1
|
Medina-Aguiñaga D, Hoey RF, Wilkins NL, Ugiliweneza B, Fell J, Harkema SJ, Hubscher CH. Mid-lumbar (L3) epidural stimulation effects on bladder and external urethral sphincter in non-injured and chronically transected urethane-anesthetized rats. Sci Rep 2023; 13:12258. [PMID: 37507456 PMCID: PMC10382500 DOI: 10.1038/s41598-023-39388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Recent pre-clinical and clinical spinal cord epidural stimulation (scES) experiments specifically targeting the thoracolumbar and lumbosacral circuitries mediating lower urinary tract (LUT) function have shown improvements in storage, detrusor pressure, and emptying. With the existence of a lumbar spinal coordinating center in rats that is involved with external urethral sphincter (EUS) functionality during micturition, the mid-lumbar spinal cord (specifically L3) was targeted in the current study with scES to determine if the EUS and thus the void pattern could be modulated, using both intact and chronic complete spinal cord injured female rats under urethane anesthesia. L3 scES at select frequencies and intensities of stimulation produced a reduction in void volumes and EUS burst duration in intact rats. After chronic transection, three different subgroups of LUT dysfunction were identified and the response to L3 scES promoted different cystometry outcomes, including changes in EUS bursting. The current findings suggest that scES at the L3 level can generate functional neuromodulation of both the urinary bladder and the EUS in intact and SCI rats to enhance voiding in a variety of clinical scenarios.
Collapse
Affiliation(s)
- Daniel Medina-Aguiñaga
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St., MDR, Room 111, Louisville, KY, 40202, USA
| | - Robert F Hoey
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St., MDR, Room 111, Louisville, KY, 40202, USA
- Physical Medicine and Rehabilitation Department, MetroHealth Rehabilitation Institute of Ohio, Cleveland, OH, USA
- Physical Medicine and Rehabilitiation Department, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Natasha L Wilkins
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St., MDR, Room 111, Louisville, KY, 40202, USA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
- Department of Health Management and Systems Science, School of Public Health and Information Science, University of Louisville, Louisville, KY, USA
| | - Jason Fell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St., MDR, Room 111, Louisville, KY, 40202, USA
| | - Susan J Harkema
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St., MDR, Room 111, Louisville, KY, 40202, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
2
|
Suzuki T, Shimizu T, Karnup S, Shimizu N, Ni J, de Groat WC, Yoshimura N. Therapeutic effects of p38 mitogen-activated protein kinase inhibition on hyperexcitability of capsaicin sensitive bladder afferent neurons in mice with spinal cord injury. Life Sci 2023; 325:121738. [PMID: 37121541 PMCID: PMC10225342 DOI: 10.1016/j.lfs.2023.121738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
AIMS Nerve growth factor (NGF) has been implicated as a key molecule of pathology-induced changes in C-fiber afferent nerve excitability, which contributes to the emergence of neurogenic detrusor overactivity due to spinal cord injury (SCI). It is also known that the second messenger signaling pathways activated by NGF utilize p38 Mitogen-Activated Protein Kinase (MAPK). We examined the roles of p38 MAPK on electrophysiological properties of capsaicin sensitive bladder afferent neurons with SCI mice. MAIN METHODS We used female C57BL/6 mice and transected their spinal cord at the Th8/9 level. Two weeks later, continuous administration of p38 MAPK inhibitor (0.51 μg/h, i.t. for two weeks) was started. Bladder afferent neurons were labelled with a fluorescent retrograde tracer, Fast-Blue (FB), injected into the bladder wall three weeks after SCI. Four weeks after SCI, freshly dissociated L6-S1 dorsal root ganglion neurons were prepared and whole cell patch clamp recordings were performed in FB-labelled neurons. After recording action potentials or voltage-gated K+ currents, the sensitivity of each neuron to capsaicin was evaluated. KEY FINDINGS In capsaicin-sensitive FB-labelled neurons, SCI significantly reduced the spike threshold and increased the number of action potentials during 800 ms membrane depolarization. Densities of slow-decaying A-type K+ (KA) and sustained delayed rectifier-type K+ (KDR) currents were significantly reduced by SCI. The reduction of KA, but not KDR, current density was reversed by the treatment with p38 MAPK inhibitor. SIGNIFICANCE P38 MAPK plays an important role in hyperexcitability of capsaicin-sensitive bladder afferent neurons due to the reduction in KA channel activity in SCI mice.
Collapse
Affiliation(s)
- Takahisa Suzuki
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Urology, Kanagawa Rehabilitation Hospital, Atsugi, Japan
| | - Takahiro Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Jianshu Ni
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
3
|
Doelman AW, Streijger F, Majerus SJA, Damaser MS, Kwon BK. Assessing Neurogenic Lower Urinary Tract Dysfunction after Spinal Cord Injury: Animal Models in Preclinical Neuro-Urology Research. Biomedicines 2023; 11:1539. [PMID: 37371634 PMCID: PMC10294962 DOI: 10.3390/biomedicines11061539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Neurogenic bladder dysfunction is a condition that affects both bladder storage and voiding function and remains one of the leading causes of morbidity after spinal cord injury (SCI). The vast majority of individuals with severe SCI develop neurogenic lower urinary tract dysfunction (NLUTD), with symptoms ranging from neurogenic detrusor overactivity, detrusor sphincter dyssynergia, or sphincter underactivity depending on the location and extent of the spinal lesion. Animal models are critical to our fundamental understanding of lower urinary tract function and its dysfunction after SCI, in addition to providing a platform for the assessment of potential therapies. Given the need to develop and evaluate novel assessment tools, as well as therapeutic approaches in animal models of SCI prior to human translation, urodynamics assessment techniques have been implemented to measure NLUTD function in a variety of animals, including rats, mice, cats, dogs and pigs. In this narrative review, we summarize the literature on the use of animal models for cystometry testing in the assessment of SCI-related NLUTD. We also discuss the advantages and disadvantages of various animal models, and opportunities for future research.
Collapse
Affiliation(s)
- Adam W. Doelman
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
| | - Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
| | - Steve J. A. Majerus
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA;
| | - Margot S. Damaser
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA;
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
- Department of Orthopaedics, Vancouver Spine Surgery Institute, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
4
|
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther 2023; 244:108383. [PMID: 36933702 DOI: 10.1016/j.pharmthera.2023.108383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Animal models are fundamental to advance our knowledge of the underlying pathophysiology of bone loss and to study pharmaceutical countermeasures against it. The animal model of post-menopausal osteoporosis from ovariectomy is the most widely used preclinical approach to study skeletal deterioration. However, several other animal models exist, each with unique characteristics such as bone loss from disuse, lactation, glucocorticoid excess, or exposure to hypobaric hypoxia. The present review aimed to provide a comprehensive overview of these animal models to emphasize the importance and significance of investigating bone loss and pharmaceutical countermeasures from perspectives other than post-menopausal osteoporosis only. Hence, the pathophysiology and underlying cellular mechanisms involved in the various types of bone loss are different, and this might influence which prevention and treatment strategies are the most effective. In addition, the review sought to map the current landscape of pharmaceutical countermeasures against osteoporosis with an emphasis on how drug development has changed from being driven by clinical observations and enhancement or repurposing of existing drugs to today's use of targeted anti-bodies that are the result of advanced insights into the underlying molecular mechanisms of bone formation and resorption. Moreover, new treatment combinations or repurposing opportunities of already approved drugs with a focus on dabigatran, parathyroid hormone and abaloparatide, growth hormone, inhibitors of the activin signaling pathway, acetazolamide, zoledronate, and romosozumab are discussed. Despite the considerable progress in drug development, there is still a clear need to improve treatment strategies and develop new pharmaceuticals against various types of osteoporosis. The review also highlights that new treatment indications should be explored using multiple animal models of bone loss in order to ensure a broad representation of different types of skeletal deterioration instead of mainly focusing on primary osteoporosis from post-menopausal estrogen deficiency.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Denmark, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|
5
|
Ferreira A, Nascimento D, Cruz CD. Molecular Mechanism Operating in Animal Models of Neurogenic Detrusor Overactivity: A Systematic Review Focusing on Bladder Dysfunction of Neurogenic Origin. Int J Mol Sci 2023; 24:ijms24043273. [PMID: 36834694 PMCID: PMC9959149 DOI: 10.3390/ijms24043273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Neurogenic detrusor overactivity (NDO) is a severe lower urinary tract disorder, characterized by urinary urgency, retention, and incontinence, as a result of a neurologic lesion that results in damage in neuronal pathways controlling micturition. The purpose of this review is to provide a comprehensive framework of the currently used animal models for the investigation of this disorder, focusing on the molecular mechanisms of NDO. An electronic search was performed with PubMed and Scopus for literature describing animal models of NDO used in the last 10 years. The search retrieved 648 articles, of which reviews and non-original articles were excluded. After careful selection, 51 studies were included for analysis. Spinal cord injury (SCI) was the most frequently used model to study NDO, followed by animal models of neurodegenerative disorders, meningomyelocele, and stroke. Rats were the most commonly used animal, particularly females. Most studies evaluated bladder function through urodynamic methods, with awake cystometry being particularly preferred. Several molecular mechanisms have been identified, including changes in inflammatory processes, regulation of cell survival, and neuronal receptors. In the NDO bladder, inflammatory markers, apoptosis-related factors, and ischemia- and fibrosis-related molecules were found to be upregulated. Purinergic, cholinergic, and adrenergic receptors were downregulated, as most neuronal markers. In neuronal tissue, neurotrophic factors, apoptosis-related factors, and ischemia-associated molecules are increased, as well as markers of microglial and astrocytes at lesion sites. Animal models of NDO have been crucial for understanding the pathophysiology of lower urinary tract (LUT) dysfunction. Despite the heterogeneity of animal models for NDO onset, most studies rely on traumatic SCI models rather than other NDO-driven pathologies, which may result in some issues when translating pre-clinical observations to clinical settings other than SCI.
Collapse
Affiliation(s)
- Ana Ferreira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, 4200-319 Porto, Portugal
| | - Diogo Nascimento
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-220426740; Fax: +351-225513655
| |
Collapse
|
6
|
Bushnell JY, Cates LN, Hyde JE, Hofstetter CP, Yang CC, Khaing ZZ. Early Detrusor Application of Botulinum Toxin A Results in Reduced Bladder Hypertrophy and Fibrosis after Spinal Cord Injury in a Rodent Model. Toxins (Basel) 2022; 14:toxins14110777. [PMID: 36356027 PMCID: PMC9697114 DOI: 10.3390/toxins14110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Following spinal cord injury (SCI), pathological reflexes develop that result in altered bladder function and sphincter dis-coordination, with accompanying changes in the detrusor. Bladder chemodenervation is known to ablate the pathological reflexes, but the resultant effects on the bladder tissue are poorly defined. In a rodent model of contusion SCI, we examined the effect of early bladder chemodenervation with botulinum toxin A (BoNT-A) on bladder histopathology and collagen deposition. Adult female Long Evans rats were given a severe contusion SCI at spinal level T9. The SCI rats immediately underwent open laparotomy and received detrusor injections of either BoNT-A (10 U/animal) or saline. At eight weeks post injury, the bladders were collected, weighed, and examined histologically. BoNT-A injected bladders of SCI rats (SCI + BoNT-A) weighed significantly less than saline injected bladders of SCI rats (SCI + saline) (241 ± 25 mg vs. 183 ± 42 mg; p < 0.05). Histological analyses showed that SCI resulted in significantly thicker bladder walls due to detrusor hypertrophy and fibrosis compared to bladders from uninjured animals (339 ± 89.0 μm vs. 193 ± 47.9 μm; p < 0.0001). SCI + BoNT-A animals had significantly thinner bladder walls compared to SCI + saline animals (202 ± 55.4 μm vs. 339 ± 89.0 μm; p < 0.0001). SCI + BoNT-A animals had collagen organization in the bladder walls similar to that of uninjured animals. Detrusor chemodenervation soon after SCI appears to preserve bladder tissue integrity by reducing the development of detrusor fibrosis and hypertrophy associated with SCI.
Collapse
Affiliation(s)
- Juliana Y. Bushnell
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Lindsay N. Cates
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey E. Hyde
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | | | - Claire C. Yang
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Zin Z. Khaing
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-543-7103
| |
Collapse
|
7
|
Gotoh D, Saito T, Karnup S, Morizawa Y, Hori S, Nakai Y, Miyake M, Torimoto K, Fujimoto K, Yoshimura N. Therapeutic effects of a soluble guanylate cyclase activator, BAY 60-2770, on lower urinary tract dysfunction in mice with spinal cord injury. Am J Physiol Renal Physiol 2022; 323:F447-F454. [PMID: 35952343 PMCID: PMC9485004 DOI: 10.1152/ajprenal.00105.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
We aimed to evaluate the effects of a soluble guanylate cyclase (sGC) activator, BAY 60-2770, on neurogenic lower urinary tract dysfunction in mice with spinal cord injury (SCI). Mice were divided into the following three groups: spinal cord intact (group A), SCI + vehicle (group B), and SCI + BAY 60-2770 (group C). SCI mice underwent Th8-Th9 spinal cord transection and treatment with BAY 60-2770 (10 mg/kg/day) once daily for 2-4 wk after SCI. We evaluated urodynamic parameters using awake cystometry and external urethral sphincter electromyograms (EMG); mRNA levels of mechanosensory channels, nitric oxide (NO)-, ischemia-, and inflammation-related markers in L6-S1 dorsal root ganglia, the urethra, and bladder tissues; and protein levels of cGMP in the urethra at 4 wk after SCI. With awake cystometry, nonvoiding contractions, postvoid residual, and bladder capacity were significantly larger in group B than in group C. Voiding efficiency (VE) was significantly higher in group C than in group B. In external urethral sphincter EMGs, the duration of notch-like reductions in intravesical pressure and reduced EMG activity time were significantly longer in group C than in group B. mRNA expression levels of transient receptor potential ankyrin 1, transient receptor potential vanilloid 1, acid-sensing ion channel (ASIC)1, ASIC2, ASIC3, and Piezo2 in the dorsal root ganglia, and hypoxia-inducible factor-1α, VEGF, and transforming growth factor-β1 in the bladder were significantly higher in group B than in groups A and C. mRNA levels of neuronal NO synthase, endothelial NO synthase, and sGCα1 and protein levels of cGMP in the urethra were significantly lower in group B than in groups A and C. sGC modulation might be useful for the treatment of SCI-related neurogenic lower urinary tract dysfunction.NEW & NOTEWORTHY This is the first report to evaluate the effects of a soluble guanylate cyclase activator, BAY 60-2770, on neurogenic lower urinary tract dysfunction in mice with spinal cord injury.
Collapse
Affiliation(s)
- Daisuke Gotoh
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Tetsuichi Saito
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University, Kashihara, Japan
| | | | | | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Song J, Cao X, Zhang A, Fang Z, Xu J, Gao X. Posterior tibial nerve stimulation improves neurogenic bladder in rats with spinal cord injury through transient receptor potential/P2X signaling pathway. Neurourol Urodyn 2022; 41:756-764. [PMID: 35132690 DOI: 10.1002/nau.24885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/24/2021] [Accepted: 01/10/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND To study the influences of posterior tibial nerve stimulation (PTNS) on neurogenic bladder and the expression of transient receptor potential (TRP) channels and P2X receptors in rats with spinal cord injury (SCI) and explore the possible mechanism. METHODS SCI model was established by modified Allen's method and PTNS was performed. Urodynamic indexes and Haematoxylin and Eosine staining of bladder tissue were used to evaluate the therapeutic effect. The expression of TRP channels and P2X receptors in the bladder and dorsal root ganglia (DRG) was detected by real-time PCR and Western blot. RESULTS The low compliance of bladder in treatment group was significantly improved compared with SCI group, and the infiltration of inflammatory cells in bladder tissue was significantly reduced. At the same time, the expression of TRP and P2X in bladder and DRG was partially restored after the treatment of PTNS. CONCLUSIONS PTNS is an effective therapy for SCI-induced neurogenic bladder via the TRP/P2X signaling pathway.
Collapse
Affiliation(s)
- Juan Song
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoyu Cao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Akang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zheng Fang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiegou Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xiaoping Gao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Wada N, Karnup S, Kadekawa K, Shimizu N, Kwon J, Shimizu T, Gotoh D, Kakizaki H, de Groat W, Yoshimura N. Current knowledge and novel frontiers in lower urinary tract dysfunction after spinal cord injury: Basic research perspectives. UROLOGICAL SCIENCE 2022; 33:101-113. [PMID: 36177249 PMCID: PMC9518811 DOI: 10.4103/uros.uros_31_22] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
This review article aims to summarize the recent advancement in basic research on lower urinary tract dysfunction (LUTD) following spinal cord injury (SCI) above the sacral level. We particularly focused on the neurophysiologic mechanisms controlling the lower urinary tract (LUT) function and the SCI-induced changes in micturition control in animal models of SCI. The LUT has two main functions, the storage and voiding of urine, that are regulated by a complex neural control system. This neural system coordinates the activity of two functional units in the LUT: the urinary bladder and an outlet including bladder neck, urethra, and striated muscles of the pelvic floor. During the storage phase, the outlet is closed and the bladder is quiescent to maintain a low intravesical pressure and continence, and during the voiding phase, the outlet relaxes and the bladder contracts to promote efficient release of urine. SCI impairs voluntary control of voiding as well as the normal reflex pathways that coordinate bladder and sphincter function. Following SCI, the bladder is initially areflexic but then becomes hyperreflexic due to the emergence of a spinal micturition reflex pathway. However, the bladder does not empty efficiently because coordination between the bladder and urethral sphincter is lost. In animal models of SCI, hyperexcitability of silent C-fiber bladder afferents is a major pathophysiological basis of neurogenic LUTD, especially detrusor overactivity. Reflex plasticity is associated with changes in the properties of neuropeptides, neurotrophic factors, or chemical receptors of afferent neurons. Not only C-fiber but also Aδ-fiber could be involved in the emergence of neurogenic LUTD such as detrusor sphincter dyssynergia following SCI. Animal research using disease models helps us to detect the different contributing factors for LUTD due to SCI and to find potential targets for new treatments.
Collapse
|
10
|
Telegin GB, Minakov AN, Chernov AS, Kazakov VA, Kalabina EA, Manskikh VN, Asyutin DS, Belogurov AA, Gabibov AG, Konovalov NA, Spallone A. A New Precision Minimally Invasive Method of Glial Scar Simulation in the Rat Spinal Cord Using Cryoapplication. Front Surg 2021; 8:607551. [PMID: 34336912 PMCID: PMC8320592 DOI: 10.3389/fsurg.2021.607551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/17/2021] [Indexed: 12/25/2022] Open
Abstract
According to the World Health Organization, every year worldwide up to 500,000 people suffer a spinal cord injury (SCI). Various animal biomodels are essential for searching for novel protocols and therapeutic approaches for SCI treatment. We have developed an original model of post-traumatic spinal cord glial scarring in rats through cryoapplication. With this method the low-temperature liquid nitrogen is used for the cryodestruction of the spinal cord tissue. Forty-five Sprague Dawley (SD) non-linear male rats of the Specific-pathogen-free (SPF) category were included in this experimental study. A Th13 unilateral hemilaminectomy was performed with dental burr using an operating microscope. A specifically designed cryogenic probe was applied to the spinal cord for one minute through the created bone defect. The animals were euthanized at different time points ranging from 1 to 60 days after cold-induced injury. Their Th12-L1 vertebrae with the injured spinal cord region were removed "en bloc" for histological examination. Our data demonstrate that cryoapplication producing a topical cooling around-20°C, caused a highly standardized transmural lesion of the spinal cord in the dorsoventral direction. The lesion had an "hour-glass" shape on histological sections. During the entire study period (days 1-60 of the post-trauma period), the necrotic processes and the development of the glial scar (lesion evolution) were contained in the surgically approached vertebral space (Th13). Unlike other known experimental methods of SCI simulation (compression, contusion, etc.), the proposed technique is characterized by minimal invasiveness, high precision, and reproducibility. Also, histological findings, lesion size, and postoperative clinical course varied only slightly between different animals. An original design of the cryoprobe used in the study played a primary role in the achieving of these results. The spinal cord lesion's detailed functional morphology is described at different time points (1-60 days) after the produced cryoinjury. Also, changes in the number of macrophages at distinct time points, neoangiogenesis and the formation of the glial scar's fibrous component, including morphodynamic characteristics of its evolution, are analyzed. The proposed method of cryoapplication for inducing reproducible glial scars could facilitate a better understanding of the self-recovery processes in the damaged spinal cord. It would be evidently helpful for finding innovative approaches to the SCI treatment.
Collapse
Affiliation(s)
- Georgii B. Telegin
- Branch of Shemyakin and Ovchinnikov, Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey N. Minakov
- Branch of Shemyakin and Ovchinnikov, Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandr S. Chernov
- Branch of Shemyakin and Ovchinnikov, Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly A. Kazakov
- Branch of Shemyakin and Ovchinnikov, Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Elena A. Kalabina
- Branch of Shemyakin and Ovchinnikov, Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vasily N. Manskikh
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry S. Asyutin
- Department of Spinal Neurosurgery, N.N. Burdenko National Scientific and Practical Center for Neurosurgery, RF Health Ministry, Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay A. Konovalov
- Department of Spinal Neurosurgery, N.N. Burdenko National Scientific and Practical Center for Neurosurgery, RF Health Ministry, Moscow, Russia
| | - Aldo Spallone
- Department of Clinical Neurosciences, NCL-Neuromed Institute of Neurosciences, Rome, Italy
- Department of Nervous Diseases, RUDN University, Moscow, Russia
| |
Collapse
|
11
|
Saito T, Gotoh D, Wada N, Tyagi P, Minagawa T, Ogawa T, Ishizuka O, Yoshimura N. Time-dependent progression of neurogenic lower urinary tract dysfunction after spinal cord injury in the mouse model. Am J Physiol Renal Physiol 2021; 321:F26-F32. [PMID: 33969698 DOI: 10.1152/ajprenal.00622.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the time-course changes in bladder and external urinary sphincter (EUS) activity and the expression of mechanosensitive channels in lumbosacral dorsal root ganglia (DRG) after spinal cord injury (SCI). Female C57BL/6N mice in the SCI group underwent transection of the Th8/9 spinal cord. Spinal intact mice and SCI mice at 2, 4, and 6 wk post-SCI were evaluated by single-filling cystometry and EUS-electromyography (EMG). In another set of mice, the bladder and L6-S1 DRG were harvested for protein and mRNA analyses. In SCI mice, nonvoiding contractions were confirmed at 2 wk post-SCI and did not increase over time to 6 wk. In 2-wk SCI mice, EUS-EMG measurements revealed detrusor sphincter dyssynergia, but periodic EMG reductions during bladder contraction were hardly observed. At 4 wk, SCI mice showed increases of EMG activity reduction time with increased voiding efficiency. At 6 wk, SCI mice exhibited a further increase in EMG reduction time. RT-PCR of L6-S1 DRG showed increased mRNA levels of transient receptor potential vanilloid 1 and acid-sensing ion channels (ASIC1-ASIC3) in SCI mice with a decrease of ASIC2 and ASIC3 at 6 wk compared with 4 wk, whereas Piezo2 showed a slow increase at 6 wk. Protein assay showed SCI-induced overexpression of bladder brain-derived neurotrophic factor with a time-dependent decrease post-SCI. These results indicate that detrusor overactivity is established in the early phase, whereas detrusor sphincter dyssynergia is completed later at 4 wk with an improvement at 6 wk post-SCI, and that mechanosensitive channels may be involved in the time-dependent changes.NEW & NOTEWORTHY This is the first paper to evaluate the time-course changes of bladder dysfunction associated with mechanosensitive channels in a mouse model.
Collapse
Affiliation(s)
- Tetsuichi Saito
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Daisuke Gotoh
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tomonori Minagawa
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Teruyuki Ogawa
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Osamu Ishizuka
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Kwon J, Lee EJ, Cho HJ, Jang JA, Han MS, Kwak E, Kim H, An J, Park D, Han S, Shimizu N, Suzuki T, Takaoka EI, Yoshimura N. Antifibrosis treatment by inhibition of VEGF, FGF, and PDGF receptors improves bladder wall remodeling and detrusor overactivity in association with modulation of C-fiber afferent activity in mice with spinal cord injury. Neurourol Urodyn 2021; 40:1460-1469. [PMID: 34015154 DOI: 10.1002/nau.24704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 11/08/2022]
Abstract
AIMS Spinal cord injury (SCI) above the sacral level causes bladder dysfunction and remodeling with fibrosis. This study examined the antifibrotic effects using nintedanib, an inhibitor of vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor receptors, on detrusor overactivity (DO) and bladder fibrosis, as well as the modulation mechanisms of C-fiber afferent pathways. METHODS Thirty female C57BL/6 mice were divided into group A (spinal intact), group B (SCI with vehicle), and group C (SCI with nintedanib). At 2 weeks after SCI, vehicle or 50 mg/kg nintedanib was administered subcutaneously for 2 weeks. Then, cystometry was conducted, followed by RT-PCR measurements of fibrosis-related molecules, muscarinic, β-adrenergic, TRP and purinergic receptors in the bladder or L6-S1 dorsal root ganglia (DRG). Trichrome stain and Western blot analysis of transforming growth factor-beta and fibronectin were performed in the bladder. TRPV1 expression in L6 DRG was measured by immunohistochemistry. RESULTS In cystometry, intercontraction intervals, nonvoiding contractions, voided volume, and voiding efficiency were significantly improved in group C versus group B. RT-PCR, Western blotting, and trichrome staining revealed the fibrotic changes in the bladder of group B, which was improved in group C. Increased messenger RNA levels of TRPV1, TRPA1, P2X2 , and P2X3 in DRG of group B were significantly decreased in group C. TRPV1 immunoreactivity in DRG was increased in group B, but decreased in group C. CONCLUSIONS Nintedanib improves storage and voiding dysfunctions and bladder fibrosis in SCI mice. Also, nintedanib-induced improvement of DO is associated with reduced expression of C-fiber afferent markers, suggesting the modulation of bladder C-fiber afferent activity.
Collapse
Affiliation(s)
- Joonbeom Kwon
- Department of Urology, Daegu Fatima Hospital, Daegu, South Korea.,Research Institute, Daegu Fatima Hospital, Daegu, South Korea.,Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Eun-Ju Lee
- Research Institute, Daegu Fatima Hospital, Daegu, South Korea
| | - Hyun-Jung Cho
- Research Institute, Daegu Fatima Hospital, Daegu, South Korea
| | - Ji-Ae Jang
- Research Institute, Daegu Fatima Hospital, Daegu, South Korea
| | - Min-Su Han
- Research Institute, Daegu Fatima Hospital, Daegu, South Korea
| | - Eunkyoung Kwak
- Department of Pathology, Daegu Fatima Hospital, Daegu, South Korea
| | - Haesoo Kim
- Department of Anesthesiology, Daegu Fatima Hospital, Daegu, South Korea
| | - Jihyun An
- Department of Anesthesiology, Daegu Fatima Hospital, Daegu, South Korea
| | - Donghwi Park
- Department of Physical Medicine and Rehabilitation, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Seungwoo Han
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Takahisa Suzuki
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ei-Ichiro Takaoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Brent MB, Brüel A, Thomsen JS. A Systematic Review of Animal Models of Disuse-Induced Bone Loss. Calcif Tissue Int 2021; 108:561-575. [PMID: 33386477 DOI: 10.1007/s00223-020-00799-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Several different animal models are used to study disuse-induced bone loss. This systematic review aims to give a comprehensive overview of the animal models of disuse-induced bone loss and provide a detailed narrative synthesis of each unique animal model. METHODS PubMed and Embase were systematically searched for animal models of disuse from inception to November 30, 2019. In addition, Google Scholar and personal file archives were searched for relevant publications not indexed in PubMed or Embase. Two reviewers independently reviewed titles and abstracts for full-text inclusion. Data were extracted using a predefined extraction scheme to ensure standardization. RESULTS 1964 titles and abstracts were screened of which 653 full-text articles were included. The most common animal species used to model disuse were rats (59%) and mice (30%). Males (53%) where used in the majority of the studies and genetically modified animals accounted for 7%. Twelve different methods to induce disuse were identified. The most frequently used methods were hindlimb unloading (44%), neurectomy (15%), bandages and orthoses (15%), and botulinum toxin (9%). The median time of disuse was 21 days (quartiles: 14 days, 36 days) and the median number of animals per group subjected to disuse was 10 (quartiles: 7, 14). Random group allocation was reported in 43% of the studies. Fewer than 5% of the studies justified the number of animals per group by a sample size calculation to ensure adequate statistical power. CONCLUSION Multiple animal models of disuse-induced bone loss exist, and several species of animals have successfully been studied. The complexity of disuse-induced bone loss warrants rigid research study designs. This systematic review emphasized the need for standardization of animal disuse research and reporting.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark.
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
14
|
Takahashi R, Kimoto Y, Maki T, Eto M. Postinjury Bladder Overdistension Deteriorates the Lower Urinary Tract's Storage Function in Patients with Spinal Cord Injury. Urol Int 2020; 104:604-609. [PMID: 32594087 DOI: 10.1159/000508418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/28/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION A recent article has reported that postinjury bladder overdistension (OD) deteriorates lower urinary tract function in the mouse spinal cord injury (SCI) model. However, there have been no reports examining the effect of postinjury bladder OD on lower urinary tract function in human SCI patients. OBJECTIVE The aim of the study was to investigate the effect of postinjury bladder OD during the acute bladder-areflexia phase on the subsequent lower urinary tract storage function in patients with SCI. METHODS Thirty-one patients with OD (OD group) and 19 patients without OD (non-OD group) during the acute bladder-areflexia phase were included in the study. All patients were confirmed to be completely paralyzed. Their lower urinary tract function was retrospectively evaluated through urodynamic studies 1, 3, and 5 years after injury. Qualiveen-30 questionnaire was used for the evaluation of quality of life. RESULTS No significant difference was observed in the maximum cystometric capacity between the OD and non-OD groups in their urodynamic evaluation; however, the maximum bladder pressure was significantly higher, and the bladder compliance was significantly lower in the OD group. The incidence of detrusor overactivity tended to be higher in the OD group, but no significant difference was observed. The use of anti-muscarinics was significantly higher in the OD group. No significant differences were observed in Quali-veen-30 scores between both groups. CONCLUSIONS These results suggest that postinjury bladder OD during the acute phase deteriorates lower urinary tract storage function in patients with SCI during the later phase. Thus, it is assumed that a well-planned regular intermittent catheterization in the early spinal shock phase would be important for control of patients' subsequent storage function.
Collapse
Affiliation(s)
| | - Yasusuke Kimoto
- Department of Urology, Spinal Injuries Center, Fukuoka, Japan
| | - Tomoko Maki
- Department of Urology, Spinal Injuries Center, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Telegin GB, Minakov AN, Chernov AS, Manskikh VN, Asyutin DS, Konovalov NA, Gabibov AG. Surgical Simulation of a Posttraumatic Spinal Cord Glial Scar in Rats. Acta Naturae 2019; 11:75-81. [PMID: 31720019 PMCID: PMC6826152 DOI: 10.32607/20758251-2019-11-3-75-81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/02/2019] [Indexed: 11/20/2022] Open
Abstract
We developed and verified an original, minimally invasive method for surgical simulation of a posttraumatic spinal cord glial scar in rats. The model is intended for use as a biological platform for testing the stimulation of regenerative processes in the central nervous system. Unification of the model enables one to achieve versatility both for implantation techniques and for the development of system-action approaches. Faced with a standard structural defect of the spinal cord, researchers will have the unique opportunity to test in vivo promising methods for spinal function recovery in the posttraumatic period. We developed anesthetic support, surgical tactics, and a set of rehabilitation measures for the chronic postoperative period. Experimental exposure effects were preliminarily assessed in vivo using a standard technique for recording the motor activity of rats in the postoperative period of spinal cord injury. Our final conclusions were drawn based on an analysis of histological sections of the rat spinal cord glial scar in three mutually perpendicular planes.
Collapse
Affiliation(s)
- G. B. Telegin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Prospect Nauki 6, Pushchino, 142290, Russia
| | - A. N. Minakov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Prospect Nauki 6, Pushchino, 142290, Russia
| | - A. S. Chernov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Prospect Nauki 6, Pushchino, 142290, Russia
| | - V. N. Manskikh
- M.V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | - D. S. Asyutin
- N.N. Burdenko National Scientific and Practical Center for Neurosurgery, RF Health Ministry, 4th Tverskaya-Yamskaya Str. 16, Moscow, 125047, Russia
| | - N. A. Konovalov
- N.N. Burdenko National Scientific and Practical Center for Neurosurgery, RF Health Ministry, 4th Tverskaya-Yamskaya Str. 16, Moscow, 125047, Russia
| | - A. G. Gabibov
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, GSP-7, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| |
Collapse
|
16
|
Campolo M, Siracusa R, Cordaro M, Filippone A, Gugliandolo E, Peritore AF, Impellizzeri D, Crupi R, Paterniti I, Cuzzocrea S. The association of adelmidrol with sodium hyaluronate displays beneficial properties against bladder changes following spinal cord injury in mice. PLoS One 2019; 14:e0208730. [PMID: 30653511 PMCID: PMC6336272 DOI: 10.1371/journal.pone.0208730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 11/22/2018] [Indexed: 01/02/2023] Open
Abstract
The disruption of coordinated control between the brain, spinal cord and peripheral nervous system caused by spinal cord injury (SCI) leads to several secondary pathological conditions, including lower urinary tract dysfunction. In fact, urinary tract dysfunction associated with SCI is urinary dysfunction could be a consequence of a lack of neuroregeneration of supraspinal pathways that control bladder function. The object of the current research was to explore the effects of adelmidrol + sodium hyaluronate, on bladder damage generated after SCI in mice. Spinal cord was exposed via laminectomy, and SCI was induced by extradural compression at T6 to T7 level, by an aneurysm clip with a closing force of 24 g. Mice were treated intravesically with adelmidrol + sodium hyaluronate daily for 48 h and 7 days after SCI. Adelmidrol + sodium hyaluronate reduced significantly mast cell degranulation and down-regulated the nuclear factor-κB pathway in the bladder after SCI both at 48 h and 7days. Moreover, adelmidrol + sodium hyaluronate reduced nerve growth factor expression, suggesting an association between neurotrophins and bladder pressure. At 7 days after SCI, the bladder was characterized by a marked bacterial infection and proteinuria; surprisingly, adelmidrol + sodium hyaluronate reduced significantly both parameters. These data show the protective roles of adelmidrol + sodium hyaluronate on bladder following SCI, highlighting a potential therapeutic target for the reduction of bladder changes.
Collapse
Affiliation(s)
- Michela Campolo
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Rosalba Siracusa
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Marika Cordaro
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Alessia Filippone
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Enrico Gugliandolo
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Alessio F. Peritore
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Daniela Impellizzeri
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Rosalia Crupi
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Irene Paterniti
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Salvatore Cuzzocrea
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
- Saint Louis University School of Medicine, Department of Pharmacological and Physiological Science, Saint Louis, United States of America
- * E-mail:
| |
Collapse
|
17
|
Fan L, Liu C, Chen X, Zou Y, Zhou Z, Lin C, Tan G, Zhou L, Ning C, Wang Q. Directing Induced Pluripotent Stem Cell Derived Neural Stem Cell Fate with a Three-Dimensional Biomimetic Hydrogel for Spinal Cord Injury Repair. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17742-17755. [PMID: 29733569 DOI: 10.1021/acsami.8b05293] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Current treatment approaches for spinal cord injuries (SCIs) are mainly based on cellular transplantation. Induced pluripotent stem cells (iPSCs) without supply constraints and ethical concerns have emerged as a viable treatment option for repairing neurological disorders. However, the primarily limitations in the neuroregeneration field are uncontrolled cell differentiation, and low cell viability caused by the ischemic environment. The mechanical property of three-dimensional (3D) hydrogel can be easily controlled and shared similar characteristics with nerve tissue, thus promoting cell survival and controlled cell differentiation. We propose the combination of a 3D gelatin methacrylate (GelMA) hydrogel with iPSC-derived NSCs (iNSCs) to promote regeneration after SCI. In vitro, the iNSCs photoencapsulated in the 3D GelMA hydrogel survived and differentiated well, especially in lower-moduli hydrogels. More robust neurite outgrowth and more neuronal differentiation were detected in the soft hydrogel group. To further evaluate the in vivo neuronal regeneration effect of the GelMA hydrogels, a mouse spinal cord transection model was generated. We found that GelMA/iNSC implants significantly promoted functional recovery. Further histological analysis showed that the cavity areas were significantly reduced, and less collagen was deposited in the GelMA/iNSC group. Furthermore, the GelMA and iNSC combined transplantation decreased inflammation by reducing activated macrophages/microglia (CD68-positive cells). Additionally, GelMA/iNSC implantation showed striking therapeutic effects of inhibiting GFAP-positive cells and glial scar formation while simultaneously promoting axonal regeneration. Undoubtedly, use of this 3D hydrogel stem cell-loaded system is a promising therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Lei Fan
- Department of Spine Surgery , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , Guangdong Province , China
- College of Materials Science and Technology , South China University of Technology , Guangzhou 510641 , Guangdong Province , China
| | - Can Liu
- Department of Spine Surgery , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , Guangdong Province , China
| | - Xiuxing Chen
- State Key Laboratory of Oncology in South China , Sun Yat-sen University Cancer Center , Guangzhou 510630 , Guangdong Province , China
| | - Yan Zou
- Department of Radiology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , Guangdong Province , China
| | - Zhengnan Zhou
- Institute of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , Guangdong Province , China
| | - Chenkai Lin
- Department of Orthopedics , The Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen 510275 , Guangdong Province , China
| | - Guoxin Tan
- Institute of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , Guangdong Province , China
| | - Lei Zhou
- College of Materials Science and Technology , South China University of Technology , Guangzhou 510641 , Guangdong Province , China
| | - Chenyun Ning
- College of Materials Science and Technology , South China University of Technology , Guangzhou 510641 , Guangdong Province , China
| | - Qiyou Wang
- Department of Spine Surgery , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , Guangdong Province , China
| |
Collapse
|
18
|
Shimizu T, Majima T, Suzuki T, Shimizu N, Wada N, Kadekawa K, Takai S, Takaoka E, Kwon J, Kanai AJ, de Groat WC, Tyagi P, Saito M, Yoshimura N. Nerve growth factor-dependent hyperexcitability of capsaicin-sensitive bladder afferent neurones in mice with spinal cord injury. Exp Physiol 2018; 103:896-904. [PMID: 29603450 DOI: 10.1113/ep086951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/20/2018] [Indexed: 01/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? Nerve growth factor (NGF) is reportedly a mediator inducing urinary bladder dysfunction. Is NGF directly involved in hyperexcitability of capsaicin-sensitive C-fibre bladder afferent pathways after spinal cord injury (SCI)? What is the main finding and its importance? Neutralization of NGF by anti-NGF antibody treatment reversed the SCI-induced increase in the number of action potentials and the reduction in spike thresholds and A-type K+ current density in mouse capsaicin-sensitive bladder afferent neurones. Thus, NGF plays an important and direct role in hyperexcitability of capsaicin-sensitive C-fibre bladder afferent neurones attributable to the reduction in A-type K+ channel activity in SCI. ABSTRACT Nerve growth factor (NGF) has been implicated as an important mediator in the induction of C-fibre bladder afferent hyperexcitability, which contributes to the emergence of neurogenic lower urinary tract dysfunction after spinal cord injury (SCI). In this study, we determined whether NGF immunoneutralization using an anti-NGF antibody (NGF-Ab) normalizes the SCI-induced changes in electrophysiological properties of capsaicin-sensitive C-fibre bladder afferent neurones in female C57BL/6 mice. The spinal cord was transected at the Th8/Th9 level. Two weeks later, continuous administration of NGF-Ab (10 μg kg-1 h-1 , s.c. for 2 weeks) was started. Bladder afferent neurones were labelled with Fast-Blue (FB), a fluorescent retrograde tracer, injected into the bladder wall 3 weeks after SCI. Four weeks after SCI, freshly dissociated L6-S1 dorsal root ganglion neurones were prepared. Whole-cell patch-clamp recordings were then performed in FB-labelled neurones. After recording action potentials or voltage-gated K+ currents, the sensitivity of each neurone to capsaicin was evaluated. In capsaicin-sensitive FB-labelled neurones, SCI significantly reduced the spike threshold and increased the number of action potentials during membrane depolarization for 800 ms. These SCI-induced changes were reversed by NGF-Ab. Densities of slow-decaying A-type K+ (KA ) and sustained delayed rectifier-type K+ currents were significantly reduced by SCI. The NGF-Ab treatment reversed the SCI-induced reduction in the KA current density. These results indicate that NGF plays an important role in hyperexcitability of mouse capsaicin-sensitive C-fibre bladder afferent neurones attributable to a reduction in KA channel activity. Thus, NGF-targeting therapies could be effective for treatment of afferent hyperexcitability and neurogenic lower urinary tract dysfunction after SCI.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan.,Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Tsuyoshi Majima
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Takahisa Suzuki
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Katsumi Kadekawa
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Shun Takai
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Eiichiro Takaoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Joonbeom Kwon
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Anthony J Kanai
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - William C de Groat
- Department of Pharmacology & Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Pharmacology & Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
19
|
Sidler M, Aitken KJ, Forward S, Vitkin A, Bagli DJ. Non-invasive voiding assessment in conscious mice. Bladder (San Franc) 2018; 5:e33. [PMID: 32775475 PMCID: PMC7401987 DOI: 10.14440/bladder.2018.582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/15/2017] [Accepted: 01/22/2017] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To review available options of assessing murine bladder function and to evaluate a non-invasive technique suitable for long-term recording. METHODS We reviewed previously described methods to record rodent bladder function. We used modified metabolic cages to capture novel recording tracings of mouse micturition. We evaluated our method in a pilot study with female mice undergoing partial bladder outlet obstruction or sham operation, respectively; half of the partial obstruction and sham group received treatment with an S6K-inhibitor, targeting the mTOR pathway, which is known to be implicated in bladder response to obstruction. RESULTS Our non-invasive method using continuous urine weight recording reliably detected changes in murine bladder function resulting from partial bladder outlet obstruction or treatment with S6K-inhibitor. We found obstruction as well as treatment with S6K-inhibitor to correlate with a hyperactive voiding pattern. CONCLUSIONS While invasive methods to assess murine bladder function largely disturb bladder histology and intrinsically render post-cystometry gene expression analysis of questionable value, continuous urine weight recording is a reliable, inexpensive, and critically non-invasive method to assess murine bladder function, suitable for a long-term application.
Collapse
Affiliation(s)
- Martin Sidler
- The Hospital for Sick Children, Research Institute, Developmental and Stem Cell Biology, Toronto, Canada.,The Hospital for Sick Children, Pediatric Urology, Toronto, Canada.,Institute of Medical Science, University of Toronto, Canada.,Neonatal and Paediatric Surgery, Great Ormond Street Hospital, London, UK
| | - Karen J Aitken
- The Hospital for Sick Children, Research Institute, Developmental and Stem Cell Biology, Toronto, Canada
| | - Sarah Forward
- Department of Medical Biophysics, University of Toronto, Canada
| | - Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Canada
| | - Darius J Bagli
- The Hospital for Sick Children, Research Institute, Developmental and Stem Cell Biology, Toronto, Canada.,The Hospital for Sick Children, Pediatric Urology, Toronto, Canada.,Institute of Medical Science, University of Toronto, Canada
| |
Collapse
|
20
|
Wada N, Shimizu T, Shimizu N, de Groat WC, Kanai AJ, Tyagi P, Kakizaki H, Yoshimura N. The effect of neutralization of nerve growth factor (NGF) on bladder and urethral dysfunction in mice with spinal cord injury. Neurourol Urodyn 2018. [PMID: 29516546 DOI: 10.1002/nau.23539] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS To investigate the role of nerve growth factor (NGF) in lower urinary tract dysfunction in mice with spinal cord injury (SCI). METHODS Using 4-week SCI mice, single-filling cystometry and external urethral sphincter (EUS)-electromyography were performed under an awake condition. In some SCI mice, anti-NGF antibodies (10 µg/kg/h) were administered for 1 or 2 weeks before the urodynamic study. NGF levels in the bladder and L6/S1 spinal cord were assayed by ELISA. The transcript levels of P2X receptors and TRP channels in L6/S1 dorsal root ganglia (DRG) were measured by RT-PCR. RESULTS In SCI mice, the area under the curve of non-voiding contractions (NVCs) during the storage phase was significantly decreased in both 1- and 2-week anti-NGF antibody-treated SCI groups. However, EUS-electromyogram parameters during voiding were not altered by the treatment. Bladder mucosal and spinal NGF levels were decreased after 2 weeks of anti-NGF antibody treatment. TRPA1 and TRPV1 transcripts in L6/S1 DRG were significantly decreased after 1- or 2-week anti-NGF treatment. CONCLUSIONS In SCI mice, NGF is involved in the emergence of NVCs in association with increased expression of TRP receptors that are predominantly found in C-fiber afferent pathways. Thus, NGF targeting treatments could be effective for treating storage problems such as detrusor overactivity after SCI.
Collapse
Affiliation(s)
- Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takahiro Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Anthony J Kanai
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hidehiro Kakizaki
- Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Shimizu N, Doyal MF, Goins WF, Kadekawa K, Wada N, Kanai AJ, de Groat WC, Hirayama A, Uemura H, Glorioso JC, Yoshimura N. Morphological changes in different populations of bladder afferent neurons detected by herpes simplex virus (HSV) vectors with cell-type-specific promoters in mice with spinal cord injury. Neuroscience 2017; 364:190-201. [PMID: 28942324 DOI: 10.1016/j.neuroscience.2017.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 01/06/2023]
Abstract
Functional and morphological changes in C-fiber bladder afferent pathways are reportedly involved in neurogenic detrusor overactivity (NDO) after spinal cord injury (SCI). This study examined the morphological changes in different populations of bladder afferent neurons after SCI using replication-defective herpes simplex virus (HSV) vectors encoding the mCherry reporter driven by neuronal cell-type-specific promoters. Spinal intact (SI) and SCI mice were injected into the bladder wall with HSV mCherry vectors driven by the cytomegalovirus (CMV) promoter, CGRP promoter, TRPV1 promoter or neurofilament 200 (NF200) promoter. Two weeks after vector inoculation into the bladder wall, L1 and L6 dorsal root ganglia (DRG) were removed bilaterally for immunofluorescent staining using anti-mCherry antibody. The number of CMV promoter vector-labeled neurons was not altered after SCI. The number of CGRP and TRPV1 promoter vector-labeled neurons was significantly increased whereas the number of NF200 vector-labeled neurons was decreased in L6 DRG after SCI. The median size of CGRP promoter-labeled C-fiber neurons was increased from 247.0 in SI mice to 271.3μm2 in SCI mice whereas the median cell size of TRPV1 promoter vector-labeled neurons was decreased from 245.2 in SI mice to 216.5μm2 in SCI mice. CGRP and TRPV1 mRNA levels of laser-captured bladder afferent neurons labeled with Fast Blue were significantly increased in SCI mice compared to SI mice. Thus, using a novel HSV vector-mediated neuronal labeling technique, we found that SCI induces expansion of the CGRP- and TRPV1-expressing C-fiber cell population, which could contribute to C-fiber afferent hyperexcitability and NDO after SCI.
Collapse
Affiliation(s)
- Nobutaka Shimizu
- Department of Urology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Department of Urology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Mark F Doyal
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - William F Goins
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Katsumi Kadekawa
- Department of Urology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Naoki Wada
- Department of Urology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Anthony J Kanai
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Akihide Hirayama
- Department of Urology, Faculty of Medicine, Kindai University Nara Hospital, Nara, Japan
| | - Hirotsugu Uemura
- Department of Urology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Joseph C Glorioso
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
22
|
Miyazato M, Kadekawa K, Kitta T, Wada N, Shimizu N, de Groat WC, Birder LA, Kanai AJ, Saito S, Yoshimura N. New Frontiers of Basic Science Research in Neurogenic Lower Urinary Tract Dysfunction. Urol Clin North Am 2017; 44:491-505. [PMID: 28716328 PMCID: PMC5647782 DOI: 10.1016/j.ucl.2017.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Minoru Miyazato
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan; Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Katsumi Kadekawa
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Takeya Kitta
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - William C de Groat
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15216, USA
| | - Lori A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15216, USA
| | - Anthony J Kanai
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15216, USA
| | - Seiichi Saito
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15216, USA.
| |
Collapse
|
23
|
Munoz A. Neurogenic bladder dysfunction does not correlate with astrocyte and microglia activation produced by graded force in a contusion-induced spinal cord injury. Brain Res Bull 2017; 131:18-24. [DOI: 10.1016/j.brainresbull.2017.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
|