1
|
Bech SK, Hansen ESS, Nielsen BR, Wiggers H, Bengtsen MB, Laustsen C, Miller JJ. Myocardial metabolic flexibility following ketone infusion demonstrated by hyperpolarized [2- 13C]pyruvate MRS in pigs. Sci Rep 2025; 15:5849. [PMID: 39966569 PMCID: PMC11836332 DOI: 10.1038/s41598-025-90215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
This study aims to investigate the effects of β-3-hydroxybutyrate (β-3-OHB) infusion on myocardial metabolic flexibility using hyperpolarized [2-13C]pyruvate magnetic resonance spectroscopy (MRS) in the pig heart. We hypothesized that β-3-OHB infusion will cause rapid, quantifiable alterations in tricarboxylic acid (TCA) cycle flux as measured non-invasively by 13C MRS and reflect myocardial work. Five female Danish landrace pigs underwent β-3-OHB infusion during a hyperinsulinemic euglycemic clamp (HEC). Cardiac metabolism and hemodynamics were monitored using hyperpolarized [2-13C]pyruvate MRS and cardiac MRI. β-3-OHB infusion during HEC resulted in significant increases in cardiac output over baseline (from 1.9 to 3.8 L/min, p = 0.0011) and heart rate (from 51 to 85 bpm, p = 0.0004). Metabolic analysis showed a shift towards increased lactate production and decreased levels of acetyl-carnitine and glutamate during β-3-OHB infusion. Following the termination of the infusion, a normalization of these metabolic markers was observed. These results demonstrate the profound metabolic adaptability of the myocardium to ketone body utilization. The infusion of Na-β-3-OHB significantly alters both the hemodynamics and metabolism of the porcine heart. The observed increase in cardiac output and metabolic shifts towards lactate production suggest that ketone bodies could potentially enhance cardiac function by providing an efficient-energy substrate that, if provided, is preferentially used. This study provides new insights into the metabolic flexibility of the heart and hints at the potential therapeutic benefits of ketone interventions in heart failure treatment.
Collapse
Affiliation(s)
| | | | - Bent Roni Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Wiggers
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Mads Bisgaard Bengtsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jack J Miller
- The MR Research Centre, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Andelius TCK, Hansen ESS, Bøgh N, Pedersen MV, Kyng KJ, Henriksen TB, Laustsen C. Hyperpolarized 13C magnetic resonance imaging in neonatal hypoxic-ischemic encephalopathy: First investigations in a large animal model. NMR IN BIOMEDICINE 2024; 37:e5110. [PMID: 38317333 DOI: 10.1002/nbm.5110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/03/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024]
Abstract
Early biomarkers of cerebral damage are essential for accurate prognosis, timely intervention, and evaluation of new treatment modalities in newborn infants with hypoxia and ischemia at birth. Hyperpolarized 13C magnetic resonance imaging (MRI) is a novel method with which to quantify metabolism in vivo with unprecedented sensitivity. We aimed to investigate the applicability of hyperpolarized 13C MRI in a newborn piglet model and whether this method may identify early changes in cerebral metabolism after a standardized hypoxic-ischemic (HI) insult. Six piglets were anesthetized and subjected to a standardized HI insult. Imaging was performed prior to and 2 h after the insult on a 3-T MR scanner. For 13C studies, [1-13C]pyruvate was hyperpolarized in a commercial polarizer. Following intravenous injection, images were acquired using metabolic-specific imaging. HI resulted in a metabolic shift with a decrease in pyruvate to bicarbonate metabolism and an increase in pyruvate to lactate metabolism (lactate/bicarbonate ratio, mean [SD]; 2.28 [0.36] vs. 3.96 [0.91]). This is the first study to show that hyperpolarized 13C MRI can be used in newborn piglets and applied to evaluate early changes in cerebral metabolism after an HI insult.
Collapse
Affiliation(s)
- Ted C K Andelius
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Nikolaj Bøgh
- The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Mette V Pedersen
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper J Kyng
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Tine B Henriksen
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
3
|
Fuetterer M, Traechtler J, Busch J, Peereboom SM, Dounas A, Manka R, Weisskopf M, Cesarovic N, Stoeck CT, Kozerke S. Hyperpolarized Metabolic and Parametric CMR Imaging of Longitudinal Metabolic-Structural Changes in Experimental Chronic Infarction. JACC Cardiovasc Imaging 2022; 15:2051-2064. [PMID: 36481073 DOI: 10.1016/j.jcmg.2022.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Prolonged ischemia and myocardial infarction are followed by a series of dynamic processes that determine the fate of the affected myocardium toward recovery or necrosis. Metabolic adaptions are considered to play a vital role in the recovery of salvageable myocardium in the context of stunned and hibernating myocardium. OBJECTIVES The potential of hyperpolarized pyruvate cardiac magnetic resonance (CMR) alongside functional and parametric CMR as a tool to study the complex metabolic-structural interplay in a longitudinal study of chronic myocardial infarction in an experimental pig model is investigated. METHODS Metabolic imaging using hyperpolarized [1-13C] pyruvate and proton-based CMR including cine, T1/T2 relaxometry, dynamic contrast-enhanced, and late gadolinium enhanced imaging were performed on clinical 3.0-T and 1.5-T MR systems before infarction and at 6 days and 5 and 9 weeks postinfarction in a longitudinal study design. Chronic myocardial infarction in pigs was induced using catheter-based occlusion and compared with healthy controls. RESULTS Metabolic image data revealed temporarily elevated lactate-to-bicarbonate ratios at day 6 in the infarcted relative to remote myocardium. The temporal changes of lactate-to-bicarbonate ratios were found to correlate with changes in T2 and impaired local contractility. Assessment of pyruvate dehydrogenase flux via the hyperpolarized [13C] bicarbonate signal revealed recovery of aerobic cellular respiration in the hibernating myocardium, which correlated with recovery of local radial strain. CONCLUSIONS This study demonstrates the potential of hyperpolarized CMR to longitudinally detect metabolic changes after cardiac infarction over days to weeks. Viable myocardium in the area at risk was identified based on restored pyruvate dehydrogenase flux.
Collapse
Affiliation(s)
- Maximilian Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Julia Traechtler
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Julia Busch
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | - Andreas Dounas
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Robert Manka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Miriam Weisskopf
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Nikola Cesarovic
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland; Institute of Translational Cardiovascular Technologies, ETH Zurich, Zurich, Switzerland
| | - Christian Torben Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Bengtsen MB, Hansen ESS, Tougaard RS, Lyhne MD, Rittig NF, Støy J, Jessen N, Mariager CØ, Stødkilde-Jørgensen H, Møller N, Laustsen C. Hyperpolarized [1- 13 C]pyruvate combined with the hyperinsulinaemic euglycaemic and hypoglycaemic clamp technique in skeletal muscle in a large animal model. Exp Physiol 2021; 106:2412-2422. [PMID: 34705304 PMCID: PMC9298727 DOI: 10.1113/ep089782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 10/20/2021] [Indexed: 11/08/2022]
Abstract
New Findings What is the central question of this study? Is it possible to combine the hyperpolarized magnetic resonance technique and the hyperinsulinaemic clamp method in order to evaluate skeletal muscle metabolism in a large animal model? What is the main finding and its importance? The logistical set‐up is possible, and we found substantial increments in glucose infusion rates representing skeletal muscle glucose uptake but no differences in ratios of [1‐13C]lactate to [1‐13C]pyruvate, [1‐13C]alanine to [1‐13C]pyruvate, and 13C‐bicarbonate to [1‐13C]pyruvate, implying that the hyperpolarization technique might not be optimal for detecting effects of insulin in skeletal muscle of anaesthetized animals, which is of significance for future studies.
Abstract In skeletal muscle, glucose metabolism is tightly regulated by the reciprocal relationship between insulin and adrenaline, with pyruvate being at the intersection of both pathways. Hyperpolarized magnetic resonance (hMR) is a new approach to gain insights into these pathways, and human trials involving hMR and skeletal muscle metabolism are imminent. We aimed to combine the hyperinsulinaemic clamp technique and hMR in a large animal model resembling human physiology. Fifteen anaesthetized pigs were randomized to saline (control group), hyperinsulinaemic euglycaemic clamp technique (HE group) or hyperinsulinaemic hypoglycaemic clamp technique (HH group). Skeletal muscle metabolism was evaluated by hyperpolarized [1‐13C]pyruvate injection and hMR at baseline and after intervention. The glucose infusion rate per kilogram increased by a statistically significant amount in the HE and HH groups (P < 0.001). Hyperpolarized magnetic resonance showed no statistically significant changes in metabolite ratios: [1‐13C]lactate to [1‐13C]pyruvate in the HH group versus control group (P = 0.19); and 13C‐bicarbonate to [1‐13C]pyruvate ratio in the HE group versus the control group (P = 0.12). We found evidence of profound increments in glucose infusion rates representing skeletal muscle glucose uptake, but interestingly, no signs of significant changes in aerobic and anaerobic metabolism using hMR. These results imply that hyperpolarized [1‐13C]pyruvate might not be optimally suited to detect effects of insulin in anaesthetized resting skeletal muscle, which is of significance for future studies.
Collapse
Affiliation(s)
- Mads Bisgaard Bengtsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | | | | | - Mads Dam Lyhne
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Nikolaj Fibiger Rittig
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
| | - Julie Støy
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
| | | | | | - Niels Møller
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | | |
Collapse
|
5
|
Li Y, Torp MK, Norheim F, Khanal P, Kimmel AR, Stensløkken KO, Vaage J, Dalen KT. Isolated Plin5-deficient cardiomyocytes store less lipid droplets than normal, but without increased sensitivity to hypoxia. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158873. [PMID: 33373698 DOI: 10.1016/j.bbalip.2020.158873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023]
Abstract
Plin5 is abundantly expressed in the heart where it binds to lipid droplets (LDs) and facilitates physical interaction between LDs and mitochondria. We isolated cardiomyocytes from adult Plin5+/+ and Plin5-/- mice to study the role of Plin5 for fatty acid uptake, LD accumulation, fatty acid oxidation, and tolerance to hypoxia. Cardiomyocytes isolated from Plin5-/- mice cultured with oleic acid stored less LDs than Plin5+/+, but comparable levels to Plin5+/+ cardiomyocytes when adipose triglyceride lipase activity was inhibited. The ability to oxidize fatty acids into CO2 was similar between Plin5+/+ and Plin5-/- cardiomyocytes, but Plin5-/- cardiomyocytes had a transient increase in intracellular fatty acid oxidation intermediates. After pre-incubation with oleic acids, Plin5-/- cardiomyocytes retained a higher content of glycogen and showed improved tolerance to hypoxia compared to Plin5+/+. In isolated, perfused hearts, deletion of Plin5 had no important effect on ventricular pressures or infarct size after ischemia. Old Plin5-/- mice had reduced levels of cardiac triacylglycerides, increased heart weight, and apart from modest elevated expression of mRNAs for beta myosin heavy chain Myh7 and the fatty acid transporter Cd36, other genes involved in fatty acid oxidation, glycogen metabolism and glucose utilization were essentially unchanged by removal of Plin5. Plin5 seems to facilitate cardiac LD storage primarily by repressing adipose triglyceride lipase activity without altering cardiac fatty acid oxidation capacity. Expression of Plin5 and cardiac LD content of isolated cardiomyocytes has little importance for tolerance to acute hypoxia and ischemia, which contrasts the protective role for Plin5 in mouse models during myocardial ischemia.
Collapse
Affiliation(s)
- Yuchuan Li
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - May-Kristin Torp
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Prabhat Khanal
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; Faculty of Biosciences and Aquaculture (FBA), Nord University, Norway
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Kåre-Olav Stensløkken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Jarle Vaage
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway; Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; The Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Norway.
| |
Collapse
|
6
|
Mariager CØ, Hansen ESS, Bech SK, Eiskjaer H, Nielsen PF, Ringgaard S, Kimose HH, Laustsen C. Development of a human heart-sized perfusion system for metabolic imaging studies using hyperpolarized [1- 13 C]pyruvate MRI. Magn Reson Med 2020; 85:3510-3521. [PMID: 33368597 DOI: 10.1002/mrm.28639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE Increasing worldwide demand for cardiac transplantation has spurred new developments to increase the donor pool. Normothermic preservation of heart grafts for transplantation is an emerging strategy to improve the utilization of marginal grafts. Hyperpolarized MR using metabolic tracers such as [1-13 C]pyruvate, provide a novel means of investigating metabolic status without the use of ionizing radiation. We demonstrate the use of this methodology to examine ex vivo perfused porcine heart grafts. METHODS Hearts from three 40-kg Danish domestic pigs were harvested and subsequently perfused in Langendorff mode under normothermic conditions, using an MR-compatible perfusion system adapted to the heart. Proton MRI and hyperpolarized [1-13 C]pyruvate were used to investigate and quantify the functional and metabolic status of the grafts. RESULTS Hearts were perfused with whole blood for 120 min, using a dynamic contrast-enhanced perfusion experiment to verify successful myocardial perfusion. Hyperpolarized [1-13 C]pyruvate MRI was used to assess the metabolic state of the myocardium. Functional assessment was performed using CINE imaging and ventricular pressure data. High lactate and modest alanine levels were observed in the hyperpolarized experiment. The functional assessment produced reduced functional parameters. This suggests an altered functional and metabolic profile compared with corresponding in vivo values. CONCLUSION We investigated the metabolic and functional status of machine-perfused porcine hearts. Utilizing hyperpolarized methodology to acquire detailed myocardial metabolic information-in combination with already established MR methods for cardiac investigation-provides a powerful tool to aid the progress of donor heart preservation.
Collapse
Affiliation(s)
| | | | - Sabrina Kahina Bech
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Hans Eiskjaer
- Department of Clinical Medicine, Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Fast Nielsen
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Ringgaard
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Hans-Henrik Kimose
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Bøgh N, Hansen ESS, Omann C, Lindhardt J, Nielsen PM, Stephenson RS, Laustsen C, Hjortdal VE, Agger P. Increasing carbohydrate oxidation improves contractile reserves and prevents hypertrophy in porcine right heart failure. Sci Rep 2020; 10:8158. [PMID: 32424129 PMCID: PMC7235019 DOI: 10.1038/s41598-020-65098-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/24/2020] [Indexed: 01/16/2023] Open
Abstract
In heart failure, myocardial overload causes vast metabolic changes that impair cardiac energy production and contribute to deterioration of contractile function. However, metabolic therapy is not used in heart failure care. We aimed to investigate the interplay between cardiac function and myocardial carbohydrate metabolism in a large animal heart failure model. Using magnetic resonance spectroscopy with hyperpolarized pyruvate and magnetic resonance imaging at rest and during pharmacological stress, we investigated the in-vivo cardiac pyruvate metabolism and contractility in a porcine model of chronic pulmonary insufficiency causing right ventricular volume overload. To assess if increasing the carbohydrate metabolic reserve improves the contractile reserve, a group of animals were fed dichloroacetate, an activator of pyruvate oxidation. Volume overload caused heart failure with decreased pyruvate dehydrogenase flux and poor ejection fraction reserve. The animals treated with dichloroacetate had a larger contractile response to dobutamine stress than non-treated animals. Further, dichloroacetate prevented myocardial hypertrophy. The in-vivo metabolic data were validated by mitochondrial respirometry, enzyme activity assays and gene expression analyses. Our results show that pyruvate dehydrogenase kinase inhibition improves the contractile reserve and decreases hypertrophy by augmenting carbohydrate metabolism in porcine heart failure. The approach is promising for metabolic heart failure therapy.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- The Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark. .,The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Esben S S Hansen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Camilla Omann
- The Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Jakob Lindhardt
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Per M Nielsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Robert S Stephenson
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.,Institute of Clinical Sciences, College of Medical and Dental Science, The University of Birmingham, Birmingham, United Kingdom
| | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Vibeke E Hjortdal
- The Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Peter Agger
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
8
|
Laustsen C, Lipsø K, Østergaard JA, Nielsen PM, Bertelsen LB, Flyvbjerg A, Pedersen M, Palm F, Ardenkjær-Larsen JH. High Intrarenal Lactate Production Inhibits the Renal Pseudohypoxic Response to Acutely Induced Hypoxia in Diabetes. ACTA ACUST UNITED AC 2020; 5:239-247. [PMID: 31245545 PMCID: PMC6588198 DOI: 10.18383/j.tom.2019.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intrarenal hypoxia develops within a few days after the onset of insulinopenic diabetes in an experimental animal model (ie, a model of type-1 diabetes). Although diabetes-induced hypoxia results in increased renal lactate formation, mitochondrial function is well maintained, a condition commonly referred to as pseudohypoxia. However, the metabolic effects of significantly elevated lactate levels remain unclear. We therefore investigated in diabetic animals the response to acute intrarenal hypoxia in the presence of high renal lactate formation to delineate mechanistic pathways and compare these findings to healthy control animals. Hyperpolarized 13C-MRI and blood oxygenation level–dependent 1H-MRI was used to investigate the renal metabolism of [1-13C]pyruvate and oxygenation following acutely altered oxygen content in the breathing gas in a streptozotocin rat model of type-1 diabetes with and without insulin treatment and compared with healthy control rats. The lactate signal in the diabetic kidney was reduced by 12%–16% during hypoxia in diabetic rats irrespective of insulin supplementation. In contrast, healthy controls displayed the well-known Pasteur effect manifested as a 10% increased lactate signal following reduction of oxygen in the inspired air. Reduced expression of the monocarboxyl transporter-4 may account for altered response to hypoxia in diabetes with a high intrarenal pyruvate-to-lactate conversion. Reduced intrarenal lactate formation in response to hypoxia in diabetes shows the existence of a different metabolic phenotype, which is independent of insulin, as insulin supplementation was unable to affect the pyruvate-to-lactate conversion in the diabetic kidney.
Collapse
Affiliation(s)
- Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Kasper Lipsø
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Jakob Appel Østergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Per Mose Nielsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Allan Flyvbjerg
- Steno Diabetes Center Copenhagen, The Capital Region of Denmark, Gentofte, Denmark.,University of Copenhagen, Copenhagen, Denmark
| | - Michael Pedersen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and
| | - Jan Henrik Ardenkjær-Larsen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark.,GE Healthcare, Copenhagen, Denmark
| |
Collapse
|
9
|
Zhu Z, Zhu X, Ohliger MA, Tang S, Cao P, Carvajal L, Autry AW, Li Y, Kurhanewicz J, Chang S, Aggarwal R, Munster P, Xu D, Larson PEZ, Vigneron DB, Gordon JW. Coil combination methods for multi-channel hyperpolarized 13C imaging data from human studies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 301:73-79. [PMID: 30851668 PMCID: PMC7170546 DOI: 10.1016/j.jmr.2019.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/19/2019] [Accepted: 01/30/2019] [Indexed: 05/23/2023]
Abstract
Effective coil combination methods for human hyperpolarized 13C spectroscopy multi-channel data had been relatively unexplored. This study implemented and tested several coil combination methods, including (1) the sum-of-squares (SOS), (2) singular value decomposition (SVD), (3) Roemer method by using reference peak area as a sensitivity map (RefPeak), and (4) Roemer method by using ESPIRiT-derived sensitivity map (ESPIRiT). These methods were evaluated by numerical simulation, thermal phantom experiments, and human cancer patient studies. Overall, the SVD, RefPeak, and ESPIRiT methods demonstrated better accuracy and robustness than the SOS method. Extracting complex pyruvate signal provides an easy and excellent approximation of the coil sensitivity map while maintaining valuable phase information of the coil-combined data.
Collapse
Affiliation(s)
- Zihan Zhu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, United States.
| | - Xucheng Zhu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, United States
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, United States
| | - Peng Cao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Susan Chang
- Department of Medicine, University of California, San Francisco, CA, United States
| | - Rahul Aggarwal
- Department of Medicine, University of California, San Francisco, CA, United States
| | - Pamela Munster
- Department of Medicine, University of California, San Francisco, CA, United States
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| |
Collapse
|
10
|
Kjærgaard U, Laustsen C, Nørlinger T, Tougaard RS, Mikkelsen E, Qi H, Bertelsen LB, Jessen N, Stødkilde‐Jørgensen H. Hyperpolarized [1- 13 C] pyruvate as a possible diagnostic tool in liver disease. Physiol Rep 2018; 6:e13943. [PMID: 30548433 PMCID: PMC6289910 DOI: 10.14814/phy2.13943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/24/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction of hyperpolarized magnetic resonance in preclinical studies and lately translation to patients provides new detailed in vivo information of metabolic flux in organs. Hyperpolarized magnetic resonance based on 13 C enriched pyruvate is performed without ionizing radiation and allows quantification of the pyruvate conversion products: alanine, lactate and bicarbonate in real time. Thus, this methodology has a promising potential for in vivo monitoring of energetic alterations in hepatic diseases. Using 13 C pyruvate, we investigated the metabolism in the porcine liver before and after intravenous injection of glucose. The overall mean lactate to pyruvate ratio increased significantly after the injection of glucose whereas the bicarbonate to pyruvate ratio was unaffected, representative of the levels of pyruvate entering the tricarboxylic acid cycle. Similarly, alanine to pyruvate ratio did not change. The increased lactate to pyruvate ratio over time showed an exponential correlation with insulin, glucagon and free fatty acids. Together, these data, obtained by hyperpolarized 13 C magnetic resonance spectroscopy and by blood sampling, indicate a hepatic metabolic shift in glucose utilization following a glucose challenge. Our findings demonstrate the capacity of hyperpolarized 13 C magnetic resonance spectroscopy for quantifying hepatic substrate metabolism in accordance with well-known physiological processes. When combined with concentration of blood insulin, glucagon and free fatty acids in the blood, the results indicate the potential of hyperpolarized magnetic resonance spectroscopy as a future clinical method for quantification of hepatic substrate metabolism.
Collapse
Affiliation(s)
- Uffe Kjærgaard
- MR Research CentreAarhus University HospitalAarhusDenmark
| | | | | | - Rasmus S. Tougaard
- MR Research CentreAarhus University HospitalAarhusDenmark
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | | | - Haiyun Qi
- MR Research CentreAarhus University HospitalAarhusDenmark
| | | | - Niels Jessen
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Clinical PharmacologyAarhus University HospitalAarhusDenmark
| | | |
Collapse
|
11
|
Tougaard RS, Szocska Hansen ES, Laustsen C, Nørlinger TS, Mikkelsen E, Lindhardt J, Nielsen PM, Bertelsen LB, Schroeder M, Bøtker HE, Kim WY, Wiggers H, Stødkilde-Jørgensen H. Hyperpolarized [1- 13 C]pyruvate MRI can image the metabolic shift in cardiac metabolism between the fasted and fed state in a porcine model. Magn Reson Med 2018; 81:2655-2665. [PMID: 30387898 DOI: 10.1002/mrm.27560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/20/2018] [Accepted: 09/14/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE Owing to its noninvasive nature, hyperpolarized MRI may improve delineation of myocardial metabolic derangement in heart disease. However, consistency may depend on the changeable nature of cardiac metabolism in relation to whole-body metabolic state. This study investigates the impact of feeding status on cardiac hyperpolarized MRI in a large animal model resembling human physiology. METHODS Thirteen 30-kg pigs were subjected to an overnight fast, and 5 pigs were fed a carbohydrate-rich meal on the morning of the experiments. Vital parameters and blood samples were registered. All pigs were then scanned by hyperpolarized [1-13 C]pyruvate cardiac MRI, and results were compared between the 2 groups and correlated with circulating substrates and hormones. RESULTS The fed group had higher blood glucose concentration and mean arterial pressure than the fasted group. Plasma concentrations of free fatty acids (FFAs) were decreased in the fed group, whereas plasma insulin concentrations were similar between groups. Hyperpolarized MRI showed that fed animals had increased lactate/pyruvate, alanine/pyruvate, and bicarbonate/pyruvate ratios. Metabolic ratios correlated negatively with FFA levels. CONCLUSION Hyperpolarized MR can identify the effects of different metabolic states on cardiac metabolism in a large animal model. Unlike previous rodent studies, all metabolic derivatives of pyruvate increased in the myocardium of fed pigs. Carbohydrate-rich feeding seems to be a feasible model for standardized, large animal hyperpolarized MRI studies of myocardial carbohydrate metabolism.
Collapse
Affiliation(s)
- Rasmus Stilling Tougaard
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Esben Søvsø Szocska Hansen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Danish Diabetes Academy, Odense, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Emmeli Mikkelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Lindhardt
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marie Schroeder
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Won Yong Kim
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Wiggers
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
12
|
Timm KN, Apps A, Miller JJ, Ball V, Chong C, Dodd MS, Tyler DJ. Assessing the optimal preparation strategy to minimize the variability of cardiac pyruvate dehydrogenase flux measurements with hyperpolarized MRS. NMR IN BIOMEDICINE 2018; 31:e3992. [PMID: 30040147 PMCID: PMC6175301 DOI: 10.1002/nbm.3992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 05/11/2023]
Abstract
Hyperpolarized [1-13 C] pyruvate MRS can measure cardiac pyruvate dehydrogenase (PDH) flux in vivo through 13 C-label incorporation into bicarbonate. Using this technology, substrate availability as well as pathology have been shown to modulate PDH flux. Clinical protocols attempt to standardize PDH flux with oral glucose loading prior to scanning, while rodents in preclinical studies are usually scanned in the fed state. We aimed to establish which strategy was optimal to maximize PDH flux and minimize its variability in both control and Type II diabetic rats, without affecting the pathological variation being assessed. We found similar variances in the bicarbonate to pyruvate ratio, reflecting PDH flux, in fed and fasted/glucose-loaded animals, which showed no statistically significant differences. Furthermore, fasting/glucose loading did not alter the low PDH flux seen in Type II diabetic rats. Overall this suggests that preclinical cardiac hyperpolarized magnetic resonance studies could be performed either in the fed or in the fasted/glucose-loaded state. Centres planning to start new clinical studies with cardiac hyperpolarized magnetic resonance in man may find it beneficial to run small proof-of-concept trials to determine whether metabolic standardizations by oral or intravenous glucose load are beneficial compared with scanning patients in the fed state.
Collapse
Affiliation(s)
| | - Andrew Apps
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe HospitalOxfordUK
| | - Jack J. Miller
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordUK
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe HospitalOxfordUK
- Clarendon Laboratory, Department of PhysicsUniversity of OxfordUK
| | - Vicky Ball
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordUK
| | - Cher‐Rin Chong
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordUK
| | - Michael S. Dodd
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordUK
| | - Damian J. Tyler
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordUK
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe HospitalOxfordUK
| |
Collapse
|
13
|
Timm KN, Miller JJ, Henry JA, Tyler DJ. Cardiac applications of hyperpolarised magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:66-87. [PMID: 31047602 DOI: 10.1016/j.pnmrs.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease is the leading cause of death world-wide. It is increasingly recognised that cardiac pathologies show, or may even be caused by, changes in metabolism, leading to impaired cardiac energetics. The heart turns over 15 times its own weight in ATP every day and thus relies heavily on the availability of substrates and on efficient oxidation to generate this ATP. A number of old and emerging drugs that target different aspects of metabolism are showing promising results with regard to improved cardiac outcomes in patients. A non-invasive imaging technique that could assess the role of different aspects of metabolism in heart disease, as well as measure changes in cardiac energetics due to treatment, would be valuable in the routine clinical care of cardiac patients. Hyperpolarised magnetic resonance spectroscopy and imaging have revolutionised metabolic imaging, allowing real-time metabolic flux assessment in vivo for the first time. In this review we summarise metabolism in the healthy and diseased heart, give an introduction to the hyperpolarisation technique, 'dynamic nuclear polarisation' (DNP), and review the preclinical studies that have thus far explored healthy cardiac metabolism and different models of human heart disease. We furthermore show what advances have been made to translate this technique into the clinic, what technical challenges still remain and what unmet clinical needs and unexplored metabolic substrates still need to be assessed by researchers in this exciting and fast-moving field.
Collapse
Affiliation(s)
- Kerstin N Timm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK; Clarendon Laboratory, Department of Physics, University of Oxford, UK.
| | - John A Henry
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
14
|
Wespi P, Steinhauser J, Kwiatkowski G, Kozerke S. Overestimation of cardiac lactate production caused by liver metabolism of hyperpolarized [1- 13 C]pyruvate. Magn Reson Med 2018; 80:1882-1890. [PMID: 29607535 DOI: 10.1002/mrm.27197] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 03/06/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE The purpose of this work was to study the contribution of liver [1-13 C]lactate to the lactate signal detected in the heart following injection of hyperpolarized [1-13 C]pyruvate. METHODS A slice-selective saturation scheme was incorporated into a hybrid metabolic imaging and spectroscopy approach to selectively presaturate lactate in the liver. Imaging and slice-selective spectroscopy of [1-13 C]pyruvate and its downstream metabolites were sequentially interleaved in the same experiment with optional presaturation of liver [1-13 C]lactate. Six healthy rats were measured, and metabolic data in the heart acquired with and without presaturation of liver lactate were compared. RESULTS When using liver lactate presaturation, a statistically significant reduction of the lactate/pyruvate ratio was observed in the spectroscopic data of the left ventricle (0.18 ± 0.03 versus 0.24 ± 0.04; p < .05) as well as in the imaging data of the blood pool (0.05 ± 0.01 versus 0.11 ± 0.01; p < .05). No significant difference in myocardial lactate was observed when using myocardium only as the region of interest in the imaging data (0.08 ± 0.01 versus 0.11 ± 0.02; p = .2). CONCLUSION Liver metabolism leads to statistically significant overestimation of cardiac lactate production in slice-selective or nonselective spectroscopic experiments. Therefore, metabolic imaging is preferred over spectroscopy to separate left-ventricular compartments within the slice and hence avoid contamination of cardiac lactate signals. Alternatively, presaturation pulses should be used in combination with spectroscopy approaches.
Collapse
Affiliation(s)
- Patrick Wespi
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Jonas Steinhauser
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Grzegorz Kwiatkowski
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Tougaard RS, Hansen ESS, Laustsen C, Lindhardt J, Schroeder M, Bøtker HE, Kim WY, Wiggers H, Stødkilde‐Jørgensen H. Acute hypertensive stress imaged by cardiac hyperpolarized [1‐
13
C]pyruvate magnetic resonance. Magn Reson Med 2018. [DOI: 10.1002/mrm.27164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rasmus Stilling Tougaard
- Department of CardiologyAarhus University Hospital Denmark
- MR Research Centre, Department of Clinical MedicineAarhus University Denmark
| | - Esben Søvsø Szocska Hansen
- MR Research Centre, Department of Clinical MedicineAarhus University Denmark
- Danish Diabetes Academy Denmark
| | | | - Jakob Lindhardt
- MR Research Centre, Department of Clinical MedicineAarhus University Denmark
| | - Marie Schroeder
- MR Research Centre, Department of Clinical MedicineAarhus University Denmark
| | | | - Won Yong Kim
- Department of CardiologyAarhus University Hospital Denmark
- MR Research Centre, Department of Clinical MedicineAarhus University Denmark
| | - Henrik Wiggers
- Department of CardiologyAarhus University Hospital Denmark
| | | |
Collapse
|
16
|
Qi H, Nielsen PM, Schroeder M, Bertelsen LB, Palm F, Laustsen C. Acute renal metabolic effect of metformin assessed with hyperpolarised MRI in rats. Diabetologia 2018; 61:445-454. [PMID: 28936623 DOI: 10.1007/s00125-017-4445-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/04/2017] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS Metformin inhibits hepatic mitochondrial glycerol phosphate dehydrogenase, thereby increasing cytosolic lactate and suppressing gluconeogenesis flux in the liver. This inhibition alters cytosolic and mitochondrial reduction-oxidation (redox) potential, which has been reported to protect organ function in several disease states including diabetes. In this study, we investigated the acute metabolic and functional changes induced by metformin in the kidneys of both healthy and insulinopenic Wistar rats used as a model of diabetes. METHODS Diabetes was induced by intravenous injection of streptozotocin, and kidney metabolism in healthy and diabetic animals was investigated 4 weeks thereafter using hyperpolarised 13C-MRI, Clark-type electrodes and biochemical analysis. RESULTS Metformin increased renal blood flow, but did not change total kidney oxygen consumption. In healthy rat kidneys, metformin increased [1-13C]lactate production and reduced mitochondrial [1-13C]pyruvate oxidation (decreased the 13C-bicarbonate/[1-13C]pyruvate ratio) within 30 min of administration. Corresponding alterations to indices of mitochondrial, cytosolic and whole-cell redox potential were observed. Pyruvate oxidation was maintained in the diabetic rats, suggesting that the diabetic state abrogates metabolic reprogramming caused by metformin. CONCLUSIONS/INTERPRETATION This study demonstrates that metformin-induced acute metabolic alterations in healthy kidneys favoured anaerobic metabolism at the expense of aerobic metabolism. The results suggest that metformin directly alters the renal redox state, with elevated renal cytosolic redox states as well as decreased mitochondrial redox state. These findings suggest redox biology as a novel target to eliminate the renal complications associated with metformin treatment in individuals with impaired renal function.
Collapse
Affiliation(s)
- Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Per M Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marie Schroeder
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Lotte B Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| |
Collapse
|