1
|
Park JH, Jung KH, Jia D, Yang S, Attri KS, Ahn S, Murthy D, Samanta T, Dutta D, Ghidey M, Chatterjee S, Han SY, Pedroza DA, Tiwari A, Lee JV, Davis C, Li S, Putluri V, Creighton CJ, Putluri N, Dobrolecki LE, Lewis MT, Rosen JM, Onuchic JN, Goga A, Kaipparettu BA. Biguanides antithetically regulate tumor properties by the dose-dependent mitochondrial reprogramming-driven c-Src pathway. Cell Rep Med 2025; 6:101941. [PMID: 39933530 PMCID: PMC11866546 DOI: 10.1016/j.xcrm.2025.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/27/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
The biguanide metformin attenuates mitochondrial oxidation and is proposed as an anti-cancer therapy. However, recent clinical studies suggest increased proliferation and fatty acid β-oxidation (FAO) in a subgroup of patients with breast cancer (BC) after metformin therapy. Considering that FAO can activate Src kinase in aggressive triple-negative BC (TNBC), we postulate that low-dose biguanide-driven AMPK-ACC-FAO signaling may activate the Src pathway in TNBC. The low bioavailability of metformin in TNBC xenografts mimics metformin's in vitro low-dose effect. Pharmacological or genetic inhibition of FAO significantly enhances the anti-tumor properties of biguanides. Lower doses of biguanides induce and higher doses suppress Src signaling. Dasatinib and metformin synergistically inhibit TNBC patient-derived xenograft growth, but not in high-fat diet-fed mice. This combination also suppresses TNBC metastatic progression. A combination of biguanides with Src inhibitors provides synergy to target metastatic TNBC suffering with limited treatment options.
Collapse
Affiliation(s)
- Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kwang Hwa Jung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Sukjin Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kuldeep S Attri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Songyeon Ahn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Divya Murthy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tagari Samanta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debasmita Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meron Ghidey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Somik Chatterjee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seung Yeop Han
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diego A Pedroza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abha Tiwari
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joyce V Lee
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Caitlin Davis
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Shuting Li
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lacey E Dobrolecki
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Andrei Goga
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Lee Y, Park S, Park S, Kwon HJ, Lee SH, Kim Y, Kim JH. Exercise affects high-fat diet-stimulated breast cancer metastasis through irisin secretion by altering cancer stem cell properties. Biochem Biophys Rep 2024; 38:101684. [PMID: 38511188 PMCID: PMC10950695 DOI: 10.1016/j.bbrep.2024.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Background Regular physical activities reduce the growth of breast cancer, but research on the effects of steady exercise on metastasis and its mechanisms is limited. In this study, the effects of steady exercise on breast cancer metastasis and its possible mechanism were demonstrated. Methods Experimental metastasis was induced after 8 weeks of steady exercise using a mouse model. Furthermore, one of the myokines, irisin, was studied to elucidate the effects of metastasis-regulating protein expression, and colony and sphere formation, which are cancer stem cell properties. Results Low- and moderate-intensity exercise significantly reduced the number and volume of metastasized tumors. Among myokines, only irisin was significantly increased by steady exercise but decreased by a high-fat diet. In vitro studies, irisin significantly decreased the number of colonies and sphere formation. Irisin also inhibited cell migration and invasion and suppressed the malignancy of breast cancer cells by reducing the expression of vimentin, MMP-2, MMP-9, and HIF-1 and by increasing the expression of TIMP-1 and TIMP-2. Conclusion Steady exercise modulates myokine secretions and among them, irisin suppresses breast cancer metastasis by decreasing self-renewal properties and invasion regulating protein expressions. Thus, regular exercise may be beneficial in the prevention of breast tumor metastasis.
Collapse
Affiliation(s)
- YuJin Lee
- Department of Physical Education, Chung-Ang University, Seoul, 06974, South Korea
| | - SoDam Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, South Korea
| | - SeungHwa Park
- Department of Physical Education, Chung-Ang University, Seoul, 06974, South Korea
| | - Hye Ji Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, South Korea
- A Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Sang-Ho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, South Korea
- A Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Jung-Hyun Kim
- Department of Physical Education, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
3
|
Wang D, Liu S, Fu J, Zhang P, Zheng S, Qiu B, Liu H, Ye Y, Guo J, Zhou Y, Jiang H, Yin S, He H, Xie C, Liu H. Correlation of K trans derived from dynamic contrast-enhanced MRI with treatment response and survival in locally advanced NSCLC patients undergoing induction immunochemotherapy and concurrent chemoradiotherapy. J Immunother Cancer 2024; 12:e008574. [PMID: 38910009 PMCID: PMC11328668 DOI: 10.1136/jitc-2023-008574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
PURPOSE This study aimed to investigate the prognostic significance of pretreatment dynamic contrast-enhanced (DCE)-MRI parameters concerning tumor response following induction immunochemotherapy and survival outcomes in patients with locally advanced non-small cell lung cancer (NSCLC) who underwent immunotherapy-based multimodal treatments. MATERIAL AND METHODS Unresectable stage III NSCLC patients treated by induction immunochemotherapy, concurrent chemoradiotherapy (CCRT) with or without consolidative immunotherapy from two prospective clinical trials were screened. Using the two-compartment Extend Tofts model, the parameters including Ktrans, Kep, Ve, and Vp were calculated from DCE-MRI data. The apparent diffusion coefficient was calculated from diffusion-weighted-MRI data. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used to assess the predictive performance of MRI parameters. The Cox regression model was used for univariate and multivariate analysis. RESULTS 111 unresectable stage III NSCLC patients were enrolled. Patients received two cycles of induction immunochemotherapy and CCRT, with or without consolidative immunotherapy. With the median follow-up of 22.3 months, the median progression-free survival (PFS) and overall survival (OS) were 16.3 and 23.8 months. The multivariate analysis suggested that Eastern Cooperative Oncology Group score, TNM stage and the response to induction immunochemotherapy were significantly related to both PFS and OS. After induction immunochemotherapy, 67 patients (59.8%) achieved complete response or partial response and 44 patients (40.2%) had stable disease or progressive disease. The Ktrans of primary lung tumor before induction immunochemotherapy yielded the best performance in predicting the treatment response, with an AUC of 0.800. Patients were categorized into two groups: high-Ktrans group (n=67, Ktrans>164.3×10-3/min) and low-Ktrans group (n=44, Ktrans≤164.3×10-3/min) based on the ROC analysis. The high-Ktrans group had a significantly higher objective response rate than the low-Ktrans group (85.1% (57/67) vs 22.7% (10/44), p<0.001). The high-Ktrans group also presented better PFS (median: 21.1 vs 11.3 months, p=0.002) and OS (median: 34.3 vs 15.6 months, p=0.035) than the low-Ktrans group. CONCLUSIONS Pretreatment Ktrans value emerged as a significant predictor of the early response to induction immunochemotherapy and survival outcomes in unresectable stage III NSCLC patients who underwent immunotherapy-based multimodal treatments. Elevated Ktrans values correlated positively with enhanced treatment response, leading to extended PFS and OS durations.
Collapse
Affiliation(s)
- DaQuan Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - SongRan Liu
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Jia Fu
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - PengXin Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - ShiYang Zheng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Bo Qiu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Hui Liu
- United Imaging Healthcare, ShangHai, China
| | - YongQuan Ye
- United Imaging of Healthcare America, Houston, Texas, USA
| | - JinYu Guo
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Yin Zhou
- SuZhou TongDiao Company, Suzhou, China
| | | | - ShaoHan Yin
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - HaoQiang He
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - ChuanMiao Xie
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Hui Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Thakkar N, Shin YB, Sung HK. Nutritional Regulation of Mammary Tumor Microenvironment. Front Cell Dev Biol 2022; 10:803280. [PMID: 35186923 PMCID: PMC8847692 DOI: 10.3389/fcell.2022.803280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
The mammary gland is a heterogeneous organ comprising of immune cells, surrounding adipose stromal cells, vascular cells, mammary epithelial, and cancer stem cells. In response to nutritional stimuli, dynamic interactions amongst these cell populations can be modulated, consequently leading to an alteration of the glandular function, physiology, and ultimately disease pathogenesis. For example, obesity, a chronic over-nutritional condition, is known to disrupt homeostasis within the mammary gland and increase risk of breast cancer development. In contrast, emerging evidence has demonstrated that fasting or caloric restriction can negatively impact mammary tumorigenesis. However, how fasting induces phenotypic and functional population differences in the mammary microenvironment is not well understood. In this review, we will provide a detailed overview on the effect of nutritional conditions (i.e., overnutrition or fasting) on the mammary gland microenvironment and its impact on mammary tumor progression.
Collapse
Affiliation(s)
- Nikita Thakkar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ye Bin Shin
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Hoon-Ki Sung,
| |
Collapse
|
5
|
Coppola A, Zorzetto G, Piacentino F, Bettoni V, Pastore I, Marra P, Perani L, Esposito A, De Cobelli F, Carcano G, Fontana F, Fiorina P, Venturini M. Imaging in experimental models of diabetes. Acta Diabetol 2022; 59:147-161. [PMID: 34779949 DOI: 10.1007/s00592-021-01826-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/30/2021] [Indexed: 12/01/2022]
Abstract
Translational medicine, experimental medicine and experimental animal models, in particular mice and rats, represent a multidisciplinary field that has made it possible to achieve, in the last decades, important scientific progress. In this review, we have summarized the most frequently used imaging animal models, such as ultrasound (US), micro-CT, MRI and the optical imaging methods, and their main implications in diagnostic and therapeutic fields, with a particular focus on diabetes mellitus, a multifactorial disease extremely widespread among the general population.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy.
| | | | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Valeria Bettoni
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Paolo Marra
- Department of Diagnostic Radiology, Giovanni XXIII Hospital, Milano-Bicocca University, Bergamo, Italy
| | - Laura Perani
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Francesco De Cobelli
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Giulio Carcano
- Insubria University, Varese, Italy
- General, Emergency, and Transplant Surgery Unit, ASST Settelaghi, Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Paolo Fiorina
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| |
Collapse
|
6
|
Eating and nutrition links to cancer. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Iranpour S, Al-Mosawi AKM, Bahrami AR, Sadeghian H, Matin MM. Investigating the effects of two novel 4-MMPB analogs as potent lipoxygenase inhibitors for prostate cancer treatment. ACTA ACUST UNITED AC 2021; 28:10. [PMID: 33947474 PMCID: PMC8097893 DOI: 10.1186/s40709-021-00141-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/16/2021] [Indexed: 01/06/2023]
Abstract
Background Lipoxygenases are one of the critical signaling mediators which can be targeted for human prostate cancer (PC) therapy. In this study, 4-methyl-2-(4-methylpiperazinyl)pyrimido[4,5-b]benzothiazine (4-MMPB) and its two analogs, 4-propyl-2-(4-methylpiperazinyl)pyrimido[4,5-b]benzothiazine (4-PMPB) and 4-ethyl-2-(4-methylpiperazinyl)pyrimido[4,5-b]benzothiazine (4-EMPB), were proposed to have anti-tumor properties in prostate cancer. Methods After synthesizing the compounds, cytotoxic effects of 4-MMPB and its two analogs against PC-3 cancerous and HDF normal cells were investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and then mechanism of cell death was assessed by flow cytometry. Finally, the anti-tumor effects of the mentioned compounds were investigated in an immunocompromised C57BL/6 mouse model. Results 4-PMPB and 4-EMPB had similar anti-cancer effects on PC-3 cells as compared with 4-MMPB, while they were not effective on normal cells. Moreover, apoptosis and ferroptosis were the main mechanisms of induced cell death in these cancerous cells. Furthermore, in vivo results indicated that both analogs had similar anti-cancer effects as 4-MMPB, leading to delayed tumor growth without any noticeable side effects in weight loss and histological investigations. Conclusion Thus, our results suggest that specific targeting of lipoxygenases via 4-MMPB analogs can be considered as a treatment of choice for PC therapy, although it requires further investigations.
Collapse
Affiliation(s)
- Sonia Iranpour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Aseel Kamil Mohammed Al-Mosawi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Biology, Faculty of Science, University of Thi-Qar, Nasiriyah, Iraq
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Sadeghian
- Applied Biomedical Research Center, Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran. .,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
8
|
Mustafi D, Valek R, Fitch M, Werner V, Fan X, Markiewicz E, Fernandez S, Zamora M, Mueller J, Olopade OI, Conzen SD, Brady MJ, Karczmar GS. Magnetic resonance angiography reveals increased arterial blood supply and tumorigenesis following high fat feeding in a mouse model of triple-negative breast cancer. NMR IN BIOMEDICINE 2020; 33:e4363. [PMID: 32881124 PMCID: PMC8034829 DOI: 10.1002/nbm.4363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Breast cancer is the second most commonly diagnosed malignancy among women globally. Past MRI studies have linked a high animal fat diet (HAFD) to increased mammary cancer risk in the SV40Tag mouse model of triple-negative breast cancer. Here, serial MRI examines tumor progression and measures the arterial blood volume feeding mammary glands in low fat diet (LFD) or HAFD fed mice. Virgin female C3(1)SV40Tag mice (n = 8), weaned at 3 weeks old, were assigned to an LFD (n = 4, 3.7 kcal/g, 17.2% kcal from vegetable oil) or an HAFD (n = 4, 5.3 kcal/g, 60% kcal from lard) group. From ages 8 to 12 weeks, weekly fast spin echo MR images and time-of-flight (TOF) MR angiography of inguinal mammary glands were acquired at 9.4 T. Following in vivo MRI, mice were sacrificed. Inguinal mammary glands were excised and fixed for ex vivo MRI and histology. Tumor, blood, and mammary gland volumes for each time point were measured from manually traced regions of interest; tumors were classified as invasive by histopathology-blinded observers. Our analysis confirmed a strong correlation between total tumor volume and blood volume in the mammary gland. Tumor growth rates from weeks 8-12 were twice as high in HAFD-fed mice (0.42 ± 0.14/week) as in LFD-fed mice (0.21 ± 0.03/week), p < 0.004. Mammary gland blood volume growth rate was 2.2 times higher in HAFD mice (0.29 ± 0.11/week) compared with LFD mice (0.13 ± 0.06/week), p < 0.02. The mammary gland growth rate of HAFD-fed mice (0.071 ± 0.011/week) was 2.7 times larger than that of LFD-fed mice (0.026 ± 0.009/week), p < 0.01. This is the first non-invasive, in vivo MRI study to demonstrate a strong correlation between an HAFD and increased cancer burden and blood volume in mammary cancer without using contrast agents, strengthening the evidence supporting the adverse effects of an HAFD on mammary cancer. These results support the potential future use of TOF angiography to evaluate vasculature of suspicious lesions.
Collapse
Affiliation(s)
- Devkumar Mustafi
- Department of Radiology, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism
| | - Rebecca Valek
- Department of Radiology, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism
| | - Michael Fitch
- Department of Radiology, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism
| | - Victoria Werner
- Department of Radiology, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism
| | - Xiaobing Fan
- Department of Radiology, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism
| | - Erica Markiewicz
- Department of Radiology, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism
| | - Sully Fernandez
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism
| | - Marta Zamora
- Department of Radiology, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism
| | - Jeffrey Mueller
- Department of Pathology, Section of Hematology and Oncology, The University of Chicago, Chicago, Illinois 6063
| | - Olufunmilayo I. Olopade
- Department of Medicine, Section of Hematology and Oncology, The University of Chicago, Chicago, Illinois 6063
| | - Suzanne D. Conzen
- Department of Medicine, Section of Hematology and Oncology, The University of Chicago, Chicago, Illinois 6063
| | - Matthew J. Brady
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism
| | - Gregory S. Karczmar
- Department of Radiology, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism
| |
Collapse
|
9
|
Tiwari P, Blank A, Cui C, Schoenfelt KQ, Zhou G, Xu Y, Khramtsova G, Olopade F, Shah AM, Khan SA, Rosner MR, Becker L. Metabolically activated adipose tissue macrophages link obesity to triple-negative breast cancer. J Exp Med 2019; 216:1345-1358. [PMID: 31053611 PMCID: PMC6547867 DOI: 10.1084/jem.20181616] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/27/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022] Open
Abstract
Tiwari et al. identify metabolically activated macrophages in obese mammary adipose tissue as an important source of IL-6, which fuels triple-negative breast cancer stemness and tumorigenesis through GP130 signaling. These mechanistic insights provide potential targets for treating obesity-associated triple-negative breast cancer. Obesity is associated with increased incidence and severity of triple-negative breast cancer (TNBC); however, mechanisms underlying this relationship are incompletely understood. Here, we show that obesity reprograms mammary adipose tissue macrophages to a pro-inflammatory metabolically activated phenotype (MMe) that alters the niche to support tumor formation. Unlike pro-inflammatory M1 macrophages that antagonize tumorigenesis, MMe macrophages are pro-tumorigenic and represent the dominant macrophage phenotype in mammary adipose tissue of obese humans and mice. MMe macrophages release IL-6 in an NADPH oxidase 2 (NOX2)–dependent manner, which signals through glycoprotein 130 (GP130) on TNBC cells to promote stem-like properties including tumor formation. Deleting Nox2 in myeloid cells or depleting GP130 in TNBC cells attenuates obesity-augmented TNBC stemness. Moreover, weight loss reverses the effects of obesity on MMe macrophage inflammation and TNBC tumor formation. Our studies implicate MMe macrophage accumulation in mammary adipose tissue as a mechanism for promoting TNBC stemness and tumorigenesis during obesity.
Collapse
Affiliation(s)
- Payal Tiwari
- Committee on Cancer Biology, The University of Chicago, Chicago, IL.,Ben May Department for Cancer Research, The University of Chicago, Chicago, IL
| | - Ariane Blank
- Committee on Cancer Biology, The University of Chicago, Chicago, IL.,Ben May Department for Cancer Research, The University of Chicago, Chicago, IL
| | - Chang Cui
- Committee on Cancer Biology, The University of Chicago, Chicago, IL.,Ben May Department for Cancer Research, The University of Chicago, Chicago, IL
| | - Kelly Q Schoenfelt
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL
| | - Guolin Zhou
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL
| | - Yanfei Xu
- Department of Surgery and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine of Northwestern University, Northwestern University, Chicago, IL
| | - Galina Khramtsova
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL
| | - Funmi Olopade
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King's College, London British Hearth Foundation Centre, London, UK
| | - Seema A Khan
- Department of Surgery and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine of Northwestern University, Northwestern University, Chicago, IL
| | - Marsha Rich Rosner
- Committee on Cancer Biology, The University of Chicago, Chicago, IL .,Ben May Department for Cancer Research, The University of Chicago, Chicago, IL
| | - Lev Becker
- Committee on Cancer Biology, The University of Chicago, Chicago, IL .,Ben May Department for Cancer Research, The University of Chicago, Chicago, IL.,Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL
| |
Collapse
|
10
|
Blocker SJ, Mowery YM, Holbrook MD, Qi Y, Kirsch DG, Johnson GA, Badea CT. Bridging the translational gap: Implementation of multimodal small animal imaging strategies for tumor burden assessment in a co-clinical trial. PLoS One 2019; 14:e0207555. [PMID: 30958825 PMCID: PMC6453461 DOI: 10.1371/journal.pone.0207555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
In designing co-clinical cancer studies, preclinical imaging brings unique challenges that emphasize the gap between man and mouse. Our group is developing quantitative imaging methods for the preclinical arm of a co-clinical trial studying immunotherapy and radiotherapy in a soft tissue sarcoma model. In line with treatment for patients enrolled in the clinical trial SU2C-SARC032, primary mouse sarcomas are imaged with multi-contrast micro-MRI (T1 weighted, T2 weighted, and T1 with contrast) before and after immune checkpoint inhibition and pre-operative radiation therapy. Similar to the patients, after surgery the mice will be screened for lung metastases with micro-CT using respiratory gating. A systems evaluation was undertaken to establish a quantitative baseline for both the MR and micro-CT systems against which others systems might be compared. We have constructed imaging protocols which provide clinically-relevant resolution and contrast in a genetically engineered mouse model of sarcoma. We have employed tools in 3D Slicer for semi-automated segmentation of both MR and micro-CT images to measure tumor volumes efficiently and reliably in a large number of animals. Assessment of tumor burden in the resulting images was precise, repeatable, and reproducible. Furthermore, we have implemented a publicly accessible platform for sharing imaging data collected during the study, as well as protocols, supporting information, and data analyses. In doing so, we aim to improve the clinical relevance of small animal imaging and begin establishing standards for preclinical imaging of tumors from the perspective of a co-clinical trial.
Collapse
Affiliation(s)
- S. J. Blocker
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Y. M. Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - M. D. Holbrook
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Y. Qi
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - D. G. Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - G. A. Johnson
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - C. T. Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
11
|
Goncalves MD, Hopkins BD, Cantley LC. Dietary Fat and Sugar in Promoting Cancer Development and Progression. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055855] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The uncontrolled cellular growth that characterizes tumor formation requires a constant delivery of nutrients. Since the 1970s, researchers have wondered if the supply of nutrients from the diet could impact tumor development. Numerous studies have assessed the impact of dietary components, specifically sugar and fat, to increased cancer risk. For the most part, data from these trials have been inconclusive; however, this does not indicate that dietary factors do not contribute to cancer progression. Rather, the dietary contribution may be dependent on tumor, patient, and context, making it difficult to detect in the setting of large trials. In this review, we combine data from prospective cohort trials with mechanistic studies in mice to argue that fat and sugar can play a role in tumorigenesis and disease progression. We find that certain tumors may respond directly to dietary sugar (colorectal and endometrial cancers) and fat (prostate cancer) or indirectly to the obese state (breast cancer).
Collapse
Affiliation(s)
- Marcus D. Goncalves
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA;, ,
- Division of Endocrinology, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Benjamin D. Hopkins
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA;, ,
| | - Lewis C. Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA;, ,
| |
Collapse
|
12
|
Strober JW, Brady MJ. Dietary Fructose Consumption and Triple-Negative Breast Cancer Incidence. Front Endocrinol (Lausanne) 2019; 10:367. [PMID: 31244777 PMCID: PMC6581676 DOI: 10.3389/fendo.2019.00367] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
In the past century the western world has found a way to combat most communicative diseases; however, throughout that time the prevalence of obesity, hyperglycemia, and hyperlipidemia have drastically increased. These symptoms characterize metabolic syndrome-a non-communicable disease which has become one of the greatest health hazards of the world. During this same time period the western diet had dramatically changed. Homecooked meals have been replaced by highly-processed, calorically dense foods. This conversion to the current western diet was highlighted by the incorporation of high-fructose corn syrup (HFCS) into sweetened beverages and foods. The consumption of large amounts of dietary sugar, and fructose in particular, has been associated with an altered metabolic state, both systemically and in specific tissues. This altered metabolic state has many profound effects and is associated with many diseases, including diabetes, cardiovascular disease, and even cancer (1). Specific types of cancer, like triple-negative breast cancer (TNBC), are both responsive to dietary factors and exceptionally difficult to treat, illustrating the possibility for preventative care through dietary intervention in at risk populations. To treat these non-communicable diseases, including obesity, diabetes, and cancer, it is imperative to understand systemic and localized metabolic abnormalities that drive its progression. This review will specifically explore the links between increased dietary fructose consumption, development of metabolic disturbances and increased incidence of TNBC.
Collapse
Affiliation(s)
- Jordan W. Strober
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL, United States
| | - Matthew J. Brady
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL, United States
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, United States
- *Correspondence: Matthew J. Brady
| |
Collapse
|
13
|
He D, Mustafi D, Fan X, Fernandez S, Markiewicz E, Zamora M, Mueller J, Sachleben JR, Brady MJ, Conzen SD, Karczmar GS. Magnetic resonance spectroscopy detects differential lipid composition in mammary glands on low fat, high animal fat versus high fructose diets. PLoS One 2018; 13:e0190929. [PMID: 29324859 PMCID: PMC5764316 DOI: 10.1371/journal.pone.0190929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/24/2017] [Indexed: 11/18/2022] Open
Abstract
The effects of consumption of different diets on the fatty acid composition in the mammary glands of SV40 T-antigen (Tag) transgenic mice, a well-established model of human triple-negative breast cancer, were investigated with magnetic resonance spectroscopy and spectroscopic imaging. Female C3(1) SV40 Tag transgenic mice (n = 12) were divided into three groups at 4 weeks of age: low fat diet (LFD), high animal fat diet (HAFD), and high fructose diet (HFruD). MRI scans of mammary glands were acquired with a 9.4 T scanner after 8 weeks on the diet. 1H spectra were acquired using point resolved spectroscopy (PRESS) from two 1 mm3 boxes on each side of inguinal mammary gland with no cancers, lymph nodes, or lymph ducts. High spectral and spatial resolution (HiSS) images were also acquired from nine 1-mm slices. A combination of Gaussian and Lorentzian functions was used to fit the spectra. The percentages of poly-unsaturated fatty acids (PUFA), mono-unsaturated fatty acids (MUFA), and saturated fatty acids (SFA) were calculated from each fitted spectrum. Water and fat peak height images (maps) were generated from HiSS data. The results showed that HAFD mice had significantly lower PUFA than both LFD (p < 0.001) and HFruD (p < 0.01) mice. The mammary lipid quantity calculated from 1H spectra was much larger in HAFD mice than in LFD (p = 0.03) but similar to HFruD mice (p = 0.10). The average fat signal intensity over the mammary glands calculated from HiSS fat maps was ~60% higher in HAFD mice than in LFD (p = 0.04) mice. The mean or median of calculated parameters for the HFruD mice were between those for LFD and HAFD mice. Therefore, PRESS spectroscopy and HiSS MRI demonstrated water and fat composition changes in mammary glands due to a Western diet, which was low in potassium, high in sodium, animal fat, and simple carbohydrates. Measurements of PUFA with MRI could be used to evaluate cancer risk, improve cancer detection and diagnosis, and guide preventative therapy.
Collapse
Affiliation(s)
- Dianning He
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China
| | - Devkumar Mustafi
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Xiaobing Fan
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Sully Fernandez
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, Illinois, United States of America
| | - Erica Markiewicz
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Marta Zamora
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jeffrey Mueller
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Joseph R. Sachleben
- Biomolecular NMR Core Facility, The University of Chicago, Chicago, Illinois, United States of America
| | - Matthew J. Brady
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, Illinois, United States of America
| | - Suzanne D. Conzen
- Department of Medicine, Hematology/Oncology, Hematology/Oncology, The University of Chicago, Chicago, Illinois, United States of America
| | - Gregory S. Karczmar
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|