1
|
Magat J, Fouillet A, Constantin M, Haliot K, Naulin J, El Hamrani D, Benoist D, Charron S, Walton R, Bernus O, Quesson B. 3D magnetization transfer (MT) for the visualization of cardiac free-running Purkinje fibers: an ex vivo proof of concept. MAGMA (NEW YORK, N.Y.) 2021; 34:605-618. [PMID: 33484367 PMCID: PMC8338918 DOI: 10.1007/s10334-020-00905-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES We investigate the possibility to exploit high-field MRI to acquire 3D images of Purkinje network which plays a crucial role in cardiac function. Since Purkinje fibers (PF) have a distinct cellular structure and are surrounded by connective tissue, we investigated conventional contrast mechanisms along with the magnetization transfer (MT) imaging technique to improve image contrast between ventricular structures of differing macromolecular content. METHODS Three fixed porcine ventricular samples were used with free-running PFs on the endocardium. T1, T2*, T2, and M0 were evaluated on 2D slices for each sample at 9.4 T. MT parameters were optimized using hard pulses with different amplitudes, offset frequencies and durations. The cardiac structure was assessed through 2D and 3D T1w images with isotropic resolutions of 150 µm. Histology, immunofluorescence, and qPCR were performed to analyze collagen contents of cardiac tissue and PF. RESULTS An MT preparation module of 350 ms duration inserted into the sequence with a B1 = 10 µT and frequency offset = 3000 Hz showed the best contrast, approximately 0.4 between PFs and myocardium. Magnetization transfer ratio (MTR) appeared higher in the cardiac tissue (MTR = 44.7 ± 3.5%) than in the PFs (MTR = 25.2 ± 6.3%). DISCUSSION MT significantly improves contrast between PFs and ventricular myocardium and appears promising for imaging the 3D architecture of the Purkinje network.
Collapse
Affiliation(s)
- Julie Magat
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Hopital Xavier Arnozan, Avenue du Haut Lévêque, 33604, Pessac cedex, France.
- Centre de Recherche Cardio-Thoracique de Bordeaux Inserm, U1045, Université de Bordeaux, 33000, Bordeaux, France.
| | - Arnaud Fouillet
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Hopital Xavier Arnozan, Avenue du Haut Lévêque, 33604, Pessac cedex, France
- Centre de Recherche Cardio-Thoracique de Bordeaux Inserm, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - Marion Constantin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Hopital Xavier Arnozan, Avenue du Haut Lévêque, 33604, Pessac cedex, France
- Centre de Recherche Cardio-Thoracique de Bordeaux Inserm, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - Kylian Haliot
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Hopital Xavier Arnozan, Avenue du Haut Lévêque, 33604, Pessac cedex, France
- Centre de Recherche Cardio-Thoracique de Bordeaux Inserm, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - Jérôme Naulin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Hopital Xavier Arnozan, Avenue du Haut Lévêque, 33604, Pessac cedex, France
- Centre de Recherche Cardio-Thoracique de Bordeaux Inserm, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - Dounia El Hamrani
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Hopital Xavier Arnozan, Avenue du Haut Lévêque, 33604, Pessac cedex, France
- Centre de Recherche Cardio-Thoracique de Bordeaux Inserm, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - David Benoist
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Hopital Xavier Arnozan, Avenue du Haut Lévêque, 33604, Pessac cedex, France
- Centre de Recherche Cardio-Thoracique de Bordeaux Inserm, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - Sabine Charron
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Hopital Xavier Arnozan, Avenue du Haut Lévêque, 33604, Pessac cedex, France
- Centre de Recherche Cardio-Thoracique de Bordeaux Inserm, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - Richard Walton
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Hopital Xavier Arnozan, Avenue du Haut Lévêque, 33604, Pessac cedex, France
- Centre de Recherche Cardio-Thoracique de Bordeaux Inserm, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - Olivier Bernus
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Hopital Xavier Arnozan, Avenue du Haut Lévêque, 33604, Pessac cedex, France
- Centre de Recherche Cardio-Thoracique de Bordeaux Inserm, U1045, Université de Bordeaux, 33000, Bordeaux, France
| | - Bruno Quesson
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Hopital Xavier Arnozan, Avenue du Haut Lévêque, 33604, Pessac cedex, France
- Centre de Recherche Cardio-Thoracique de Bordeaux Inserm, U1045, Université de Bordeaux, 33000, Bordeaux, France
| |
Collapse
|
2
|
Investigation of the magnetic susceptibility properties of fresh and fixed mouse heart, liver, skeletal muscle and brain tissue. Phys Med 2021; 88:37-44. [PMID: 34171574 DOI: 10.1016/j.ejmp.2021.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Several magnetic resonance imaging (MRI) techniques exploit the difference in magnetic susceptibilities between tissues, but systematic measurements of tissue susceptibility are lacking. Furthermore, there is the question as to whether chemical fixation that is used for ex vivo MRI studies, affects the magnetic properties of the tissue. Here, we determined the magnetic susceptibility and water content of fresh and chemically fixed mouse tissue. METHODS Mass susceptibility of brain, heart, liver and skeletal muscle samples were determined on a vibrating sample magnetometer at room temperature. Measurements at 50, 125, 200 and 295 K were performed to assess the temperature dependence of susceptibility. Moreover, we measured water content of fresh and fixed samples. RESULTS All samples show mass susceptibilities between -0.068 and -1.929 × 10-8 m3/kg, compared to -9.338 × 10-9 m3/kg of double distilled water. Heart tissue has a more diamagnetic susceptibility than the other tissues. Compared to fresh tissue, fixed tissue has a less diamagnetic susceptibility. Fixed tissue was not different in water content to fresh tissue and showed no consistent dependence of susceptibility with temperature, whereas fresh tissue shows a decrease to at least 125 K, indicative of a paramagnetic component. CONCLUSIONS Biological tissues are diamagnetic in comparison to water, where the heart is more diamagnetic than the other tissues, with paramagnetic contributions. Fixation rendered tissue less diamagnetic compared to fresh tissue. Our measurements revealed differences in tissue susceptibility between VSM and QSM, inviting more research to compare susceptibility-based MRI methods with physical measurements of tissue susceptibility.
Collapse
|
3
|
Dejea H, Bonnin A, Cook AC, Garcia-Canadilla P. Cardiac multi-scale investigation of the right and left ventricle ex vivo: a review. Cardiovasc Diagn Ther 2020; 10:1701-1717. [PMID: 33224784 DOI: 10.21037/cdt-20-269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The heart is a complex multi-scale system composed of components integrated at the subcellular, cellular, tissue and organ levels. The myocytes, the contractile elements of the heart, form a complex three-dimensional (3D) network which enables propagation of the electrical signal that triggers the contraction to efficiently pump blood towards the whole body. Cardiovascular diseases (CVDs), a major cause of mortality in developed countries, often lead to cardiovascular remodeling affecting cardiac structure and function at all scales, from myocytes and their surrounding collagen matrix to the 3D organization of the whole heart. As yet, there is no consensus as to how the myocytes are arranged and packed within their connective tissue matrix, nor how best to image them at multiple scales. Cardiovascular imaging is routinely used to investigate cardiac structure and function as well as for the evaluation of cardiac remodeling in CVDs. For a complete understanding of the relationship between structural remodeling and cardiac dysfunction in CVDs, multi-scale imaging approaches are necessary to achieve a detailed description of ventricular architecture along with cardiac function. In this context, ventricular architecture has been extensively studied using a wide variety of imaging techniques: ultrasound (US), optical coherence tomography (OCT), microscopy (confocal, episcopic, light sheet, polarized light), magnetic resonance imaging (MRI), micro-computed tomography (micro-CT) and, more recently, synchrotron X-ray phase contrast imaging (SR X-PCI). Each of these techniques have their own set of strengths and weaknesses, relating to sample size, preparation, resolution, 2D/3D capabilities, use of contrast agents and possibility of performing together with in vivo studies. Therefore, the combination of different imaging techniques to investigate the same sample, thus taking advantage of the strengths of each method, could help us to extract the maximum information about ventricular architecture and function. In this review, we provide an overview of available and emerging cardiovascular imaging techniques for assessing myocardial architecture ex vivo and discuss their utility in being able to quantify cardiac remodeling, in CVDs, from myocyte to whole organ.
Collapse
Affiliation(s)
- Hector Dejea
- Paul Scherrer Institut, Villigen PSI, Villigen, Switzerland.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Anne Bonnin
- Paul Scherrer Institut, Villigen PSI, Villigen, Switzerland
| | - Andrew C Cook
- Institute of Cardiovascular Science, University College London, London, UK
| | - Patricia Garcia-Canadilla
- Institute of Cardiovascular Science, University College London, London, UK.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
4
|
Nishitani S, Torii N, Imai H, Haraguchi R, Yamada S, Takakuwa T. Development of Helical Myofiber Tracts in the Human Fetal Heart: Analysis of Myocardial Fiber Formation in the Left Ventricle From the Late Human Embryonic Period Using Diffusion Tensor Magnetic Resonance Imaging. J Am Heart Assoc 2020; 9:e016422. [PMID: 32993423 PMCID: PMC7792405 DOI: 10.1161/jaha.120.016422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Detection of the fiber orientation pattern of the myocardium using diffusion tensor magnetic resonance imaging lags ≈12 weeks of gestational age (WGA) behind fetal myocardial remodeling with invasion by the developing coronary vasculature (8 WGA). We aimed to use diffusion tensor magnetic resonance imaging tractography to characterize the evolution of fiber architecture in the developing human heart from the later embryonic period. Methods and Results Twenty human specimens (8–24 WGA) from the Kyoto Collection of Human Embryos and Fetuses, including specimens from the embryonic period (Carnegie stages 20–23), were used. Diffusion tensor magnetic resonance imaging data were acquired with a 7T magnetic resonance system. Fractional anisotropy and helix angle were calculated using standard definitions. In all samples, the fibers ran helically in an organized pattern in both the left and right ventricles. A smooth transmural change in helix angle values (from positive to negative) was detected in all 16 directions of the ventricles. This feature was observed in almost all small (Carnegie stage 23) and large samples. A higher fractional anisotropy value was detected at the outer side of the anterior wall and septum at Carnegie stage 20 to 22, which spread around the ventricular wall at Carnegie stage 23 and in the early fetal samples (11–12 WGA). The fractional anisotropy value of the left ventricular walls decreased in samples with ≥13 WGA, which remained low (≈0.09) in larger samples. Conclusions From the human late embryonic period (from 8 WGA), the helix angle arrangement of the myocardium is comparable to that of the adult, indicating that the myocardial structure blueprint, organization, and integrity are already formed.
Collapse
Affiliation(s)
- Saori Nishitani
- Human Health Science Graduate School of Medicine Kyoto University Kyoto Japan
| | - Narisa Torii
- Human Health Science Graduate School of Medicine Kyoto University Kyoto Japan
| | - Hirohiko Imai
- Department of Systems Science Graduate School of Informatics Kyoto University Kyoto Japan
| | - Ryo Haraguchi
- Graduate School of Applied Informatics University of Hyogo Kobe Japan
| | - Shigehito Yamada
- Human Health Science Graduate School of Medicine Kyoto University Kyoto Japan.,Congenital Anomaly Research Center Graduate School of Medicine Kyoto University Kyoto Japan
| | - Tetsuya Takakuwa
- Human Health Science Graduate School of Medicine Kyoto University Kyoto Japan
| |
Collapse
|
5
|
Krämer M, Kollert MR, Brisson NM, Maggioni MB, Duda GN, Reichenbach JR. Immersion of Achilles tendon in phosphate-buffered saline influences T 1 and T 2 * relaxation times: An ex vivo study. NMR IN BIOMEDICINE 2020; 33:e4288. [PMID: 32141159 DOI: 10.1002/nbm.4288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Robust mapping of relaxation parameters in ex vivo tissues is based on hydration and therefore requires control of the tissue treatment to ensure tissue integrity and consistent measurement conditions over long periods of time. One way to maintain the hydration of ex vivo tendon tissue is to immerse the samples in a buffer solution. To this end, various buffer solutions have been proposed; however, many appear to influence the tissue relaxation times, especially with prolonged exposure. In this work, ovine Achilles tendon tissue was used as a model to investigate the effect of immersion in phosphate-buffered saline (PBS) and the effects on the T1 and T2* relaxation times. Ex vivo samples were measured at 0 (baseline), 30 and 67 hours after immersion in PBS. Ultrashort echo time (UTE) imaging was performed using variable flip angle and echo train-shifted multi-echo imaging for T1 and T2* estimation, respectively. Compared with baseline, both T1 and T2* relaxation time constants increased significantly after 30 hours of immersion. T2* continued to show a significant increase between 30 and 67 hours. Both T1 and T2* tended to approach saturation at 67 hours. These results exemplify the relevance of stringently controlled tissue preparation and preservation techniques, both before and during MRI experiments.
Collapse
Affiliation(s)
- Martin Krämer
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Matthias R Kollert
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BIH), Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nicholas M Brisson
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marta B Maggioni
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BIH), Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Michael Stifel Center Jena for Data-driven and Simulation Science, Friedrich-Schiller-University Jena, Germany
| |
Collapse
|
6
|
Giannakidis A, Gullberg GT. Transmural Remodeling of Cardiac Microstructure in Aged Spontaneously Hypertensive Rats by Diffusion Tensor MRI. Front Physiol 2020; 11:265. [PMID: 32296341 PMCID: PMC7136532 DOI: 10.3389/fphys.2020.00265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
Abstract
The long-standing high blood pressure (also known as hypertension) overworks the heart. Microstructural remodeling is a key factor of hypertensive heart disease progression. Diffusion tensor magnetic resonance imaging (DT-MRI) is a powerful tool for the rapid noninvasive nondestructive delineation of the cardiomyocyte organization. The spontaneously hypertensive rat (SHR) is a well-established model of genetic hypertension. The goal of this study was to employ high-resolution DT-MRI and the SHR animal model to assess the transmural layer-specific remodeling of myocardial microstructure associated with hypertension. Ex vivo experiments were performed on excised formalin-fixed hearts of aged SHRs (n = 4) and age-matched controls (n = 4). The DT-MRI-derived fractional anisotropy (FA), longitudinal diffusivity (λL), transversal diffusivity (λT), and mean diffusivity (MD) served as the readout parameters investigated at three transmural zones (i.e., endocardium, mesocardium, and epicardium). The helix angles (HAs) of the aggregated cardiomyocytes and the orientation of laminar sheetlets were also studied. Compared with controls, the SHRs exhibited decreased epicardial FA, while FA changes in the other two transmural regions were insignificant. No substantial differences were observed in the diffusivity parameters and the transmural course of HAs between the two groups. A consistent distribution pattern of laminar sheetlet orientation was not identified for either group. Our findings are in line with the known cellular microstructure from early painstaking histological studies. Biophysical explanations of the study outcomes are provided. In conclusion, our experimental findings indicate that the epicardial microstructure is more vulnerable to high blood pressure leading to more pronounced changes in this region during remodeling. DT-MRI is well-suited for elucidating these alterations. The revealed transmural nonuniformity of myocardial reorganization may shed light on the mechanisms of the microstructure-function relationship in hypertension progression. Our results provide insights into the management of patients with systemic arterial hypertension, thus prevent the progression toward heart failure. The findings of this study should be acknowledged by electromechanical models of the heart that simulate the specific cardiac pathology.
Collapse
Affiliation(s)
- Archontis Giannakidis
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Grant T Gullberg
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Vučković I, Nayfeh T, Mishra PK, Periyanan S, Sussman CR, Kline TL, Macura S. Influence of water based embedding media composition on the relaxation properties of fixed tissue. Magn Reson Imaging 2019; 67:7-17. [PMID: 31821849 DOI: 10.1016/j.mri.2019.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND In MRI of formalin-fixed tissue one of the problems is the dependence of tissue relaxation properties on formalin composition and composition of embedding medium (EM) used for scanning. In this study, we investigated molecular mechanisms by which the EM composition affects T2 relaxation directly and T1 relaxation indirectly. OBJECTIVE To identify principal components of formaldehyde based EM and the mechanism by which they affect relaxation properties of fixed tissue. METHODS We recorded high resolution 1H NMR spectra of common formalin fixatives at temperatures in the range of 5 °C to 45 °C. We also measured T1 and T2 relaxation times of various organs of formalin fixed (FF) zebrafish at 7 T at 21 °C and 31 °C in several EM with and without fixative or gadolinium contrast agents. RESULTS We showed that the major source of T2 variability is chemical exchange between protons from EM hydroxyls and water, mediated by the presence of phosphate ions. The exchange rate increases with temperature, formaldehyde concentration in EM and phosphate concentration in EM. Depending on which side of the coalescence the system resides, the temperature increase can lead to either shortening or prolongation of T2, or to no noticeable change at all when very close to the coalescence. Chemical exchange can be minimized by washing out from EM the fixative, the phosphate or both. CONCLUSION The dependence of T2 in fixed tissue on the fixative origin and composition described in prior literature could be attributed to the phosphate buffer accelerated chemical exchange among the fixative hydroxyls and the tissue water. More consistent results in the relaxation measurements could be obtained by stricter control of the fixative composition or by scanning fixed tissue in PBS without fixative.
Collapse
Affiliation(s)
- Ivan Vučković
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Tarek Nayfeh
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Prasanna K Mishra
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy L Kline
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Slobodan Macura
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
8
|
Nielles-Vallespin S, Scott A, Ferreira P, Khalique Z, Pennell D, Firmin D. Cardiac Diffusion: Technique and Practical Applications. J Magn Reson Imaging 2019; 52:348-368. [PMID: 31482620 DOI: 10.1002/jmri.26912] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
The 3D microarchitecture of the cardiac muscle underlies the mechanical and electrical properties of the heart. Cardiomyocytes are arranged helically through the depth of the wall, and their shortening leads to macroscopic torsion, twist, and shortening during cardiac contraction. Furthermore, cardiomyocytes are organized in sheetlets separated by shear layers, which reorientate, slip, and shear during macroscopic left ventricle (LV) wall thickening. Cardiac diffusion provides a means for noninvasive interrogation of the 3D microarchitecture of the myocardium. The fundamental principle of MR diffusion is that an MRI signal is attenuated by the self-diffusion of water in the presence of large diffusion-encoding gradients. Since water molecules are constrained by the boundaries in biological tissue (cell membranes, collagen layers, etc.), depicting their diffusion behavior elucidates the shape of the myocardial microarchitecture they are embedded in. Cardiac diffusion therefore provides a noninvasive means to understand not only the dynamic changes in cardiac microstructure of healthy myocardium during cardiac contraction but also the pathophysiological changes in the presence of disease. This unique and innovative technology offers tremendous potential to enable improved clinical diagnosis through novel microstructural and functional assessment. in vivo cardiac diffusion methods are immediately translatable to patients, opening new avenues for diagnostic investigation and treatment evaluation in a range of clinically important cardiac pathologies. This review article describes the 3D microstructure of the LV, explains in vivo and ex vivo cardiac MR diffusion acquisition and postprocessing techniques, as well as clinical applications to date. Level of Evidence: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:348-368.
Collapse
Affiliation(s)
- Sonia Nielles-Vallespin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Andrew Scott
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Pedro Ferreira
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Zohya Khalique
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Dudley Pennell
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - David Firmin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| |
Collapse
|
9
|
Eresen A, Hafsa NE, Alic L, Birch SM, Griffin JF, Kornegay JN, Ji JX. Muscle percentage index as a marker of disease severity in golden retriever muscular dystrophy. Muscle Nerve 2019; 60:621-628. [PMID: 31397906 DOI: 10.1002/mus.26657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Golden retriever muscular dystrophy (GRMD) is a spontaneous X-linked canine model of Duchenne muscular dystrophy that resembles the human condition. Muscle percentage index (MPI) is proposed as an imaging biomarker of disease severity in GRMD. METHODS To assess MPI, we used MRI data acquired from nine GRMD samples using a 4.7 T small-bore scanner. A machine learning approach was used with eight raw quantitative mapping of MRI data images (T1m, T2m, two Dixon maps, and four diffusion tensor imaging maps), three types of texture descriptors (local binary pattern, gray-level co-occurrence matrix, gray-level run-length matrix), and a gradient descriptor (histogram of oriented gradients). RESULTS The confusion matrix, averaged over all samples, showed 93.5% of muscle pixels classified correctly. The classification, optimized in a leave-one-out cross-validation, provided an average accuracy of 80% with a discrepancy in overestimation for young (8%) and old (20%) dogs. DISCUSSION MPI could be useful for quantifying GRMD severity, but careful interpretation is needed for severe cases.
Collapse
Affiliation(s)
- Aydin Eresen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
| | - Noor E Hafsa
- Department of Electrical and Computer Engineering, Texas A&M University, Doha, Qatar
| | - Lejla Alic
- Department of Electrical and Computer Engineering, Texas A&M University, Doha, Qatar.,Magnetic Detection & Imaging Group, Faculty of Science & Technology, University of Twente, Enschede, The Netherlands
| | - Sharla M Birch
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - John F Griffin
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Joe N Kornegay
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Jim X Ji
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas.,Department of Electrical and Computer Engineering, Texas A&M University, Doha, Qatar
| |
Collapse
|
10
|
Kalanjati VP, Purwantari KE, Prasetiowati L. Aluminium foil dampened the adverse effect of 2100 MHz mobile phone-induced radiation on the blood parameters and myocardium in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11686-11689. [PMID: 30806932 DOI: 10.1007/s11356-019-04601-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Mobile phones emit a radiofrequency radiation (RFR) that might have adverse health effects. We aimed to investigate the possible protective effects of aluminium foil (AF) as a physical shield against the RFR from mobile phones on the blood parameters and the myocardium in rats. The effects of whole body 2100 MHz with 0.84-1.86 W/kg of SAR, 4 h/day for 30 days Global System for Mobile Communications (GSM)-RFR exposure for 4 h/day for 30 days on blood parameters (i.e. haemoglobin, leucocytes, thrombocytes, erythrocyte sedimentation rate, white blood cell differential count, corticosterone, CKMB), and the histology of myocardium were investigated. Three-month-old male rats (n = 32) were studied and randomised equally in the following four groups: K1 (non-AF non-RFR control), K2 (AF non-RFR control), P1 (non-AF RFR-exposed), P2 (AF RFR-exposed). Data were analysed with level of significance of p < 0.05. In P1, lower leucocytes and neutrophils counts with high corticosterone levels were found compared with the control groups, whilst a significantly higher CKMB was observed compared with P2 (p = 0.034). Lower cardiomyocyte counts congruent to the area fraction of the non-fibrotic myocardium were observed in P1 compared with the other groups (p < 0.01). AF might decrease the inflammatory-oxidative stress on rodent's blood cells and myocardium induced by the exposures of radiofrequency radiation of the mobile phones.
Collapse
Affiliation(s)
- Viskasari P Kalanjati
- Department of Anatomy and Histology, Faculty of Medicine, Universitas Airlangga, Jl. Mayjen Prof. Moestopo No. 47, Surabaya, East Java, 60131, Indonesia.
| | - Kusuma E Purwantari
- Department of Anatomy and Histology, Faculty of Medicine, Universitas Airlangga, Jl. Mayjen Prof. Moestopo No. 47, Surabaya, East Java, 60131, Indonesia
| | - Lucky Prasetiowati
- Department of Anatomy and Histology, Faculty of Medicine, Universitas Airlangga, Jl. Mayjen Prof. Moestopo No. 47, Surabaya, East Java, 60131, Indonesia
| |
Collapse
|
11
|
Lohr D, Terekhov M, Weng AM, Schroeder A, Walles H, Schreiber LM. Spin echo based cardiac diffusion imaging at 7T: An ex vivo study of the porcine heart at 7T and 3T. PLoS One 2019; 14:e0213994. [PMID: 30908510 PMCID: PMC6433440 DOI: 10.1371/journal.pone.0213994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/05/2019] [Indexed: 02/03/2023] Open
Abstract
Purpose of this work was to assess feasibility of cardiac diffusion tensor imaging (cDTI) at 7 T in a set of healthy, unfixed, porcine hearts using various parallel imaging acceleration factors and to compare SNR and derived cDTI metrics to a reference measured at 3 T. Magnetic resonance imaging was performed on 7T and 3T whole body systems using a spin echo diffusion encoding sequence with echo planar imaging readout. Five reference (b = 0 s/mm2) images and 30 diffusion directions (b = 700 s/mm2) were acquired at both 7 T and 3 T using a GRAPPA acceleration factor R = 1. Scans at 7 T were repeated using R = 2, R = 3, and R = 4. SNR evaluation was based on 30 reference (b = 0 s/mm2) images of 30 slices of the left ventricle and cardiac DTI metrics were compared within AHA segmentation. The number of hearts scanned at 7 T and 3 T was n = 11. No statistically significant differences were found for evaluated helix angle, secondary eigenvector angle, fractional anisotropy and apparent diffusion coefficient at the different field strengths, given sufficiently high SNR and geometrically undistorted images. R≥3 was needed to reduce susceptibility induced geometric distortions to an acceptable amount. On average SNR in myocardium of the left ventricle was increased from 29±3 to 44±6 in the reference image (b = 0 s/mm2) when switching from 3 T to 7 T. Our study demonstrates that high resolution, ex vivo cDTI is feasible at 7 T using commercial hardware.
Collapse
Affiliation(s)
- David Lohr
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maxim Terekhov
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Max Weng
- Department of Diagnostic and Interventional Radiology, University of Wuerzburg, Wuerzburg, Germany
| | - Anja Schroeder
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Heike Walles
- Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), Wuerzburg, Germany
| | - Laura Maria Schreiber
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
12
|
Dusek P, Madai VI, Huelnhagen T, Bahn E, Matej R, Sobesky J, Niendorf T, Acosta-Cabronero J, Wuerfel J. The choice of embedding media affects image quality, tissue R 2 * , and susceptibility behaviors in post-mortem brain MR microscopy at 7.0T. Magn Reson Med 2018; 81:2688-2701. [PMID: 30506939 DOI: 10.1002/mrm.27595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/19/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE The quality and precision of post-mortem MRI microscopy may vary depending on the embedding medium used. To investigate this, our study evaluated the impact of 5 widely used media on: (1) image quality, (2) contrast of high spatial resolution gradient-echo (T1 and T2 * -weighted) MR images, (3) effective transverse relaxation rate (R2 * ), and (4) quantitative susceptibility measurements (QSM) of post-mortem brain specimens. METHODS Five formaldehyde-fixed brain slices were scanned using 7.0T MRI in: (1) formaldehyde solution (formalin), (2) phosphate-buffered saline (PBS), (3) deuterium oxide (D2 O), (4) perfluoropolyether (Galden), and (5) agarose gel. SNR and contrast-to-noise ratii (SNR/CNR) were calculated for cortex/white matter (WM) and basal ganglia/WM regions. In addition, median R2 * and QSM values were extracted from caudate nucleus, putamen, globus pallidus, WM, and cortical regions. RESULTS PBS, Galden, and agarose returned higher SNR/CNR compared to formalin and D2 O. Formalin fixation, and its use as embedding medium for scanning, increased tissue R2 * . Imaging with agarose, D2 O, and Galden returned lower R2 * values than PBS (and formalin). No major QSM offsets were observed, although spatial variance was increased (with respect to R2 * behaviors) for formalin and agarose. CONCLUSIONS Embedding media affect gradient-echo image quality, R2 * , and QSM in differing ways. In this study, PBS embedding was identified as the most stable experimental setup, although by a small margin. Agarose and Galden were preferred to formalin or D2 O embedding. Formalin significantly increased R2 * causing noisier data and increased QSM variance.
Collapse
Affiliation(s)
- Petr Dusek
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic.,Department of Radiology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic
| | - Vince Istvan Madai
- Department of Neurology and Center for Stroke Research Berlin (CSB), Charité-Universitaetsmedizin, Berlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Erik Bahn
- Institute of Neuropathology, University Medicine Göttingen, Göttingen, Germany
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Thomayer Hospital, Praha, Czech Republic.,Department of Pathology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic
| | - Jan Sobesky
- Department of Neurology and Center for Stroke Research Berlin (CSB), Charité-Universitaetsmedizin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité-Universitaetsmedizin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité-Universitaetsmedizin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Julio Acosta-Cabronero
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jens Wuerfel
- NeuroCure Clinical Research Center, Charité-Universitaetsmedizin, Berlin, Germany.,Medical Imaging Analysis Center AG, Basel, Switzerland.,Department of Biomedical Engineering, University Basel, Switzerland
| |
Collapse
|
13
|
Gomez AD, Zou H, Bowen ME, Liu X, Hsu EW, McKellar SH. Right Ventricular Fiber Structure as a Compensatory Mechanism in Pressure Overload: A Computational Study. J Biomech Eng 2018; 139:2621589. [PMID: 28418458 DOI: 10.1115/1.4036485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 01/08/2023]
Abstract
Right ventricular failure (RVF) is a lethal condition in diverse pathologies. Pressure overload is the most common etiology of RVF, but our understanding of the tissue structure remodeling and other biomechanical factors involved in RVF is limited. Some remodeling patterns are interpreted as compensatory mechanisms including myocyte hypertrophy, extracellular fibrosis, and changes in fiber orientation. However, the specific implications of these changes, especially in relation to clinically observable measurements, are difficult to investigate experimentally. In this computational study, we hypothesized that, with other variables constant, fiber orientation alteration provides a quantifiable and distinct compensatory mechanism during RV pressure overload (RVPO). Numerical models were constructed using a rabbit model of chronic pressure overload RVF based on intraventricular pressure measurements, CINE magnetic resonance imaging (MRI), and diffusion tensor MRI (DT-MRI). Biventricular simulations were conducted under normotensive and hypertensive boundary conditions using variations in RV wall thickness, tissue stiffness, and fiber orientation to investigate their effect on RV pump function. Our results show that a longitudinally aligned myocardial fiber orientation contributed to an increase in RV ejection fraction (RVEF). This effect was more pronounced in response to pressure overload. Likewise, models with longitudinally aligned fiber orientation required a lesser contractility for maintaining a target RVEF against elevated pressures. In addition to increased wall thickness and material stiffness (diastolic compensation), systolic mechanisms in the forms of myocardial fiber realignment and changes in contractility are likely involved in the overall compensatory responses to pressure overload.
Collapse
Affiliation(s)
- Arnold D Gomez
- Mem. ASME Electrical and Computer Engineering Department, Johns Hopkins University, 3400 North Charles Street, RM Clark 201B, Baltimore, MD 21218 e-mail:
| | - Huashan Zou
- Bioengineering Department, University of Utah, 36 S. Wasatch Drive, SMBB RM 3100, Salt Lake City, UT 84112-2101 e-mail:
| | - Megan E Bowen
- Surgery Department, University of Utah, 30 N 1900 E, RM 3B205, Salt Lake City, UT 84112-2101 e-mail:
| | - Xiaoqing Liu
- Cardiothoracic Division, Surgery Department, University of Utah, 2000 Circle of Hope, RM LL376, Salt Lake City, UT 84112-2101 e-mail:
| | - Edward W Hsu
- Bioengineering Department, University of Utah, 36 S. Wasatch Drive, SMBB RM 1242, Salt Lake City, UT 84112-2101 e-mail:
| | - Stephen H McKellar
- Cardiothoracic Division, Surgery Department, University of Utah, 30 N 1900 E, RM 3B205 Salt Lake City, UT 84112-2101 e-mail:
| |
Collapse
|
14
|
von Deuster C, Sammut E, Asner L, Nordsletten D, Lamata P, Stoeck CT, Kozerke S, Razavi R. Studying Dynamic Myofiber Aggregate Reorientation in Dilated Cardiomyopathy Using In Vivo Magnetic Resonance Diffusion Tensor Imaging. Circ Cardiovasc Imaging 2017; 9:CIRCIMAGING.116.005018. [PMID: 27729361 PMCID: PMC5068188 DOI: 10.1161/circimaging.116.005018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/26/2016] [Indexed: 11/30/2022]
Abstract
Supplemental Digital Content is available in the text. Background— The objective of this study is to assess the dynamic alterations of myocardial microstructure and strain between diastole and systole in patients with dilated cardiomyopathy relative to healthy controls using the magnetic resonance diffusion tensor imaging, myocardial tagging, and biomechanical modeling. Methods and Results— Dual heart-phase diffusion tensor imaging was successfully performed in 9 patients and 9 controls. Tagging data were acquired for the diffusion tensor strain correction and cardiac motion analysis. Mean diffusivity, fractional anisotropy, and myocyte aggregate orientations were compared between both cohorts. Cardiac function was assessed by left ventricular ejection fraction, torsion, and strain. Computational modeling was used to study the impact of cardiac shape on fiber reorientation and how fiber orientations affect strain. In patients with dilated cardiomyopathy, a more longitudinal orientation of diastolic myofiber aggregates was measured compared with controls. Although a significant steepening of helix angles (HAs) during contraction was found in the controls, consistent change in HAs during contraction was absent in patients. Left ventricular ejection fraction, cardiac torsion, and strain were significantly lower in the patients compared with controls. Computational modeling revealed that the dilated heart results in reduced HA changes compared with a normal heart. Reduced torsion was found to be exacerbated by steeper HAs. Conclusions— Diffusion tensor imaging revealed reduced reorientation of myofiber aggregates during cardiac contraction in patients with dilated cardiomyopathy relative to controls. Left ventricular remodeling seems to be an important factor in the changes to myocyte orientation. Steeper HAs are coupled with a worsening in strain and torsion. Overall, the findings provide new insights into the structural alterations in patients with dilated cardiomyopathy.
Collapse
Affiliation(s)
- Constantin von Deuster
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - Eva Sammut
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - Liya Asner
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - David Nordsletten
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - Pablo Lamata
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - Christian T Stoeck
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - Sebastian Kozerke
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.).
| | - Reza Razavi
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| |
Collapse
|
15
|
Mekkaoui C, Reese TG, Jackowski MP, Bhat H, Sosnovik DE. Diffusion MRI in the heart. NMR IN BIOMEDICINE 2017; 30:e3426. [PMID: 26484848 PMCID: PMC5333463 DOI: 10.1002/nbm.3426] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/01/2015] [Accepted: 09/10/2015] [Indexed: 05/25/2023]
Abstract
Diffusion MRI provides unique information on the structure, organization, and integrity of the myocardium without the need for exogenous contrast agents. Diffusion MRI in the heart, however, has proven technically challenging because of the intrinsic non-rigid deformation during the cardiac cycle, displacement of the myocardium due to respiratory motion, signal inhomogeneity within the thorax, and short transverse relaxation times. Recently developed accelerated diffusion-weighted MR acquisition sequences combined with advanced post-processing techniques have improved the accuracy and efficiency of diffusion MRI in the myocardium. In this review, we describe the solutions and approaches that have been developed to enable diffusion MRI of the heart in vivo, including a dual-gated stimulated echo approach, a velocity- (M1 ) or an acceleration- (M2 ) compensated pulsed gradient spin echo approach, and the use of principal component analysis filtering. The structure of the myocardium and the application of these techniques in ischemic heart disease are also briefly reviewed. The advent of clinical MR systems with stronger gradients will likely facilitate the translation of cardiac diffusion MRI into clinical use. The addition of diffusion MRI to the well-established set of cardiovascular imaging techniques should lead to new and complementary approaches for the diagnosis and evaluation of patients with heart disease. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcel P Jackowski
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | | | - David E Sosnovik
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Giannakidis A, Gullberg GT, Pennell DJ, Firmin DN. Value of Formalin Fixation for the Prolonged Preservation of Rodent Myocardial Microanatomical Organization: Evidence by MR Diffusion Tensor Imaging. Anat Rec (Hoboken) 2016; 299:878-87. [PMID: 27111575 DOI: 10.1002/ar.23359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/10/2016] [Accepted: 03/14/2016] [Indexed: 11/08/2022]
Abstract
Previous ex vivo diffusion tensor imaging (DTI) studies on formalin-fixed myocardial tissue assumed that, after some initial changes in the first 48 hr since the start of fixation, DTI parameters remain stable over time. Prolonged preservation of cardiac tissue in formalin prior to imaging has been seen many times in the DTI literature as it is considered orderly. Our objective is to define the effects of the prolonged cardiac tissue exposure to formalin on tissue microanatomical organization, as this is assessed by DTI parameters. DTI experiments were conducted on eight excised rodent hearts that were fixed by immersion in formalin. The samples were randomly divided into two equinumerous groups corresponding to shorter (∼2 weeks) and more prolonged (∼6-8 weeks) durations of tissue exposure to formalin prior to imaging. We found that when the duration of cardiac tissue exposure to formalin before imaging increased, water diffusion became less restricted, helix angle (HA) histograms flattened out and exhibited heavier tails (even though the classic HA transmural variation was preserved), and a significant loss of inter-voxel primary diffusion orientation integrity was introduced. The prolonged preservation of cardiac tissue in formalin profoundly affected its microstructural organization, as this was assessed by DTI parameters. The accurate interpretation of diffusivity profiles necessitates awareness of the pitfalls of prolonged cardiac tissue exposure duration to formalin. The acquired knowledge works to the advantage of a proper experimental design of DTI studies of fixed hearts. Anat Rec, 299:878-887, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Archontis Giannakidis
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK.,Life Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Grant T Gullberg
- Life Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Radiology and Biomedical Imaging, University California San Francisco, San Francisco, California, USA
| | - Dudley J Pennell
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - David N Firmin
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
17
|
Birkl C, Langkammer C, Golob-Schwarzl N, Leoni M, Haybaeck J, Goessler W, Fazekas F, Ropele S. Effects of formalin fixation and temperature on MR relaxation times in the human brain. NMR IN BIOMEDICINE 2016; 29:458-465. [PMID: 26835664 DOI: 10.1002/nbm.3477] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
Post-mortem MRI of the brain is increasingly applied in neuroscience for a better understanding of the contrast mechanisms of disease induced tissue changes. However, the influence of chemical processes caused by formalin fixation and differences in temperature may hamper the comparability with results from in vivo MRI. In this study we investigated how formalin fixation and temperature affect T1, T2 and T2* relaxation times of brain tissue. Fixation effects were examined with respect to changes in water content and crosslinking. Relaxometry was performed in brain slices from five deceased subjects at different temperatures. All measurements were repeated after 190 days of formaldehyde immersion. The water content of unfixed and fixed tissue was determined using the wet-to-dry ratio following drying. Protein weight was determined with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Fixation caused a strong decrease of all relaxation times, the strongest effect being seen on T1, with a reduction of up to 76%. The temperature coefficient of T1 was lower in the fixed than unfixed tissue, which was in contrast to T2, where an increase of the temperature coefficient was observed following fixation. The reduction of the water content after fixation was in the range of 1-6% and thus not sufficient to explain the changes in relaxation time. Results from SDS-PAGE indicated a strong increase of the protein size above 260 kDa in all brain structures examined. Our results suggest that crosslinking induced changes of the macromolecular matrix are responsible for T1 shortening and a decreased temperature dependency. The relaxation times provided in this work should allow optimization of post-mortem MRI protocols for the brain.
Collapse
Affiliation(s)
- Christoph Birkl
- Department of Neurology, Medical University of Graz, Austria
| | - Christian Langkammer
- Department of Neurology, Medical University of Graz, Austria
- MGH Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Nicole Golob-Schwarzl
- Department of Neuropathology, Institute of Pathology, Medical University of Graz, Austria
| | - Marlene Leoni
- Department of Neuropathology, Institute of Pathology, Medical University of Graz, Austria
| | - Johannes Haybaeck
- Department of Neuropathology, Institute of Pathology, Medical University of Graz, Austria
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry, University of Graz, Austria
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria
| |
Collapse
|
18
|
Bakermans AJ, Abdurrachim D, Moonen RPM, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K. Small animal cardiovascular MR imaging and spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:1-47. [PMID: 26282195 DOI: 10.1016/j.pnmrs.2015.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abdallah G Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
19
|
Stoeck CT, Kalinowska A, von Deuster C, Harmer J, Chan RW, Niemann M, Manka R, Atkinson D, Sosnovik DE, Mekkaoui C, Kozerke S. Dual-phase cardiac diffusion tensor imaging with strain correction. PLoS One 2014; 9:e107159. [PMID: 25191900 PMCID: PMC4156436 DOI: 10.1371/journal.pone.0107159] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/05/2014] [Indexed: 12/03/2022] Open
Abstract
Purpose In this work we present a dual-phase diffusion tensor imaging (DTI) technique that incorporates a correction scheme for the cardiac material strain, based on 3D myocardial tagging. Methods In vivo dual-phase cardiac DTI with a stimulated echo approach and 3D tagging was performed in 10 healthy volunteers. The time course of material strain was estimated from the tagging data and used to correct for strain effects in the diffusion weighted acquisition. Mean diffusivity, fractional anisotropy, helix, transverse and sheet angles were calculated and compared between systole and diastole, with and without strain correction. Data acquired at the systolic sweet spot, where the effects of strain are eliminated, served as a reference. Results The impact of strain correction on helix angle was small. However, large differences were observed in the transverse and sheet angle values, with and without strain correction. The standard deviation of systolic transverse angles was significantly reduced from 35.9±3.9° to 27.8°±3.5° (p<0.001) upon strain-correction indicating more coherent fiber tracks after correction. Myocyte aggregate structure was aligned more longitudinally in systole compared to diastole as reflected by an increased transmural range of helix angles (71.8°±3.9° systole vs. 55.6°±5.6°, p<0.001 diastole). While diastolic sheet angle histograms had dominant counts at high sheet angle values, systolic histograms showed lower sheet angle values indicating a reorientation of myocyte sheets during contraction. Conclusion An approach for dual-phase cardiac DTI with correction for material strain has been successfully implemented. This technique allows assessing dynamic changes in myofiber architecture between systole and diastole, and emphasizes the need for strain correction when sheet architecture in the heart is imaged with a stimulated echo approach.
Collapse
Affiliation(s)
- Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Aleksandra Kalinowska
- Department of Mechanical and Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Constantin von Deuster
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Jack Harmer
- Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Rachel W. Chan
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Markus Niemann
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Robert Manka
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
- Department of Radiology, University Hospital Zurich, Zurich, Switzerland
| | - David Atkinson
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - David E. Sosnovik
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, University Hospital Center of Nîmes, EA 2415, Nîmes, France
- Faculty of Medicine, Montpellier 1 University, Montpellier, France
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Nordbø O, Lamata P, Land S, Niederer S, Aronsen JM, Louch WE, Sjaastad I, Martens H, Gjuvsland AB, Tøndel K, Torp H, Lohezic M, Schneider JE, Remme EW, Smith N, Omholt SW, Vik JO. A computational pipeline for quantification of mouse myocardial stiffness parameters. Comput Biol Med 2014; 53:65-75. [PMID: 25129018 DOI: 10.1016/j.compbiomed.2014.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/04/2014] [Accepted: 07/20/2014] [Indexed: 10/24/2022]
Abstract
The mouse is an important model for theoretical-experimental cardiac research, and biophysically based whole organ models of the mouse heart are now within reach. However, the passive material properties of mouse myocardium have not been much studied. We present an experimental setup and associated computational pipeline to quantify these stiffness properties. A mouse heart was excised and the left ventricle experimentally inflated from 0 to 1.44kPa in eleven steps, and the resulting deformation was estimated by echocardiography and speckle tracking. An in silico counterpart to this experiment was built using finite element methods and data on ventricular tissue microstructure from diffusion tensor MRI. This model assumed a hyperelastic, transversely isotropic material law to describe the force-deformation relationship, and was simulated for many parameter scenarios, covering the relevant range of parameter space. To identify well-fitting parameter scenarios, we compared experimental and simulated outcomes across the whole range of pressures, based partly on gross phenotypes (volume, elastic energy, and short- and long-axis diameter), and partly on node positions in the geometrical mesh. This identified a narrow region of experimentally compatible values of the material parameters. Estimation turned out to be more precise when based on changes in gross phenotypes, compared to the prevailing practice of using displacements of the material points. We conclude that the presented experimental setup and computational pipeline is a viable method that deserves wider application.
Collapse
Affiliation(s)
- Oyvind Nordbø
- Department of Mathematical Sciences and Technology, Centre for Integrative Genetics, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Pablo Lamata
- Department of Biomedical Engineering, King's College London, St. Thomas׳ Hospital, Westminster Bridge Road, London SE17EH, UK
| | - Sander Land
- Department of Biomedical Engineering, King's College London, St. Thomas׳ Hospital, Westminster Bridge Road, London SE17EH, UK
| | - Steven Niederer
- Department of Biomedical Engineering, King's College London, St. Thomas׳ Hospital, Westminster Bridge Road, London SE17EH, UK
| | - Jan M Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Kirkeveien 166, 4th Floor Building 7, 0407 Oslo, Norway; Bjørknes College, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Kirkeveien 166, 4th Floor Building 7, 0407 Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0407 Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Kirkeveien 166, 4th Floor Building 7, 0407 Oslo, Norway
| | - Harald Martens
- Department of Engineering Cybernetics, Faculty of Information Technology, Mathematics and Electrical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne B Gjuvsland
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Kristin Tøndel
- Department of Biomedical Engineering, King's College London, St. Thomas׳ Hospital, Westminster Bridge Road, London SE17EH, UK
| | - Hans Torp
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Postboks 8905, Medisinsk teknisk forskningssenter, NO-7491 Trondheim, Norway
| | - Maelene Lohezic
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Welcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jurgen E Schneider
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Postboks 8905, Medisinsk teknisk forskningssenter, NO-7491 Trondheim, Norway
| | - Espen W Remme
- KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0407 Oslo, Norway; Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Nicolas Smith
- Department of Biomedical Engineering, King's College London, St. Thomas׳ Hospital, Westminster Bridge Road, London SE17EH, UK
| | - Stig W Omholt
- Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, N-7491 Trondheim, Norway
| | - Jon Olav Vik
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| |
Collapse
|
21
|
Images as drivers of progress in cardiac computational modelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:198-212. [PMID: 25117497 PMCID: PMC4210662 DOI: 10.1016/j.pbiomolbio.2014.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/02/2014] [Indexed: 11/28/2022]
Abstract
Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.
Collapse
|
22
|
Lohezic M, Teh I, Bollensdorff C, Peyronnet R, Hales PW, Grau V, Kohl P, Schneider JE. Interrogation of living myocardium in multiple static deformation states with diffusion tensor and diffusion spectrum imaging. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:213-25. [PMID: 25117498 PMCID: PMC4210665 DOI: 10.1016/j.pbiomolbio.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/02/2014] [Indexed: 11/27/2022]
Abstract
Diffusion tensor magnetic resonance imaging (MRI) reveals valuable insights into tissue histo-anatomy and microstructure, and has steadily gained traction in the cardiac community. Its wider use in small animal cardiac imaging in vivo has been constrained by its extreme sensitivity to motion, exaggerated by the high heart rates usually seen in rodents. Imaging of the isolated heart eliminates respiratory motion and, if conducted on arrested hearts, cardiac pulsation. This serves as an important intermediate step for basic and translational studies. However, investigating the micro-structural basis of cardiac deformation in the same heart requires observations in different deformation states. Here, we illustrate the imaging of isolated rat hearts in three mechanical states mimicking diastole (cardioplegic arrest), left-ventricular (LV) volume overload (cardioplegic arrest plus LV balloon inflation), and peak systole (lithium-induced contracture). An optimised MRI-compatible Langendorff perfusion setup with the radio-frequency (RF) coil integrated into the wet chamber was developed for use in a 9.4T horizontal bore scanner. Signal-to-noise ratio improved significantly, by 75% compared to a previous design with external RF coil, and stability tests showed no significant changes in mean T1, T2 or LV wall thickness over a 170 min period. In contracture, we observed a significant reduction in mean fractional anisotropy from 0.32 ± 0.02 to 0.28 ± 0.02, as well as a significant rightward shift in helix angles with a decrease in the proportion of left-handed fibres, as referring to the locally prevailing cell orientation in the heart, from 24.9% to 23.3%, and an increase in the proportion of right-handed fibres from 25.5% to 28.4%. LV overload, in contrast, gave rise to a decrease in the proportion of left-handed fibres from 24.9% to 21.4% and an increase in the proportion of right-handed fibres from 25.5% to 26.0%. The modified perfusion and coil setup offers better performance and control over cardiac contraction states. We subsequently performed high-resolution diffusion spectrum imaging (DSI) and 3D whole heart fibre tracking in fixed ex vivo rat hearts in slack state and contracture. As a model-free method, DSI augmented the measurements of water diffusion by also informing on multiple intra-voxel diffusion orientations and non-Gaussian diffusion. This enabled us to identify the transition from right- to left-handed fibres from the subendocardium to the subepicardium, as well as voxels in apical regions that were traversed by multiple fibres. We observed that both the mean generalised fractional anisotropy and mean kurtosis were lower in hearts in contracture compared to the slack state, by 23% and 9.3%, respectively. While its heavy acquisition burden currently limits the application of DSI in vivo, ongoing work in acceleration techniques may enable its use in live animals and patients. This would provide access to the as yet unexplored dimension of non-Gaussian diffusion that could serve as a highly sensitive marker of cardiac micro-structural integrity.
Collapse
Affiliation(s)
- Maelene Lohezic
- British Heart Foundation Experimental Magnetic Resonance Unit, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Irvin Teh
- British Heart Foundation Experimental Magnetic Resonance Unit, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Bollensdorff
- National Heart and Lung Institute, Imperial College London, London, UK; Qatar Cardiovascular Research Center, Qatar Foundation, Doha, Qatar
| | - Rémi Peyronnet
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Patrick W Hales
- Imaging and Biophysics Unit, Institute of Child Health, University College London, London, UK
| | - Vicente Grau
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Peter Kohl
- National Heart and Lung Institute, Imperial College London, London, UK; Department of Computer Science, University of Oxford, Oxford, UK
| | - Jürgen E Schneider
- British Heart Foundation Experimental Magnetic Resonance Unit, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Lohezic M, Bollensdorff C, Korn M, Lanz T, Grau V, Kohl P, Schneider JE. Optimized radiofrequency coil setup for MR examination of living isolated rat hearts in a horizontal 9.4T magnet. Magn Reson Med 2014; 73:2398-405. [PMID: 25045897 DOI: 10.1002/mrm.25369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/12/2014] [Accepted: 06/24/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE (i) To optimize an MR-compatible organ perfusion setup for the nondestructive investigation of isolated rat hearts by placing the radiofrequency (RF) coil inside the perfusion chamber; (ii) to characterize the benefit of this system for diffusion tensor imaging and proton ((1) H-) MR spectroscopy. METHODS Coil quality assessment was conducted both on the bench, and in the magnet. The benefit of the new RF-coil was quantified by measuring signal-to-noise ratio (SNR), accuracy, and precision of diffusion tensor imaging/error in metabolite amplitude estimation, and compared to an RF-coil placed externally to the perfusion chamber. RESULTS The new design provided a 59% gain in signal-to-noise ratio on a fixed rat heart compared to using an external resonator, which found reflection in an improvement of living heart data quality, compared to previous external resonator studies. This resulted in 14-29% improvement in accuracy and precision of diffusion tensor imaging. The Cramer-Rao lower bounds for metabolite amplitude estimations were up to 5-fold smaller. CONCLUSION Optimization of MR-compatible perfusion equipment advances the study of rat hearts with improved signal-to-noise ratio performance, and thus improved accuracy/precision.
Collapse
Affiliation(s)
- Maelene Lohezic
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Bollensdorff
- National Heart and Lung Institute, Imperial College London, London, UK.,Qatar Cardiovascular Research Center, Qatar Foundation, Doha, Qatar
| | | | | | - Vicente Grau
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Peter Kohl
- National Heart and Lung Institute, Imperial College London, London, UK.,Department of Computer Science, University of Oxford, Oxford, UK
| | - Jürgen E Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Pervolaraki E, Anderson RA, Benson AP, Hayes-Gill B, Holden AV, Moore BJR, Paley MN, Zhang H. Antenatal architecture and activity of the human heart. Interface Focus 2014; 3:20120065. [PMID: 24427520 DOI: 10.1098/rsfs.2012.0065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We construct the components for a family of computational models of the electrophysiology of the human foetal heart from 60 days gestational age (DGA) to full term. This requires both cell excitation models that reconstruct the myocyte action potentials, and datasets of cardiac geometry and architecture. Fast low-angle shot and diffusion tensor magnetic resonance imaging (DT-MRI) of foetal hearts provides cardiac geometry with voxel resolution of approximately 100 µm. DT-MRI measures the relative diffusion of protons and provides a measure of the average intravoxel myocyte orientation, and the orientation of any higher order orthotropic organization of the tissue. Such orthotropic organization in the adult mammalian heart has been identified with myocardial sheets and cleavage planes between them. During gestation, the architecture of the human ventricular wall changes from being irregular and isotropic at 100 DGA to an anisotropic and orthotropic architecture by 140 DGA, when it has the smooth, approximately 120° transmural change in myocyte orientation that is characteristic of the adult mammalian ventricle. The DT obtained from DT-MRI provides the conductivity tensor that determines the spread of potential within computational models of cardiac tissue electrophysiology. The foetal electrocardiogram (fECG) can be recorded from approximately 60 DGA, and RR, PR and QT intervals between the P, R, Q and T waves of the fECG can be extracted by averaging from approximately 90 DGA. The RR intervals provide a measure of the pacemaker rate, the QT intervals an index of ventricular action potential duration, and its rate-dependence, and so these intervals constrain and inform models of cell electrophysiology. The parameters of models of adult human sinostrial node and ventricular cells that are based on adult cell electrophysiology and tissue molecular mapping have been modified to construct preliminary models of foetal cell electrophysiology, which reproduce these intervals from fECG recordings. The PR and QR intervals provide an index of conduction times, and hence propagation velocities (approx. 1-10 cm s(-1), increasing during gestation) and so inform models of tissue electrophysiology. Although the developing foetal heart is small and the cells are weakly coupled, it can support potentially lethal re-entrant arrhythmia.
Collapse
Affiliation(s)
| | - Richard A Anderson
- MRC Centre for Reproductive Health , University of Edinburgh , Edinburgh EH16 4T3 , UK
| | - Alan P Benson
- School of Biomedical Sciences , University of Leeds , Leeds LS2 9JT , UK
| | - Barrie Hayes-Gill
- Department of Electrical and Electronic Engineering , University of Nottingham , Nottingham NG7 2RD , UK
| | - Arun V Holden
- School of Biomedical Sciences , University of Leeds , Leeds LS2 9JT , UK
| | - Benjamin J R Moore
- School of Biomedical Sciences , University of Leeds , Leeds LS2 9JT , UK
| | - Martyn N Paley
- Department of Cardiovascular Science , University of Sheffield Medical School , Sheffield S10 2RX , UK
| | - Henggui Zhang
- Department of Physics and Astronomy , University of Manchester , Manchester M13 9PL , UK
| |
Collapse
|
25
|
|
26
|
Effects of achilles tendon immersion in saline and perfluorochemicals on T2 and T2*. J Magn Reson Imaging 2013; 40:496-500. [DOI: 10.1002/jmri.24360] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/05/2013] [Indexed: 12/22/2022] Open
|
27
|
Gilbert SH, Smaill BH, Walton RD, Trew ML, Bernus O. DT-MRI measurement of myolaminar structure: accuracy and sensitivity to time post-fixation, b-value and number of directions. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:699-702. [PMID: 24109783 DOI: 10.1109/embc.2013.6609596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
DT-MRI has been widely used to quantify myocardial fiber and laminar orientations. These structural orientations influence both the spread of excitation and the reorganization of the myocardium during contraction and are altered in disease states. Studies have sought to validate DT-MRI but questions remain about the accuracy of the method and its sensitivity to the time post-fixation and imaging parameters, including b-value, number of diffusion directions and image voxel size. The advent of high-spatial resolution ex vivo MRI and structure tensor (ST) analysis provides a means of direct validation of DT-MRI and assessment of sensitivity to the b-value, the number of diffusion directions and the image voxel size. We find that, with the fixation method we used, structure does not change with time (up to 72 hours). We show that DT-MRI and ST/HR-MRI are markedly similar measures of fiber orientation but DT-MRI and ST are much less similar measures of laminar orientation. DT-MRI performance is not sensitive to the number of directions, with similar structural orientations measured with 6 or 12 directions. Likewise, DT-MRI performance is generally insensitive to b-value, but laminar measurement is moderately more accurate at b = 500 than for higher b-values.
Collapse
|
28
|
Burton RAB, Schneider JE, Bishop MJ, Hales PW, Bollensdorff C, Robson MD, Wong KCK, Morris J, Quinn TA, Kohl P. Microscopic magnetic resonance imaging reveals high prevalence of third coronary artery in human and rabbit heart. Europace 2013; 14 Suppl 5:v73-v81. [PMID: 23104918 DOI: 10.1093/europace/eus276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIM The human coronary tree is commonly assumed to have two roots: the left and right coronary arteries (LCA and RCA, respectively). However, a third coronary artery (TCA) has been observed in humans and animals, usually arising from the right anterior aortic sinus near the RCA. Using high-resolution magnetic resonance imaging, we identified TCA prevalence and characteristics in rabbit and human hearts. METHODS AND RESULTS Third coronary artery presence was analysed in hearts from 11 New Zealand white rabbits and 7 human cadavers, using excised tissue that was fixed, gadolinium-treated, and agar-embedded for imaging-based reconstruction. A TCA was identified in all rabbit hearts and six of seven human hearts, originating either from an independent ostium (7 of 11 rabbits, 2 of 7 humans) or an ostium shared with the RCA (4 of 11 rabbits, 4 of 7 humans). Proximal TCA cross-sectional area in rabbits was 15.3 ± 6.0% of RCA area (mean ± SD, based on n = 9 rabbit hearts in which reliable measurements could be taken for both vessels), and 26.7 ± 10.1% in humans (n = 4). In all-but-one case where a TCA was observed, it originated ventral to the RCA, progressing towards the right ventricular outflow tract. In one rabbit, the TCA originated dorsal to the RCA and progressed towards the Crista terminalis in the right atrium. A fourth vessel, forming a separate aortic Vas vasorum was occasionally seen, originating from the right anterior aortic sinus either from an ostium common with (1 of 11 rabbits, 0 of 7 humans) or independent of (1 of 11 rabbits, 1 of 7 humans) the TCA. Pilot optical mapping experiments showed that TCA occlusion had variable acute effects on rabbit cardiac electrophysiology. CONCLUSION Third coronary artery presence is common in rabbit and human hearts. Functional effects of disrupted TCA blood supply are ill-investigated, and the rabbit may be a suitable species for such research.
Collapse
Affiliation(s)
- Rebecca A B Burton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nielles-Vallespin S, Mekkaoui C, Gatehouse P, Reese TG, Keegan J, Ferreira PF, Collins S, Speier P, Feiweier T, de Silva R, Jackowski MP, Pennell DJ, Sosnovik DE, Firmin D. In vivo diffusion tensor MRI of the human heart: reproducibility of breath-hold and navigator-based approaches. Magn Reson Med 2012; 70:454-65. [PMID: 23001828 DOI: 10.1002/mrm.24488] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 11/11/2022]
Abstract
The aim of this study was to implement a quantitative in vivo cardiac diffusion tensor imaging (DTI) technique that was robust, reproducible, and feasible to perform in patients with cardiovascular disease. A stimulated-echo single-shot echo-planar imaging (EPI) sequence with zonal excitation and parallel imaging was implemented, together with a novel modification of the prospective navigator (NAV) technique combined with a biofeedback mechanism. Ten volunteers were scanned on two different days, each time with both multiple breath-hold (MBH) and NAV multislice protocols. Fractional anisotropy (FA), mean diffusivity (MD), and helix angle (HA) fiber maps were created. Comparison of initial and repeat scans showed good reproducibility for both MBH and NAV techniques for FA (P > 0.22), MD (P > 0.15), and HA (P > 0.28). Comparison of MBH and NAV FA (FAMBHday1 = 0.60 ± 0.04, FANAVday1 = 0.60 ± 0.03, P = 0.57) and MD (MDMBHday1 = 0.8 ± 0.2 × 10(-3) mm(2) /s, MDNAVday1 = 0.9 ± 0.2 × 10(-3) mm(2) /s, P = 0.07) values showed no significant differences, while HA values (HAMBHday1Endo = 22 ± 10°, HAMBHday1Mid-Endo = 20 ± 6°, HAMBHday1Mid-Epi = -1 ± 6°, HAMBHday1Epi = -17 ± 6°, HANAVday1Endo = 7 ± 7°, HANAVday1Mid-Endo = 13 ± 8°, HANAVday1Mid-Epi = -2 ± 7°, HANAVday1Epi = -14 ± 6°) were significantly different. The scan duration was 20% longer with the NAV approach. Currently, the MBH approach is the more robust in normal volunteers. While the NAV technique still requires resolution of some bulk motion sensitivity issues, these preliminary experiments show its potential for in vivo clinical cardiac diffusion tensor imaging and for delivering high-resolution in vivo 3D DTI tractography of the heart.
Collapse
|
30
|
Histo-anatomical structure of the living isolated rat heart in two contraction states assessed by diffusion tensor MRI. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:319-30. [PMID: 23043978 PMCID: PMC3526796 DOI: 10.1016/j.pbiomolbio.2012.07.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 11/21/2022]
Abstract
Deformation and wall-thickening of ventricular myocardium are essential for cardiac pump function. However, insight into the histo-anatomical basis for cardiac tissue re-arrangement during contraction is limited. In this report, we describe dynamic changes in regionally prevailing cardiomyocyte (fibre) and myolaminar (sheet) orientations, using Diffusion Tensor Imaging (DTI) of ventricles in the same living heart in two different mechanical states. Hearts, isolated from Sprague–Dawley rats, were Langendorff-perfused and imaged, initially in their slack state during cardioplegic arrest, then during lithium-induced contracture. Regional fibre- and sheet-orientations were derived from DTI-data on a voxel-wise basis. Contraction was accompanied with a decrease in left-handed helical fibres (handedness relative to the baso-apical direction) in basal, equatorial, and apical sub-epicardium (by 14.0%, 17.3%, 15.8% respectively; p < 0.001), and an increase in right-handed helical fibres of the sub-endocardium (by 11.0%, 12.1% and 16.1%, respectively; p < 0.001). Two predominant sheet-populations were observed, with sheet-angles of either positive (β+) or negative (β−) polarity relative to a ‘chamber-horizontal plane’ (defined as normal to the left ventricular long-axis). In contracture, mean ‘intersection’-angle (geometrically quantifiable intersection of sheet-angle projections) between β+ and β− sheet-populations increased from 86.2 ± 5.5° (slack) to 108.3 ± 5.4° (p < 0.001). Subsequent high-resolution DTI of fixed myocardium, and histological sectioning, reconfirmed the existence of alternating sheet-plane populations. Our results suggest that myocardial tissue layers in alternating sheet-populations align into a more chamber-horizontal orientation during contraction. This re-arrangement occurs via an accordion-like mechanism that, combined with inter-sheet slippage, can significantly contribute to ventricular deformation, including wall-thickening in a predominantly centripetal direction and baso-apical shortening.
Collapse
|
31
|
Eggen MD, Swingen CM, Iaizzo PA. Ex vivo diffusion tensor MRI of human hearts: Relative effects of specimen decomposition. Magn Reson Med 2011; 67:1703-9. [PMID: 22114027 DOI: 10.1002/mrm.23194] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 07/13/2011] [Accepted: 08/01/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Michael D Eggen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | |
Collapse
|