1
|
Wu S, Calero-Pérez P, Villamañan L, Arias-Ramos N, Pumarola M, Ortega-Martorell S, Julià-Sapé M, Arús C, Candiota AP. Anti-tumour immune response in GL261 glioblastoma generated by Temozolomide Immune-Enhancing Metronomic Schedule monitored with MRSI-based nosological images. NMR IN BIOMEDICINE 2020; 33:e4229. [PMID: 31926117 DOI: 10.1002/nbm.4229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Glioblastomas (GB) are brain tumours with poor prognosis even after aggressive therapy. Improvements in both therapeutic and follow-up strategies are urgently needed. In previous work we described an oscillatory pattern of response to Temozolomide (TMZ) using a standard administration protocol, detected through MRSI-based machine learning approaches. In the present work, we have introduced the Immune-Enhancing Metronomic Schedule (IMS) with an every 6-d TMZ administration at 60 mg/kg and investigated the consistence of such oscillatory behaviour. A total of n = 17 GL261 GB tumour-bearing C57BL/6j mice were studied with MRI/MRSI every 2 d, and the oscillatory behaviour (6.2 ± 1.5 d period from the TMZ administration day) was confirmed during response. Furthermore, IMS-TMZ produced significant improvement in mice survival (22.5 ± 3.0 d for controls vs 135.8 ± 78.2 for TMZ-treated), outperforming standard TMZ treatment. Histopathological correlation was investigated in selected tumour samples (n = 6) analyzing control and responding fields. Significant differences were found for CD3+ cells (lymphocytes, 3.3 ± 2.5 vs 4.8 ± 2.9, respectively) and Iba-1 immunostained area (microglia/macrophages, 16.8% ± 9.7% and 21.9% ± 11.4%, respectively). Unexpectedly, during IMS-TMZ treatment, tumours from some mice (n = 6) fully regressed and remained undetectable without further treatment for 1 mo. These animals were considered "cured" and a GL261 re-challenge experiment performed, with no tumour reappearance in five out of six cases. Heterogeneous therapy response outcomes were detected in tumour-bearing mice, and a selected group was investigated (n = 3 non-responders, n = 6 relapsing tumours, n = 3 controls). PD-L1 content was found ca. 3-fold increased in the relapsing group when comparing with control and non-responding groups, suggesting that increased lymphocyte inhibition could be associated to IMS-TMZ failure. Overall, data suggest that host immune response has a relevant role in therapy response/escape in GL261 tumours under IMS-TMZ therapy. This is associated to changes in the metabolomics pattern, oscillating every 6 d, in agreement with immune cycle length, which is being sampled by MRSI-derived nosological images.
Collapse
Affiliation(s)
- Shuang Wu
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Pilar Calero-Pérez
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain
| | - Lucia Villamañan
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Nuria Arias-Ramos
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain
| | - Martí Pumarola
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain
- Unit of Murine and Comparative Pathology, Department of Animal Medicine and Animal Surgery, Veterinary Faculty, UAB, Cerdanyola del Vallès, Spain
| | | | - Margarida Julià-Sapé
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Carles Arús
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Ferrer-Font L, Arias-Ramos N, Lope-Piedrafita S, Julià-Sapé M, Pumarola M, Arús C, Candiota AP. Metronomic treatment in immunocompetent preclinical GL261 glioblastoma: effects of cyclophosphamide and temozolomide. NMR IN BIOMEDICINE 2017; 30:e3748. [PMID: 28570014 DOI: 10.1002/nbm.3748] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/27/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Glioblastoma (GBM) causes poor survival in patients even when applying aggressive treatment. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment, but resistance always ensues. In previous years, efforts have focused on new therapeutic regimens with conventional drugs to activate immune responses that may enhance tumor regression and prevent regrowth, for example the "metronomic" approaches. In metronomic scheduling studies, cyclophosphamide (CPA) in GL261 GBM growing subcutaneously in C57BL/6 mice was shown not only to activate antitumor CD8+ T-cell response, but also to induce long-term specific T-cell tumor memory. Accordingly, we have evaluated whether metronomic CPA or TMZ administration could increase survival in orthotopic GL261 in C57BL/6 mice, an immunocompetent model. Longitudinal in vivo studies with CPA (140 mg/kg) or TMZ (range 140-240 mg/kg) metronomic administration (every 6 days) were performed in tumor-bearing mice. Tumor evolution was monitored at 7 T with MRI (T2 -weighted, diffusion-weighted imaging) and MRSI-based nosological images of response to therapy. Obtained results demonstrated that both treatments resulted in increased survival (38.6 ± 21.0 days, n = 30) compared with control (19.4 ± 2.4 days, n = 18). Best results were obtained with 140 mg/kg TMZ (treated, 44.9 ± 29.0 days, n = 12, versus control, 19.3 ± 2.3 days, n = 12), achieving a longer survival rate than previous group work using three cycles of TMZ therapy at 60 mg/kg (33.9 ± 11.7 days, n = 38). Additional interesting findings were, first, clear edema appearance during chemotherapeutic treatment, second, the ability to apply the semi-supervised source analysis previously developed in our group for non-invasive TMZ therapy response monitoring to detect CPA-induced response, and third, the necropsy findings in mice cured from GBM after high TMZ cumulative dosage (980-1400 mg/kg), which demonstrated lymphoma incidence. In summary, every 6 day administration schedule of TMZ or CPA improves survival in orthotopic GL261 GBM with respect to controls or non-metronomic therapy, in partial agreement with previous work on subcutaneous GL261.
Collapse
Affiliation(s)
- Laura Ferrer-Font
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Nuria Arias-Ramos
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Silvia Lope-Piedrafita
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Servei de Ressonància Magnètica Nuclear, Edifici C, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Margarida Julià-Sapé
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Martí Pumarola
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Edifici V, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Carles Arús
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Metabolomics of Therapy Response in Preclinical Glioblastoma: A Multi-Slice MRSI-Based Volumetric Analysis for Noninvasive Assessment of Temozolomide Treatment. Metabolites 2017; 7:metabo7020020. [PMID: 28524099 PMCID: PMC5487991 DOI: 10.3390/metabo7020020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/30/2017] [Accepted: 05/15/2017] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common aggressive primary brain tumor in adults, with a short survival time even after aggressive therapy. Non-invasive surrogate biomarkers of therapy response may be relevant for improving patient survival. Previous work produced such biomarkers in preclinical GBM using semi-supervised source extraction and single-slice Magnetic Resonance Spectroscopic Imaging (MRSI). Nevertheless, GBMs are heterogeneous and single-slice studies could prevent obtaining relevant information. The purpose of this work was to evaluate whether a multi-slice MRSI approach, acquiring consecutive grids across the tumor, is feasible for preclinical models and may produce additional insight into therapy response. Nosological images were analyzed pixel-by-pixel and a relative responding volume, the Tumor Responding Index (TRI), was defined to quantify response. Heterogeneous response levels were observed and treated animals were ascribed to three arbitrary predefined groups: high response (HR, n = 2), TRI = 68.2 ± 2.8%, intermediate response (IR, n = 6), TRI = 41.1 ± 4.2% and low response (LR, n = 2), TRI = 13.4 ± 14.3%, producing therapy response categorization which had not been fully registered in single-slice studies. Results agreed with the multi-slice approach being feasible and producing an inverse correlation between TRI and Ki67 immunostaining. Additionally, ca. 7-day oscillations of TRI were observed, suggesting that host immune system activation in response to treatment could contribute to the responding patterns detected.
Collapse
|
4
|
Li Y, Liu X, Wei F, Sima DM, Van Cauter S, Himmelreich U, Pi Y, Hu G, Yao Y, Van Huffel S. An advanced MRI and MRSI data fusion scheme for enhancing unsupervised brain tumor differentiation. Comput Biol Med 2017; 81:121-129. [DOI: 10.1016/j.compbiomed.2016.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/09/2016] [Accepted: 12/26/2016] [Indexed: 01/12/2023]
|
5
|
Sauwen N, Sima DM, Van Cauter S, Veraart J, Leemans A, Maes F, Himmelreich U, Van Huffel S. Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI. NMR IN BIOMEDICINE 2015; 28:1599-1624. [PMID: 26458729 DOI: 10.1002/nbm.3413] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 08/17/2015] [Accepted: 08/24/2015] [Indexed: 06/05/2023]
Abstract
Tissue characterization in brain tumors and, in particular, in high-grade gliomas is challenging as a result of the co-existence of several intra-tumoral tissue types within the same region and the high spatial heterogeneity. This study presents a method for the detection of the relevant tumor substructures (i.e. viable tumor, necrosis and edema), which could be of added value for the diagnosis, treatment planning and follow-up of individual patients. Twenty-four patients with glioma [10 low-grade gliomas (LGGs), 14 high-grade gliomas (HGGs)] underwent a multi-parametric MRI (MP-MRI) scheme, including conventional MRI (cMRI), perfusion-weighted imaging (PWI), diffusion kurtosis imaging (DKI) and short-TE (1)H MRSI. MP-MRI parameters were derived: T2, T1 + contrast, fluid-attenuated inversion recovery (FLAIR), relative cerebral blood volume (rCBV), mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK) and the principal metabolites lipids (Lip), lactate (Lac), N-acetyl-aspartate (NAA), total choline (Cho), etc. Hierarchical non-negative matrix factorization (hNMF) was applied to the MP-MRI parameters, providing tissue characterization on a patient-by-patient and voxel-by-voxel basis. Tissue-specific patterns were obtained and the spatial distribution of each tissue type was visualized by means of abundance maps. Dice scores were calculated by comparing tissue segmentation derived from hNMF with the manual segmentation by a radiologist. Correlation coefficients were calculated between each pathologic tissue source and the average feature vector within the corresponding tissue region. For the patients with HGG, mean Dice scores of 78%, 85% and 83% were obtained for viable tumor, the tumor core and the complete tumor region. The mean correlation coefficients were 0.91 for tumor, 0.97 for necrosis and 0.96 for edema. For the patients with LGG, a mean Dice score of 85% and mean correlation coefficient of 0.95 were found for the tumor region. hNMF was also applied to reduced MRI datasets, showing the added value of individual MRI modalities.
Collapse
Affiliation(s)
- Nicolas Sauwen
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium
- iMinds Medical IT, Leuven, Belgium
| | - Diana M Sima
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium
- iMinds Medical IT, Leuven, Belgium
| | - Sofie Van Cauter
- Department of Radiology, University Hospitals of Leuven, Leuven, Belgium
| | - Jelle Veraart
- iMinds Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
- Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY, USA
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Frederik Maes
- iMinds Medical IT, Leuven, Belgium
- KU Leuven, Department of Electrical Engineering (ESAT), PSI Centre for Processing Speech and Images, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Sabine Van Huffel
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium
- iMinds Medical IT, Leuven, Belgium
| |
Collapse
|
6
|
Delgado-Goñi T, Julià-Sapé M, Candiota AP, Pumarola M, Arús C. Molecular imaging coupled to pattern recognition distinguishes response to temozolomide in preclinical glioblastoma. NMR IN BIOMEDICINE 2014; 27:1333-1345. [PMID: 25208348 DOI: 10.1002/nbm.3194] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 07/24/2014] [Accepted: 07/27/2014] [Indexed: 06/03/2023]
Abstract
Non-invasive monitoring of response to treatment of glioblastoma (GB) is nowadays carried out using MRI. MRS and MR spectroscopic imaging (MRSI) constitute promising tools for this undertaking. A temozolomide (TMZ) protocol was optimized for GL261 GB. Sixty-three mice were studied by MRI/MRS/MRSI. The spectroscopic information was used for the classification of control brain and untreated and responding GB, and validated against post-mortem immunostainings in selected animals. A classification system was developed, based on the MRSI-sampled metabolome of normal brain parenchyma, untreated and responding GB, with a 93% accuracy. Classification of an independent test set yielded a balanced error rate of 6% or less. Classifications correlated well both with tumor volume changes detected by MRI after two TMZ cycles and with the histopathological data: a significant decrease (p < 0.05) in the proliferation and mitotic rates and a 4.6-fold increase in the apoptotic rate. A surrogate response biomarker based on the linear combination of 12 spectral features has been found in the MRS/MRSI pattern of treated tumors, allowing the non-invasive classification of growing and responding GL261 GB. The methodology described can be applied to preclinical treatment efficacy studies to test new antitumoral drugs, and begets translational potential for early response detection in clinical studies.
Collapse
Affiliation(s)
- Teresa Delgado-Goñi
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, SM2 5PT, UK
| | | | | | | | | |
Collapse
|
7
|
Tsolaki E, Svolos P, Kousi E, Kapsalaki E, Fezoulidis I, Fountas K, Theodorou K, Kappas C, Tsougos I. Fast spectroscopic multiple analysis (FASMA) for brain tumor classification: a clinical decision support system utilizing multi-parametric 3T MR data. Int J Comput Assist Radiol Surg 2014; 10:1149-66. [PMID: 25024116 DOI: 10.1007/s11548-014-1088-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/05/2014] [Indexed: 01/14/2023]
Abstract
INTRODUCTION A clinical decision support system (CDSS) for brain tumor classification can be used to assist in the diagnosis and grading of brain tumors. A Fast Spectroscopic Multiple Analysis (FASMA) system that uses combinations of multiparametric MRI data sets was developed as a CDSS for brain tumor classification. METHODS MRI metabolic ratios and spectra, from long and short TE, respectively, as well as diffusion and perfusion data were acquired from the intratumoral and peritumoral area of 126 patients with untreated intracranial tumors. These data were categorized based on the pathology, and different machine learning methods were evaluated regarding their classification performance for glioma grading and differentiation of infiltrating versus non-infiltrating lesions. Additional databases were embedded to the system, including updated literature values of the related MR parameters and typical tumor characteristics (imaging and histological), for further comparisons. Custom Graphical User Interface (GUI) layouts were developed to facilitate classification of the unknown cases based on the user's available MR data. RESULTS The highest classification performance was achieved with a support vector machine (SVM) using the combination of all MR features. FASMA correctly classified 89 and 79% in the intratumoral and peritumoral area, respectively, for cases from an independent test set. FASMA produced the correct diagnosis, even in the misclassified cases, since discrimination between infiltrative versus non-infiltrative cases was possible. CONCLUSIONS FASMA is a prototype CDSS, which integrates complex quantitative MR data for brain tumor characterization. FASMA was developed as a diagnostic assistant that provides fast analysis, representation and classification for a set of MR parameters. This software may serve as a teaching tool on advanced MRI techniques, as it incorporates additional information regarding typical tumor characteristics derived from the literature.
Collapse
Affiliation(s)
- Evangelia Tsolaki
- Medical Physics Department, Medical School, University of Thessaly, 41110 , Biopolis, Larissa, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tsolaki E, Kousi E, Svolos P, Kapsalaki E, Theodorou K, Kappas C, Tsougos I. Clinical decision support systems for brain tumor characterization using advanced magnetic resonance imaging techniques. World J Radiol 2014; 6:72-81. [PMID: 24778769 PMCID: PMC4000611 DOI: 10.4329/wjr.v6.i4.72] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/23/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023] Open
Abstract
In recent years, advanced magnetic resonance imaging (MRI) techniques, such as magnetic resonance spectroscopy, diffusion weighted imaging, diffusion tensor imaging and perfusion weighted imaging have been used in order to resolve demanding diagnostic problems such as brain tumor characterization and grading, as these techniques offer a more detailed and non-invasive evaluation of the area under study. In the last decade a great effort has been made to import and utilize intelligent systems in the so-called clinical decision support systems (CDSS) for automatic processing, classification, evaluation and representation of MRI data in order for advanced MRI techniques to become a part of the clinical routine, since the amount of data from the aforementioned techniques has gradually increased. Hence, the purpose of the current review article is two-fold. The first is to review and evaluate the progress that has been made towards the utilization of CDSS based on data from advanced MRI techniques. The second is to analyze and propose the future work that has to be done, based on the existing problems and challenges, especially taking into account the new imaging techniques and parameters that can be introduced into intelligent systems to significantly improve their diagnostic specificity and clinical application.
Collapse
|
9
|
Data analysis and tissue type assignment for glioblastoma multiforme. BIOMED RESEARCH INTERNATIONAL 2014; 2014:762126. [PMID: 24724098 PMCID: PMC3958772 DOI: 10.1155/2014/762126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/13/2014] [Accepted: 01/23/2014] [Indexed: 11/18/2022]
Abstract
Glioblastoma multiforme (GBM) is characterized by high infiltration. The interpretation of MRSI data, especially for GBMs, is still challenging. Unsupervised methods based on NMF by Li et al. (2013, NMR in Biomedicine) and Li et al. (2013, IEEE Transactions on Biomedical Engineering) have been proposed for glioma recognition, but the tissue types is still not well interpreted. As an extension of the previous work, a tissue type assignment method is proposed for GBMs based on the analysis of MRSI data and tissue distribution information. The tissue type assignment method uses the values from the distribution maps of all three tissue types to interpret all the information in one new map and color encodes each voxel to indicate the tissue type. Experiments carried out on in vivo MRSI data show the feasibility of the proposed method. This method provides an efficient way for GBM tissue type assignment and helps to display information of MRSI data in a way that is easy to interpret.
Collapse
|
10
|
Ladisa M, Lamura A, Laudadio T. Blind source separation and automatic tissue typing of microdiffraction data by hierarchical nonnegative matrix factorization. J Appl Crystallogr 2013. [DOI: 10.1107/s0021889813021729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
In this article a nonnegative blind source separation technique, known as nonnegative matrix factorization, is applied to microdiffraction data in order to extract characteristic patterns and to determine their spatial distribution in tissue typing problems occurring in bone-tissue engineering. In contrast to other blind source separation methods, nonnegative matrix factorization only requires nonnegative constraints on the extracted sources and corresponding weights, which makes it suitable for the analysis of data occurring in a variety of applications. In particular, here nonnegative matrix factorization is hierarchically applied to two-dimensional meshes of X-ray diffraction data measured in bone samples with implanted tissue. Such data are characterized by nonnegative profiles and their analysis provides significant information about the structure of possibly new deposited bone tissue. A simulation and real data studies show that the proposed method is able to retrieve the patterns of interest and to provide a reliable and accurate segmentation of the given X-ray diffraction data.
Collapse
|
11
|
Li Y, Sima DM, Van Cauter S, Himmelreich U, Croitor Sava AR, Pi Y, Liu Y, Van Huffel S. Unsupervised nosologic imaging for glioma diagnosis. IEEE Trans Biomed Eng 2012. [PMID: 23192480 DOI: 10.1109/tbme.2012.2228651] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this letter a novel approach to create nosologic images of the brain using magnetic resonance spectroscopic imaging (MRSI) data in an unsupervised way is presented. Different tissue patterns are identified from the MRSI data using nonnegative matrix factorization and are then coded as different primary colors (i.e. red, green, and blue) in an RGB image, so that mixed tissue regions are automatically visualized as mixtures of primary colors. The approach is useful in assisting glioma diagnosis, where several tissue patterns such as normal, tumor, and necrotic tissue can be present in the same voxel/spectrum. Error-maps based on linear least squares estimation are computed for each nosologic image to provide additional reliability information, which may help clinicians in decision making. Tests on in vivo MRSI data show the potential of this new approach.
Collapse
Affiliation(s)
- Yuqian Li
- School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; Department of Electrical Engineering and IBBT-Future Health Department, Katholieke Universiteit Leuven, Leuven 3001, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Simões RV, Ortega-Martorell S, Delgado-Goñi T, Le Fur Y, Pumarola M, Candiota AP, Martín J, Stoyanova R, Cozzone PJ, Julià-Sapé M, Arús C. Improving the classification of brain tumors in mice with perturbation enhanced (PE)-MRSI. Integr Biol (Camb) 2011; 4:183-91. [PMID: 22193155 DOI: 10.1039/c2ib00079b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Classifiers based on statistical pattern recognition analysis of MRSI data are becoming important tools for the non-invasive diagnosis of human brain tumors. Here we investigate the potential interest of perturbation-enhanced MRSI (PE-MRSI), in this case acute hyperglycemia, for improving the discrimination between mouse brain MRS patterns of glioblastoma multiforme (GBM), oligodendroglioma (ODG), and non-tumor brain parenchyma (NT). Six GBM-bearing mice and three ODG-bearing mice were scanned at 7 Tesla by PRESS-MRSI with 12 and 136 ms echo-time, during euglycemia (Eug) and also during induced acute hyperglycemia (Hyp), generating altogether four datasets per animal (echo time + glycemic condition): 12Eug, 136Eug, 12Hyp, and 136Hyp. For classifier development all spectral vectors (spv) selected from the MRSI matrix were unit length normalized (UL2) and used either as a training set (76 GBM spv, four mice; 70 ODG spv, two mice; 54 NT spv) or as an independent testing set (61 GBM spv, two mice; 31 ODG, one mouse; 23 NT spv). All Fisher's LDA classifiers obtained were evaluated as far as their descriptive performance-correctly classified cases of the training set (bootstrapping)-and predictive accuracy-balanced error rate of independent testing set classification. MRSI-based classifiers at 12Hyp were consistently more efficient in separating GBM, ODG, and NT regions, with overall accuracies always >80% and up to 95-96%; remaining classifiers were within the 48-85% range. This was also confirmed by user-independent selection of training and testing sets, using leave-one-out (LOO). This highlights the potential interest of perturbation-enhanced MRSI protocols for improving the non-invasive characterization of preclinical brain tumors.
Collapse
Affiliation(s)
- Rui Vasco Simões
- Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fuster-Garcia E, Navarro C, Vicente J, Tortajada S, García-Gómez JM, Sáez C, Calvar J, Griffiths J, Julià-Sapé M, Howe FA, Pujol J, Peet AC, Heerschap A, Moreno-Torres À, Martínez-Bisbal MC, Martínez-Granados B, Wesseling P, Semmler W, Capellades J, Majós C, Alberich-Bayarri À, Capdevila A, Monleón D, Martí-Bonmatí L, Arús C, Celda B, Robles M. Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2011; 24:35-42. [DOI: 10.1007/s10334-010-0241-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 10/06/2010] [Accepted: 11/17/2010] [Indexed: 01/13/2023]
|
14
|
Luts J, Laudadio T, Idema AJ, Simonetti AW, Heerschap A, Vandermeulen D, Suykens JAK, Van Huffel S. Nosologic imaging of the brain: segmentation and classification using MRI and MRSI. NMR IN BIOMEDICINE 2009; 22:374-390. [PMID: 19105242 DOI: 10.1002/nbm.1347] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A new technique is presented to create nosologic images of the brain based on magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI). A nosologic image summarizes the presence of different tissues and lesions in a single image by color coding each voxel or pixel according to the histopathological class it is assigned to. The proposed technique applies advanced methods from image processing as well as pattern recognition to segment and classify brain tumors. First, a registered brain atlas and a subject-specific abnormal tissue prior, obtained from MRSI data, are used for the segmentation. Next, the detected abnormal tissue is classified based on supervised pattern recognition methods. Class probabilities are also calculated for the segmented abnormal region. Compared to previous approaches, the new framework is more flexible and able to better exploit spatial information leading to improved nosologic images. The combined scheme offers a new way to produce high-resolution nosologic images, representing tumor heterogeneity and class probabilities, which may help clinicians in decision making.
Collapse
Affiliation(s)
- Jan Luts
- Department of Electrical Engineering (ESAT), Research Division SCD, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2008; 22:5-18. [PMID: 18989714 PMCID: PMC2797843 DOI: 10.1007/s10334-008-0146-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 11/02/2022]
Abstract
JUSTIFICATION Automatic brain tumor classification by MRS has been under development for more than a decade. Nonetheless, to our knowledge, there are no published evaluations of predictive models with unseen cases that are subsequently acquired in different centers. The multicenter eTUMOUR project (2004-2009), which builds upon previous expertise from the INTERPRET project (2000-2002) has allowed such an evaluation to take place. MATERIALS AND METHODS A total of 253 pairwise classifiers for glioblastoma, meningioma, metastasis, and low-grade glial diagnosis were inferred based on 211 SV short TE INTERPRET MR spectra obtained at 1.5 T (PRESS or STEAM, 20-32 ms) and automatically pre-processed. Afterwards, the classifiers were tested with 97 spectra, which were subsequently compiled during eTUMOUR. RESULTS In our results based on subsequently acquired spectra, accuracies of around 90% were achieved for most of the pairwise discrimination problems. The exception was for the glioblastoma versus metastasis discrimination, which was below 78%. A more clear definition of metastases may be obtained by other approaches, such as MRSI + MRI. CONCLUSIONS The prediction of the tumor type of in-vivo MRS is possible using classifiers developed from previously acquired data, in different hospitals with different instrumentation under the same acquisition protocols. This methodology may find application for assisting in the diagnosis of new brain tumor cases and for the quality control of multicenter MRS databases.
Collapse
|