1
|
Kent JA, Hayes KL. Exercise Physiology From 1980 to 2020: Application of the Natural Sciences. KINESIOLOGY REVIEW (CHAMPAIGN, ILL.) 2021; 10:238-247. [PMID: 35464337 PMCID: PMC9022627 DOI: 10.1123/kr.2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The field of exercise physiology has enjoyed tremendous growth in the past 40 years. With its foundations in the natural sciences, it is an interdisciplinary field that is highly relevant to human performance and health. The focus of this review is on highlighting new approaches, knowledge, and opportunities that have emerged in exercise physiology over the last four decades. Key among these is the adoption of advanced technologies by exercise physiologists to address fundamental research questions, and the expansion of research topics to range from molecular to organismal, and population scales in order to clarify the underlying mechanisms and impact of physiological responses to exercise in health and disease. Collectively, these advances have ensured the position of the field as a partner in generating new knowledge across many scientific and health disciplines.
Collapse
Affiliation(s)
- Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Kate L Hayes
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
2
|
Strijkers GJ, Araujo EC, Azzabou N, Bendahan D, Blamire A, Burakiewicz J, Carlier PG, Damon B, Deligianni X, Froeling M, Heerschap A, Hollingsworth KG, Hooijmans MT, Karampinos DC, Loudos G, Madelin G, Marty B, Nagel AM, Nederveen AJ, Nelissen JL, Santini F, Scheidegger O, Schick F, Sinclair C, Sinkus R, de Sousa PL, Straub V, Walter G, Kan HE. Exploration of New Contrasts, Targets, and MR Imaging and Spectroscopy Techniques for Neuromuscular Disease - A Workshop Report of Working Group 3 of the Biomedicine and Molecular Biosciences COST Action BM1304 MYO-MRI. J Neuromuscul Dis 2020; 6:1-30. [PMID: 30714967 PMCID: PMC6398566 DOI: 10.3233/jnd-180333] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromuscular diseases are characterized by progressive muscle degeneration and muscle weakness resulting in functional disabilities. While each of these diseases is individually rare, they are common as a group, and a large majority lacks effective treatment with fully market approved drugs. Magnetic resonance imaging and spectroscopy techniques (MRI and MRS) are showing increasing promise as an outcome measure in clinical trials for these diseases. In 2013, the European Union funded the COST (co-operation in science and technology) action BM1304 called MYO-MRI (www.myo-mri.eu), with the overall aim to advance novel MRI and MRS techniques for both diagnosis and quantitative monitoring of neuromuscular diseases through sharing of expertise and data, joint development of protocols, opportunities for young researchers and creation of an online atlas of muscle MRI and MRS. In this report, the topics that were discussed in the framework of working group 3, which had the objective to: Explore new contrasts, new targets and new imaging techniques for NMD are described. The report is written by the scientists who attended the meetings and presented their data. An overview is given on the different contrasts that MRI can generate and their application, clinical needs and desired readouts, and emerging methods.
Collapse
Affiliation(s)
| | - Ericky C.A. Araujo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Noura Azzabou
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | | | - Andrew Blamire
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jedrek Burakiewicz
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Bruce Damon
- Vanderbilt University Medical Center, Nashville, USA
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Arend Heerschap
- Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany & Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Olivier Scheidegger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Fritz Schick
- University of Tübingen, Section on Experimental Radiology, Tübingen, Germany
| | | | | | | | - Volker Straub
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Hermien E. Kan
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
3
|
Volianitis S, Secher NH, Quistorff B. Elevated arterial lactate delays recovery of intracellular muscle pH after exercise. Eur J Appl Physiol 2018; 118:2429-2434. [PMID: 30128851 DOI: 10.1007/s00421-018-3969-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/11/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE We evaluated muscle proton elimination following similar exercise in the same muscle group following two exercise modalities. METHODS Seven rowers performed handgrip or rowing exercise for ~ 5 min. The intracellular response of the wrist flexor muscles was evaluated by 31P nuclear magnetic resonance spectroscopy, while arterial and venous forearm blood was collected. RESULTS Rowing and handgrip reduced intracellular pH to 6.3 ± 0.2 and 6.5 ± 0.1, arterial pH to 7.09 ± 0.03 and 7.40 ± 0.03 and venous pH to 6.95 ± 0.06 and 7.20 ± 0.04 (P < 0.05), respectively. Arterial and venous lactate increased to 17.5 ± 1.6 and 20.0 ± 1.6 mM after rowing while only to 2.6 ± 0.8 and 6.8 ± 0.8 mM after handgrip exercise. Arterio-venous concentration difference of bicarbonate and phosphocreatine recovery kinetics (T50% rowing 1.5 ± 0.7 min; handgrip 1.4 ± 1.0 min) was similar following the two exercise modalities. Yet, intramuscular pH recovery in the forearm flexor muscles was 3.5-fold slower after rowing than after handgrip exercise (T50% rowing of 2 ± 0.1 vs. 7 ± 0.3 min for handgrip). CONCLUSION Rowing delays intracellular-pH recovery compared with handgrip exercise most likely because rowing, as opposed to handgrip exercise, increases systemic lactate concentration. Thus the intra-to-extra-cellular lactate gradient is small after rowing. Since this lactate gradient is the main driving force for intracellular lactate removal in muscle and, since pHi normalization is closely related to intracellular lactate removal, rowing results in a slower pHi recovery compared to handgrip exercise.
Collapse
Affiliation(s)
- Stefanos Volianitis
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 E4, 9220, Aalborg, Denmark.
| | - N H Secher
- Copenhagen Muscle Research Centre, Department of Anaesthesia, Rigshospitalet, Copenhagen, Denmark
| | - Bjørn Quistorff
- Nuclear Magnetic Resonance Centre, Department of Biomedical Sciences, The Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| |
Collapse
|
4
|
Niess F, Fiedler GB, Schmid AI, Laistler E, Frass‐Kriegl R, Wolzt M, Moser E, Meyerspeer M. Dynamic multivoxel-localized 31 P MRS during plantar flexion exercise with variable knee angle. NMR IN BIOMEDICINE 2018; 31:e3905. [PMID: 29578260 PMCID: PMC6001778 DOI: 10.1002/nbm.3905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 05/07/2023]
Abstract
Exercise studies investigating the metabolic response of calf muscles using 31 P MRS are usually performed with a single knee angle. However, during natural movement, the distribution of workload between the main contributors to force, gastrocnemius and soleus is influenced by the knee angle. Hence, it is of interest to measure the respective metabolic response of these muscles to exercise as a function of knee angle using localized spectroscopy. Time-resolved multivoxel 31 P MRS at 7 T was performed simultaneously in gastrocnemius medialis and soleus during rest, plantar flexion exercise and recovery in 12 healthy volunteers. This experiment was conducted with four different knee angles. PCr depletions correlated negatively with knee angle in gastrocnemius medialis, decreasing from 79±14 % (extended leg) to 35±23 %(∼40°), and positively in soleus, increasing from 20±21 % to 36±25 %; differences were significant. Linear correlations were found between knee angle and end-exercise PCr depletions in gastrocnemius medialis (R2 =0.8) and soleus (R2 =0.53). PCr recovery times and end-exercise pH changes that correlated with PCr depletion were consistent with the literature in gastrocnemius medialis and differences between knee angles were significant. These effects were less pronounced in soleus and not significant for comparable PCr depletions. Maximum oxidative capacity calculated for all knee angles was in excellent agreement with the literature and showed no significant changes between different knee angles. In conclusion, these findings confirm that plantar flexion exercise with a straight leg is a suitable paradigm, when data are acquired from gastrocnemius only (using either localized MRS or small surface coils), and that activation of soleus requires the knee to be flexed. The present study comprises a systematic investigation of the effects of the knee angle on metabolic parameters, measured with dynamic multivoxel 31 P MRS during muscle exercise and recovery, and the findings should be used in future study design.
Collapse
Affiliation(s)
- Fabian Niess
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaAustria
- Highfield MR CenterMedical University of ViennaAustria
| | - Georg B. Fiedler
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaAustria
- Highfield MR CenterMedical University of ViennaAustria
| | - Albrecht I. Schmid
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaAustria
- Highfield MR CenterMedical University of ViennaAustria
| | - Elmar Laistler
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaAustria
- Highfield MR CenterMedical University of ViennaAustria
| | - Roberta Frass‐Kriegl
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaAustria
- Highfield MR CenterMedical University of ViennaAustria
| | - Michael Wolzt
- Department of Clinical PharmacologyMedical University of ViennaAustria
| | - Ewald Moser
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaAustria
- Highfield MR CenterMedical University of ViennaAustria
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaAustria
- Highfield MR CenterMedical University of ViennaAustria
| |
Collapse
|
5
|
Broxterman RM, Hureau TJ, Layec G, Morgan DE, Bledsoe AD, Jessop JE, Amann M, Richardson RS. Influence of group III/IV muscle afferents on small muscle mass exercise performance: a bioenergetics perspective. J Physiol 2018; 596:2301-2314. [PMID: 29644702 DOI: 10.1113/jp275817] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS This investigation assessed the influence of group III/IV muscle afferents on small muscle mass exercise performance from a skeletal muscle bioenergetics perspective. Group III/IV muscle afferent feedback was attenuated with lumbar intrathecal fentanyl during intermittent isometric single-leg knee-extensor all-out exercise, while 31 P-MRS was used to assess skeletal muscle bioenergetics. Attenuation of group III/IV muscle afferent feedback improved exercise performance during the first minute of exercise, due to an increase in total ATP production with no change in the ATP cost of contraction. However, exercise performance was not altered during the remainder of the protocol, despite a sustained increase in total ATP production, due to an exacerbated ATP cost of contraction. These findings reveal that group III/IV muscle afferents directly limit exercise performance during small muscle mass exercise, but, due to their critical role in maintaining skeletal muscle contractile efficiency, with time, the benefit of attenuating the muscle afferents is negated. ABSTRACT The direct influence of group III/IV muscle afferents on exercise performance remains equivocal. Therefore, all-out intermittent isometric single-leg knee-extensor exercise and phosphorous magnetic resonance spectroscopy (31 P-MRS) were utilized to provide a high time resolution assessment of exercise performance and skeletal muscle bioenergetics in control conditions (CTRL) and with the attenuation of group III/IV muscle afferent feedback via lumbar intrathecal fentanyl (FENT). In both conditions, seven recreationally active men performed 60 maximal voluntary quadriceps contractions (MVC; 3 s contraction, 2 s relaxation), while knee-extensor force and 31 P-MRS were assessed during each MVC. The cumulative integrated force was significantly greater (8 ± 6%) in FENT than CTRL for the first minute of the all-out protocol, but was not significantly different for the second to fifth minutes. Total ATP production was significantly greater (16 ± 21%) in FENT than CTRL throughout the all-out exercise protocol, due to a significantly greater anaerobic ATP production (11 ± 13%) in FENT than CTRL with no significant difference in oxidative ATP production. The ATP cost of contraction was not significantly different between FENT and CTRL for the first minute of the all-out protocol, but was significantly greater (29 ± 34%) in FENT than in CTRL for the second to fifth minutes. These findings reveal that group III/IV muscle afferents directly limit exercise performance during small muscle mass exercise, but, due to their critical role in maintaining skeletal muscle contractile efficiency, with time, the benefit from muscle afferent attenuation is negated.
Collapse
Affiliation(s)
- Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Thomas J Hureau
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Gwenael Layec
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Center on Aging, University of Utah, Salt Lake City, UT, USA
| | - David E Morgan
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Markus Amann
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Center on Aging, University of Utah, Salt Lake City, UT, USA.,Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Center on Aging, University of Utah, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
6
|
Broxterman RM, Layec G, Hureau TJ, Morgan DE, Bledsoe AD, Jessop JE, Amann M, Richardson RS. Bioenergetics and ATP Synthesis during Exercise: Role of Group III/IV Muscle Afferents. Med Sci Sports Exerc 2018; 49:2404-2413. [PMID: 28767527 DOI: 10.1249/mss.0000000000001391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose of this study was to investigate the role of the group III/IV muscle afferents in the bioenergetics of exercising skeletal muscle beyond constraining the magnitude of metabolic perturbation. METHODS Eight healthy men performed intermittent isometric knee-extensor exercise to task failure at ~58% maximal voluntary contraction under control conditions (CTRL) and with lumbar intrathecal fentanyl to attenuate group III/IV leg muscle afferents (FENT). Intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), diprotonated phosphate (H2PO4), adenosine triphosphate (ATP), and pH were determined using phosphorous magnetic resonance spectroscopy (P-MRS). RESULTS The magnitude of metabolic perturbation was significantly greater in FENT compared with CTRL for [Pi] (37.8 ± 16.8 vs 28.6 ± 8.6 mM), [H2PO4] (24.3 ± 12.2 vs 17.9 ± 7.1 mM), and [ATP] (75.8% ± 17.5% vs 81.9% ± 15.8% of baseline), whereas there was no significant difference in [PCr] (4.5 ± 2.4 vs 4.4 ± 2.3 mM) or pH (6.51 ± 0.10 vs 6.54 ± 0.14). The rate of perturbation in [PCr], [Pi], [H2PO4], and pH was significantly faster in FENT compared with CTRL. Oxidative ATP synthesis was not significantly different between conditions. However, anaerobic ATP synthesis, through augmented creatine kinase and glycolysis reactions, was significantly greater in FENT than in CTRL, resulting in a significantly greater ATP cost of contraction (0.049 ± 0.016 vs 0.038 ± 0.010 mM·min·N). CONCLUSION Group III/IV muscle afferents not only constrain the magnitude of perturbation in intramuscular Pi, H2PO4, and ATP during small muscle mass exercise but also seem to play a role in maintaining efficient skeletal muscle contractile function in men.
Collapse
Affiliation(s)
- Ryan M Broxterman
- 1Geriatric Research, Education, and Clinical Center, Salt Lake City Veteran's Affairs Medical Center, Salt Lake City, UT; 2Department of Internal Medicine, University of Utah, Salt Lake City, UT; 3Department of Anesthesiology, University of Utah, Salt Lake City, UT; and 4Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Mitochondrial dysfunction in myotonic dystrophy type 1. Neuromuscul Disord 2017; 28:144-149. [PMID: 29289451 DOI: 10.1016/j.nmd.2017.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 11/20/2022]
Abstract
The pathophysiological mechanism linking the nucleotide expansion in the DMPK gene to the clinical manifestations of myotonic dystrophy type 1 (DM1) is still unclear. In vitro studies demonstrate DMPK involvement in the redox homeostasis of cells and the mitochondrial dysfunction in DM1, but in vivo investigations of oxidative metabolism in skeletal muscle have provided ambiguous results and have never been performed in the brain. Twenty-five DM1 patients (14M, 39 ± 11years) underwent brain proton MR spectroscopy (1H-MRS), and sixteen cases (9M, 40 ± 13 years old) also calf muscle phosphorus MRS (31P-MRS). Findings were compared to those of sex- and age-matched controls. Eight DM1 patients showed pathological increase of brain lactate and, compared to those without, had larger lateral ventricles (p < 0.01), smaller gray matter volumes (p < 0.05) and higher white matter lesion load (p < 0.05). A reduction of phosphocreatine/inorganic phosphate (p < 0.001) at rest and, at first minute of exercise, a lower [phosphocreatine] (p = 0.003) and greater [ADP] (p = 0.004) were found in DM1 patients compared to controls. The post-exercise indices of muscle oxidative metabolism were all impaired in DM1, including the increase of time constant of phosphocreatine resynthesis (TC PCr, p = 0.038) and the reduction of the maximum rate of mitochondrial ATP synthesis (p = 0.033). TC PCr values correlated with the myotonic area score (ρ = 0.74, p = 0.01) indicating higher impairment of muscle oxidative metabolism in clinically more affected patients. Our findings provide clear in vivo evidence of multisystem impairment of oxidative metabolism in DM1 patients, providing a rationale for targeted treatment enhancing energy metabolism.
Collapse
|
8
|
Abstract
Understanding of the musculoskeletal system has evolved from the collection of individual phenomena in highly selected experimental preparations under highly controlled and often unphysiological conditions. At the systems level, it is now possible to construct complete and reasonably accurate models of the kinetics and energetics of realistic muscles and to combine them to understand the dynamics of complete musculoskeletal systems performing natural behaviors. At the reductionist level, it is possible to relate most of the individual phenomena to the anatomical structures and biochemical processes that account for them. Two large challenges remain. At a systems level, neuroscience must now account for how the nervous system learns to exploit the many complex features that evolution has incorporated into muscle and limb mechanics. At a reductionist level, medicine must now account for the many forms of pathology and disability that arise from the many diseases and injuries to which this highly evolved system is inevitably prone. © 2017 American Physiological Society. Compr Physiol 7:429-462, 2017.
Collapse
Affiliation(s)
| | - Gerald E Loeb
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
9
|
Broxterman RM, Layec G, Hureau TJ, Amann M, Richardson RS. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue. J Appl Physiol (1985) 2017; 122:1208-1217. [PMID: 28209743 DOI: 10.1152/japplphysiol.01093.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/22/2022] Open
Abstract
Although all-out exercise protocols are commonly used, the physiological mechanisms underlying all-out exercise performance are still unclear, and an in-depth assessment of skeletal muscle bioenergetics is lacking. Therefore, phosphorus magnetic resonance spectroscopy (31P-MRS) was utilized to assess skeletal muscle bioenergetics during a 5-min all-out intermittent isometric knee-extensor protocol in eight healthy men. Metabolic perturbation, adenosine triphosphate (ATP) synthesis rates, ATP cost of contraction, and mitochondrial capacity were determined from intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), diprotonated phosphate ([Formula: see text]), and pH. Peripheral fatigue was determined by exercise-induced alterations in potentiated quadriceps twitch force (Qtw) evoked by supramaximal electrical femoral nerve stimulation. The oxidative ATP synthesis rate (ATPOX) attained and then maintained peak values throughout the protocol, despite an ~63% decrease in quadriceps maximal force production. ThusATPOX normalized to force production (ATPOX gain) significantly increased throughout the exercise (1st min: 0.02 ± 0.01, 5th min: 0.04 ± 0.01 mM·min-1·N-1), as did the ATP cost of contraction (1st min: 0.048 ± 0.019, 5th min: 0.052 ± 0.015 mM·min-1·N-1). Additionally, the pre- to postexercise change in Qtw (-52 ± 26%) was significantly correlated with the exercise-induced change in intramuscular pH (r = 0.75) and [Formula: see text] concentration (r = 0.77). In conclusion, the all-out exercise protocol utilized in the present study elicited a "slow component-like" increase in intramuscular ATPOX gain as well as a progressive increase in the phosphate cost of contraction. Furthermore, the development of peripheral fatigue was closely related to the perturbation of specific fatigue-inducing intramuscular factors (i.e., pH and [Formula: see text] concentration).NEW & NOTEWORTHY The physiological mechanisms and skeletal muscle bioenergetics underlying all-out exercise performance are unclear. This study revealed an increase in oxidative ATP synthesis rate gain and the ATP cost of contraction during all-out exercise. Furthermore, peripheral fatigue was related to the perturbation in pH and deprotonated phosphate ion. These findings support the concept that the oxygen uptake slow component arises from within active skeletal muscle and that skeletal muscle force generating capacity is linked to the intramuscular metabolic milieu.
Collapse
Affiliation(s)
- Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Affairs Medical Center, Salt Lake City, Utah; .,Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Gwenael Layec
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Center on Aging, University of Utah, Salt Lake City, Utah
| | - Thomas J Hureau
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Markus Amann
- Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Center on Aging, University of Utah, Salt Lake City, Utah.,Department of Anesthesiology, University of Utah, Salt Lake City, Utah; and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Center on Aging, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
10
|
Fouré A, Wegrzyk J, Le Fur Y, Mattei JP, Boudinet H, Vilmen C, Bendahan D, Gondin J. Impaired mitochondrial function and reduced energy cost as a result of muscle damage. Med Sci Sports Exerc 2016; 47:1135-44. [PMID: 25371171 DOI: 10.1249/mss.0000000000000523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Although it has been largely acknowledged that isometric neuromuscular electrostimulation (NMES) exercise induces larger muscle damage than voluntary contractions, the corresponding effects on muscle energetics remain to be determined. Voluntary exercise-induced muscle damage (EIMD) has been reported to have minor slight effects on muscle metabolic response to subsequent dynamic exercise, but the magnitude of muscle energetics alterations for NMES EIMD has never been documented. METHODS ³¹P magnetic resonance spectroscopy measurements were performed in 13 young healthy males during a standardized rest-exercise-recovery protocol before (D0) and 2 d (D2) and 4 d (D4) after NMES EIMD on knee extensor muscles. Changes in kinetics of phosphorylated metabolite concentrations (i.e., phosphocreatine [PCr], inorganic phosphate [Pi], and adenosine triphosphate [ATP]) and pH were assessed to investigate aerobic and anaerobic rates of ATP production and energy cost of contraction (Ec). RESULTS Resting [Pi]/[PCr] ratio increased at D2 (+39%) and D4 (+29%), mainly owing to the increased [Pi] (+43% and +32%, respectively), whereas a significant decrease in resting pH was determined (-0.04 pH unit and -0.03 pH unit, respectively). PCr recovery rate decreased at D2 (-21%) and D4 (-23%) in conjunction with a significantly decreased total rate of ATP production at D4 (-18%) mainly owing to an altered aerobic ATP production (-19%). Paradoxically, Ec was decreased at D4 (-21%). CONCLUSION Overall, NMES EIMD led to intramuscular acidosis in resting muscle and mitochondrial impairment in exercising muscle. Alterations of noncontractile processes and/or adaptive mechanisms to muscle damage might account for the decreased Ec during the dynamic exercise.
Collapse
Affiliation(s)
- Alexandre Fouré
- 1Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Unité Mixte de Recherche 7339, Marseille, FRANCE; 2Assistance Publique des Hôpitaux de Marseille (APHM), Sainte Marguerite Hospital, Department of Rheumatology, Marseille, FRANCE; and 3APHM, La Timone Hospital, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Imaging Center, Marseille, FRANCE
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Layec G, Trinity JD, Hart CR, Kim SE, Groot HJ, Le Fur Y, Sorensen JR, Jeong EK, Richardson RS. Impact of age on exercise-induced ATP supply during supramaximal plantar flexion in humans. Am J Physiol Regul Integr Comp Physiol 2015; 309:R378-88. [PMID: 26041112 DOI: 10.1152/ajpregu.00522.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 06/02/2015] [Indexed: 11/22/2022]
Abstract
Currently, the physiological factors responsible for exercise intolerance and bioenergetic alterations with age are poorly understood due, at least in art, to the confounding effect of reduced physical activity in the elderly. Thus, in 40 healthy young (22 ± 2 yr) and old (74 ± 8 yr) activity-matched subjects, we assessed the impact of age on: 1) the relative contribution of the three major pathways of ATP synthesis (oxidative ATP synthesis, glycolysis, and the creatine kinase reaction) and 2) the ATP cost of contraction during high-intensity exercise. Specifically, during supramaximal plantar flexion (120% of maximal aerobic power), to stress the functional limits of the skeletal muscle energy systems, we used (31)P-labeled magnetic resonance spectroscopy to assess metabolism. Although glycolytic activation was delayed in the old, ATP synthesis from the main energy pathways was not significantly different between groups. Similarly, the inferred peak rate of mitochondrial ATP synthesis was not significantly different between the young (25 ± 8 mM/min) and old (24 ± 6 mM/min). In contrast, the ATP cost of contraction was significantly elevated in the old compared with the young (5.1 ± 2.0 and 3.7 ± 1.7 mM·min(-1)·W(-1), respectively; P < 0.05). Overall, these findings suggest that, when young and old subjects are activity matched, there is no evidence of age-related mitochondrial and glycolytic dysfunction. However, this study does confirm an abnormal elevation in exercise-induced skeletal muscle metabolic demand in the old that may contribute to the decline in exercise capacity with advancing age.
Collapse
Affiliation(s)
- Gwenael Layec
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah;
| | - Joel D Trinity
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Corey R Hart
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Seong-Eun Kim
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah; and
| | - H Jonathan Groot
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Yann Le Fur
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France
| | - Jacob R Sorensen
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Eun-Kee Jeong
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah; and
| | - Russell S Richardson
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| |
Collapse
|
12
|
Layec G, Bringard A, Le Fur Y, Micallef JP, Vilmen C, Perrey S, Cozzone PJ, Bendahan D. Opposite effects of hyperoxia on mitochondrial and contractile efficiency in human quadriceps muscles. Am J Physiol Regul Integr Comp Physiol 2015; 308:R724-33. [PMID: 25695290 DOI: 10.1152/ajpregu.00461.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/10/2015] [Indexed: 01/06/2023]
Abstract
Exercise efficiency is an important determinant of exercise capacity. However, little is known about the physiological factors that can modulate muscle efficiency during exercise. We examined whether improved O2 availability would 1) impair mitochondrial efficiency and shift the energy production toward aerobic ATP synthesis and 2) reduce the ATP cost of dynamic contraction owing to an improved neuromuscular efficiency, such that 3) whole body O2 cost would remain unchanged. We used (31)P-magnetic resonance spectroscopy, surface electromyography, and pulmonary O2 consumption (V̇o2p) measurements in eight active subjects during 6 min of dynamic knee-extension exercise under different fractions of inspired O2 (FiO2 , 0.21 in normoxia and 1.0 in hyperoxia). V̇o2p (755 ± 111 ml/min in normoxia and 799 ± 188 ml/min in hyperoxia, P > 0.05) and O2 cost (P > 0.05) were not significantly different between normoxia and hyperoxia. In contrast, the total ATP synthesis rate and the ATP cost of dynamic contraction were significantly lower in hyperoxia than normoxia (P < 0.05). As a result, the ratio of the rate of oxidative ATP synthesis from the quadriceps to V̇o2p was lower in hyperoxia than normoxia but did not reach statistical significance (16 ± 3 mM/ml in normoxia and 12 ± 5 mM/ml in hyperoxia, P = 0.07). Together, these findings reveal dynamic and independent regulations of mitochondrial and contractile efficiency as a consequence of O2 availability in young active individuals. Furthermore, muscle efficiency appears to be already optimized in normoxia and is unlikely to contribute to the well-established improvement in exercise capacity induced by hyperoxia.
Collapse
Affiliation(s)
- Gwenael Layec
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, UMR 7339, Marseille, France; Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah;
| | - Aurélien Bringard
- Département des Neurosciences Fondamentales, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Yann Le Fur
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, UMR 7339, Marseille, France
| | - Jean-Paul Micallef
- Movement To Health (M2H), EuroMov, Montpellier-1 University, Montpellier, France; and Institut National de la Santé et de la Recherche Médicale ADR 08, Montpellier, France
| | - Christophe Vilmen
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, UMR 7339, Marseille, France
| | - Stéphane Perrey
- Movement To Health (M2H), EuroMov, Montpellier-1 University, Montpellier, France; and
| | - Patrick J Cozzone
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, UMR 7339, Marseille, France
| | - David Bendahan
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, UMR 7339, Marseille, France
| |
Collapse
|
13
|
Cannon DT, Bimson WE, Hampson SA, Bowen TS, Murgatroyd SR, Marwood S, Kemp GJ, Rossiter HB. Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee extension. J Physiol 2014; 592:5287-300. [PMID: 25281731 DOI: 10.1113/jphysiol.2014.279174] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During constant-power high-intensity exercise, the expected increase in oxygen uptake (V̇O2) is supplemented by a V̇O2 slow component (V̇O2 sc ), reflecting reduced work efficiency, predominantly within the locomotor muscles. The intracellular source of inefficiency is postulated to be an increase in the ATP cost of power production (an increase in P/W). To test this hypothesis, we measured intramuscular ATP turnover with (31)P magnetic resonance spectroscopy (MRS) and whole-body V̇O2 during moderate (MOD) and heavy (HVY) bilateral knee-extension exercise in healthy participants (n = 14). Unlocalized (31)P spectra were collected from the quadriceps throughout using a dual-tuned ((1)H and (31)P) surface coil with a simple pulse-and-acquire sequence. Total ATP turnover rate (ATPtot) was estimated at exercise cessation from direct measurements of the dynamics of phosphocreatine (PCr) and proton handling. Between 3 and 8 min during MOD, there was no discernable V̇O2 sc (mean ± SD, 0.06 ± 0.12 l min(-1)) or change in [PCr] (30 ± 8 vs. 32 ± 7 mm) or ATPtot (24 ± 14 vs. 17 ± 14 mm min(-1); each P = n.s.). During HVY, the V̇O2 sc was 0.37 ± 0.16 l min(-1) (22 ± 8%), [PCr] decreased (19 ± 7 vs. 18 ± 7 mm, or 12 ± 15%; P < 0.05) and ATPtot increased (38 ± 16 vs. 44 ± 14 mm min(-1), or 26 ± 30%; P < 0.05) between 3 and 8 min. However, the increase in ATPtot (ΔATPtot) was not correlated with the V̇O2 sc during HVY (r(2) = 0.06; P = n.s.). This lack of relationship between ΔATPtot and V̇O2 sc , together with a steepening of the [PCr]-V̇O2 relationship in HVY, suggests that reduced work efficiency during heavy exercise arises from both contractile (P/W) and mitochondrial sources (the O2 cost of ATP resynthesis; P/O).
Collapse
Affiliation(s)
- Daniel T Cannon
- Rehabilitation Clinical Trials Center, Division of Respiratory & Critical Care Physiology & Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - William E Bimson
- Magnetic Resonance & Image Analysis Research Centre, University of Liverpool, Liverpool, UK
| | - Sophie A Hampson
- School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK Department of Internal Medicine and Cardiology, University of Leipzig - Heart Center, Leipzig, DE
| | - Scott R Murgatroyd
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | - Graham J Kemp
- Magnetic Resonance & Image Analysis Research Centre, University of Liverpool, Liverpool, UK Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory & Critical Care Physiology & Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
14
|
Decorte N, Lamalle L, Carlier P, Giacomini E, Guinot M, Levy P, Verges S, Wuyam B. Impact of salbutamol on muscle metabolism assessed by31P NMR spectroscopy. Scand J Med Sci Sports 2014; 25:e267-73. [DOI: 10.1111/sms.12312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 11/30/2022]
Affiliation(s)
- N. Decorte
- HP2 Laboratory; Grenoble-Alpes University; Grenoble France
- U1042; INSERM; Grenoble France
| | - L. Lamalle
- HP2 Laboratory; Grenoble-Alpes University; Grenoble France
- INSERM US017; CNRS; UMS 3552; IRMaGe; CHU Grenoble; Grenoble France
| | - P.G. Carlier
- Institute of Myology; NMR Laboratory Paris France
- CEA; I BM; MIRCen; NMR Laboratory; Paris France
| | - E. Giacomini
- Institute of Myology; NMR Laboratory Paris France
- CEA; I BM; MIRCen; NMR Laboratory; Paris France
| | - M. Guinot
- HP2 Laboratory; Grenoble-Alpes University; Grenoble France
- U1042; INSERM; Grenoble France
- Institute for Doping Prevention; Grenoble France
| | - P. Levy
- HP2 Laboratory; Grenoble-Alpes University; Grenoble France
- U1042; INSERM; Grenoble France
| | - S. Verges
- HP2 Laboratory; Grenoble-Alpes University; Grenoble France
- U1042; INSERM; Grenoble France
| | - B. Wuyam
- HP2 Laboratory; Grenoble-Alpes University; Grenoble France
- U1042; INSERM; Grenoble France
| |
Collapse
|
15
|
Christie AD, Tonson A, Larsen RG, DeBlois JP, Kent JA. Human skeletal muscle metabolic economy in vivo: effects of contraction intensity, age, and mobility impairment. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1124-35. [PMID: 25163917 DOI: 10.1152/ajpregu.00083.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We tested the hypothesis that older muscle has greater metabolic economy (ME) in vivo than young, in a manner dependent, in part, on contraction intensity. Twenty young (Y; 24±1 yr, 10 women), 18 older healthy (O; 73±2, 9 women) and 9 older individuals with mild-to-moderate mobility impairment (OI; 74±1, 7 women) received stimulated twitches (2 Hz, 3 min) and performed nonfatiguing voluntary (20, 50, and 100% maximal; 12 s each) isometric dorsiflexion contractions. Torque-time integrals (TTI; Nm·s) were calculated and expressed relative to maximal fat-free muscle cross-sectional area (cm2), and torque variability during voluntary contractions was calculated as the coefficient of variation. Total ATP cost of contraction (mM) was determined from flux through the creatine kinase reaction, nonoxidative glycolysis and oxidative phosphorylation, and used to calculate ME (Nm·s·cm(-2)·mM ATP(-1)). While twitch torque relaxation was slower in O and OI compared with Y (P≤0.001), twitch TTI, ATP cost, and economy were similar across groups (P≥0.15), indicating comparable intrinsic muscle economy during electrically induced isometric contractions in vivo. During voluntary contractions, normalized TTI and total ATP cost did not differ significantly across groups (P≥0.20). However, ME was lower in OI than Y or O at 20% and 50% MVC (P≤0.02), and torque variability was greater in OI than Y or O at 20% MVC (P≤0.05). These results refute the hypothesis of greater muscle ME in old age, and provide support for lower ME in impaired older adults as a potential mechanism or consequence of age-related reductions in functional mobility.
Collapse
Affiliation(s)
- Anita D Christie
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Anne Tonson
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Ryan G Larsen
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Jacob P DeBlois
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Jane A Kent
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
16
|
Layec G, Malucelli E, Le Fur Y, Manners D, Yashiro K, Testa C, Cozzone PJ, Iotti S, Bendahan D. Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans. NMR IN BIOMEDICINE 2013; 26:1403-1411. [PMID: 23703831 DOI: 10.1002/nbm.2966] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 06/02/2023]
Abstract
Little is known about the metabolic differences that exist among different muscle groups within the same subjects. Therefore, we used (31)P-magnetic resonance spectroscopy ((31)P-MRS) to investigate muscle oxidative capacity and the potential effects of pH on PCr recovery kinetics between muscles of different phenotypes (quadriceps (Q), finger (FF) and plantar flexors (PF)) in the same cohort of 16 untrained adults. The estimated muscle oxidative capacity was lower in Q (29 ± 12 mM min(-1), CV(inter-subject) = 42%) as compared with PF (46 ± 20 mM min(-1), CV(inter-subject) = 44%) and tended to be higher in FF (43 ± 35 mM min(-1), CV(inter-subject) = 80%). The coefficient of variation (CV) of oxidative capacity between muscles within the group was 59 ± 24%. PCr recovery time constant was correlated with end-exercise pH in Q (p < 0.01), FF (p < 0.05) and PF (p < 0.05) as well as proton efflux rate in FF (p < 0.01), PF (p < 0.01) and Q (p = 0.12). We also observed a steeper slope of the relationship between end-exercise acidosis and PCr recovery kinetics in FF compared with either PF or Q muscles. Overall, this study supports the concept of skeletal muscle heterogeneity by revealing a comparable inter- and intra-individual variability in oxidative capacity across three skeletal muscles in untrained individuals. These findings also indicate that the sensitivity of mitochondrial respiration to the inhibition associated with cytosolic acidosis is greater in the finger flexor muscles compared with locomotor muscles, which might be related to differences in permeability in the mitochondrial membrane and, to some extent, to proton efflux rates.
Collapse
Affiliation(s)
- Gwenael Layec
- Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Faculté de Médecine de Marseille, Marseille, France; Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kappenstein J, Ferrauti A, Runkel B, Fernandez-Fernandez J, Müller K, Zange J. Changes in phosphocreatine concentration of skeletal muscle during high-intensity intermittent exercise in children and adults. Eur J Appl Physiol 2013; 113:2769-79. [PMID: 23995672 DOI: 10.1007/s00421-013-2712-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 08/14/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of the present study was to test the hypotheses that a greater oxidative capacity in children results in a lower phosphocreatine (PCr) depletion, a faster PCr resynthesis and a lower muscle acidification during high-intensity intermittent exercise compared to adults. METHODS Sixteen children (9.4 ± 0.5 years) and 16 adults (26.1 ± 0.3 years) completed a protocol consisting of a dynamic plantar flexion (10 bouts of 30-s exercise at 25 % of one repetition maximum separated by 20-s recovery), followed by 10 min of passive recovery. Changes of PCr, ATP, inorganic phosphate, and phosphomonoesters were measured by means of (31)Phosphorous-magnetic resonance spectroscopy during and post-exercise. RESULTS Average PCr (percentage of [PCr] at initial rest (%[PCr]i)) at the end of the exercise (adults 17 ± 12 %[PCr]i, children 38 ± 17 %[PCr]i, P < 0.01) and recovery periods (adults 37 ± 14 %[PCr]i, children 57 ± 17 %[PCr]i, P < 0.01) was significantly lower in adults compared to children, induced by a stronger PCr decrease during the first exercise interval (adults -73 ± 10 %[PCr]i, children -55 ± 15 %[PCr]i, P < 0.01). End-exercise pH was significantly higher in children compared to adults (children 6.90 + 0.20, -0.14; adults 6.67 + 0.23, -0.15, P < 0.05). CONCLUSIONS From our results we suggest relatively higher rates of oxidative ATP formation in children's muscle for covering the ATP demand of high-intensity intermittent exercise compared to adults, enabling children to begin each exercise interval with significantly higher PCr concentrations and leading to an overall lower muscle acidification.
Collapse
Affiliation(s)
- J Kappenstein
- Department of Training and Exercise Science, Faculty of Sport Science, Ruhr-University Bochum, Gesundheitscampus Nord Haus Nr. 10, 44780, Bochum, Germany,
| | | | | | | | | | | |
Collapse
|
18
|
Schmitz JPJ, Jeneson JAL, van Oorschot JWM, Prompers JJ, Nicolay K, Hilbers PAJ, van Riel NAW. Prediction of muscle energy states at low metabolic rates requires feedback control of mitochondrial respiratory chain activity by inorganic phosphate. PLoS One 2012; 7:e34118. [PMID: 22470528 PMCID: PMC3314597 DOI: 10.1371/journal.pone.0034118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/22/2012] [Indexed: 01/20/2023] Open
Abstract
The regulation of the 100-fold dynamic range of mitochondrial ATP synthesis flux in skeletal muscle was investigated. Hypotheses of key control mechanisms were included in a biophysical model of oxidative phosphorylation and tested against metabolite dynamics recorded by (31)P nuclear magnetic resonance spectroscopy ((31)P MRS). Simulations of the initial model featuring only ADP and Pi feedback control of flux failed in reproducing the experimentally sampled relation between myoplasmic free energy of ATP hydrolysis (ΔG(p) = ΔG(p)(o')+RT ln ([ADP][Pi]/[ATP]) and the rate of mitochondrial ATP synthesis at low fluxes (<0.2 mM/s). Model analyses including Monte Carlo simulation approaches and metabolic control analysis (MCA) showed that this problem could not be amended by model re-parameterization, but instead required reformulation of ADP and Pi feedback control or introduction of additional control mechanisms (feed forward activation), specifically at respiratory Complex III. Both hypotheses were implemented and tested against time course data of phosphocreatine (PCr), Pi and ATP dynamics during post-exercise recovery and validation data obtained by (31)P MRS of sedentary subjects and track athletes. The results rejected the hypothesis of regulation by feed forward activation. Instead, it was concluded that feedback control of respiratory chain complexes by inorganic phosphate is essential to explain the regulation of mitochondrial ATP synthesis flux in skeletal muscle throughout its full dynamic range.
Collapse
Affiliation(s)
- Joep P J Schmitz
- BioModeling and Bioinformatics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
19
|
Layec G, Bringard A, Le Fur Y, Vilmen C, Micallef JP, Perrey S, Cozzone PJ, Bendahan D. Comparative determination of energy production rates and mitochondrial function using different 31P MRS quantitative methods in sedentary and trained subjects. NMR IN BIOMEDICINE 2011; 24:425-438. [PMID: 20963767 DOI: 10.1002/nbm.1607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 06/02/2010] [Accepted: 07/23/2010] [Indexed: 05/30/2023]
Abstract
Muscle energetics has been largely and quantitatively investigated using (31)P MRS. Various methods have been used to estimate the corresponding rate of oxidative ATP synthesis (ATP(ox)); however, potential differences among methods have not been investigated. In this study, we aimed to compare the rates of ATP production and energy cost in two groups of subjects with different training status using four different methods: indirect method (method 1), ADP control model (method 2) and phosphate potential control model (method 3). Method 4 was a modified version of method 3 with the introduction of a correction factor allowing for similar values to be obtained for the end-exercise oxidative ATP synthesis rate inferred from exercise measurements and the initial recovery phosphocreatine resynthesis rate. Seven sedentary and seven endurance-trained subjects performed a dynamic standardised rest-exercise-recovery protocol. We quantified the rates of ATP(ox) and anaerobic ATP synthesis (ATP(ana)) using (31)P MRS data recorded at 1.5 T. The rates of ATP(ox) over the entire exercise session were independent of the method used, except for method 4 which provided significantly higher values in both groups (p < 0.01). In addition, methods 1-3 were cross-correlated, thereby confirming their statistical agreement. The rate of ATP(ana) was significantly higher with method 1 (p < 0.01) and lower with method 4 (p < 0.01). As a result of the higher rate of ATP(ox), EC (method 4) calculated over the entire exercise session was higher and initial EC (method 1) was lower in both groups compared with the other methods. We showed in this study that the rate of ATP(ox) was independent of the calculation method, as long as no corrections (method 4) were performed. In contrast, results related to the rates of ATP(ana) were strongly affected by the calculation method and, more exactly, by the estimation of protons generated by ATP(ox). Although the absolute EC values differed between the methods, within- or between-subject comparisons are still valid given the tight relationships between them.
Collapse
Affiliation(s)
- Gwenael Layec
- Centre de Resonance Magnetique Biologique et Medicale, Faculté de Médecine de Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tonson A, Ratel S, Le Fur Y, Vilmen C, Cozzone PJ, Bendahan D. Muscle energetics changes throughout maturation: a quantitative 31P-MRS analysis. J Appl Physiol (1985) 2010; 109:1769-78. [PMID: 20847131 DOI: 10.1152/japplphysiol.01423.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We quantified energy production in 7 prepubescent boys (11.7 ± 0.6 yr) and 10 men (35.6 ± 7.8 yr) using (31)P-magnetic resonance spectroscopy to investigate whether development affects muscle energetics, given that resistance to fatigue has been reported to be larger before puberty. Each subject performed a finger flexions exercise at 0.7 Hz against a weight adjusted to 15% of their maximal voluntary strength for 3 min, followed by a 15-min recovery period. The total energy cost was similar in both groups throughout the exercise bout, whereas the interplay of the different metabolic pathways was different. At the onset of exercise, children exhibited a higher oxidative contribution (50 ± 15% in boys and 25 ± 8% in men, P < 0.05) to ATP production, whereas the phosphocreatine breakdown contribution was reduced (40 ± 10% in boys and 53 ± 12% in men, P < 0.05), likely as a compensatory mechanism. The anaerobic glycolysis activity was unaffected by maturation. The recovery phase also disclosed differences regarding the rates of proton efflux (6.2 ± 2.5 vs. 3.8 ± 1.9 mM · pH unit(-1) · min(-1), in boys and men, respectively, P < 0.05), and phosphocreatine recovery, which was significantly faster in boys than in men (rate constant of phosphocreatine recovery: 1.3 ± 0.5 vs. 0.7 ± 0.4 min(-1); V(max): 37.5 ± 14.5 vs. 21.1 ± 12.2 mM/min, in boys and men, respectively, P < 0.05). Our results obtained in vivo clearly showed that maturation affects muscle energetics. Children relied more on oxidative metabolism and less on creatine kinase reaction to meet energy demand during exercise. This phenomenon can be explained by a greater oxidative capacity, probably linked to a higher relative content in slow-twitch fibers before puberty.
Collapse
Affiliation(s)
- Anne Tonson
- Centre de Résonance Magnétique Biologique et Médicale, UMR Centre National de la Recherche Scientifique 6612, Faculté de Médecine de Marseille, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | |
Collapse
|
21
|
VANHATALO ANNI, MCNAUGHTON LARSR, SIEGLER JASON, JONES ANDREWM. Effect of Induced Alkalosis on the Power-Duration Relationship of "All-out" Exercise. Med Sci Sports Exerc 2010; 42:563-70. [DOI: 10.1249/mss.0b013e3181b71a4a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Layec G, Bringard A, Le Fur Y, Vilmen C, Micallef JP, Perrey S, Cozzone PJ, Bendahan D. Reproducibility assessment of metabolic variables characterizing muscle energetics in vivo: A 31P-MRS study. Magn Reson Med 2010; 62:840-54. [PMID: 19725136 DOI: 10.1002/mrm.22085] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The purpose of the present study was to assess the reliability of metabolic parameters measured using (31)P magnetic resonance spectroscopy ((31)P MRS) during two standardized rest-exercise-recovery protocols. Twelve healthy subjects performed the standardized protocols at two different intensities; i.e., a moderate intensity (MOD) repeated over a two-month period and heavy intensity (HEAVY) repeated over a year's time. Test-retest reliability was analyzed using coefficient of variation (CV), limits of agreement (LOA), and intraclass correlation coefficients (ICC). During exercise and recovery periods, most of the metabolic parameters exhibited a good reliability. The CVs of individual concentration of phosphocreatine ([PCr]), concentration of adenosine diphosphate ([ADP]), and pH values recorded at end of the HEAVY exercise were lower than 15%. The CV calculated for the rate of PCr resynthesis and the maximal oxidative capacity were less than 13% during the HEAVY protocol. Inferred parameters such as oxidative and total adenosine triphosphate (ATP) production rates exhibited a good reliability (ICC approximately 0.7; CV < 15% during the HEAVY protocol). Our results demonstrated that measurement error using (31)P-MRS during a standardized exercise was low and that biological variability accounted for the vast majority of the measurement variability. In addition, the corresponding metabolic measurements can reliably be used for longitudinal studies performed even over a long period of time.
Collapse
Affiliation(s)
- Gwenael Layec
- Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Faculté de Médecine de Marseille, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Herman P, Lee JC. Functional energetic landscape in the allosteric regulation of muscle pyruvate kinase. 3. Mechanism. Biochemistry 2009; 48:9466-70. [PMID: 19719322 DOI: 10.1021/bi900281s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mammalian pyruvate kinase exists in four isoforms with characteristics tuned to specific metabolic requirements of different tissues. All of the isoforms, except the muscle isoform, exhibit typical allosteric behavior. The case of the muscle isoform is a conundrum. It is inhibited by an allosteric inhibitor, Phe, yet it has traditionally not been considered as an allosteric enzyme. In this series of study, an energetic landscape of rabbit muscle pyruvate kinase (RMPK) was established. The phenomenon of inhibition by Phe is shown to be physiological. Furthermore, the thermodynamics for the temperature fluctuation and concomitant pH change as a consequence of muscle activity were elucidated. We have shown that (1) the differential number of protons released or absorbed with regard to the various linked reactions adds another level of control to shift the binding constants and equilibrium of active <--> inactive state changes (the latter controls quantitatively the activity of RMPK); (2) ADP plays a major role in the allosteric mechanism in RMPK under physiological temperatures (depending on the temperature, ADP can assume dual and opposite roles of being an inhibitor by binding preferentially to the inactive form and a substrate); and (3) simulation of the RMPK behavior under physiological conditions shows that the net results of the 21 thermodynamic parameters involved in the regulation are well-tuned to allow the maximal response of the enzyme to even minute changes in temperature and ligand concentration.
Collapse
Affiliation(s)
- Petr Herman
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic.
| | | |
Collapse
|
24
|
Layec G, Bringard A, Vilmen C, Micallef JP, Le Fur Y, Perrey S, Cozzone PJ, Bendahan D. Does oxidative capacity affect energy cost? An in vivo MR investigation of skeletal muscle energetics. Eur J Appl Physiol 2009; 106:229-42. [PMID: 19255774 DOI: 10.1007/s00421-009-1012-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2009] [Indexed: 11/26/2022]
Abstract
Investigations of training effects on exercise energy cost have yielded conflicting results. The purpose of the present study was to compare quadriceps energy cost and oxidative capacity between endurance-trained and sedentary subjects during a heavy dynamic knee extension exercise. We quantified the rates of ATP turnover from oxidative and anaerobic pathways with (31)P-MRS, and we measured simultaneously pulmonary oxygen uptake in order to assess both total ATP production [i.e., energy cost (EC)] and O(2) consumption (O(2) cost) scaled to power output. Seven sedentary (SED) and seven endurance-trained (TRA) subjects performed a dynamic standardized rest-exercise-recovery protocol at an exercise intensity corresponding to 35% of maximal voluntary contraction. We showed that during a dynamic heavy exercise, the O(2) cost and EC were similar in the SED and endurance-trained groups. For a given EC, endurance-trained subjects exhibited a higher relative mitochondrial contribution to ATP production at the muscle level (84 +/- 12% in TRA and 57 +/- 12% in SED; P < 0.01) whereas the anaerobic contribution was reduced (18 +/- 12% in TRA and 44 +/- 11% in SED; P < 0.01). Our results obtained in vivo illustrate that on the one hand the beneficial effects of endurance training are not related to any reduction in EC or O(2) cost and on the other hand that this similar EC was linked to a change regarding the contribution of anaerobic and oxidative processes to energy production, i.e., a greater aerobic energy contribution associated with a concomitant reduction of the anaerobic energy supply.
Collapse
Affiliation(s)
- Gwenael Layec
- Centre de Resonance Magnetique Biologique et Medicale, Faculté de Médecine de Marseille, UMR CNRS 6612, 27 Bd Jean Moulin, 13005, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Layec G, Bringard A, Le Fur Y, Vilmen C, Micallef JP, Perrey S, Cozzone PJ, Bendahan D. Effects of a prior high-intensity knee-extension exercise on muscle recruitment and energy cost: a combined local and global investigation in humans. Exp Physiol 2009; 94:704-19. [PMID: 19151077 DOI: 10.1113/expphysiol.2008.044651] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of a priming exercise bout on both muscle energy production and the pattern of muscle fibre recruitment during a subsequent exercise bout are poorly understood. The purpose of the present study was to determine whether a prior exercise bout which is known to increase O(2) supply and to induce a residual acidosis could alter energy cost and muscle fibre recruitment during a subsequent heavy-intensity knee-extension exercise. Fifteen healthy subjects performed two 6 min bouts of heavy exercise separated by a 6 min resting period. Rates of oxidative and anaerobic ATP production, determined with (31)P-magnetic resonance spectroscopy, and breath-by-breath measurements of pulmonary oxygen uptake were obtained simultaneously. Changes in muscle oxygenation and muscle fibre recruitment occurring within the quadriceps were measured using near-infrared spectroscopy and surface electromyography. The priming heavy-intensity exercise increased motor unit recruitment (P < 0.05) in the early part of the subsequent exercise bout but did not alter muscle energy cost. We also observed a reduced deoxygenation time delay, whereas the deoxygenation amplitude was increased (P < 0.01). These changes were associated with an increased oxidative ATP cost after approximately 50 s (P < 0.05) and a slight reduction in the overall anaerobic rate of ATP production (0.11 +/- 0.04 mM min(-1) W(-1) for bout 1 and 0.06 +/- 0.11 mM min(-1) W(-1) for bout 2; P < 0.05). We showed that a priming bout of heavy exercise led to an increased recruitment of motor units in the early part of the second bout of heavy exercise. Considering the increased oxidative cost and the unaltered energy cost, one could suggest that our results illustrate a reduced metabolic strain per fibre.
Collapse
Affiliation(s)
- Gwenael Layec
- Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Faculté de Médecine de Marseille, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cytosolic pH buffering during exercise and recovery in skeletal muscle of patients with McArdle’s disease. Eur J Appl Physiol 2008; 105:687-94. [DOI: 10.1007/s00421-008-0950-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2008] [Indexed: 01/21/2023]
|
27
|
Struyk AF, Cannon SC. A Na+ channel mutation linked to hypokalemic periodic paralysis exposes a proton-selective gating pore. ACTA ACUST UNITED AC 2007; 130:11-20. [PMID: 17591984 PMCID: PMC2154364 DOI: 10.1085/jgp.200709755] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The heritable muscle disorder hypokalemic periodic paralysis (HypoPP) is characterized by attacks of flaccid weakness, brought on by sustained sarcolemmal depolarization. HypoPP is genetically linked to missense mutations at charged residues in the S4 voltage-sensing segments of either CaV1.1 (the skeletal muscle L-type Ca2+ channel) or NaV1.4 (the skeletal muscle voltage-gated Na+ channel). Although these mutations alter the gating of both channels, these functional defects have proven insufficient to explain the sarcolemmal depolarization in affected muscle. Recent insight into the topology of the S4 voltage-sensing domain has aroused interest in an alternative pathomechanism, wherein HypoPP mutations might generate an aberrant ionic leak conductance by unblocking the putative aqueous crevice (“gating-pore”) in which the S4 segment resides. We tested the rat isoform of NaV1.4 harboring the HypoPP mutation R663H (human R669H ortholog) at the outermost arginine of S4 in domain II for a gating-pore conductance. We found that the mutation R663H permits transmembrane permeation of protons, but not larger cations, similar to the conductance displayed by histidine substitution at Shaker K+ channel S4 sites. These results are consistent with the notion that the outermost charged residue in the DIIS4 segment is simultaneously accessible to the cytoplasmic and extracellular spaces when the voltage sensor is positioned inwardly. The predicted magnitude of this proton leak in mature skeletal muscle is small relative to the resting K+ and Cl− conductances, and is thus not likely to fully account for the aberrant sarcolemmal depolarization underlying the paralytic attacks. Rather, it is possible that a sustained proton leak may contribute to instability of VREST indirectly, for instance, by interfering with intracellular pH homeostasis.
Collapse
Affiliation(s)
- Arie F Struyk
- Department of Neurology, University of Texas-Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
28
|
Meyerspeer M, Kemp GJ, Mlynárik V, Krššák M, Szendroedi J, Nowotny P, Roden M, Moser E. Direct noninvasive quantification of lactate and high energy phosphates simultaneously in exercising human skeletal muscle by localized magnetic resonance spectroscopy. Magn Reson Med 2007; 57:654-60. [PMID: 17390348 PMCID: PMC4876926 DOI: 10.1002/mrm.21188] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A novel method based on interleaved localized 31P- and 1H MRS is presented, by which lactate accumulation and the accompanying changes in high energy phosphates in human skeletal muscle can be monitored simultaneously during exercise and recovery. Lactate is quantified using a localized double quantum filter suppressing the abundant lipid signals while taking into account orientation dependent signal modulations. Lactate concentration after ischemic exercise directly quantified by DQF 1H spectroscopy was 24 +/- 3 mmol/L cell water, while 22 +/- 3 mmol/L was expected on the basis of 31P MRS acquired simultaneously. Lactate concentration in a sample of porcine meat was estimated to be 40 +/- 7 mmol/L by means of DQF quantitation, versus 39 +/- 5 mmol/L by biochemical methods. Excellent agreement is shown between lactate concentrations measured noninvasively by 1H MRS, measured biochemically ex vivo, and inferred indirectly in vivo from changes in pH, P(i), and PCr as obtained from 31P MRS data.
Collapse
Affiliation(s)
- Martin Meyerspeer
- MR Centre of Excellence, Medical University of Vienna, Austria
- Center for Biomedical Engineering and Physics, Medical University of Vienna, Austria
| | - Graham J. Kemp
- Division of Metabolic and Cellular Medicine, School of Clinical Science, Faculty of Medicine, University of Liverpool, United Kingdom
| | - Vladimir Mlynárik
- MR Centre of Excellence, Medical University of Vienna, Austria
- Center for Biomedical Engineering and Physics, Medical University of Vienna, Austria
| | - Martin Krššák
- MR Centre of Excellence, Medical University of Vienna, Austria
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria
| | - Julia Szendroedi
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria
- Karl-Landsteiner Institute of Endocrinology and Metabolism, Vienna, Austria
| | - Peter Nowotny
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria
| | - Michael Roden
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria
- Karl-Landsteiner Institute of Endocrinology and Metabolism, Vienna, Austria
- 1st Med. Department, Hanusch Hospital Vienna, Austria
| | - Ewald Moser
- MR Centre of Excellence, Medical University of Vienna, Austria
- Center for Biomedical Engineering and Physics, Medical University of Vienna, Austria
- Department of Diagnostic Radiology, Medical University of Vienna, Austria
- Correspondence to: Ewald Moser, MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria.
| |
Collapse
|
29
|
Abstract
Magnetic resonance spectroscopy (MRS) of skeletal muscle has been successfully applied by physiologists over several decades, particularly for studies of high-energy phosphates (by (31)P-MRS) and glycogen (by (13)C-MRS). Unfortunately, the observation of these heteronuclei requires equipment that is typically not available on clinical MR scanners, such as broadband capability and a second channel for decoupling and nuclear Overhauser enhancement (NOE). On the other hand, (1)H-MR spectra of skeletal muscle can be acquired on many routine MR systems and also provide a wealth of physiological information. In particular, studies of intramyocellular lipids (IMCL) attract physiologists and endocrinologists because IMCL levels are related to insulin resistance and thus can lead to a better understanding of major health problems in industrial countries. The combination of (1)H-, (13)C-, and (31)P-MRS gives access to the major long- and short-term energy sources of skeletal muscle. This review summarizes the technical aspects and unique MR-methodological features of the different nuclei. It reviews clinical studies that employed MRS of one or more nuclei, or combinations of MRS with other MR modalities. It also illustrates that MR spectra contain additional physiological information that is not yet used in routine clinical applications.
Collapse
Affiliation(s)
- Chris Boesch
- Department of Clinical Research, MR-Spectroscopy and Methodology, University of Bern, Bern, Switzerland.
| |
Collapse
|
30
|
van den Broek NMA, De Feyter HMML, de Graaf L, Nicolay K, Prompers JJ. Intersubject differences in the effect of acidosis on phosphocreatine recovery kinetics in muscle after exercise are due to differences in proton efflux rates. Am J Physiol Cell Physiol 2007; 293:C228-37. [PMID: 17392383 DOI: 10.1152/ajpcell.00023.2007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
(31)P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery (tau(PCr)) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that tau(PCr) should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of tau(PCr). We investigated the pH dependence of tau(PCr) on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of tau(PCr) differed among subjects, ranging from -33.0 to -75.3 s/pH unit. The slope of the relation between tau(PCr) and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of tau(PCr) have a higher proton efflux rate. Our study implies that simply correcting tau(PCr) for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers.
Collapse
Affiliation(s)
- Nicole M A van den Broek
- Biomedical NMR, Dept. of Biomedical Engineering, Eindhoven University of Technology, N-laag b1.08, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Hug F, Grélot L, Le Fur Y, Cozzone PJ, Bendahan D. Recovery kinetics throughout successive bouts of various exercises in elite cyclists. Med Sci Sports Exerc 2007; 38:2151-8. [PMID: 17146323 DOI: 10.1249/01.mss.0000235882.86734.9a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE In the present study we investigated whether a high volume of cycling training would influence the metabolic changes associated with a succession of three exhaustive cycling exercises. METHODS Seven professional road cyclists (VO2max: 74.3 +/- 3.7 mL.min.kg; maximal power tolerated: 475 +/- 18 W; training: 22 +/- 3 h.wk) and seven sport sciences students (VO2max: 54.2 +/- 5.3 mL.min.kg; maximal power tolerated: 341 +/- 26 W; training: 6 +/- 2 h.wk) performed three different exhaustive cycling exercise bouts (progressive, constant load, and sprint) on an electrically braked cycloergometer positioned near the magnetic resonance scanner. Less than 45 s after the completion of each exercise bout, recovery kinetics of high-energy phosphorylated compounds and pH were measured using P-MR spectroscopy. RESULTS Resting values for phosphomonoesters (PME) and phosphodiesters (PDE) were significantly elevated in the cyclist group (PME/ATP: 0.82 +/- 0.11 vs 0.58 +/- 0.19; PDE/ATP: 0.27 +/- 0.03 vs 0.21 +/- 0.05). Phosphocreatine (PCr) consumption and inorganic phosphate (Pi) accumulation measured at end of exercise bouts 1 (PCr: 6.5 +/- 3.2 vs 10.4 +/- 1.6 mM; Pi: 1.6 +/- 0.7 vs 6.8 +/- 3.4 mM) and 3 (PCr: 5.6 +/- 2.4 vs 9.3 +/- 3.9 mM; Pi: 1.5 +/- 0.5 vs 7.7 +/- 3.3 mM) were reduced in cyclists compared with controls. During the recovery period after each exercise bout, the pH-recovery rate was larger in professional road cyclists, whereas the PCr-recovery kinetics were significantly faster for cyclists only for bout 3. DISCUSSION Whereas the PDE and PME elevation at rest in professional cyclists may indicate fiber-type changes and an imbalance between glycogenolytic and glycolytic activity, the lower PCr consumption during exercise and the faster pH-recovery kinetic clearly suggest an improved mitochondrial function.
Collapse
Affiliation(s)
- François Hug
- University of Nantes, Nantes Atlantic Universities, Laboratory of Motricity, Interactions, and Performance, Nantes, France.
| | | | | | | | | |
Collapse
|
32
|
Trenell MI, Sue CM, Thompson CH, Kemp GJ. Supplemental oxygen and muscle metabolism in mitochondrial myopathy patients. Eur J Appl Physiol 2007; 99:541-7. [PMID: 17219172 DOI: 10.1007/s00421-006-0372-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2006] [Indexed: 11/29/2022]
Abstract
Patients with mitochondrial myopathy (MM) have a reduced capacity to perform exercise due to a reduced oxidative capacity. We undertook this study to determine whether skeletal muscle metabolism could be improved with oxygen therapy in patients with MM. Six patients with MM and six controls, matched for age, gender and physical activity, underwent (31)P-magnetic resonance spectroscopy ((31)P-MRS) examination. (31)P-MR spectra were collected at rest and in series during exercise and recovery whilst breathing normoxic (0.21 O(2)) or hyperoxic (1.0 O(2)) air. At rest, MM showed an elevated [ADP] (18 +/- 3 micromol/l) and pH (7.03 +/- 0.01) in comparison to the control group (12 +/- 1 micromol/l, 7.01 +/- 0.01) (P < 0.05) consistent with mitochondrial dysfunction. Oxygen supplementation did not change resting metabolites in either MM or the control group (P > 0.05). Inferred maximal ATP synthesis rate improved by 33% with oxygen in MM (21 +/- 3 vs. 28 +/- 5 mmol/(l min), P < 0.05) but only improved by 5% in controls (40 +/- 3 vs. 42 +/- 3 mmol/(l min), P > 0.05). We conclude that oxygen therapy is associated with significant improvements in muscle metabolism in patients with MM. These data suggest that patients with MM could benefit from therapies which improve the provision of oxygen.
Collapse
Affiliation(s)
- Michael I Trenell
- Department of Neurogenetics, Kolling Institute for Medical Research, Sydney, Australia.
| | | | | | | |
Collapse
|
33
|
Prompers JJ, Jeneson JAL, Drost MR, Oomens CCW, Strijkers GJ, Nicolay K. Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR IN BIOMEDICINE 2006; 19:927-53. [PMID: 17075956 DOI: 10.1002/nbm.1095] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
MR is a powerful technique for studying the biomechanical and functional properties of skeletal muscle in vivo in health and disease. This review focuses on 31P, 1H and 13C MR spectroscopy for assessment of the dynamics of muscle metabolism and on dynamic 1H MRI methods for non-invasive measurement of the biomechanical and functional properties of skeletal muscle. The information thus obtained ranges from the microscopic level of the metabolism of the myocyte to the macroscopic level of the contractile function of muscle complexes. The MR technology presented plays a vital role in achieving a better understanding of many basic aspects of muscle function, including the regulation of mitochondrial activity and the intricate interplay between muscle fiber organization and contractile function. In addition, these tools are increasingly being employed to establish novel diagnostic procedures as well as to monitor the effects of therapeutic and lifestyle interventions for muscle disorders that have an increasing impact in modern society.
Collapse
Affiliation(s)
- Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Kemp G, Böning D, Beneke R, Maassen N. Explaining pH Change in Exercising Muscle: Lactic acid, Proton Consumption, and Buffering vs. Strong Ion Difference. Am J Physiol Regul Integr Comp Physiol 2006; 291:R235-7; author reply R238-9. [PMID: 16760335 DOI: 10.1152/ajpregu.00662.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of acidosis during intense exercise has traditionally been explained by the increased production of lactic acid, causing the release of a proton and the formation of the acid salt sodium lactate. On the basis of this explanation, if the rate of lactate production is high enough, the cellular proton buffering capacity can be exceeded, resulting in a decrease in cellular pH. These biochemical events have been termed lactic acidosis. The lactic acidosis of exercise has been a classic explanation of the biochemistry of acidosis for more than 80 years. This belief has led to the interpretation that lactate production causes acidosis and, in turn, that increased lactate production is one of the several causes of muscle fatigue during intense exercise. This review presents clear evidence that there is no biochemical support for lactate production causing acidosis. Lactate production retards, not causes, acidosis. Similarly, there is a wealth of research evidence to show that acidosis is caused by reactions other than lactate production. Every time ATP is broken down to ADP and Pi, a proton is released. When the ATP demand of muscle contraction is met by mitochondrial respiration, there is no proton accumulation in the cell, as protons are used by the mitochondria for oxidative phosphorylation and to maintain the proton gradient in the intermembranous space. It is only when the exercise intensity increases beyond steady state that there is a need for greater reliance on ATP regeneration from glycolysis and the phosphagen system. The ATP that is supplied from these nonmitochondrial sources and is eventually used to fuel muscle contraction increases proton release and causes the acidosis of intense exercise. Lactate production increases under these cellular conditions to prevent pyruvate accumulation and supply the NAD+ needed for phase 2 of glycolysis. Thus increased lactate production coincides with cellular acidosis and remains a good indirect marker for cell metabolic conditions that induce metabolic acidosis. If muscle did not produce lactate, acidosis and muscle fatigue would occur more quickly and exercise performance would be severely impaired.
Collapse
|
35
|
Bendahan D, Mattei JP, Guis S, Kozak-Ribbens G, Cozzone PJ. [Non-invasive investigation of muscle function using 31P magnetic resonance spectroscopy and 1H MR imaging]. Rev Neurol (Paris) 2006; 162:467-84. [PMID: 16585908 DOI: 10.1016/s0035-3787(06)75038-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
31P MRS and 1H MRI of skeletal muscle have become major new tools allowing a complete non invasive investigation of muscle function both in the clinical setting and in basic research. The comparative analysis of normal and diseased muscle remains a major requirement to further define metabolic events surrounding muscle contraction and the metabolic anomalies underlying pathologies. Also, standardized rest-exercise-recovery protocols for the exploration of muscle metabolism by P-31 MRS in healthy volunteers as well as in patients with intolerance to exercise have been developed. The CRMBM protocol is based on a short-term intense exercise, which is very informative and well accepted by volunteers and patients. Invariant metabolic parameters have been defined to characterize the normal metabolic response to the protocol. Deviations from normality can be directly interpreted in terms of specific pathologies in some favorable cases. This protocol has been applied to more than 4,000 patients and healthy volunteers over a period of 15 years. On the other hand, MRI investigations provide anatomical and functional information from resting and exercising muscle. From a diagnostic point of view, dedicated pulse sequences can be used in order to detect and quantify muscle inflammation, fatty replacement, muscle hyper and hypotrophy. In most cases, MR techniques provide valuable information which has to be processed in conjunction with traditional invasive biochemical, electrophysiological and histoenzymological tests. P-31 MRS has proved particularly useful in the therapeutic follow-up of palliative therapies (coenzyme Q treatment of mitochondriopathies) and in family investigations. It is now an accepted diagnostic tool in the array of tests which are used to characterize muscle disorders in clinical routine. As a research tool, it will keep bringing new information on the physiopathology of muscle diseases in animal models and in humans and should play a role in the metabolic characterization of gene and cell therapy.
Collapse
Affiliation(s)
- D Bendahan
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR CNRS No 6612, Faculté de Médecine de Marseille.
| | | | | | | | | |
Collapse
|
36
|
Kimura N, Hamaoka T, Kurosawa Y, Katsumura T. Contribution of intramuscular oxidative metabolism to total ATP production during forearm isometric exercise at varying intensities. TOHOKU J EXP MED 2006; 208:307-20. [PMID: 16565593 DOI: 10.1620/tjem.208.307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is not fully clear whether intramuscular oxidative metabolism contributes to total adenosine triphosphate (ATP) production during forearm isometric exercise at varying intensities. We tested hypothesis that oxidative metabolism with intramuscular O2 contributes to lessen the dependence on anaerobic metabolism, in particular phosphocreatine (PCr) breakdown. Seven male subjects were tested for changes in muscle oxygenation (MO2) and high-energy phosphates in forearm flexor muscles at rest and during exercise under arterial occlusion by 31-phosphorus magnetic resonance spectroscopy (31P-MRS) and near infrared spectroscopy (NIRS). Isometric wrist flexion exercise was performed for 1 min or until exhaustion at intensities corresponding to 30%, 50% and 70% of maximal voluntary contraction (MVC) under intramuscular O2 (Intramuscular O2-Ex) and anaerobic (Anaero-Ex) conditions. Oxidative ATP production in Intramuscular O2-Ex was calculated as 0.05 +/- 0.01 mM/s for 30%MVC, 0.08 +/- 0.01 mM/s for 50%MVC and 0.11 +/- 0.01 mM/s for 70%MVC. At a lower intensity (30%MVC), PCr breakdown rate (0.17 +/- 0.02 mM/s) of Anaero-Ex was significantly higher than the rate (0.13 +/- 0.01 mM/s) of Intramuscular O2-Ex (p < 0.05). There was no significant difference in ATP production rates through PCr breakdown and glycolysis between Intramuscular O2-Ex and Anaero-Ex at the higher intensities (50% and 70%MVC). In conclusion, intramuscular oxidative metabolism plays a significant role in reducing the dependence on PCr breakdown during isometric exercise at a lower intensity (30%MVC).
Collapse
Affiliation(s)
- Naoto Kimura
- Department of Preventive Medicine and Public Health, Nippon Sport Science University, Tokyo, Japan.
| | | | | | | |
Collapse
|
37
|
Trenell MI, Sue CM, Kemp GJ, Sachinwalla T, Thompson CH. Aerobic exercise and muscle metabolism in patients with mitochondrial myopathy. Muscle Nerve 2006; 33:524-31. [PMID: 16372322 DOI: 10.1002/mus.20484] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Exercise therapy improves mitochondrial function in patients with mitochondrial myopathy (MM). We undertook this study to determine the metabolic abnormalities that are improved by exercise therapy. This study identified metabolic pathology using (31)P-magnetic resonance spectroscopy and magnetic resonance imaging (MRI) in a group of patients with MM compared to a control group matched for age, gender, and physical activity. We also observed the effect of exercise therapy for 12 weeks on muscle metabolism and physical function in the MM group. During muscle activity, there was impaired responsiveness of the mitochondria to changes in cytosolic adenosine diphosphate concentration, increased dependence on anaerobic energy pathways, and an adaptive increase in proton efflux in patients with MM. Following exercise therapy, mitochondrial function and muscle mass improved without any change in proton efflux rate. These metabolic findings were accompanied by improvements in functional ability. We conclude that there are significant metabolic differences between patients with MM and a control population, independent of age, gender, and physical activity. Exercise therapy can assist in improving mitochondrial function in MM patients.
Collapse
Affiliation(s)
- Michael I Trenell
- School of Molecular and Microbial Bioscience, University of Sydney, Sydney, Australia
| | | | | | | | | |
Collapse
|
38
|
Korzeniewski B, Liguzinski P. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle. Biophys Chem 2005; 110:147-69. [PMID: 15223151 DOI: 10.1016/j.bpc.2004.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 01/12/2004] [Accepted: 01/13/2004] [Indexed: 11/20/2022]
Abstract
It is shown, using the computer model of glycolysis in skeletal muscle developed recently by Lambeth and Kushmerick (Ann. Biomed. Bioenerg, 30 (2001) 19-34) incorporated into the computer model of oxidative phosphorylation developed by Korzeniewski et al. (Biophys. Chem. 83 (2001) 19-34) that the regulation of glycolysis by ADP, AMP and P(i) is decidedly insufficient to explain the large increase in the glycolytic flux during transition from rest to intensive exercise in intact skeletal muscle. Computer simulations based on a simple kinetic description of the glycolytic ATP and H(+) production strongly suggests that glycolysis must be directly activated during muscle contraction. They also demonstrate that the inhibition of glycolysis by H(+) is needed to explain the transient activation of this pathway at the onset of exercise as well as the duration time and extent of the initial alkalization after the onset of exercise. Finally, it is shown that ATP supply from anaerobic glycolysis slows down the VO(2) kinetics during rest-to-work transition.
Collapse
Affiliation(s)
- Bernard Korzeniewski
- Institute of Molecular Biology and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Krakow, Poland.
| | | |
Collapse
|
39
|
Cerretelli P, Samaja M. Acid-base balance at exercise in normoxia and in chronic hypoxia. Revisiting the "lactate paradox". Eur J Appl Physiol 2003; 90:431-48. [PMID: 14504942 DOI: 10.1007/s00421-003-0928-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2003] [Indexed: 10/26/2022]
Abstract
Transitions between rest and work, in either direction, and heavy exercise loads are characterized by changes of muscle pH depending on the buffer power and capacity of the tissues and on the metabolic processes involved. Among the latter, in chronological sequence: (1). aerobic glycolysis generates sizeable amounts of lactate and H(+) by way of the recently described, extremely fast (20-100 ms) "glycogen shunt" and of the excess of glycolytic pyruvate supply; (2). hydrolysis of phosphocreatine, tightly coupled with that of ATP in the Lohmann reaction, is known to consume protons, a process undergoing reversal during recovery; (3). anaerobic glycolysis sustaining ATP production in supramaximal exercise as well as in conditions of hypoxia and ischemia, is responsible for the accumulation of large amounts of lactic acid (up to 1 mol for the whole body). The handling of metabolic acids, i.e., acid-base regulation, occurs both in blood and in tissues, mainly in muscles which are the main producers and consumers of lactic acid. The role of both blood and muscle bicarbonate and non-bicarbonate buffers as well as that of lactate/H(+) cotransport mechanisms is analyzed in relation to acid-base homeostasis in the course of exercise. A section of the review deals with the analysis of the acid-base state of humans exposed to chronic hypoxia. Particular emphasis is put on anaerobic glycolysis. In this context, the so-called lactate paradox is revisited and interpreted on the basis of the most recent findings on exercise at altitude.
Collapse
Affiliation(s)
- Paolo Cerretelli
- Department of Sciences and Biomedical Technologies, LITA, University of Milan, Via F lli Cervi 93, 20090, SEGRATE, Milano, Italy.
| | | |
Collapse
|
40
|
Vezzoli A, Gussoni M, Greco F, Zetta L. Effects of temperature and extracellular pH on metabolites: kinetics of anaerobic metabolism in resting muscle by 31P- and 1H-NMR spectroscopy. J Exp Biol 2003; 206:3043-52. [PMID: 12878672 DOI: 10.1242/jeb.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Environmental stress, such as low temperature, extracellular acidosis and anoxia, is known to play a key role in metabolic regulation. The aim of the present study was to gain insight into the combined temperature-pH regulation of metabolic rate in frog muscle, i.e. an anoxia-tolerant tissue. The rate of exergonic metabolic processes occurring in resting isolated muscles was determined at 15 degrees C and 25 degrees C as well as at extracellular pH values higher (7.9), similar (7.3) and lower (7.0) than the physiological intracellular pH. (31)P and (1)H nuclear magnetic resonance spectroscopy high-resolution measurements were carried out at 4.7 T in isolated frog (Rana esculenta) gastrocnemius muscle during anoxia to assess, by means of reference compounds, the concentration of all phosphate metabolites and lactate. Intra- and extracellular pH was also determined. In the range of examined temperatures (15-25 degrees C), the temperature dependence of anaerobic glycolysis was found to be higher than that of PCr depletion (Q(10)=2.3). High-energy phosphate metabolism was confirmed to be the initial and preferential energy source. The rate of phosphocreatine hydrolysis did not appear to be affected by extracellular pH changes. By contrast, independent of the intracellular pH value, at the higher temperature (25 degrees C) a lowering of the extracellular pH from 7.9 to 7.0 caused a depression in lactate accumulation. This mechanism was ascribed to the transmembrane proton concentration gradient. This parameter was demonstrated to regulate glycolysis, probably through a reduced lactate efflux, depending on the activity of the lactate-H(+) co-transporter. The calculated intracellular buffer capacity was related to intra- and extracellular pH and temperature. At the experimental extracellular pH of 7.9 and at a temperature of 15 degrees C and 25 degrees C, calculated intracellular buffering capacity was 29.50 micromol g(-1) pH unit(-1) and 69.98 micromol g(-1) pH unit(-1), respectively.
Collapse
|
41
|
Bendahan D, Kemp GJ, Roussel M, Fur YL, Cozzone PJ. ATP synthesis and proton handling in muscle during short periods of exercise and subsequent recovery. J Appl Physiol (1985) 2003; 94:2391-7. [PMID: 12611771 DOI: 10.1152/japplphysiol.00589.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used (31)P-magnetic resonance spectroscopy to study proton buffering in finger flexor muscles of eight healthy men (25-45 yr), during brief (18-s) voluntary finger flexion exercise (0.67-Hz contraction at 10% maximum voluntary contraction; 50/50 duty cycle) and 180-s recovery. Phosphocreatine (PCr) concentration fell 19 +/- 2% during exercise and then recovered with half time = 0.24 +/- 0.01 min. Cell pH rose by 0.058 +/- 0.003 units during exercise as a result of H(+) consumption by PCr splitting, which (assuming no lactate production or H(+) efflux) implies a plausible non-P(i) buffer capacity of 20 +/- 3 mmol. l intracellular water(-1). pH unit(-1). There was thus no evidence of significant glycogenolysis to lactate during exercise. Analysis of PCr kinetics as a classic linear response suggests that oxidative ATP synthesis reached 48 +/- 2% of ATP demand by the end of exercise; the rest was met by PCr splitting. Postexercise pH recovery was faster than predicted, suggesting "excess proton" production, with a peak value of 0.6 +/- 0.2 mmol/l intracellular water at 0.45 min of recovery, which might be due to, e.g., proton influx driven by cellular alkalinization, or a small glycolytic contribution to PCr resynthesis in recovery.
Collapse
Affiliation(s)
- David Bendahan
- Faculté de Médecine, Centre de Resonance Magnetique Biologique et Medicale, Unité Mixte de Recherche 6612 Centre National de la Recherche Scientifique, Marseille 13005, France.
| | | | | | | | | |
Collapse
|
42
|
Roussel M, Mattei JP, Le Fur Y, Ghattas B, Cozzone PJ, Bendahan D. Metabolic determinants of the onset of acidosis in exercising human muscle: a 31P-MRS study. J Appl Physiol (1985) 2003; 94:1145-52. [PMID: 12433845 DOI: 10.1152/japplphysiol.01024.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Onset of intracellular acidosis during muscular exercise has been generally attributed to activation or hyperactivation of nonoxidative ATP production but has not been analyzed quantitatively in terms of H(+) balance, i.e., production and removal mechanisms. To address this issue, we have analyzed the relation of intracellular acidosis to H(+) balance during exercise bouts in seven healthy subjects. Each subject performed a 6-min ramp rhythmic exercise (finger flexions) at low frequency (LF, 0.47 Hz), leading to slight acidosis, and at high frequency (HF, 0.85 Hz), inducing a larger acidosis. Metabolic changes were recorded using (31)P-magnetic resonance spectroscopy. Onset of intracellular acidosis was statistically identified after 3 and 4 min of exercise for HF and LF protocols, respectively. A detailed investigation of H(+) balance indicated that, for both protocols, nonoxidative ATP production preceded a change in pH. For HF and LF protocols, H(+) consumption through the creatine kinase equilibrium was constant in the face of increasing H(+) generation and efflux. For both protocols, changes in pH were not recorded as long as sources and sinks for H(+) approximately balanced. In contrast, a significant acidosis occurred after 4 min of LF exercise and 3 min of HF exercise, whereas the rise in H(+) generation exceeded the rise in H(+) efflux at a nearly constant H(+) uptake associated with phosphocreatine breakdown. We have clearly demonstrated that intracellular acidosis in exercising muscle does not occur exclusively as a result of nonoxidative ATP production but, rather, reflects changes in overall H(+) balance.
Collapse
Affiliation(s)
- M Roussel
- Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche Centre National de la Recherche Scientifique 6612, and Faculté de Médecine de Marseille, France
| | | | | | | | | | | |
Collapse
|
43
|
Bendahan D, Mattei JP, Ghattas B, Confort-Gouny S, Le Guern ME, Cozzone PJ. Citrulline/malate promotes aerobic energy production in human exercising muscle. Br J Sports Med 2002; 36:282-9. [PMID: 12145119 PMCID: PMC1724533 DOI: 10.1136/bjsm.36.4.282] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Previous studies have shown an antiasthenic effect of citrulline/malate (CM) but the mechanism of action at the muscular level remains unknown. OBJECTIVE To investigate the effects of CM supplementation on muscle energetics. METHODS Eighteen men complaining of fatigue but with no documented disease were included in the study. A rest-exercise (finger flexions)-recovery protocol was performed twice before (D-7 and D0), three times during (D3, D8, D15), and once after (D22) 15 days of oral supplementation with 6 g/day CM. Metabolism of the flexor digitorum superficialis was analysed by (31)P magnetic resonance spectroscopy at 4.7 T. RESULTS Metabolic variables measured twice before CM ingestion showed no differences, indicating good reproducibility of measurements and no learning effect from repeating the exercise protocol. CM ingestion resulted in a significant reduction in the sensation of fatigue, a 34% increase in the rate of oxidative ATP production during exercise, and a 20% increase in the rate of phosphocreatine recovery after exercise, indicating a larger contribution of oxidative ATP synthesis to energy production. Considering subjects individually and variables characterising aerobic function, extrema were measured after either eight or 15 days of treatment, indicating chronological heterogeneity of treatment induced changes. One way analysis of variance confirmed improved aerobic function, which may be the result of an enhanced malate supply activating ATP production from the tricarboxylic acid cycle through anaplerotic reactions. CONCLUSION The changes in muscle metabolism produced by CM treatment indicate that CM may promote aerobic energy production.
Collapse
Affiliation(s)
- D Bendahan
- Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Faculté de Médecine de la Timone, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | | | | | | | | | | |
Collapse
|
44
|
DeLorey DS, Wang SS, Shoemaker JK. Evidence for sympatholysis at the onset of forearm exercise. J Appl Physiol (1985) 2002; 93:555-60. [PMID: 12133864 DOI: 10.1152/japplphysiol.00245.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of augmented sympathetic outflow on forearm vascular conductance after single handgrip contractions of graded intensity was examined to determine whether sympatholysis occurs early in exercise (n = 7). While supine, subjects performed contractions that were 1 s in duration and 15, 30, and 60% of maximal voluntary contraction (MVC) in intensity. The contractions were repeated during control and lower body negative pressure (LBNP) (-40 mmHg) sessions. Forearm blood flow (FBF; Doppler ultrasound) and mean arterial pressure were measured continuously for 30 s before and 60 s after the single contractions. Vascular conductance (VC) was calculated. Total postcontraction blood flow increased in an exercise intensity-dependent manner. Compared with control, LBNP caused a reduction in baseline and postexercise FBF (P < 0.05), VC (P < 0.01), as well as total excess flow (P < 0.01). Specifically, during LBNP, baseline FBF and VC were reduced by 29 and 34% of control, respectively (P < 0.05). After the 15% MVC contraction, peak VC during LBNP was reduced by a magnitude similar to that during baseline (i.e., ~30%), but it was only reduced by 15% during both the 30 and 60% MVC trials (P < 0.01). It was concluded that the stimuli for exercise hyperemia during moderate and heavy, but not mild, handgrip exercise intensities, diminish the vasoconstrictor effects of LBNP. Furthermore, these data demonstrate that this sympatholysis occurs early in exercise.
Collapse
Affiliation(s)
- Darren S DeLorey
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, London, Ontario, Canada N6A 3K7
| | | | | |
Collapse
|
45
|
Korzeniewski B, Zoladz JA. Influence of rapid changes in cytosolic pH on oxidative phosphorylation in skeletal muscle: theoretical studies. Biochem J 2002; 365:249-58. [PMID: 12132435 PMCID: PMC1222677 DOI: 10.1042/bj20020031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytosolic pH in skeletal muscle may vary significantly because of proton production/consumption by creatine kinase and/or proton production by anaerobic glycolysis. A computer model of oxidative phosphorylation in intact skeletal muscle developed previously was used to study the kinetic effect of these variations on the oxidative phosphorylation system. Two kinds of influence were analysed: (i) via the change in pH across the inner mitochondrial membrane and (ii) via the shift in the equilibrium of the creatine kinase-catalysed reaction. Our simulations suggest that cytosolic pH has essentially no impact on the steady-state fluxes and most metabolite concentrations. On the other hand, rapid acidification/alkalization of cytosol causes a transient decrease/increase in the respiration rate. Furthermore, changes in pH seem to affect significantly the kinetic properties of transition between resting state and active state. An increase in pH brought about by proton consumption by creatine kinase at the onset of exercise lengthens the transition time. At intensive exercise levels this pH increase could lead to loss of the stability of the system, if not compensated by glycolytic H+ production. Thus our theoretical results stress the importance of processes/mechanisms that buffer/compensate for changes in cytosolic proton concentration. In particular, we suggest that the second main role of anaerobic glycolysis, apart from additional ATP supply, may be maintaining the stability of the system at intensive exercise.
Collapse
|
46
|
Mattei JP, Kozak-Ribbens G, Roussel M, Le Fur Y, Cozzone PJ, Bendahan D. New parameters reducing the interindividual variability of metabolic changes during muscle contraction in humans. A (31)P MRS study with physiological and clinical implications. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1554:129-36. [PMID: 12034478 DOI: 10.1016/s0005-2728(02)00226-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interindividual variations in skeletal muscle metabolism make comparative analyses difficult. In this study, we have addressed the issue of capturing the variability of metabolic performance observed during muscle exercise in humans by using an original method of normalization.Metabolic changes induced by various kinds of exercise were investigated using 31P magnetic resonance spectroscopy (MRS) at 4.7 T in 65 normal subjects (23 women and 42 men) and 12 patients with biopsy-proven muscular disorders. Large variations in the extent of PCr breakdown and intracellular acidosis were recorded among subjects and exercise protocols. For all the data pooled, the amplitude of mechanical performance accounts for 50% of these variations. When scaled to the work output, variations of PCr consumption account for 65% of pH changes through a linear relationship. This linear relationship was substantially improved (90%) when both variables were scaled to the square of work output performed (P1 and P2). By capturing most of the initial interindividual variability (90%), P1 vs. P2 relationship represents an ideal standardization procedure, independent of any anthropometric measurements. This relationship also discloses a significant link between the extent of PCr breakdown and intracellular acidosis regardless of exercise protocol. Moreover, changes in the slope of the P1 vs. P2 regression curve, as measured in old subjects and in selected patients, directly reflect alterations of energy production in muscle.
Collapse
Affiliation(s)
- Jean-Pierre Mattei
- Faculté de Médecine, Centre de Résonance Magnétique Biologique et Médicale (UMR CNRS 6612), 27 Bd J Moulin, 13005, Marseilles, France
| | | | | | | | | | | |
Collapse
|
47
|
Crowther GJ, Carey MF, Kemper WF, Conley KE. Control of glycolysis in contracting skeletal muscle. I. Turning it on. Am J Physiol Endocrinol Metab 2002; 282:E67-73. [PMID: 11739085 DOI: 10.1152/ajpendo.2002.282.1.e67] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Why does the onset of glycolytic flux in muscle lag the start of exercise? We tested the hypothesis that both elevated metabolite levels and muscle activity are required for flux to begin. Glycolytic flux was determined from changes in muscle pH, phosphocreatine concentration, and P(i) concentration ([P(i)]) as measured by 31P magnetic resonance spectroscopy. Eight subjects performed rapid ankle dorsiflexions to approximately 45% of maximal voluntary contraction force under ischemia at a rate of 1 contraction/s. Subjects completed two bouts of exercise separated by 1 min of ischemic rest. Glycolytic flux was activated by 27 s in the first bout, ceased during the ischemic rest period, and was activated more quickly in the second bout. Because the onset in both bouts occurred at approximately the same [P(i)], ADP concentration, and AMP concentration, the activation of glycolysis appears to be related to the elevation of these metabolite concentrations. However, because no glycolytic flux occurred at rest, even when metabolite levels were high, both muscle activity and elevated metabolites are needed to turn on this pathway. We conclude that the delayed onset of glycolytic flux during exercise reflects the time needed to raise metabolites to flux-activating levels.
Collapse
Affiliation(s)
- Gregory J Crowther
- Department of Physiology and Biophysics, University of Washington Medical Center, Seattle, Washington 98195-7115, USA
| | | | | | | |
Collapse
|
48
|
Chen JT, Taivassalo T, Argov Z, Arnold DL. Modeling in vivo recovery of intracellular pH in muscle to provide a novel index of proton handling: application to the diagnosis of mitochondrial myopathy. Magn Reson Med 2001; 46:870-8. [PMID: 11675637 DOI: 10.1002/mrm.1271] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Post-exercise recovery of intracellular pH (pH(i)) assessed using phosphorus magnetic resonance spectroscopy has not been previously evaluated in its entirety due to its complex time-course and missing data points resulting from a transient loss of inorganic phosphate signal. By considering the transition from exercise to recovery as a step function input, pH(i) recovery was modeled based on the creatine-kinase equilibrium, and the entire pH(i) recovery was characterized by calculating the time required for pH(i) recovery (t(pHrec)). Applying this methodology, normal subjects showed a strong linear correlation between phosphocreatine (PCr) half-time and t(pHrec) (r = 0.90, P < 0.001). In mitochondrial myopathy (MM) patients with weakness in the limb examined, 9/10 had faster pH(i) recovery relative to PCr recovery; wide normal ranges from a control group which included deconditioned subjects resulted in 7 of those 10 patients having otherwise normal recovery indices. Therefore, modeling pH(i) recovery allows characterization of the entire pH(i) recovery and detects altered proton handling in MM patients, including those with otherwise normal recovery indices.
Collapse
Affiliation(s)
- J T Chen
- Magnetic Resonance Spectroscopy Unit, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
49
|
Kemp GJ, Roussel M, Bendahan D, Le Fur Y, Cozzone PJ. Interrelations of ATP synthesis and proton handling in ischaemically exercising human forearm muscle studied by 31P magnetic resonance spectroscopy. J Physiol 2001; 535:901-28. [PMID: 11559784 PMCID: PMC2278815 DOI: 10.1111/j.1469-7793.2001.00901.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2000] [Accepted: 05/14/2001] [Indexed: 11/26/2022] Open
Abstract
1. In ischaemic exercise ATP is supplied only by glycogenolysis and net splitting of phosphocreatine (PCr). Furthermore, 'proton balance' involves only glycolytic lactate/H+ generation and net H+ 'consumption' by PCr splitting. This work examines the interplay between these, metabolic regulation and the creatine kinase equilibrium. 2. Nine male subjects (age 25-45 years) performed finger flexion (7 % maximal voluntary contraction at 0.67 Hz) under cuff ischaemia. 31P magnetic resonance spectra were acquired from finger flexor muscle in a 4.7 T magnet using a 5 cm surface coil. 3. Initial PCr depletion rate estimates total ATP turnover rate; glycolytic ATP synthesis was obtained from this and changes in [PCr], and then used to obtain flux through 'distal' glycolysis (phosphofructokinase and beyond) to lactate; 'proximal' flux (through phosphorylase) was obtained from this and changes in [phosphomonoester]. Total H+ load (lactate load less H+ consumption) was used to estimate cytosolic buffer capacity (beta). 4. Glycolytic ATP synthesis increased from near zero while PCr splitting declined. Net H+ load was approximately linear with pH, suggesting beta = 20 mmol x l(-1) (pH unit)(-1) at rest, increasing as pH falls. 5. Relationships between glycolytic rate and changes in [PCr] (i.e. the time-integrated mismatch between ATP use and production), and thus also [P(i)] (substrate for phosphorylase), suggest that increase in glycolysis is due partly to 'open-loop' Ca2+-dependent conversion of phosphorylase b to a, and partly to the 'closed loop' increase in P(i) consequent on net PCr splitting. 6. The 'settings' of these mechanisms have a strong influence on changes in pH and metabolite concentrations.
Collapse
Affiliation(s)
- G J Kemp
- Department of Musculoskeletal Science, University of Liverpool, Liverpool L69 3GA, UK.
| | | | | | | | | |
Collapse
|
50
|
Bendahan D, Kozak-Ribbens G, Confort-Gouny S, Ghattas B, Figarella-Branger D, Aubert M, Cozzone PJ. A noninvasive investigation of muscle energetics supports similarities between exertional heat stroke and malignant hyperthermia. Anesth Analg 2001; 93:683-9. [PMID: 11524341 DOI: 10.1097/00000539-200109000-00030] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Exertional heat stroke (EHS) is usually triggered by strenuous exercise performed under hot and humid environmental conditions. Although the pathogenesis of an EHS episode differs from that of a clinical malignant hyperthermia (MH) crisis, both conditions share some similarities in symptoms, such as the abnormal increase in core temperature. By use of (31)P magnetic resonance spectroscopy, we analyzed the muscle energetics of 26 post-EHS subjects for whom in vitro halothane/caffeine contracture tests were abnormal and investigated possible similarities with subjects susceptible to MH. An early decrease of pH was noted during the first minute of exercise in EHS subjects as compared with controls. EHS subjects were divided into two subgroups according to the diagnostic score previously developed for MH subjects. The 19 subjects (73%) with a score higher than 2 displayed significantly larger caffeine-induced and earlier ryanodine-induced contractures on muscle biopsies as compared with the rest of the group (7 subjects). The results demonstrate that muscle energetics are abnormal in subjects who have experienced EHS and suggest a possible link between MH and EH, although all EHS cannot be considered as MH.
Collapse
Affiliation(s)
- D Bendahan
- Centre de Résonance Magnétique Biologique et Médicale and Service d'Anatomie Pathologique, Faculté de Médecine de Marseille, Marseille, France
| | | | | | | | | | | | | |
Collapse
|