, Northwestern University , Chicago, Illinois
| | - Jan Fridén
- Swiss Paraplegic Center, Nottwil, Switzerland
| |
Collapse
|
42
|
Leonard TR, Howard JJ, Larkin-Kaiser K, Joumaa V, Logan K, Orlik B, El-Hawary R, Gauthier L, Herzog W. Stiffness of hip adductor myofibrils is decreased in children with spastic cerebral palsy. J Biomech 2019; 87:100-106. [PMID: 30853092 DOI: 10.1016/j.jbiomech.2019.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/28/2019] [Accepted: 02/25/2019] [Indexed: 01/16/2023]
Abstract
Cerebral palsy (CP) is the result of a static brain lesion which causes spasticity and muscle contracture. The source of the increased passive stiffness in patients is not understood and while whole muscle down to single muscle fibres have been investigated, the smallest functional unit of muscle (the sarcomere) has not been. Muscle biopsies (adductor longus and gracilis) from pediatric patients were obtained (CP n = 9 and control n = 2) and analyzed for mechanical stiffness, in-vivo sarcomere length and titin isoforms. Adductor longus muscle was the focus of this study and the results for sarcomere length showed a significant increase in length for CP (3.6 µm) compared to controls (2.6 µm). Passive stress at the same sarcomere length for CP compared to control was significantly lower in CP and the elastic modulus for the physiological range of muscle was lower in CP compared to control (98.2 kPa and 166.1 kPa, respectively). Our results show that CP muscle at its most reduced level (the myofibril) is more compliant compared to normal, which is completely opposite to what is observed at higher structural levels (single fibres, muscle fibre bundles and whole muscle). It is noteworthy that at the in vivo sarcomere length in CP, the passive forces are greater than normal, purely as a functional of these more compliant sarcomeres operating at long lengths. Titin isoforms were not different between CP and non-CP adductor longus but titin:nebulin was reduced in CP muscle, which may be due to titin loss or an over-expression of nebulin in CP muscles.
Collapse
Affiliation(s)
| | | | | | - Venus Joumaa
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | - Walter Herzog
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
43
|
Frisk RF, Lorentzen J, Barber L, Nielsen JB. Characterization of torque generating properties of ankle plantar flexor muscles in ambulant adults with cerebral palsy. Eur J Appl Physiol 2019; 119:1127-1136. [PMID: 30778762 DOI: 10.1007/s00421-019-04102-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/12/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE Weakness of plantar flexor muscles is related to reduced push-off and forward propulsion during gait in persons with cerebral palsy (CP). It has not been clarified to what an extent altered muscle contractile properties contribute to this muscle weakness. Here, we investigated the torque generating capacity and muscle fascicle length in the triceps surae muscle throughout ankle range of motion (ROM) in adults with CP using maximal single muscle twitches elicited by electrical nerve stimulation and ultrasonography. METHODS Fourteen adults with CP (age 36, SD 10.6, GMFCS I-III) and 17 neurological intact (NI) adults (age 36, SD 4.5) participated. Plantar flexor torque during supramaximal stimulation of the tibial nerve was recorded in a dynamometer at 8 ankle angles throughout ROM. Medial gastrocnemius (MG) fascicle length was tracked using ultrasonography. RESULTS Adults with CP showed reduced plantar flexor torque and fascicle shortening during supramaximal stimulation throughout ROM. The largest torque generation was observed at the ankle joint position where the largest shortening of MG fascicles was observed in both groups. This was at a more plantarflexed position in the CP group. CONCLUSION Reduced torque and fascicle shortening during supramaximal stimulation of the tibial nerve indicate impaired contractile properties of plantar flexor muscles in adults with CP. Maximal torque was observed at a more plantarflexed position in adults with CP indicating an altered torque-fascicle length/ankle angle relation. The findings suggest that gait rehabilitation in adults with CP may require special focus on improvement of muscle contractility.
Collapse
Affiliation(s)
- Rasmus Feld Frisk
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark. .,Professionshøjskolen Absalon, Roskilde, Denmark. .,Elsass Institute, Charlottenlund, Denmark.
| | - Jakob Lorentzen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Lee Barber
- School of Health, Medical and Allied Sciences, Central Queensland University, Bundaberg, Australia.,Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.,Elsass Institute, Charlottenlund, Denmark
| |
Collapse
|
44
|
El Shemy SA. Effect of Treadmill Training With Eyes Open and Closed on Knee Proprioception, Functional Balance and Mobility in Children With Spastic Diplegia. Ann Rehabil Med 2018; 42:854-862. [PMID: 30613079 PMCID: PMC6325311 DOI: 10.5535/arm.2018.42.6.854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/15/2018] [Indexed: 01/14/2023] Open
Abstract
Objective To investigate the effect of treadmill training with eyes open (TEO) and closed (TEC) on the knee joint position sense (JPS), functional balance and mobility in children with spastic diplegia. Methods Forty-five children with spastic diplegia aged 11–13 years participated in this study. They were randomly assigned to three groups of equal number. The control group (CON) underwent designed physical therapy program whereas, the study groups (TEO and TEC) underwent the same program, in addition to treadmill gait training with eyes open and closed, respectively. Outcome measures were the degree of knee joint position error, functional balance and mobility. Measurements were taken before and after 12 weeks of intervention. Results After training, the three groups showed statistically significant improvement in all measured outcomes, compared to the baseline with non-significant change in the knee JPS in the CON group. When comparing posttreatment results, the TEC group showed greater significant improvement in all measured outcomes, than the TEO and CON groups. Conclusion Treadmill training with eyes open and closed is effective in rehabilitation of children with diplegia, but blocked vision treadmill training has more beneficial effect.
Collapse
Affiliation(s)
- Samah Attia El Shemy
- Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| |
Collapse
|
45
|
Battisti N, Milletti D, Miceli M, Zenesini C, Cersosimo A. Usefulness of a Qualitative Ultrasound Evaluation of the Gastrocnemius-Soleus Complex with the Heckmatt Scale for Clinical Practice in Cerebral Palsy. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2548-2555. [PMID: 30253885 DOI: 10.1016/j.ultrasmedbio.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/16/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Ultrasound is increasingly used for the evaluation of spastic muscles in cerebral palsy. Increased echo intensity is considered indicative of a muscle fibrous involution. The aim of this study was to highlight any correlation between increased echo intensity of the gastrocnemius-soleus complex and clinical tests for stiffness evaluation, age and functional level measured with the Gross Motor Function Classification System. We used the qualitative echo intensity grading system of the Heckmatt scale (HS) and tested its inter-rater reliability. The study group comprised 60 patients with cerebral palsy. We found a weak significant correlation between HS scores and clinical stiffness measures and between HS and age for all muscles studied, and between the HS and Gross Motor Function Classification System only for the soleus muscle. The study indicated moderate inter-rater reliability, with κ values between 0.60 and 0.73, for almost all muscles studied. Ultrasound provides a useful complementary survey of stiffness tests in cerebral palsy.
Collapse
Affiliation(s)
- Nicoletta Battisti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Medicina Riabilitativa Infantile, Bologna, Italy.
| | - David Milletti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Medicina Riabilitativa, Bologna, Italy
| | - Marco Miceli
- Azienda Unità sanitaria Locale di Bologna,UOC Radiologia, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC di Epidemiologia e Statistica, Bologna, Italy
| | - Antonella Cersosimo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Medicina Riabilitativa Infantile, Bologna, Italy
| |
Collapse
|
46
|
Song S, Lee K, Jung S, Park S, Cho H, Lee G. Effect of Horizontal Whole-Body Vibration Training on Trunk and Lower-Extremity Muscle Tone and Activation, Balance, and Gait in a Child with Cerebral Palsy. AMERICAN JOURNAL OF CASE REPORTS 2018; 19:1292-1300. [PMID: 30377290 PMCID: PMC6223197 DOI: 10.12659/ajcr.910468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Patient: Male, 10 Final Diagnosis: Cerebral palsy Symptoms: Movement disorder Medication: — Clinical Procedure: — Specialty: Rehabilitation
Collapse
Affiliation(s)
- Sunhae Song
- Department of Physical Therapy, Graduate School of Kyungnam University, Changwon, South Korea
| | - Kyeongbong Lee
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Seoul, South Korea
| | - Sunhye Jung
- Department of Physical Therapy, Graduate School of Kyungnam University, Changwon, South Korea
| | - Suho Park
- Department of Physical Therapy, Graduate School of Kyungnam University, Changwon, South Korea
| | - Hyunrae Cho
- Department of Physical Therapy, Masan University, Changwon, South Korea
| | - Gyuchang Lee
- Department of Physical Therapy, Kyungnam University, Changwon, South Korea
| |
Collapse
|
47
|
Prazeres PHDM, Turquetti AOM, Azevedo PO, Barreto RSN, Miglino MA, Mintz A, Delbono O, Birbrair A. Perivascular cell αv integrins as a target to treat skeletal muscle fibrosis. Int J Biochem Cell Biol 2018; 99:109-113. [PMID: 29627438 PMCID: PMC6159891 DOI: 10.1016/j.biocel.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Fibrosis following injury leads to aberrant regeneration and incomplete functional recovery of skeletal muscle, but the lack of detailed knowledge about the cellular and molecular mechanisms involved hampers the design of effective treatments. Using state-of-the-art technologies, Murray et al. (2017) found that perivascular PDGFRβ-expressing cells generate fibrotic cells in the skeletal muscle. Strikingly, genetic deletion of αv integrins from perivascular PDGFRβ-expressing cells significantly inhibited skeletal muscle fibrosis without affecting muscle vascularization or regeneration. In addition, the authors showed that a small molecule inhibitor of αv integrins, CWHM 12, attenuates skeletal muscle fibrosis. From a drug-development perspective, this study identifies a new cellular and molecular target to treat skeletal muscle fibrosis.
Collapse
Affiliation(s)
- Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anaelise O M Turquetti
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Patrick O Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo S N Barreto
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Maria A Miglino
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil; Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
48
|
Kawano A, Yanagizono T, Kadouchi I, Umezaki T, Chosa E. Ultrasonographic evaluation of changes in the muscle architecture of the gastrocnemius with botulinum toxin treatment for lower extremity spasticity in children with cerebral palsy. J Orthop Sci 2018; 23:389-393. [PMID: 29146092 DOI: 10.1016/j.jos.2017.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/02/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Botulinum toxin A treatment involves injecting botulinum toxin A to relax muscle spasticity. Using ultrasonography, this study examined changes in the muscle architecture before and after treatment to evaluate the influence of botulinum toxin A injection on muscles. METHODS The participants included 18 children (mean age, 6.2 years) with cerebral palsy who were treated with botulinum toxin A for lower extremity spasticity and 27 healthy children (mean age, 6.4 years) as a control group. In all cases, botulinum toxin A was injected into the gastrocnemius muscle. The muscle length, muscle width, and pennation angle (which indicates the degree of muscle fiber tone), were measured using B-mode ultrasonography before and 12 weeks after injection. RESULTS The muscle length and muscle width were shorter in the cerebral palsy group than in the control group. The pennation angle in the cerebral palsy group significantly decreased after injection from 28.2 ± 3.6° to 25.8 ± 2.5° in the resting position of the ankle and from 18.6 ± 2.8° to 15.9 ± 1.7° in the maximum dorsiflexion position of the ankle. In the control group, the pennation angle was 25.9 ± 3.2° in the resting position of the ankle and 15.1 ± 2.5° in the maximum dorsiflexion position of the ankle. The rate of increase of fascicle length during passive movement from the resting position of the ankle to the maximum dorsiflexion position was 143.9% in the cerebral palsy group, which was significantly less than the value of 157.7% in the control group. After botulinum toxin A treatment, the rate of increase of fascicle length in the cerebral palsy group increased to 155.1%. CONCLUSIONS The decrease in the pennation angle after botulinum toxin A treatment is considered to be the result of a reduction of spasticity and subsequent structural changes in flaccid muscle fibers.
Collapse
Affiliation(s)
- Akihiro Kawano
- Division of Orthopedic Surgery, Miyazaki Prefecture Center for Disabled Children, Miyazaki 889-1601, Japan.
| | - Taiichiro Yanagizono
- Division of Orthopedic Surgery, Miyazaki Prefecture Center for Disabled Children, Miyazaki 889-1601, Japan
| | - Ichiro Kadouchi
- Division of Orthopedic Surgery, Miyazaki Prefecture Center for Disabled Children, Miyazaki 889-1601, Japan
| | - Tetsuya Umezaki
- Division of Orthopedic Surgery, Miyazaki Prefecture Center for Disabled Children, Miyazaki 889-1601, Japan
| | - Etsuo Chosa
- Department of Medicine of Sensory and Motor Organs, Division of Orthopedic Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
49
|
Chen Y, He L, Xu K, Li J, Guan B, Tang H. Comparison of calf muscle architecture between Asian children with spastic cerebral palsy and typically developing peers. PLoS One 2018; 13:e0190642. [PMID: 29304114 PMCID: PMC5755874 DOI: 10.1371/journal.pone.0190642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To compare the muscle thickness, fascicle length, and pennation angle of the gastrocnemius, soleus, and tibialis anterior between Asian children with spastic cerebral palsy (CP) and typically developing (TD) peers. METHODS This cross-sectional study involved a total of 72 children with hemiplegic CP (n = 24), and diplegic CP (n = 24) and their TD peers (n = 24). Muscle architecture was measured at rest using ultrasound. Clinical measures included gross motor function and a modified Ashworth scale. RESULTS The thicknesses of the tibialis anterior and medial gastrocnemius muscles were smaller in the affected calf of children with CP (p<0.05) than in those of their TD peers. Additionally, the lengths of the lateral gastrocnemius and soleus fascicle were shorter (p<0.05) in children with diplegic CP than in their TD peers. The fascicle length was shorter in the affected calf of children with CP (p<0.05) than in the calves of their TD peers or the unaffected calf of children with hemiplegic CP. However, the length of the lateral gastrocnemius fascicle was similar between the two legs of children with hemiplegic CP. The pennation angles of the medial gastrocnemius and soleus muscles were larger (p<0.05) in the affected calf in children with hemiplegic CP than in the calves of their TD peers. The fascicle length of the lateral gastrocnemius and the thickness of the soleus muscle were positively correlated with gross motor function scores in children with CP (p<0.05). CONCLUSIONS Muscle thickness and fascicle length were lower in the affected tibialis anterior, gastrocnemius, and soleus in children with spastic CP. These changes may limit the ability to stand and walk, and indicate a need to strengthen the affected muscle.
Collapse
Affiliation(s)
- Ying Chen
- Department of Rehabilitation, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- * E-mail:
| | - Jinling Li
- Department of Rehabilitation, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Buyun Guan
- Department of Ultrasonography, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
50
|
Kaya CS, Temelli Y, Ates F, Yucesoy CA. Effects of inter-synergistic mechanical interactions on the mechanical behaviour of activated spastic semitendinosus muscle of patients with cerebral palsy. J Mech Behav Biomed Mater 2018; 77:78-84. [DOI: 10.1016/j.jmbbm.2017.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 11/26/2022]
|