1
|
Meyer M, Lima A, Deniselle MCG, De Nicola AF. Early Signs of Neuroinflammation in the Postnatal Wobbler Mouse Model of Amyotrophic Lateral Sclerosis. Cell Mol Neurobiol 2023; 43:2149-2163. [PMID: 36219378 PMCID: PMC11412182 DOI: 10.1007/s10571-022-01294-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/02/2022] [Indexed: 11/03/2022]
Abstract
The Wobbler mouse is an accepted model of sporadic amyotrophic lateral sclerosis. The spinal cord of clinically symptomatic animals (3-5 months old) shows vacuolar motoneuron degeneration, inflammation, and gliosis accompanied by motor impairment. However, data are not conclusive concerning pathological changes appearing early after birth. To answer this question, we used postnatal day (PND) 6 genotyped Wobbler pups to determine abnormalities of glia and neurons at this early age period in the spinal cord. We found astrogliosis, microgliosis with morphophenotypic changes pointing to active ameboid microglia, enhanced expression of the proinflammatory markers TLR4, NFkB, TNF, and inducible nitric oxide synthase. The astrocytic enzyme glutamine synthase and the glutamate-aspartate transporter GLAST were also reduced in PND 6 Wobbler pups, suggesting excitotoxicity due to impaired glutamate homeostasis. At the neuronal level, PND 6 Wobblers showed swollen soma, increased choline acetyltransferase immunofluorescence staining, and low expression of the neuronal nuclear antigen NeuN. However, vacuolated motoneurons, a typical signature of older clinically symptomatic Wobbler mice, were absent in the spinal cord of PND 6 Wobblers. The results suggest predominance of neuroinflammation and abnormalities of microglia and astrocytes at this early period of Wobbler life, accompanied by some neuronal changes. Data support the non-cell autonomous hypothesis of the Wobbler disorder, and bring useful information with regard to intervening molecular inflammatory mechanisms at the beginning stage of human motoneuron degenerative diseases.
Collapse
Affiliation(s)
- Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
- Department of Physiology, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina.
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Clark CM, Clark RM, Hoyle JA, Dickson TC. Pathogenic or protective? Neuropeptide Y in amyotrophic lateral sclerosis. J Neurochem 2020; 156:273-289. [PMID: 32654149 DOI: 10.1111/jnc.15125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous peptide of the central and enteric nervous systems which has gained significant interest as a potential neuroprotective agent for treatment of neurodegenerative disease. Amyotrophic lateral sclerosis (ALS) is an aggressive and fatal neurodegenerative disease characterized by motor deficits and motor neuron loss. In ALS, recent evidence from ALS patients and animal models has indicated that NPY may have a role in the disease pathogenesis. Increased NPY levels were found to correlate with disease progression in ALS patients. Similarly, NPY expression is increased in the motor cortex of ALS mice by end stages of the disease. Although the functional consequence of increased NPY levels in ALS is currently unknown, NPY has been shown to exert a diverse range of neuroprotective roles in other neurodegenerative diseases; through modulation of potassium channel activity, increased production of neurotrophins, inhibition of endoplasmic reticulum stress and autophagy, reduction of excitotoxicity, oxidative stress, neuroinflammation and hyperexcitability. Several of these mechanisms and signalling pathways are heavily implicated in the pathogenesis of ALS. Therefore, in this review, we discuss possible effects of NPY and NPY-receptor signalling in the ALS disease context, as determining NPY's contribution to, or impact on, ALS disease mechanisms will be essential for future studies investigating the NPY system as a therapeutic strategy in this devastating disease.
Collapse
Affiliation(s)
- Courtney M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rosemary M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Joshua A Hoyle
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
3
|
Kim HK, Mendonça KM, Howson PA, Brotchie JM, Andreazza AC. The link between mitochondrial complex I and brain-derived neurotrophic factor in SH-SY5Y cells – The potential of JNX1001 as a therapeutic agent. Eur J Pharmacol 2015; 764:379-384. [DOI: 10.1016/j.ejphar.2015.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/04/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
|
4
|
Gonzalez Deniselle MC, Garay L, Meyer M, Gargiulo-Monachelli G, Labombarda F, Gonzalez S, Guennoun R, Schumacher M, De Nicola AF. Experimental and clinical evidence for the protective role of progesterone in motoneuron degeneration and neuroinflammation. Horm Mol Biol Clin Investig 2015; 7:403-11. [PMID: 25961276 DOI: 10.1515/hmbci.2011.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 01/08/2023]
Abstract
Far beyond its role in reproduction, progesterone exerts neuro-protective, promyelinating, and anti-inflammatory effects in the nervous system. These effects are amplified under pathological conditions, implying that changes of the local environment sensitize nervous tissues to steroid therapy. The present survey covers our results of progesterone neuroprotection in a motoneuron neurodegeneration model and a neuroinflammation model. In the degenerating spinal cord of the Wobbler mouse, progesterone reverses the impaired expression of neurotrophins, increases enzymes of neurotransmission and metabolism, prevents oxidative damage of motoneurons and their vacuolar degeneration (paraptosis), and attenuates the development of mitochondrial abnormalities. After long-term treatment, progesterone also increases muscle strength and the survival of Wobbler mice. Subsequently, this review describes the effects of progesterone in mice with induced experimental autoimmune encephalomyelitis (EAE), a commonly used model of multiple sclerosis. In EAE mice, progesterone attenuates the clinical severity, decreases demyelination and neuronal dysfunction, increases axonal counts, reduces the formation of amyloid precursor protein profiles, and decreases the aberrant expression of growth-associated proteins. These actions of progesterone may be due to multiple mechanisms, considering that classic nuclear receptors, extranuclear receptors, and membrane receptors are all expressed in the spinal cord. Although many aspects of progesterone action in humans remain unsolved, data provided by experimental models makes getting to this objective closer than previously expected.
Collapse
|
5
|
Garay L, Gonzalez Deniselle MC, Gierman L, Lima A, Roig P, De Nicola AF. Pharmacotherapy with 17β-estradiol and progesterone prevents development of mouse experimental autoimmune encephalomyelitis. Horm Mol Biol Clin Investig 2015; 1:43-51. [PMID: 25961971 DOI: 10.1515/hmbci.2010.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/30/2009] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pregnant women with multiple sclerosis (MS) show disease remission in the third trimester concomitant with high circulating levels of sex steroids. Rodent experimental autoimmune encephalomyelitis (EAE) is an accepted model for MS. Previous studies have shown that monotherapy with estrogens or progesterone exert beneficial effects on EAE. The aim of the present study was to determine if estrogen and progesterone cotherapy of C57BL/6 female mice provided substantial protection from EAE. METHODS A group of mice received single pellets of progesterone (100 mg) and 17 β-estradiol (2.5 mg) subcutaneously 1 week before EAE induction, whereas another group were untreated before EAE induction. On day 16 we compared the two EAE groups and control mice in terms of clinical scores, spinal cord demyelination, expression of myelin basic protein and proteolipid protein, macrophage cell infiltration, neuronal expression of brain-derived neurotrophic factor mRNA and protein, and the number of glial fribrillary acidic protein (GFAP)-immunopositive astrocytes. RESULTS Clinical signs of EAE were substantially attenuated by estrogen and progesterone treatment. Steroid cotherapy prevented spinal cord demyelination, infiltration of inflammatory cells and GFAP+ astrogliocytes to a great extent. In motoneurons, expression of BDNF mRNA and protein was highly stimulated, indicating concomitant beneficial effects of the steroid on neuronal and glial cells. CONCLUSIONS Cotherapy with estrogen and progesterone inhibits the development of major neurochemical abnormalities and clinical signs of EAE. We suggest that a combination of neuroprotective, promyelinating and immuno-suppressive mechanisms are involved in these beneficial effects.
Collapse
|
6
|
Peviani M, Salvaneschi E, Bontempi L, Petese A, Manzo A, Rossi D, Salmona M, Collina S, Bigini P, Curti D. Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation. Neurobiol Dis 2014; 62:218-32. [PMID: 24141020 DOI: 10.1016/j.nbd.2013.10.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/12/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
The identification of novel molecular targets crucially involved in motor neuron degeneration/survival is a necessary step for the development of hopefully more effective therapeutic strategies for amyotrophic lateral sclerosis (ALS) patients. In this view, S1R, an endoplasmic reticulum (ER)-resident receptor with chaperone-like activity, has recently attracted great interest. S1R is involved in several processes leading to acute and chronic neurodegeneration, including ALS pathology. Treatment with the S1R agonist PRE-084 improves locomotor function and motor neuron survival in presymptomatic and early symptomatic mutant SOD1-G93A ALS mice. Here, we tested the efficacy of PRE-084 in a model of spontaneous motor neuron degeneration, the wobbler mouse (wr) as a proof of concept that S1R may be regarded as a key therapeutic target also for ALS cases not linked to SOD1 mutation. Increased staining for S1R was detectable in morphologically spared cervical spinal cord motor neurons of wr mice both at early (6th week) and late (12th week) phases of clinical progression. S1R signal was also detectable in hypertrophic astrocytes and reactive microglia of wr mice. Chronic treatment with PRE-084 (three times a week, for 8weeks), starting at symptom onset, significantly increased the levels of BDNF in the gray matter, improved motor neuron survival and ameliorated paw abnormality and grip strength performance. In addition, the treatment significantly reduced the number of reactive astrocytes whereas, that of CD11b+ microglial cells was increased. A deeper evaluation of microglial markers revealed significant increased number of cells positive for the pan-macrophage marker CD68 and of CD206+ cells, involved in tissue restoration, in the white matter of PRE-084-treated mice. The mRNA levels of TNF-α and IL-1β were not affected by PRE-084 treatment. Thus, our results support pharmacological manipulation of S1R as a promising strategy to cure ALS and point to increased availability of growth factors and modulation of astrocytosis and of macrophage/microglia as part of the mechanisms involved in S1R-mediated neuroprotection.
Collapse
Affiliation(s)
- Marco Peviani
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Eleonora Salvaneschi
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Leonardo Bontempi
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Alessandro Petese
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Antonio Manzo
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Division of Rheumatology, IRCCS Policlinico S. Matteo Foundation/University of Pavia, Italy
| | - Daniela Rossi
- Department of Drug Science, Laboratory of Medicinal Chemistry, University of Pavia, Pavia, Italy
| | - Mario Salmona
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Simona Collina
- Department of Drug Science, Laboratory of Medicinal Chemistry, University of Pavia, Pavia, Italy
| | - Paolo Bigini
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Daniela Curti
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
7
|
De Nicola AF, Gonzalez Deniselle MC, Garay L, Meyer M, Gargiulo-Monachelli G, Guennoun R, Schumacher M, Carreras MC, Poderoso JJ. Progesterone protective effects in neurodegeneration and neuroinflammation. J Neuroendocrinol 2013; 25:1095-103. [PMID: 23639063 DOI: 10.1111/jne.12043] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/12/2013] [Accepted: 04/26/2013] [Indexed: 01/03/2023]
Abstract
Progesterone is a neuroprotective, promyelinating and anti-inflammatory factor for the nervous system. Here, we review the effects of progesterone in models of motoneurone degeneration and neuroinflammation. In neurodegeneration of the Wobbler mouse, a subset of spinal cord motoneurones showed increased activity of nitric oxide synthase (NOS), increased intramitochondrial NOS, decreased activity of respiratory chain complexes, and decreased activity and protein expression of Mn-superoxide dismutase type 2 (MnSOD2). Clinically, Wobblers suffered several degrees of motor impairment. Progesterone treatment restored the expression of neuronal markers, decreased the activity of NOS and enhanced complex I respiratory activity and MnSOD2. Long-term treatment with progesterone increased muscle strength, biceps weight and survival. Collectively, these data suggest that progesterone prevented neurodegeneration. To study the effects of progesterone in neuroinflammation, we employed mice with experimental autoimmune encephalomyelitis (EAE). EAE mice spinal cord showed increased mRNA levels of the inflammatory mediators tumour necrosis factor (TNF)α and its receptor TNFR1, the microglial marker CD11b, inducible NOS and the toll-like receptor 4. Progesterone pretreatment of EAE mice blocked the proinflammatory mediators, decreased Iba1+ microglial cells and attenuated clinical signs of EAE. Therefore, reactive glial cells became targets of progesterone anti-inflammatory effects. These results represent a starting point for testing the usefulness of neuroactive steroids in neurological disorders.
Collapse
Affiliation(s)
- A F De Nicola
- Department of Human Biochemistry, Faculty of Medicine, Instituto de Biologia y Medicina Experimental, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Mol Ther 2013; 21:1602-10. [PMID: 23712039 DOI: 10.1038/mt.2013.108] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/21/2013] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord. We have recently shown that human mesenchymal stem cells (hMSCs) modified to release glial cell line-derived neurotrophic factor (GDNF) decrease disease progression in a rat model of ALS when delivered to skeletal muscle. In the current study, we determined whether or not this effect could be enhanced by delivering GDNF in concert with other trophic factors. hMSC engineered to secrete GDNF (hMSC-GDNF), vascular endothelial growth factor (hMSC-VEGF), insulin-like growth factor-I (hMSC-IGF-I), or brain-derived neurotrophic factor (hMSC-BDNF), were prepared and transplanted bilaterally into three muscle groups. hMSC-GDNF and hMSC-VEGF prolonged survival and slowed the loss of motor function, but hMSC-IGF-I and hMSC-BDNF did not have any effect. We then tested the efficacy of a combined ex vivo delivery of GDNF and VEGF in extending survival and protecting neuromuscular junctions (NMJs) and motor neurons. Interestingly, the combined delivery of these neurotrophic factors showed a strong synergistic effect. These studies further support ex vivo gene therapy approaches for ALS that target skeletal muscle.
Collapse
|
9
|
Moser JM, Bigini P, Schmitt-John T. The wobbler mouse, an ALS animal model. Mol Genet Genomics 2013; 288:207-29. [PMID: 23539154 PMCID: PMC3664746 DOI: 10.1007/s00438-013-0741-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking similarities to ALS. The cellular effects of the wobbler mutation, cellular transport defects, neurofilament aggregation, neuronal hyperexcitability and neuroinflammation closely resemble human ALS. Now, 57 years after the first report on the wobbler mouse we summarize the progress made in understanding the disease mechanism and testing various therapeutic approaches and discuss the relevance of these advances for human ALS. The identification of the causative mutation linking the wobbler mutation to a vesicle transport factor and the research focussed on the cellular basis and the therapeutic treatment of the wobbler motor neuron degeneration has shed new light on the molecular pathology of the disease and might contribute to the understanding the complexity of ALS.
Collapse
Affiliation(s)
- Jakob Maximilian Moser
- Molecular Biology and Genetics Department, Aarhus University, C. F. Møllers Alle 3, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
10
|
Deniselle MCG, Carreras MC, Garay L, Gargiulo-Monachelli G, Meyer M, Poderoso JJ, De Nicola AF. Progesterone prevents mitochondrial dysfunction in the spinal cord of wobbler mice. J Neurochem 2012; 122:185-95. [DOI: 10.1111/j.1471-4159.2012.07753.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Ruozi B, Belletti D, Bondioli L, De Vita A, Forni F, Vandelli MA, Tosi G. Neurotrophic factors and neurodegenerative diseases: a delivery issue. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 102:207-47. [PMID: 22748832 DOI: 10.1016/b978-0-12-386986-9.00009-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurotrophic factors (NTFs) represent one of the most stimulating challenge in neurodegenerative diseases, due to their potential in neurorestoring and neuroprotection. Despite the large number of proofs-of-concept and evidences of their activity, most of the clinical trials, mainly regarding Parkinson's disease and Alzheimer's disease, demonstrated several failures of the therapeutic intervention. A large number of researches were conducted on this hot topic of neuroscience, clearly evidencing the advantages of NTF approach, but evidencing the major limitations in its application. The inability in crossing the blood-brain barrier and the lack of selectivity actually represent some of the most highlighted limits of NTFs-based therapy. In this review, beside an overview of NTF activity versus the main neuropathological disorders, a summary of the most relevant approaches, from invasive to noninvasive strategies, applied for improving NTF delivery to the central nervous systems is critically considered and evaluated.
Collapse
Affiliation(s)
- B Ruozi
- Department of Pharmaceutical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Meyer M, Gonzalez Deniselle M, Gargiulo-Monachelli G, Garay L, Schumacher M, Guennoun R, De Nicola A. Progesterone effects on neuronal brain-derived neurotrophic factor and glial cells during progression of Wobbler mouse neurodegeneration. Neuroscience 2012; 201:267-79. [DOI: 10.1016/j.neuroscience.2011.11.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/27/2011] [Accepted: 11/12/2011] [Indexed: 01/09/2023]
|
13
|
Bigini P, Veglianese P, Andriolo G, Cova L, Grignaschi G, Caron I, Daleno C, Barbera S, Ottolina A, Calzarossa C, Lazzari L, Mennini T, Bendotti C, Silani V. Intracerebroventricular administration of human umbilical cord blood cells delays disease progression in two murine models of motor neuron degeneration. Rejuvenation Res 2011; 14:623-39. [PMID: 21978082 DOI: 10.1089/rej.2011.1197] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The lack of effective drug therapies for motor neuron diseases (MND), and in general for all the neurodegenerative disorders, has increased the interest toward the potential use of stem cells. Among the cell therapy approaches so far tested in MND animal models, systemic injection of human cord blood mononuclear cells (HuCB-MNCs) has proven to reproducibly increase, although modestly, the life span of SOD1G93A mice, a model of familial amyotrophic lateral sclerosis (ALS), even if only few transplanted cells were found in the damaged areas. In attempt to improve the potential efficacy of these cells in the central nervous system, we examined the effect and distribution of Hoechst 33258-labeled HuCB-MNCs after a single bilateral intracerberoventricular injection in two models of motor neuron degeneration, the transgenic SOD1G93A and wobbler mice. HuCB-MNCs significantly ameliorated symptoms progression in both mouse models and prolonged survival in SOD1G93A mice. They were localized in the lateral ventricles, even 4 months after administration. However, HuCB-MNCs were not found in the spinal cord ventral horns. This evidence strengthens the hypothesis that the beneficial role of transplanted cells is not due to cell replacement but is rather associated with the production and release of circulating protective factors that may act both at the central and/or peripheral levels. In particular, we show that HuCB-MNCs release a series of cytokines and chemokines with antiinflammatory properties that could be responsible of the functional improvement of mouse models of motor neuron degenerative disorders.
Collapse
Affiliation(s)
- P Bigini
- Mario Negri Institute for Pharmacological Research, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Meyer M, Gonzalez Deniselle MC, Garay LI, Monachelli GG, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF. Stage dependent effects of progesterone on motoneurons and glial cells of wobbler mouse spinal cord degeneration. Cell Mol Neurobiol 2010; 30:123-35. [PMID: 19693665 PMCID: PMC11498551 DOI: 10.1007/s10571-009-9437-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 07/20/2009] [Indexed: 12/13/2022]
Abstract
In the Wobbler mouse, a mutation in the Vps54 gene is accompanied by motoneuron degeneration and astrogliosis in the cervical spinal cord. Previous work has shown that these abnormalities are greatly attenuated by progesterone treatment of clinically afflicted Wobblers. However, whether progesterone is effective at all disease stages has not yet been tested. The present work used genotyped (wr/wr) Wobbler mice at three periods of the disease: early progressive (1-2 months), established (5-8 months) or late stages (12 months) and age-matched wildtype controls (NFR/NFR), half of which were implanted with a progesterone pellet (20 mg) for 18 days. In untreated Wobblers, degenerating vacuolated motoneurons were initially abundant, experienced a slight reduction at the established stage and dramatically diminished during the late period. In motoneurons, the cholinergic marker choline acetyltransferase (ChAT) was reduced at all stages of the Wobbler disease, whereas hyperexpression of the growth-associated protein (GAP43) mRNA preferentially occurred at the early progressive and established stages. Progesterone therapy significantly reduced motoneuron vacuolation, enhanced ChAT immunoreactive perikarya and reduced the hyperexpression of GAP43 during the early progressive and established stages. At all stage periods, untreated Wobblers showed high density of glial fibrillary acidic protein (GFAP)+ astrocytes and decreased number of glutamine synthase (GS) immunostained cells. Progesterone treatment down-regulated GFAP+ astrocytes and up-regulated GS+ cell number. These data reinforced the usefulness of progesterone to improve motoneuron and glial cell abnormalities of Wobbler mice and further showed that therapeutic benefit seems more effective at the early progressive and established periods, rather than on advance stages of spinal cord neurodegeneration.
Collapse
Affiliation(s)
- Maria Meyer
- Instituto de Biologia y Medicina Experimental-CONICET, Laboratorio de Bioquimica Neuroendócrina, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Maria Claudia Gonzalez Deniselle
- Instituto de Biologia y Medicina Experimental-CONICET, Laboratorio de Bioquimica Neuroendócrina, Obligado 2490, 1428 Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Laura I. Garay
- Instituto de Biologia y Medicina Experimental-CONICET, Laboratorio de Bioquimica Neuroendócrina, Obligado 2490, 1428 Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Gisella Gargiulo Monachelli
- Instituto de Biologia y Medicina Experimental-CONICET, Laboratorio de Bioquimica Neuroendócrina, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Analia Lima
- Instituto de Biologia y Medicina Experimental-CONICET, Laboratorio de Bioquimica Neuroendócrina, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Instituto de Biologia y Medicina Experimental-CONICET, Laboratorio de Bioquimica Neuroendócrina, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Rachida Guennoun
- UMR788 Inserm and University Paris-Sud 11, Kremlin-Bicêtre, France
| | | | - Alejandro F. De Nicola
- Instituto de Biologia y Medicina Experimental-CONICET, Laboratorio de Bioquimica Neuroendócrina, Obligado 2490, 1428 Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
De Nicola AF, Labombarda F, Gonzalez Deniselle MC, Gonzalez SL, Garay L, Meyer M, Gargiulo G, Guennoun R, Schumacher M. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 2009; 30:173-87. [PMID: 19318112 DOI: 10.1016/j.yfrne.2009.03.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 02/27/2009] [Accepted: 03/03/2009] [Indexed: 10/21/2022]
Abstract
Studies on the neuroprotective and promyelinating effects of progesterone in the nervous system are of great interest due to their potential clinical connotations. In peripheral neuropathies, progesterone and reduced derivatives promote remyelination, axonal regeneration and the recovery of function. In traumatic brain injury (TBI), progesterone has the ability to reduce edema and inflammatory cytokines, prevent neuronal loss and improve functional outcomes. Clinical trials have shown that short-and long-term progesterone treatment induces a significant improvement in the level of disability among patients with brain injury. In experimental spinal cord injury (SCI), molecular markers of functional motoneurons become impaired, including brain-derived neurotrophic factor (BDNF) mRNA, Na,K-ATPase mRNA, microtubule-associated protein 2 and choline acetyltransferase (ChAT). SCI also produces motoneuron chromatolysis. Progesterone treatment restores the expression of these molecules while chromatolysis subsided. SCI also causes oligodendrocyte loss and demyelination. In this case, a short progesterone treatment enhances proliferation and differentiation of oligodendrocyte progenitors into mature myelin-producing cells, whereas prolonged treatment increases a transcription factor (Olig1) needed to repair injury-induced demyelination. Progesterone neuroprotection has also been shown in motoneuron neurodegeneration. In Wobbler mice spinal cord, progesterone reverses the impaired expression of BDNF, ChAT and Na,K-ATPase, prevents vacuolar motoneuron degeneration and the development of mitochondrial abnormalities, while functionally increases muscle strength and the survival of Wobbler mice. Multiple mechanisms contribute to these progesterone effects, and the role played by classical nuclear receptors, extra nuclear receptors, membrane receptors, and the reduced metabolites of progesterone in neuroprotection and myelin formation remain an exciting field worth of exploration.
Collapse
Affiliation(s)
- Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cozzolino M, Ferri A, Carrì MT. Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 2008; 10:405-43. [PMID: 18370853 DOI: 10.1089/ars.2007.1760] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset progressive degeneration of motor neurons occurring both as a sporadic and a familial disease. The etiology of ALS remains unknown, but one fifth of instances are due to specific gene defects, the best characterized of which is point mutations in the gene coding for Cu/Zn superoxide dismutase (SOD1). Because sporadic and familial ALS affect the same neurons with similar pathology, it is hoped that understanding these gene defects will help in devising therapies effective in both forms. A wealth of evidence has been collected in rodents made transgenic for mutant SOD1, which represent the best available models for familial ALS. Mutant SOD1 likely induces selective vulnerability of motor neurons through a combination of several mechanisms, including protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities and defective axonal transport, excitotoxicity, inadequate growth factor signaling, and inflammation. Damage within motor neurons is enhanced by noxious signals originating from nonneuronal neighboring cells, where mutant SOD1 induces an inflammatory response that accelerates disease progression. The clinical implication of these findings is that promising therapeutic approaches can be derived from multidrug treatments aimed at the simultaneous interception of damage in both motor neurons and nonmotor neuronal cells.
Collapse
|
17
|
Gonzalez Deniselle MC, Garay L, Gonzalez S, Saravia F, Labombarda F, Guennoun R, Schumacher M, De Nicola AF. Progesterone modulates brain-derived neurotrophic factor and choline acetyltransferase in degenerating Wobbler motoneurons. Exp Neurol 2007; 203:406-14. [PMID: 17052708 DOI: 10.1016/j.expneurol.2006.08.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 08/11/2006] [Accepted: 08/24/2006] [Indexed: 12/20/2022]
Abstract
Progesterone (PROG) shows neuroprotective effects in nervous system diseases. The Wobbler mouse, a model of motoneuron degeneration, suffers a mutation of the Vsp154 gene on chromosome 11 leading to motoneuron vacuolation and astrocytosis of the spinal cord. Previous work has demonstrated beneficial effects of PROG in the Wobbler mouse. As an extension of this work, we now studied steroid effects on neuronal brain-derived neurotrophic factor (BDNF) mRNA and protein, on choline acetyltransferase (ChAT) immunoreactivity (IR) and activity in the spinal cord, and on recovery of muscle atrophy. Wobbler mice received implants of PROG pellets (20 mg) at 6 and 10 weeks of age and were killed at 14 weeks. In situ hybridization for BDNF mRNA demonstrated that grain density in large (>600 microm2) and medium size (<600 microm2) ventral horn neurons was decreased in untreated Wobblers, whereas PROG treatment increased BDNF mRNA in both neuronal types. PROG also induced a subcellular redistribution of BDNF protein, which in controls and steroid-naive Wobblers showed a predominant perinuclear and nucleolar location, whereas after PROG treatment, it was detected in cytoplasmic aggregates. ChAT activity was reduced by 55.3% in muscles of untreated Wobbler mice, whereas a significant increment was obtained after PROG treatment. Wobblers also showed reduced number of ChAT positive motoneurons, but this number was restored to normal by PROG. Finally, the pronounced biceps atrophy of steroid-naive Wobbler mice was slightly but significantly increased by PROG-treatment. Considering the important role played by neurotrophins on neuronal function, changes in BDNF might be part of the PROG activated-pathways to provide neuroprotection and re-establish neurotransmission and neuromuscular function in this degeneration model.
Collapse
Affiliation(s)
- Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, and Dep. of Biochemistry, Faculty of Medicine, University of Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Mennini T, De Paola M, Bigini P, Mastrotto C, Fumagalli E, Barbera S, Mengozzi M, Viviani B, Corsini E, Marinovich M, Torup L, Van Beek J, Leist M, Brines M, Cerami A, Ghezzi P. Nonhematopoietic erythropoietin derivatives prevent motoneuron degeneration in vitro and in vivo. Mol Med 2007; 12:153-60. [PMID: 17088947 PMCID: PMC1626597 DOI: 10.2119/2006-00045.mennini] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 07/13/2006] [Indexed: 12/11/2022] Open
Abstract
Chronic treatment with asialo erythropoietin (ASIALO-EPO) or carbamylated erythropoietin (CEPO) improved motor behavior and reduced motoneuron loss and astrocyte and microglia activation in the cervical spinal cord of wobbler mice, an animal model of amyotrophic lateral sclerosis, but had no effect on hematocrit values. ASIALO-EPO and CEPO, like the parent compound EPO, protected primary motoneuron cultures from kainate-induced death in vitro. Both EPO receptor and the common CD131 beta chain were expressed in cultured motoneurons and in the anterior horn of wobbler mice spinal cord. Our results strongly support a role for the common beta chain CD131 in the protective effect of EPO derivatives on motoneuron degeneration. Thus CEPO, which does not bind to the classical homodimeric EPO receptor and is devoid of hematopoietic activity, could be effective in chronic treatment aimed at reducing motoneuron degeneration.
Collapse
Affiliation(s)
- Tiziana Mennini
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
- Address correspondence and reprint requests to Tiziana Mennini, Mario Negri Institute for Pharmacological Research, Via Eritrea 62, 20157 Milan, Italy. Phone: +390239014402; fax: +39023546277; e-mail:
| | - Massimiliano De Paola
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Cristina Mastrotto
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Elena Fumagalli
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Sara Barbera
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Manuela Mengozzi
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Barbara Viviani
- Laboratory of Toxicology and Centre of Excellence of Neurodegenerative Diseases, Department of Pharmacological Sciences, University of Milan, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology and Centre of Excellence of Neurodegenerative Diseases, Department of Pharmacological Sciences, University of Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology and Centre of Excellence of Neurodegenerative Diseases, Department of Pharmacological Sciences, University of Milan, Italy
| | - Lars Torup
- Department of Neuropharmacology, H. Lundbeck A/S, Valby-Copenhagen, Denmark
| | - Johan Van Beek
- Department of Disease Biology, H. Lundbeck A/S, Valby-Copenhagen, Denmark
| | - Marcel Leist
- Faculty of Biology, University of Konstanz, Germany
| | | | | | - Pietro Ghezzi
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
- The Kenneth S. Warren Institute, Kitchawan, NY, USA
| |
Collapse
|
19
|
Bigini P, Gardoni F, Barbera S, Cagnotto A, Fumagalli E, Longhi A, Corsi MM, Di Luca M, Mennini T. Expression of AMPA and NMDA receptor subunits in the cervical spinal cord of wobbler mice. BMC Neurosci 2006; 7:71. [PMID: 17067377 PMCID: PMC1635720 DOI: 10.1186/1471-2202-7-71] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 10/26/2006] [Indexed: 12/11/2022] Open
Abstract
Background The localisation of AMPA and NMDA receptor subunits was studied in a model of degeneration of cervical spinal motoneurons, the wobbler mouse. Cervical regions from early or late symptomatic wobbler mice (4 or 12 weeks of age) were compared to lumbar tracts (unaffected) and to those of healthy mice. Results No differences were found in the distribution of AMPA and NMDA receptor subunits at both ages. Western blots analysis showed a trend of reduction in AMPA and NMDA receptor subunits, mainly GluR1 and NR2A, exclusively in the cervical region of late symptomatic mice in the triton-insoluble post-synaptic fraction but not whole homogenates. Colocalisation experiments evidenced the expression of GluR1 and NR2A receptors in activated astrocytes from the cervical spinal cord of wobbler mice, GluR2 did not colocalise with GFAP positive cells. No differences were found in the expression of AMPA and NMDA receptor subunits in the lumbar tract of wobbler mice, where neither motoneuron loss nor reactive gliosis occurs. Conclusion In late symptomatic wobbler mice altered levels of GluR1 and NR2A receptor subunits may be a consequence of motoneuron loss rather than an early feature of motoneuron vulnerability.
Collapse
Affiliation(s)
- Paolo Bigini
- Laboratory of Receptor Pharmacology, Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Fabrizio Gardoni
- Centre of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, 20133 Milano, Italy
| | - Sara Barbera
- Laboratory of Receptor Pharmacology, Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Alfredo Cagnotto
- Laboratory of Receptor Pharmacology, Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Elena Fumagalli
- Centre of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, 20133 Milano, Italy
| | - Annalisa Longhi
- Centre of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, 20133 Milano, Italy
| | | | - Monica Di Luca
- Centre of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, 20133 Milano, Italy
| | - Tiziana Mennini
- Laboratory of Receptor Pharmacology, Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| |
Collapse
|
20
|
Ekestern E. Neurotrophic factors and amyotrophic lateral sclerosis. NEURODEGENER DIS 2006; 1:88-100. [PMID: 16908980 DOI: 10.1159/000080049] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 03/22/2004] [Indexed: 12/15/2022] Open
Abstract
The cause of motor neuron death in amyotrophic lateral sclerosis (ALS) remains a mystery. Initial implications of neurotrophic factor impairment involved in disease progression causing selective motor neuron death were brought forward in the late 1980s. These implications were based on several in vitro studies of motor neuron cultures in which a near to complete rescue of axotomized neonatal motor neurons in the presence of supplementary neurotrophic factors were revealed. These findings pawed the way for extensive investigations in experimental animal models of ALS. Neurotrophic factor administration in rodent ALS models demonstrated a remarkable effect on survival of degenerating motor neurons and rescue of axotomized motor neurons, both in vivo and in vitro. In the absence of efficient therapy for ALS, some of these promising neurotrophic factors have been administered to groups of ALS patients, as they appeared available for clinical trials. Up to date, none of tested factors has lived up to expectations, altering the outcome of the disease. This review summarizes current findings on neurotrophic factor expression in ALS tissue and these factors' potential/debatable clinical relevance to ALS and the treatment of ALS. It also discusses possible interventions improving clinical trial design to obtain efficacy of neurotrophic factor treatment in patients suffering from ALS.
Collapse
Affiliation(s)
- Eva Ekestern
- Department of Neuroimmunology, Brain Research Institute, University of Vienna, Austria.
| |
Collapse
|
21
|
Fumagalli E, Bigini P, Barbera S, De Paola M, Mennini T. Riluzole, unlike the AMPA antagonist RPR119990, reduces motor impairment and partially prevents motoneuron death in the wobbler mouse, a model of neurodegenerative disease. Exp Neurol 2006; 198:114-28. [PMID: 16386734 DOI: 10.1016/j.expneurol.2005.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 09/07/2005] [Accepted: 11/18/2005] [Indexed: 01/28/2023]
Abstract
The wobbler mouse is one of the most useful models of motoneuron degeneration, characterized by selective motoneuronal death in the cervical spinal cord. We carried out two parallel studies in wobbler mice, comparing the anti-glutamatergic drug riluzole and the AMPA receptor antagonist RPR119990. Mice were treated with 40 mg/kg/day of riluzole or with 3 mg/kg/day of RPR119990 from the 4th to the 12th week of age. Here, we show that chronic treatment with riluzole improves motor behavior, prevents biceps muscle atrophy and decreases the amount of motoneuron loss in treated wobbler mice. Chronic treatment with the AMPA antagonist RPR119990 is ineffective in improving motor impairment, in reducing motoneuronal loss and muscular atrophy in treated mice. These results, together with the unchanged immunostaining for the AMPA receptor subunit GluR2 in wobbler mice, suggest that AMPA receptor-mediated injury is unlikely to be involved in neurodegeneration in wobbler disease, and that the protective effect of riluzole in wobbler mice seems to be independent of its anti-glutamatergic activity, as suggested in other models of neurodegeneration. Immunostaining of cervical spinal cord sections shows that in riluzole-treated wobbler mice BDNF expression is significantly increased in motoneurons with no changes in the high-affinity receptor Trk-B. Our data confirm that riluzole has beneficial effects in wobbler mice, and suggest that these effects could be associated to the increased levels of the neurotrophic and neuroprotective factor BDNF.
Collapse
Affiliation(s)
- Elena Fumagalli
- Laboratory of Receptor Pharmacology, Mario Negri Institute for Pharmacological Research, Via Eritrea 62, 20157 Milan, Italy
| | | | | | | | | |
Collapse
|
22
|
Gonzalez Deniselle MC, Garay L, Gonzalez S, Guennoun R, Schumacher M, De Nicola AF. Progesterone restores retrograde labeling of cervical motoneurons in Wobbler mouse motoneuron disease. Exp Neurol 2005; 195:518-23. [PMID: 16095593 DOI: 10.1016/j.expneurol.2005.06.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 06/13/2005] [Indexed: 12/16/2022]
Abstract
The Wobbler mouse, a mutant characterized by motoneuron degeneration in the cervical spinal cord, has been used to test the efficacy of novel treatments for human motoneuron diseases (HMD). Previous reports have shown that slow axonal transport is impaired in Wobblers and other models of HMD. Since progesterone (PROG) corrects some morphological, molecular, and functional abnormalities of Wobbler mice, we studied if steroid exposure for 8 weeks restored retrograde axonal transport by measuring motoneuron labeling after injection of fluorogold into the limb muscles. The dye was injected into forelimb biceps bracchii and flexor or into the rearlimb gastrocnemius muscles; 6 days later, the number of fluorescent motoneurons and the total number of cresyl violet stained motoneurons were counted in the cervical (C5-T1) or lumbar (L3-L5) spinal cord regions. A pronounced reduction (- 42.2%) of the percent of fluorescent motoneurons in Wobbler mice cervical cord was noted, which was significantly corrected after PROG treatment. In contrast, labeling of lumbar motoneurons was not reduced in Wobbler mice and was not affected by PROG treatment. In no case PROG showed an effect in control mice. Concomitantly, PROG slightly but significantly increased biceps weight of Wobbler mice. Behaviorally, PROG-treated Wobblers performed better on a motor test (hanging time from a horizontal rope) compared to untreated counterparts. We postulate a dual role for PROG in the Wobbler mouse, in part by prevention of motoneuron degeneration and also by enhancement of axonal transport. The latter mechanism could improve the traffic of neurotrophic factors from the forelimb muscles into the ailing motoneurons, improving neuromuscular function in this murine model of HMD.
Collapse
Affiliation(s)
- Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, and Department of Biochemistry, Faculty of Medicine, University of Buenos, Obligado 2490, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
23
|
Ishiyama T, Okada R, Nishibe H, Mitsumoto H, Nakayama C. Riluzole slows the progression of neuromuscular dysfunction in the wobbler mouse motor neuron disease. Brain Res 2004; 1019:226-36. [PMID: 15306257 DOI: 10.1016/j.brainres.2004.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2004] [Indexed: 02/06/2023]
Abstract
In the wobbler mouse motor neuron disease (MND), we firstly evaluated the effect of riluzole, the only approved drug for amyotrophic lateral sclerosis, and compared it with that of brain-derived neurotrophic factor (BDNF). Wobbler mice received either daily subcutaneous treatment with BDNF (5, 20, and 40 mg/kg) or oral riluzole in drinking water (100 and 200 microg/ml), beginning immediately after the clinical onset of MND. We examined motor functions, such as grip strength and rota-rod walking performance, weekly, and the amplitude of the compound muscle action potential (CMAP) in the forelimb biceps at the end of treatment. BDNF treatment slowed the disease progression maximally at a dose of 20 mg/kg, consistent to the previous evidence. Only high-dose riluzole treatment increased grip strength at weeks 1 (P=0.0023) and 2 (P=0.021), time before falling in the rota-rod test throughout all 4 weeks of treatment (P=0.0022 to 0.0282), and CMAP amplitude (P=0.0069) at the end of treatment, compared with the vehicle. Furthermore, the riluzole treatment increased the number of the cervical cord anterior horn neurons that were immunoreactive for SMI-32, a specific motor neuron marker, by the end of treatment (P=0.0063), although it did not affect the vacuolar degeneration on the SMI-32-positive neurons. This study demonstrated that riluzole was comparable to BDNF in slowing the progression of neuromuscular dysfunction in the wobbler mouse MND, which may provide a useful model for examining the mechanisms of selective motor neuron degeneration.
Collapse
Affiliation(s)
- Takeo Ishiyama
- Sumitomo Pharmaceuticals Research Division, 1-98 Kasugadenaka 3-chome, Konohanaku, Osaka 554-0022, Japan.
| | | | | | | | | |
Collapse
|
24
|
González Deniselle MC, Garay L, López-Costa JJ, González S, Mougel A, Guennoun R, Schumacher M, De Nicola AF. Progesterone treatment reduces NADPH-diaphorase/nitric oxide synthase in Wobbler mouse motoneuron disease. Brain Res 2004; 1014:71-9. [PMID: 15212993 DOI: 10.1016/j.brainres.2004.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
Previous work demonstrated that progesterone (PROG) treatment attenuates morphological, molecular and functional abnormalities in the spinal cord of the Wobbler (Wr) mouse, a genetic model of motoneuron degeneration. Wr mice show a marked up-regulation of the nitric oxide synthesizing enzyme (NOS). Since nitric oxide is a highly reactive species, it may play a role in neuropathology of Wr mice. We now studied if PROG neuroprotection involved changes of NOS activity in motoneurons and astrocytes, determined by the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPHD) histochemical reaction. Two and four-month-old Wr mice at the progressive and stabilization stages of the disease, respectively, and their age-matched controls were left untreated or received a single 20-mg PROG pellet for 18 days. PROG reduced the high number of NADPHD-active motoneurons and white matter astrocytes in 2-month-old Wr mice but was unable to change the low number of NADPHD-active motoneurons in 4-month-old Wr mice or astrocytes in this age group. A large number of motoneurons in 2-month-old Wr mice showed a vacuolated phenotype, which was significantly reverted by PROG treatment. In summary, PROG treatment during the early symptomatic stage of the disease caused a significant reduction of NADPHD-active motoneurons and astrocytes and also reduced vacuolated degenerating cells, suggesting that blockade of NO synthesis and oxidative damage may contribute to steroid neuroprotection.
Collapse
|
25
|
Clowry GJ, McHanwell S. Brainstem motor nuclei respond differentially to degenerative disease in the mutant mouse wobbler. Neuropathol Appl Neurobiol 2003; 30:148-60. [PMID: 15043712 DOI: 10.1046/j.0305-1846.2004.00522.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Degenerative motoneurone diseases, whether in humans, animals, or transgenic mouse models, do not affect all types of motoneurone to the same degree. Understanding the relative differences in vulnerability of certain motor pools may be the key to developing therapies. Expression of calbindin (CB) and parvalbumin (PV) immunoreactivity, which are potentially neuroprotective calcium-binding proteins, and NADPH-diaphorase (NADPH-d) histochemical reactivity, a marker for neurodegeneration, was studied in brainstem sections from mutant wobbler mice and their normal littermates during the motoneurone degeneration phase (3-8 weeks of age). The motor trigeminal and facial nuclei reacted in a manner previously observed in spinal somatic motoneurones in the wobbler. Many motoneurones expressed moderate NADPH-d reactivity, correlated with the appearance of vacuolated motoneurones in Nissl-stained sections. This was not observed in littermate controls. Motoneurone counts from Nissl-stained sections from 14-month-old wobblers and littermates revealed significantly fewer (approximately 27%) motoneurones in the trigeminal nucleus of wobblers. In contrast, the wobbler hypoglossal nucleus contained neither vacuolated nor NADPH-d reactive motoneurones. However, expression of CB immunoreactivity by the majority of wobbler hypoglossal motoneurones was observed but not in littermate controls or in any other motor nucleus. Counts in older animals showed a smaller but still significant difference in motoneurone number between wobblers and controls (approximately 9% reduction). Finally, the wobbler abducens nucleus displayed neither vacuolated neurones, nor NADPH-d reactivity nor CB immunoreactivity. Motor nuclei innervating extraocular muscles appear to be protected in many forms of motoneurone disease in man and other species. However, there were still markedly fewer abducens motoneurones in the old wobblers compared to controls (approximately 29% reduction). Sparing of oculomotor neurones in other diseases has been attributed to their relatively high PV expression, which we also observed in the abducens nucleus of both wobblers and littermates, and to a lesser extent in the other motor nuclei too. In conclusion, our results suggest that, in the wobbler mouse, motoneurone degeneration may occur without overt signs such as cell body vacuolation and NADPH-d expression. Induced CB expression may be neuroprotective but that constitutive expression of PV may not.
Collapse
Affiliation(s)
- G J Clowry
- Neural Development, Plasticity and Repair Group, School of Clinical Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| | | |
Collapse
|
26
|
Johansson R, Andersson KE, Persson K. Nerve-mediated bladder contraction is impaired by cytokines: involvement of inducible nitric oxide synthase. Eur J Pharmacol 2003; 476:221-7. [PMID: 12969769 DOI: 10.1016/s0014-2999(03)02178-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We investigated the possible involvement of inducible nitric oxide synthase (iNOS) in the effect of cytokines on neuromuscular function in isolated rat bladder strips. Bladder strips were incubated in cell culture medium for 24 h with or without tumour necrosis factor-alpha (TNF-alpha)+interleukin-1beta. Mechanical activity in response to electrical field stimulation and carbachol was recorded in organ baths. Both the electrical field stimulation- and carbachol-induced contractions were reduced by the incubation. The electrical field stimulation-induced contraction was significantly further impaired after prolonged exposure to TNF-alpha+interleukin-1beta. This impairment was restored by dexamethasone, the iNOS inhibitor aminoguanidine and partially by brain-derived neurotrophic factor (BDNF). In contrast, carbachol-induced contractions were not affected by cytokines. iNOS protein expression was detected in cytokine-incubated bladder strips by immunohistochemistry and Western blot analysis. The results demonstrated that TNF-alpha+interleukin-1beta impaired nerve-mediated bladder contractions. Aminoguanidine, and to some extent BDNF, exerted neuroprotective effects.
Collapse
Affiliation(s)
- Rebecka Johansson
- Department of Clinical Pharmacology, Lund University Hospital, SE-221 85 Lund, Sweden
| | | | | |
Collapse
|
27
|
Abstract
Fifteen years ago, a role for excitotoxic damage in the pathology of amyotrophic lateral sclerosis (ALS) was postulated. This stimulated the development of riluzole, the only available treatment for the disease. Since then, the identification of abnormal forms of superoxide dismutase as the genetic basis of certain familial forms of ALS has provided a huge impetus to the search for new effective treatments for this devastating disease. Transgenic mouse models have been developed expressing these aberrant mutants that develop a form of motor neurone disease the progress of which can be slowed by riluzole. Studies in these mice have provided evidence for a role for excitotoxic, apoptotic and oxidative processes in the development of pathology. The mice can be used for testing molecules targeting these processes as potential therapies, to allow the most promising to be evaluated in humans. Several such agents are currently in clinical trials. Many previous clinical trials in ALS were insufficiently powered to demonstrate any relevant effect on disease progression. This situation has been to some extent remedied in the more recent trials, which have recruited many hundreds of patients. However, with the exception of studies with riluzole, the results of these have been disappointing. In particular, a number of large trials with neurotrophic agents have revealed no evidence for efficacy. Nonetheless, the need for large multinational trials of long duration limits the number that can be carried out and makes important demands on investment. For this reason, surrogate markers that can be used for rapid screening in patients of potential treatments identified in the transgenic mice are urgently needed.
Collapse
|
28
|
Ishiyama T, Ogo H, Wong V, Klinkosz B, Noguchi H, Nakayama C, Mitsumoto H. Methionine-free brain-derived neurotrophic factor in wobbler mouse motor neuron disease: dose-related effects and comparison with the methionyl form. Brain Res 2002; 944:195-9. [PMID: 12106680 DOI: 10.1016/s0006-8993(02)02881-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We compared the clinical and pharmacodynamic effects of N-terminal methionine brain-derived neurotrophic factor (met-BDNF) and endogenous met-free BDNF in wobbler mouse motor neuron disease (MND). Met- or met-free BDNF at 5 or 20 mg/kg was subcutaneously injected daily, six times/week for 4 weeks. At 20 mg/kg, grip strength (P<0.05, met-free BDNF; P<0.01, met-BDNF) and running speed (P<0.01 for both groups) improved compared to vehicle. At 5 mg/kg, the beneficial effect was more modest. Plasma BDNF levels after the final injection were dose-dependent and did not differ between BDNF groups. Endogenous met-free BDNF exerts effects similar to met-BDNF in wobbler MND.
Collapse
Affiliation(s)
- Takeo Ishiyama
- Department of Neurology and Neuroscience, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|