1
|
Qiu X, Zhong P, Jiang Y, Mo M, He S, Guan S, Pan P, Bao P. CeMn-based nanozyme as an ‘Electron Pump’ to significantly enhanced antioxidant for Intestine-Reperfusion injury. CHEMICAL ENGINEERING JOURNAL 2024; 484:149451. [DOI: 10.1016/j.cej.2024.149451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Wang R, Pan T, Huang L, Liao C, Li Q, Jiang H, Yang J. Photoacoustic imaging in evaluating early intestinal ischemia injury and reperfusion injury in rat models. Quant Imaging Med Surg 2021; 11:2968-2979. [PMID: 34249627 DOI: 10.21037/qims-20-1160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Background It remains a challenge to distinguish whether the damaged intestine is viable in treating acute mesenteric ischemia. In this study, photoacoustic imaging (PAI) was used to observe intestinal tissue viability after ischemia and reperfusion injury in rats. Methods An in vivo study was conducted using forty male SD rats, which were randomly divided into a sham-operated (SO) group, a 1 h ischemia group, a 2 h ischemia group, and an ischemia-reperfusion (I/R) group with 10 rats in each group. In the ischemia group, the superior mesenteric artery (SMA) was isolated and clamped for 1 and 2 h, respectively, and in the I/R group, after ischemia for 1 h, the clamp was removed and reperfused for 1 h. The same time interval was used in the SO group. Immediately after establishing the animal model, a PAI examination was performed, and the small intestine was collected for histopathology. Results The levels of PAI parameters Hb, HbR, MAP 760, and MAP 840 were increased to different degrees in the ischemia groups, especially in the 2 h ischemia group, compared with the SO group (P<0.05), and with prolongation of the ischemia time, the injury was aggravated. All PAI signal levels except HbO in the I/R group were higher than those in the control group, and the increased range differed, especially in Hb and MAP 840. Using western blot, compared with the SO group, the BAX increased significantly in the 2 h ischemia group (P<0.05), and Caspase-3 in the experimental group was significantly higher than in the SO group (P<0.05). The level of HIF-1α increased in the 2 h ischemia group and I/R group (P<0.05), and TUNEL staining showed that the number of positive apoptotic nuclei in the 2 h ischemia group was significantly higher than in the SO group (P<0.05). Hematoxylin-eosin (HE) staining showed that ischemia for 2 hours was the most serious, with obvious mucosal damage, extensive epithelial injury, and bleeding. Conclusions PAI can be used as an effective tool to detect acute intestinal ischemia injury and quantitatively evaluate tissue viability.
Collapse
Affiliation(s)
- Rui Wang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital/Center, Kunming, China
| | - Teng Pan
- School of Electronic Science and Engineering, Center for Information in Medicine, University of Electronic Science and Technology, Chengdu, China
| | - Lin Huang
- School of Electronic Science and Engineering, Center for Information in Medicine, University of Electronic Science and Technology, Chengdu, China
| | - Chengde Liao
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital/Center, Kunming, China
| | - Qinqing Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital/Center, Kunming, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| | - Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital/Center, Kunming, China
| |
Collapse
|
3
|
Kim JH, Dodd S, Ye FQ, Knutsen AK, Nguyen D, Wu H, Su S, Mastrogiacomo S, Esparza TJ, Swenson RE, Brody DL. Sensitive detection of extremely small iron oxide nanoparticles in living mice using MP2RAGE with advanced image co-registration. Sci Rep 2021; 11:106. [PMID: 33420210 PMCID: PMC7794370 DOI: 10.1038/s41598-020-80181-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a widely used non-invasive methodology for both preclinical and clinical studies. However, MRI lacks molecular specificity. Molecular contrast agents for MRI would be highly beneficial for detecting specific pathological lesions and quantitatively evaluating therapeutic efficacy in vivo. In this study, an optimized Magnetization Prepared—RApid Gradient Echo (MP-RAGE) with 2 inversion times called MP2RAGE combined with advanced image co-registration is presented as an effective non-invasive methodology to quantitatively detect T1 MR contrast agents. The optimized MP2RAGE produced high quality in vivo mouse brain T1 (or R1 = 1/T1) map with high spatial resolution, 160 × 160 × 160 µm3 voxel at 9.4 T. Test–retest signal to noise was > 20 for most voxels. Extremely small iron oxide nanoparticles (ESIONPs) having 3 nm core size and 11 nm hydrodynamic radius after polyethylene glycol (PEG) coating were intracranially injected into mouse brain and detected as a proof-of-concept. Two independent MP2RAGE MR scans were performed pre- and post-injection of ESIONPs followed by advanced image co-registration. The comparison of two T1 (or R1) maps after image co-registration provided precise and quantitative assessment of the effects of the injected ESIONPs at each voxel. The proposed MR protocol has potential for future use in the detection of T1 molecular contrast agents.
Collapse
Affiliation(s)
- Joong H Kim
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, USA.,Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Stephen Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Frank Q Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, and National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew K Knutsen
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Duong Nguyen
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Haitao Wu
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shiran Su
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Simone Mastrogiacomo
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J Esparza
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, USA.,Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - David L Brody
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, USA. .,Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA. .,Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
4
|
Keschenau PR, Klingel H, Reuter S, Foldenauer AC, Vieß J, Weidener D, Andruszkow J, Bluemich B, Tolba R, Jacobs MJ, Kalder J. Evaluation of the NMR-MOUSE as a new method for continuous functional monitoring of the small intestine during different perfusion states in a porcine model. PLoS One 2018; 13:e0206697. [PMID: 30388139 PMCID: PMC6214547 DOI: 10.1371/journal.pone.0206697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
Objective The study aim was to evaluate a small low-field NMR (nuclear magnetic resonance) scanner, the NMR-MOUSE®, for detecting changes in intestinal diffusion under different (patho-) physiological perfusion states. Methods Laparotomy was performed on 8 female landrace pigs (body weight 70±6 kg) and the feeding vessels of several intestinal loops were dissected. Successively, the intestinal loops were examined using O2C (oxygen to see, LEA Medizintechnik GmbH, Giessen, Germany) for microcirculatory monitoring and the NMR-MOUSE® for diffusion measurement (fast and slow components). On each loop the baseline measurement (physiological perfusion) was followed by one of the following main procedures: method 1 –ischemia; method 2 –flow reduction; method 3 –intraluminal glucose followed by ischemia; method 4 –intraluminal glucose followed by flow reduction. Additionally, standard perioperative monitoring (blood pressure, ECG, blood gas analyses) and histological assessment of intestinal biopsies was performed. Results There was no statistical overall time and method effect in the NMR-MOUSE measurement (fast component: ptime = 0.6368, pmethod = 0.9766, slow component: ptime = 0.8216, pmethod = 0.7863). Yet, the fast component of the NMR-MOUSE measurement showed contrary trends during ischemia (increase) versus flow reduction (decrease). The slow-to-fast diffusion ratio shifted slightly towards slow diffusion during flow reduction. The O2C measurement showed a significant decrease of oxygen saturation and microcirculatory blood flow during ischemia and flow reduction (p < .0001). The local microcirculatory blood amount (rHb) showed a significant mucosal increase (pClamping(method 1) = 0.0007, pClamping(method 3) = 0.0119), but a serosal decrease (pClamping(method 1) = 0.0119, pClamping(method 3) = 0.0078) during ischemia. The histopathological damage was significantly higher with increasing experimental duration and at the end of methods 3 and 4 (p < .0001,Fisher-test). Conclusion Monitoring intestinal diffusion changes due to different perfusion states using the NMR-MOUSE is feasible under experimental conditions. Despite the lack of statistical significance, this technique reflects perfusion changes and therefore seems promising for the evaluation of different intestinal perfusion states in the future. Beforehand however, an optimization of this technology, including the optimization of the penetration depth, as well as further validation studies under physiological conditions and including older animals are required.
Collapse
Affiliation(s)
- Paula R. Keschenau
- Department of Vascular Surgery, European Vascular Center Aachen-Maastricht, RWTH University Hospital Aachen, Aachen, Germany
| | - Hanna Klingel
- Department of Vascular Surgery, European Vascular Center Aachen-Maastricht, RWTH University Hospital Aachen, Aachen, Germany
| | - Silke Reuter
- Institut für Technische und Makromolekulare Chemie, RWTH University Aachen, Aachen, Germany
| | | | - Jochen Vieß
- Institut für Technische und Makromolekulare Chemie, RWTH University Aachen, Aachen, Germany
| | - Dennis Weidener
- Institut für Technische und Makromolekulare Chemie, RWTH University Aachen, Aachen, Germany
| | - Julia Andruszkow
- Institute for Pathology, RWTH University Hospital Aachen, Aachen, Germany
| | - Bernhard Bluemich
- Institut für Technische und Makromolekulare Chemie, RWTH University Aachen, Aachen, Germany
| | - René Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH University Aachen, Aachen, Germany
| | - Michael J. Jacobs
- Department of Vascular Surgery, European Vascular Center Aachen-Maastricht, RWTH University Hospital Aachen, Aachen, Germany
- Department of Vascular Surgery, European Vascular Center Aachen-Maastricht, AZM University Hospital Maastricht, Maastricht, The Netherlands
| | - Johannes Kalder
- Department of Vascular Surgery, European Vascular Center Aachen-Maastricht, RWTH University Hospital Aachen, Aachen, Germany
- * E-mail:
| |
Collapse
|
5
|
Loehr JA, Stinnett GR, Hernández-Rivera M, Roten WT, Wilson LJ, Pautler RG, Rodney GG. Eliminating Nox2 reactive oxygen species production protects dystrophic skeletal muscle from pathological calcium influx assessed in vivo by manganese-enhanced magnetic resonance imaging. J Physiol 2016; 594:6395-6405. [PMID: 27555555 PMCID: PMC5088246 DOI: 10.1113/jp272907] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/12/2016] [Indexed: 01/18/2023] Open
Abstract
KEY POINTS Inhibiting Nox2 reactive oxygen species (ROS) production reduced in vivo calcium influx in dystrophic muscle. The lack of Nox2 ROS production protected against decreased in vivo muscle function in dystrophic mice. Manganese-enhanced magnetic resonance imaging (MEMRI) was able to detect alterations in basal calcium levels in skeletal muscle and differentiate disease status. Administration of Mn2+ did not affect muscle function or the health of the animal, and Mn2+ was cleared from skeletal muscle rapidly. We conclude that MEMRI may be a viable, non-invasive technique to monitor molecular alterations in disease progression and evaluate the effectiveness of potential therapies for Duchenne muscular dystrophy. ABSTRACT Duchenne muscular dystrophy (DMD) is an X-linked progressive degenerative disease resulting from a mutation in the gene that encodes dystrophin, leading to decreased muscle mechanical stability and force production. Increased Nox2 reactive oxygen species (ROS) production and sarcolemmal Ca2+ influx are early indicators of disease pathology, and eliminating Nox2 ROS production reduces aberrant Ca2+ influx in young mdx mice, a model of DMD. Various imaging modalities have been used to study dystrophic muscle in vivo; however, they are based upon alterations in muscle morphology or inflammation. Manganese has been used for indirect monitoring of calcium influx across the sarcolemma and may allow detection of molecular alterations in disease progression in vivo using manganese-enhanced magnetic resonance imaging (MEMRI). Therefore, we hypothesized that eliminating Nox2 ROS production would decrease calcium influx in adult mdx mice and that MEMRI would be able to monitor and differentiate disease status in dystrophic muscle. Both in vitro and in vivo data demonstrate that eliminating Nox2 ROS protected against aberrant Ca2+ influx and improved muscle function in dystrophic muscle. MEMRI was able to differentiate between different pathological states in vivo, with no long-term effects on animal health or muscle function. We conclude that MEMRI is a viable, non-invasive technique to differentiate disease status and might provide a means to monitor and evaluate the effectiveness of potential therapies in dystrophic muscle.
Collapse
Affiliation(s)
- James A Loehr
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Gary R Stinnett
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | - Wesley T Roten
- SMART Program, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Lon J Wilson
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Robia G Pautler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|