1
|
Xing Y, Zhao L, Zhao R, Liu Q, Wang J, Wang L, Zhang W, Guo J, Zhao R, Chang X. Analysis of the pathogenicity of novel GNE mutations and clinical, pathological, and genetic characteristics of GNE myopathy in Chinese population. Orphanet J Rare Dis 2025; 20:161. [PMID: 40188109 PMCID: PMC11972457 DOI: 10.1186/s13023-025-03696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND GNE myopathy is a rare autosomal recessive distal myopathy caused by mutations in UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), a bifunctional enzyme critical for sialic acid biosynthesis. This study aimed to describe a novel autosomal recessive GNE pedigree in a Chinese family and explore the possible mechanism of GNE variants in GNE myopathy, the most common distal myopathy in China. The clinical, genetic, and pathological characteristics of 216 Chinese patients with GNE myopathy were also summarized. METHODS The proband and her family underwent a comprehensive medical history assessment and neurological examinations. Whole-exome sequencing was performed on the proband, and Sanger sequencing was performed on family members. 293T cell lines were used for immunofluorescence (IF), Western blot, and dual-luciferase reporter assays. We collected the clinical data of 216 GNE myopathy patients from previous reports up until August 1, 2024. Patients were classified into distinct groups according to mutation location to analyze genotype-phenotype correlation. RESULTS Whole-exome sequencing of the proband and Sanger sequencing of all available family members identified a compound heterozygous mutation involving a novel promoter region mutation, c.-259T > C, and a reported mutation, c.88 C > T (p.Q30*). The GNE promoter fragment (-500 to -1; c.-259T > C) was cloned to construct the firefly luciferase reporter vector. The dual-luciferase reporter assay showed that the mutated promoter exhibited reduced transcriptional activity, resulting in decreased GNE expression. Western blot and IF analysis of overexpressing Q30* revealed that it reduced GNE expression without altering cellular localization and increased the ectopic cytoplasmic expression of TDP-43. The p.D207V mutation was the most common variant in China. Patients carrying p.D207V tended to experience later disease onset. In the epimerase/epimerase group, men experienced earlier disease onset than women (p < 0.05). In other groups, age at disease onset in females was earlier than that in males. CONCLUSIONS The c.-259T > C mutation decreases promoter activity, while the c.88 C > T (p.Q30*) mutation reduces GNE expression and affects TDP-43 distribution, thus affecting normal cellular function. The p.D207V mutation is the most common GNE variant in China and is associated with milder disease progression.
Collapse
Affiliation(s)
- Yingming Xing
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, 030012, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Lingqian Zhao
- Department of Radiology, First Hospital, Shanxi Medical University, Taiyuan, China
| | - Renlong Zhao
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, 030012, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Qiyun Liu
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, 030012, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Juan Wang
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, 030012, China
- Research Center for Neurological Diseases, Shanxi Medical University, Taiyuan, China
| | - Le Wang
- Department of Radiology, First Hospital, Shanxi Medical University, Taiyuan, China
| | - Wei Zhang
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, 030012, China
- Research Center for Neurological Diseases, Shanxi Medical University, Taiyuan, China
| | - Junhong Guo
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, 030012, China
- Research Center for Neurological Diseases, Shanxi Medical University, Taiyuan, China
| | - Rongjuan Zhao
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, 030012, China.
| | - Xueli Chang
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, 030012, China.
- Research Center for Neurological Diseases, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Pereira BL, Barbosa M, Granjo P, Lochmüller H, Videira PA. Beyond sialylation: Exploring the multifaceted role of GNE in GNE myopathy. Mol Genet Metab 2025; 144:109075. [PMID: 40054019 DOI: 10.1016/j.ymgme.2025.109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025]
Abstract
Defects in sialic acid metabolism disrupt the sialylation of glycoproteins and glycolipids, contributing to a spectrum of diseases, including GNE myopathy (GNEM). This rare disorder is caused by mutations in the GNE gene that encodes for a bifunctional enzyme required for sialic acid biosynthesis, resulting in progressive muscle atrophy and weakness. There is no approved treatment for GNEM, and the number of affected individuals is underestimated. Although hyposialylation is considered the hallmark of GNEM, evidence showed lack of consistent correlation with GNEM severity and unveiled additional roles of GNE that contribute to the onset and/or progression of GNEM. Recent findings indicate that these mechanisms extend beyond glycosylation, encompassing cytoskeletal dynamics, oxidative stress, and muscle regeneration pathways. Understanding how GNE mutations result in a cascade of cellular and molecular dysregulations is crucial for developing targeted therapies aimed at improving the quality of life of patients. This review comprehensively examines GNEM's pathophysiology, clinical presentation, and therapeutic strategies, highlighting key findings on non-canonical GNE functions that account to GNEM clinical outcomes and emerging therapeutic targets. We propose future research directions to explore alternative target pathways that can ultimately support clinical development.
Collapse
Affiliation(s)
- Beatriz L Pereira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; CDG & Allies-Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Mariana Barbosa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; CDG & Allies-Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Pedro Granjo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; CDG & Allies-Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Paula A Videira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; CDG & Allies-Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
3
|
Suzuki N, Mori-Yoshimura M, Nishino I, Aoki M. Ultra-Orphan drug development for GNE Myopathy: A synthetic literature review and meta-analysis. J Neuromuscul Dis 2025; 12:183-194. [PMID: 39973407 DOI: 10.1177/22143602241296226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
GNE myopathy is an autosomal recessive hereditary muscle disorder that has the following clinical characteristics: develops in early adulthood, gradually progresses from the distal muscles, and is relatively sparing of quadriceps until the advanced stages of the disease. With further progression, patients become non-ambulatory and need a wheelchair. There is growing concern about extra-muscular presentations such as thrombocytopenia, respiratory dysfunction, and sleep apnea syndrome. Pathologically, rimmed vacuoles and tubulofilamentous inclusions are observed in affected muscles. The cause of the disease is thought to be a sialic acid deficiency due to mutations of the GNE gene required for in vivo sialic acid biosynthesis. Sialic acid supplementation to a presymptomatic GNE myopathy mouse model was effective in preventing the development of the disease. Several clinical studies have been conducted to evaluate the safety and efficacy of sialic acid supplementation in humans. Based on the favorable results of these studies, an extended-release aceneuramic acid formulation was approved for treatment of GNE myopathy in Japan in March 2024. It is anticipated that it will be a significant step in the development of an effective treatment for GNE myopathy and other ultra-orphan diseases.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Duraisamy AJ, Liu R, Sureshkumar S, Rose R, Jagannathan L, da Silva C, Coovadia A, Ramachander V, Chandrasekar S, Raja I, Sajnani M, Selvaraj SM, Narang B, Darvishi K, Bhayal AC, Katikala L, Guo F, Chen-Deutsch X, Balciuniene J, Ma Z, Nallamilli BRR, Bean L, Collins C, Hegde M. Focused Exome Sequencing Gives a High Diagnostic Yield in the Indian Subcontinent. J Mol Diagn 2024; 26:510-519. [PMID: 38582400 DOI: 10.1016/j.jmoldx.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/11/2023] [Accepted: 03/01/2024] [Indexed: 04/08/2024] Open
Abstract
The genetically isolated yet heterogeneous and highly consanguineous Indian population has shown a higher prevalence of rare genetic disorders. However, there is a significant socioeconomic burden for genetic testing to be accessible to the general population. In the current study, we analyzed next-generation sequencing data generated through focused exome sequencing from individuals with different phenotypic manifestations referred for genetic testing to achieve a molecular diagnosis. Pathogenic or likely pathogenic variants are reported in 280 of 833 cases with a diagnostic yield of 33.6%. Homozygous sequence and copy number variants were found as positive diagnostic findings in 131 cases (15.7%) because of the high consanguinity in the Indian population. No relevant findings related to reported phenotype were identified in 6.2% of the cases. Patients referred for testing due to metabolic disorder and neuromuscular disorder had higher diagnostic yields. Carrier testing of asymptomatic individuals with a family history of the disease, through focused exome sequencing, achieved positive diagnosis in 54 of 118 cases tested. Copy number variants were also found in trans with single-nucleotide variants and mitochondrial variants in a few of the cases. The diagnostic yield and the findings from this study signify that a focused exome test is a good lower-cost alternative for whole-exome and whole-genome sequencing and as a first-tier approach to genetic testing.
Collapse
Affiliation(s)
| | - Ruby Liu
- Revvity Omics, Pittsburgh, Pennsylvania
| | | | - Rajiv Rose
- PerkinElmer Genomics, Revvity Omics, Chennai, India
| | | | | | | | | | | | - Indu Raja
- PerkinElmer Genomics, Revvity Omics, Chennai, India
| | | | | | | | | | | | | | - Fen Guo
- Revvity Omics, Pittsburgh, Pennsylvania
| | | | | | | | | | - Lora Bean
- Revvity Omics, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
5
|
Abdel-Naim AB, Kumar P, Bazuhair MA, Rizg WY, Niyazi HA, Alkuwaity K, Niyazi HA, Alharthy SA, Harakeh S, Haque S, Prakash A, Kumar V. Computational insights into dynamics and conformational stability of N-acetylmannosamine kinase mutations. J Biomol Struct Dyn 2024:1-11. [PMID: 38502682 DOI: 10.1080/07391102.2024.2323702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
The activity of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) is essential for the biosynthesis of sialic acid, which is involved in cellular processes in health and diseases. GNE contains an N-terminal epimerase domain and a C-terminal kinase domain (N-acetylmannosamine kinase, MNK). Mutations of the GNE protein led to hypoactivity of the enzyme and cause sialurea or autosomal recessive inclusion body myopathy/Nonaka myopathy. Here, we used all-atom molecular dynamics (MD) simulations to comprehend the folding, dynamics and conformational stability of MNK variants, including the wild type (WT) and three mutants (H677R, V696M and H677R/V696M). The deleterious and destabilizing nature of MNK mutants were predicted using different prediction tools. Results predicted that mutations modulate the stability, flexibility and function of MNK. The effect of mutations on the conformational stability and dynamics of MNK was next studied through the free-energy landscape (FEL), hydrogen-bonds and secondary structure changes. The FEL results show that the mutations interfere with various conformational transitions in both WT and mutants, exposing the structural underpinnings of protein destabilization and unfolding brought on by mutation. We discover that, when compared to the other two mutations, V696M and H677R/V696M, H677R has the most harmful effects. These findings have a strong correlation with published experimental studies that demonstrate how these mutations disrupt MNK activity. Hence, this computational study describes the structural details to unravel the mutant effects at the atomistic resolution and has implications for understanding the GNE's physiological and pathological role.
Collapse
Affiliation(s)
- Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Pawan Kumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohammed A Bazuhair
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Y Rizg
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hatoon A Niyazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalil Alkuwaity
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanouf A Niyazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saif A Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| |
Collapse
|
6
|
Genetic and Clinical Spectrum of GNE Myopathy in Russia. Genes (Basel) 2022; 13:genes13111991. [PMID: 36360228 PMCID: PMC9690815 DOI: 10.3390/genes13111991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/09/2022] [Accepted: 10/28/2022] [Indexed: 11/04/2022] Open
Abstract
GNE myopathy (GNEM) is a rare hereditary disease, but at the same time, it is the most common distal myopathy in several countries due to a founder effect of some pathogenic variants in the GNE gene. We collected the largest cohort of patients with GNEM from Russia and analyzed their mutational spectrum and clinical data. In our cohort, 10 novel variants were found, including 2 frameshift variants and 2 large deletions. One novel missense variant c.169_170delGCinsTT (p.(Ala57Phe)) was detected in 4 families in a homozygous state and in 3 unrelated patients in a compound heterozygous state. It was the second most frequent variant in our cohort. All families with this novel frequent variant were non-consanguineous and originated from the 3 neighboring areas in the European part of Russia. The clinical picture of the patients carrying this novel variant was typical, but the severity of clinical manifestation differed significantly. In our study, we reported two atypical cases expanding the phenotypic spectrum of GNEM. One female patient had severe quadriceps atrophy, hand joint contractures, keloid scars, and non-classical pattern on leg muscle magnetic resonance imaging, which was more similar to atypical collagenopathy rather than GNEM. Another patient initially had been observed with spinal muscular atrophy due to asymmetric atrophy of hand muscles and results of electromyography. The peculiar pattern of muscle involvement on magnetic resonance imaging consisted of pronounced changes in the posterior thigh muscle group with relatively spared muscles of the lower legs, apart from the soleus muscles. Different variants in the GNE gene were found in both atypical cases. Thus, our data expand the mutational and clinical spectrum of GNEM.
Collapse
|
7
|
Rzepnikowska W, Kaminska J, Kochański A. Validation of the Pathogenic Effect of IGHMBP2 Gene Mutations Based on Yeast S. cerevisiae Model. Int J Mol Sci 2022; 23:ijms23179913. [PMID: 36077311 PMCID: PMC9456350 DOI: 10.3390/ijms23179913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a heritable neurodegenerative disease characterized by rapid respiratory failure within the first months of life and progressive muscle weakness and wasting. Although the causative gene, IGHMBP2, is well defined, information on IGHMBP2 mutations is not always sufficient to diagnose particular patients, as the gene is highly polymorphic and the pathogenicity of many gene variants is unknown. In this study, we generated a simple yeast model to establish the significance of IGHMBP2 variants for disease development, especially those that are missense mutations. We have shown that cDNA of the human gene encodes protein which is functional in yeast cells and different pathogenic mutations affect this functionality. Furthermore, there is a correlation between the phenotype estimated in in vitro studies and our results, indicating that our model may be used to quickly and simply distinguish between pathogenic and non-pathogenic mutations identified in IGHMBP2 in patients.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence:
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Attri S, Sharma V, Kumar A, Verma C, Gahlawat SK. Dissecting role of founder mutation p.V727M in GNE in Indian HIBM cohort. Open Med (Wars) 2021; 16:1733-1744. [PMID: 34825065 PMCID: PMC8593392 DOI: 10.1515/med-2021-0391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
GNE gene-specific c.2179G>A(p.V727M) is a key alteration reported in patients with hereditary inclusion body myopathy (HIBM) and represents an ethnic founder mutation in the Indian cohort. However, the underlying role of this mutation in pathogenesis remains largely unknown. Thus, in this study, we aimed to access possible mechanisms of V727M mutation that could be leading to myopathy. We evaluated various in silico tools to predict the effect of this mutation on pathogenicity, structural or possible interactions, that could induce myopathy. Our results propose that V727M mutation could induce deleterious effects or pathogenicity and affect the stability of GNE protein. Analysis of differential genes reported in the V727 mutant case suggests that it can affect GNE protein interaction with Myc-proto-oncogene (MYC) transcription factor. Our in silico analysis also suggests a possible interaction between GNE ManNac-kinase domain with MYC protein at the C-terminal DNA-binding domain. MYC targets reported in skeletal muscles via ChIP-seq suggest that it plays a key role in regulating the expression of many genes reported differentially expressed in V727M-mutated HIBMs. We conclude that V727M mutation could alter the interaction of GNE with MYC thereby altering transcription of sialyltransferase and neuromuscular genes, thus understanding these effects could pave the way for developing effective therapies against HIBM.
Collapse
Affiliation(s)
- Shivangi Attri
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 440002, India
| | - Vikas Sharma
- General Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Amit Kumar
- ICMR-AIIMS Computational Genomics Centre, Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, 110029, India
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, The Ohio State University, OH-43210, Ohio, United States of America
| | - Suresh Kumar Gahlawat
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, 125055, India
| |
Collapse
|
9
|
Devi SS, Yadav R, Mashangva F, Chaudhary P, Sharma S, Arya R. Generation and Characterization of a Skeletal Muscle Cell-Based Model Carrying One Single Gne Allele: Implications in Actin Dynamics. Mol Neurobiol 2021; 58:6316-6334. [PMID: 34510381 DOI: 10.1007/s12035-021-02549-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022]
Abstract
UDP-N-Acetyl glucosamine-2 epimerase/N-acetyl mannosamine kinase (GNE) catalyzes key enzymatic reactions in the biosynthesis of sialic acid. Mutation in GNE gene causes GNE myopathy (GNEM) characterized by adult-onset muscle weakness and degeneration. However, recent studies propose alternate roles of GNE in other cellular processes beside sialic acid biosynthesis, particularly interaction of GNE with α-actinin 1 and 2. Lack of appropriate model system limits drug and treatment options for GNEM as GNE knockout was found to be embryonically lethal. In the present study, we have generated L6 rat skeletal muscle myoblast cell-based model system carrying one single Gne allele where GNE gene is knocked out at exon-3 using AAV mediated SEPT homology recombination (SKM-GNEHz). The cell line was heterozygous for GNE gene with one wild type and one truncated allele as confirmed by sequencing. The phenotype showed reduced GNE epimerase activity with little reduction in sialic acid content. In addition, the heterozygous GNE knockout cells revealed altered cytoskeletal organization with disrupted actin filament. Further, we observed increased levels of RhoA leading to reduced cofilin activity and causing reduced F-actin polymerization. The disturbed signaling cascade resulted in reduced migration of SKM-GNEHz cells. Our study indicates possible role of GNE in regulating actin dynamics and cell migration of skeletal muscle cell. The skeletal muscle cell-based system offers great potential in understanding pathomechanism and target identification for GNEM.
Collapse
Affiliation(s)
| | - Rashmi Yadav
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India
| | | | - Priyanka Chaudhary
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Shweta Sharma
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India. .,Special Centre for Systems Medicine (Concurrent Faculty), Jawaharlal Nehru University, New Mehrauli Road, 110067, New Delhi, India.
| |
Collapse
|
10
|
Savarese M, Sarparanta J, Vihola A, Jonson PH, Johari M, Rusanen S, Hackman P, Udd B. Panorama of the distal myopathies. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:245-265. [PMID: 33458580 PMCID: PMC7783427 DOI: 10.36185/2532-1900-028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Distal myopathies are genetic primary muscle disorders with a prominent weakness at onset in hands and/or feet. The age of onset (from early childhood to adulthood), the distribution of muscle weakness (upper versus lower limbs) and the histological findings (ranging from nonspecific myopathic changes to myofibrillar disarrays and rimmed vacuoles) are extremely variable. However, despite being characterized by a wide clinical and genetic heterogeneity, the distal myopathies are a category of muscular dystrophies: genetic diseases with progressive loss of muscle fibers. Myopathic congenital arthrogryposis is also a form of distal myopathy usually caused by focal amyoplasia. Massive parallel sequencing has further expanded the long list of genes associated with a distal myopathy, and contributed identifying as distal myopathy-causative rare variants in genes more often related with other skeletal or cardiac muscle diseases. Currently, almost 20 genes (ACTN2, CAV3, CRYAB, DNAJB6, DNM2, FLNC, HNRNPA1, HSPB8, KHLH9, LDB3, MATR3, MB, MYOT, PLIN4, TIA1, VCP, NOTCH2NLC, LRP12, GIPS1) have been associated with an autosomal dominant form of distal myopathy. Pathogenic changes in four genes (ADSSL, ANO5, DYSF, GNE) cause an autosomal recessive form; and disease-causing variants in five genes (DES, MYH7, NEB, RYR1 and TTN) result either in a dominant or in a recessive distal myopathy. Finally, a digenic mechanism, underlying a Welander-like form of distal myopathy, has been recently elucidated. Rare pathogenic mutations in SQSTM1, previously identified with a bone disease (Paget disease), unexpectedly cause a distal myopathy when combined with a common polymorphism in TIA1. The present review aims at describing the genetic basis of distal myopathy and at summarizing the clinical features of the different forms described so far.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Salla Rusanen
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
11
|
Chakravorty S, Nallamilli BRR, Khadilkar SV, Singla MB, Bhutada A, Dastur R, Gaitonde PS, Rufibach LE, Gloster L, Hegde M. Clinical and Genomic Evaluation of 207 Genetic Myopathies in the Indian Subcontinent. Front Neurol 2020; 11:559327. [PMID: 33250842 PMCID: PMC7674836 DOI: 10.3389/fneur.2020.559327] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: Inherited myopathies comprise more than 200 different individually rare disease-subtypes, but when combined together they have a high prevalence of 1 in 6,000 individuals across the world. Our goal was to determine for the first time the clinical- and gene-variant spectrum of genetic myopathies in a substantial cohort study of the Indian subcontinent. Methods: In this cohort study, we performed the first large clinical exome sequencing (ES) study with phenotype correlation on 207 clinically well-characterized inherited myopathy-suspected patients from the Indian subcontinent with diverse ethnicities. Results: Clinical-correlation driven definitive molecular diagnosis was established in 49% (101 cases; 95% CI, 42–56%) of patients with the major contributing pathogenicity in either of three genes, GNE (28%; GNE-myopathy), DYSF (25%; Dysferlinopathy), and CAPN3 (19%; Calpainopathy). We identified 65 variant alleles comprising 37 unique variants in these three major genes. Seventy-eight percent of the DYSF patients were homozygous for the detected pathogenic variant, suggesting the need for carrier-testing for autosomal-recessive disorders like Dysferlinopathy that are common in India. We describe the observed clinical spectrum of myopathies including uncommon and rare subtypes in India: Sarcoglycanopathies (SGCA/B/D/G), Collagenopathy (COL6A1/2/3), Anoctaminopathy (ANO5), telethoninopathy (TCAP), Pompe-disease (GAA), Myoadenylate-deaminase-deficiency-myopathy (AMPD1), myotilinopathy (MYOT), laminopathy (LMNA), HSP40-proteinopathy (DNAJB6), Emery-Dreifuss-muscular-dystrophy (EMD), Filaminopathy (FLNC), TRIM32-proteinopathy (TRIM32), POMT1-proteinopathy (POMT1), and Merosin-deficiency-congenital-muscular-dystrophy-type-1 (LAMA2). Thirteen patients harbored pathogenic variants in >1 gene and had unusual clinical features suggesting a possible role of synergistic-heterozygosity/digenic-contribution to disease presentation and progression. Conclusions: Application of clinically correlated ES to myopathy diagnosis has improved our understanding of the clinical and genetic spectrum of different subtypes and their overlaps in Indian patients. This, in turn, will enhance the global gene-variant-disease databases by including data from developing countries/continents for more efficient clinically driven molecular diagnostics.
Collapse
Affiliation(s)
- Samya Chakravorty
- Emory University Department of Pediatrics, Atlanta, GA, United States.,Emory University Department of Human Genetics, Atlanta, GA, United States.,Division of Neurosciences, Children's Healthcare of Atlanta, Atlanta, GA, United States.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | | | - Satish Vasant Khadilkar
- Department of Neurology, Bombay Hospital, Mumbai, India.,Department of Neurology, Sir J J Group of Hospitals, Grant Medical College, Mumbai, India.,Bombay Hospital Institute of Medical Sciences, Mumbai, India
| | - Madhu Bala Singla
- Department of Neurology, Bombay Hospital, Mumbai, India.,Department of Neurology, Sir J J Group of Hospitals, Grant Medical College, Mumbai, India.,Bombay Hospital Institute of Medical Sciences, Mumbai, India
| | | | - Rashna Dastur
- Centre for Advanced Molecular Diagnostics in Neuromuscular Disorders (CAMDND), Mumbai, India
| | - Pradnya Satish Gaitonde
- Centre for Advanced Molecular Diagnostics in Neuromuscular Disorders (CAMDND), Mumbai, India
| | | | - Logan Gloster
- Emory University Department of Pediatrics, Atlanta, GA, United States.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Madhuri Hegde
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States.,PerkinElmer Genomics, Global Laboratory Services, Waltham, MA, United States
| |
Collapse
|
12
|
Xiao H, Zhou WH. [Application of RNA sequencing in clinical diagnosis of Mendelian disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:1138-1142. [PMID: 33059815 PMCID: PMC7568994 DOI: 10.7499/j.issn.1008-8830.2005004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Gene panel and whole exome sequencing are now commonly used to detect Mendelian disease, but the current molecular diagnostic rate of DNA sequencing is only 35%-50%. In recent years, RNA sequencing emerges as a promising diagnostic method. It can detect new pathogenic mutations, and analyze allele-specific expression. This will be helpful to understand the relationship between disease genotype and phenotype, and can complement genome sequencing in order to expand the traditional genomic diagnostic methods of Mendelian disease. RNA sequencing is expected to become a routine tool for diagnosing Mendelian diseases. This article reviews the application of RNA sequencing in the clinical diagnosis of Mendelian disease.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Neonatology, Children's Hospital, Fudan University, Shanghai 201102, China.
| | | |
Collapse
|