1
|
Naughton N, Cahoon SM, Sutton BP, Georgiadis JG. Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3698-3709. [PMID: 38709599 PMCID: PMC11650671 DOI: 10.1109/tmi.2024.3397790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI) in an uncertainty-aware manner. To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model that provides voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters accurately estimated, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function.
Collapse
|
2
|
Oshiro H, Hata J, Nakashima D, Oshiro R, Hayashi N, Haga Y, Hagiya K, Yoshimaru D, Okano H. Restricted diffusion characteristics in oscillating gradient spin echo with mesoscopic phantom. Heliyon 2024; 10:e26391. [PMID: 38434080 PMCID: PMC10906284 DOI: 10.1016/j.heliyon.2024.e26391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
In diffusion magnetic resonance imaging, oscillating gradient spin echo (OGSE) has an extremely short diffusion time if motion probing gradient (MPG) is applied to the waveform. Further, it can detect microstructural specificity. OGSE changes sensitivity to spin displacement velocity based on the MPG phase. The current study aimed to investigate the restricted diffusion characteristics of each OGSE waveform using the capillary phantom with various b-values, frequencies, and MPG phases. We performed OGSE (b-value = 300, 500, 800, 1200, 1600, and 2000 s/mm2) for the sine and cosine waveforms using the capillary phantom (6, 12, 25, 50, and 100 μm and free water) with a 9.4-T experimental magnetic resonance imaging system and a solenoid coil. We evaluated the axial and radial diffusivity (AD, RD) of each structure size. The output current of the MPG was assessed with an oscilloscope and analyzed with the gradient modulation power spectra by fast Fourier transform. In sine, the sidelobe spectrum was enhanced with increasing frequency, and the central spectrum slightly increased. The difference in RD was detected at 6 and 12 μm; however, it did not depend on the structure scale at 50 or 100 μm and free water. In cosine, the diffusion spectrum was enhanced, whereas the central spectrum decreased with increasing frequency. Both AD and RD in cosine had a frequency dependence, and AD and RD increased with a higher frequency regardless of structure size. AD and RD in either sine or cosine had no evident b-value dependence. We evaluated the OGSE-restricted diffusion characteristics. The measurements obtained diffusion information similar to the pulsed gradient spin echo. Hence, the cosine measurements indicated that a higher frequency could capture faster diffusion within the diffusion phenomena.
Collapse
Affiliation(s)
- Hinako Oshiro
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
| | - Junichi Hata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
- Keio University, School of Medicine, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Rintaro Oshiro
- Department of Physics, Faculty of Science and Technology, Keio University, Japan
| | - Naoya Hayashi
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
| | - Yawara Haga
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
- Keio University, School of Medicine, Tokyo, Japan
| | - Kei Hagiya
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
| | - Daisuke Yoshimaru
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
- Keio University, School of Medicine, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
- Keio University, School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Malis V, Sinha U, Smitaman E, Obra JKL, Langer HT, Mossakowski AA, Baar K, Sinha S. Time-dependent diffusion tensor imaging and diffusion modeling of age-related differences in the medial gastrocnemius and feasibility study of correlations to histopathology. NMR IN BIOMEDICINE 2023; 36:e4996. [PMID: 37434581 PMCID: PMC10592510 DOI: 10.1002/nbm.4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Implement STEAM-DTI to model time-dependent diffusion eigenvalues using the random permeable barrier model (RPBM) to study age-related differences in the medial gastrocnemius (MG) muscle. Validate diffusion model-extracted fiber diameter for histological assessment. METHODS Diffusion imaging at different diffusion times (Δ) was performed on seven young and six senior participants. Time-dependent diffusion eigenvalues (λ2 (t), λ3 (t), and D⊥ (t); average of λ2 (t) and λ3 (t)) were fit to the RPBM to extract tissue microstructure parameters. Biopsy of the MG tissue for histological assessment was performed on a subset of participants (four young, six senior). RESULTS λ3 (t) was significantly higher in the senior cohort for the range of diffusion times. RPBM fits to λ2 (t) yielded fiber diameters in agreement to those from histology for both cohorts. The senior cohort had lower values of volume fraction of membranes, ζ, in fits to λ2 (t), λ3 (t), and D⊥ (t) (significant for fit to λ3 (t)). Fits of fiber diameter from RPBM to that from histology had the highest correlation for the fit to λ2 (t). CONCLUSION The age-related patterns in λ2 (t) and λ3 (t) could tentatively be explained from RPBM fits; these patterns may potentially arise from a decrease in fiber asymmetry and an increase in permeability with age.
Collapse
Affiliation(s)
- Vadim Malis
- Physics, UC San Diego, San Diego, California, USA
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA
| | - Usha Sinha
- Physics, San Diego State University, San Diego, California, USA
| | - Edward Smitaman
- Department of Radiology, UC San Diego, San Diego, California, USA
| | - Jed Keenan Lim Obra
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Henning T Langer
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Agata A Mossakowski
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Keith Baar
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA
| |
Collapse
|
4
|
Shrinkage Properties and Their Relationship with Degradation of Proteins Linking the Endomysium and Myofibril in Lamb Meat Submitted to Heating or Air Drying. Foods 2022; 11:foods11152242. [PMID: 35954013 PMCID: PMC9368109 DOI: 10.3390/foods11152242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
The shrinkage of the connective tissue and myofiber of lamb meat submitted to heat treatment or air drying at different storage stages (1, 5 and 7 days) was evaluated herein. The longitudinal and transverse shrinkage of heated lamb meat was significantly influenced by storage time and water bath heating temperature (50 °C, 70 °C and 90 °C) (p < 0.001). In contrast, the shrinkage of air-dried lamb meat was not influenced by storage time (p > 0.05). The microstructure of heated lamb meat, namely, the distance between muscle fascicles, the distance between myofibril networks, the area of myofibril networks, and the endomysium circumference, was significantly influenced by storage time (p < 0.05). During storage, the proportion of muscle fibers completely detached from endomysium increased, which could be due to the progressive degradation of proteins linking the endomysium and myofibril, including β-dystroglycan, α-dystroglycan, integrin-β1, and dystrophin. However, degradation of such proteins did not influence the shrinkage of lamb meat stored for five days or longer, since the decreased distance between myofibril networks indicated a higher shrinkage ratio of the endomysium compared to myofibers in samples air-dried at 35 °C or heated at 90 °C. The effect of these proteins on the shrinkage of heated lamb meat (raw meat stored for 1 day or less time) requires further elucidation.
Collapse
|
5
|
Englund EK, Reiter DA, Shahidi B, Sigmund EE. Intravoxel Incoherent Motion Magnetic Resonance Imaging in Skeletal Muscle: Review and Future Directions. J Magn Reson Imaging 2022; 55:988-1012. [PMID: 34390617 PMCID: PMC8841570 DOI: 10.1002/jmri.27875] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Throughout the body, muscle structure and function can be interrogated using a variety of noninvasive magnetic resonance imaging (MRI) methods. Recently, intravoxel incoherent motion (IVIM) MRI has gained momentum as a method to evaluate components of blood flow and tissue diffusion simultaneously. Much of the prior research has focused on highly vascularized organs, including the brain, kidney, and liver. Unique aspects of skeletal muscle, including the relatively low perfusion at rest and large dynamic range of perfusion between resting and maximal hyperemic states, may influence the acquisition, postprocessing, and interpretation of IVIM data. Here, we introduce several of those unique features of skeletal muscle; review existing studies of IVIM in skeletal muscle at rest, in response to exercise, and in disease states; and consider possible confounds that should be addressed for muscle-specific evaluations. Most studies used segmented nonlinear least squares fitting with a b-value threshold of 200 sec/mm2 to obtain IVIM parameters of perfusion fraction (f), pseudo-diffusion coefficient (D*), and diffusion coefficient (D). In healthy individuals, across all muscles, the average ± standard deviation of D was 1.46 ± 0.30 × 10-3 mm2 /sec, D* was 29.7 ± 38.1 × 10-3 mm2 /sec, and f was 11.1 ± 6.7%. Comparisons of reported IVIM parameters in muscles of the back, thigh, and leg of healthy individuals showed no significant difference between anatomic locations. Throughout the body, exercise elicited a positive change of all IVIM parameters. Future directions including advanced postprocessing models and potential sequence modifications are discussed. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Erin K. Englund
- Department of Radiology, University of Colorado Anschutz Medical Campus
| | | | | | - Eric E. Sigmund
- Department of Radiology, New York University Grossman School of Medicine, NYU Langone Health
- Center for Advanced Imaging and Innovation (CAIR), Bernard and Irene Schwarz Center for Biomedical Imaging (CBI), NYU Langone Health
| |
Collapse
|
6
|
Lemberskiy G, Feiweier T, Gyftopoulos S, Axel L, Novikov DS, Fieremans E. Assessment of myofiber microstructure changes due to atrophy and recovery with time-dependent diffusion MRI. NMR IN BIOMEDICINE 2021; 34:e4534. [PMID: 34002901 DOI: 10.1002/nbm.4534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Current clinical MRI evaluation of musculature largely focuses on nonquantitative assessments (including T1-, T2- and PD-weighted images), which may vary greatly between imaging systems and readers. This work aims to determine the efficacy of a quantitative approach to study the microstructure of muscles at the cellular level with the random permeable barrier model (RPBM) applied to time-dependent diffusion tensor imaging (DTI) for varying diffusion time. Patients (N = 15, eight males and seven females) with atrophied calf muscles due to immobilization of one leg in a nonweight-bearing cast, were enrolled after providing informed consent. Their calf muscles were imaged with stimulated echo diffusion for DTI, T1-mapping and RPBM modeling. Specifically, After cast removal, both calf muscles (atrophied and contralateral control leg) were imaged with MRI for all patients, with follow-up scans to monitor recovery of the atrophied leg for six patients after 4 and 8 weeks. We compare RPBM-derived microstructural metrics: myofiber diameter, a, and sarcolemma permeability, κ, along with macroscopic anatomical parameters (muscle cross-sectional area, fiber orientation, <θ>, and T1 relaxation). ROC analysis was used to compare parameters between control and atrophied muscle, while the Friedman test was used to evaluate the atrophied muscle longitudinally. We found that the RPBM framework enables measurement of microstructural parameters from diffusion time-dependent DTI, of which the myofiber diameter is a stronger predictor of intramuscular morphological changes than either macroscopic (anatomical) measurements or empirical diffusion parameters. This work demonstrates the potential of RPBM to assess pathological changes in musculature that seem undetectable with standard diffusion and anatomical MRI.
Collapse
Affiliation(s)
- Gregory Lemberskiy
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | | | - Soterios Gyftopoulos
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Leon Axel
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
7
|
Mazzoli V, Moulin K, Kogan F, Hargreaves BA, Gold GE. Diffusion Tensor Imaging of Skeletal Muscle Contraction Using Oscillating Gradient Spin Echo. Front Neurol 2021; 12:608549. [PMID: 33658976 PMCID: PMC7917051 DOI: 10.3389/fneur.2021.608549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/08/2021] [Indexed: 01/01/2023] Open
Abstract
Diffusion tensor imaging (DTI) measures water diffusion in skeletal muscle tissue and allows for muscle assessment in a broad range of neuromuscular diseases. However, current DTI measurements, typically performed using pulsed gradient spin echo (PGSE) diffusion encoding, are limited to the assessment of non-contracted musculature, therefore providing limited insight into muscle contraction mechanisms and contraction abnormalities. In this study, we propose the use of an oscillating gradient spin echo (OGSE) diffusion encoding strategy for DTI measurements to mitigate the effect of signal voids in contracted muscle and to obtain reliable diffusivity values. Two OGSE sequences with encoding frequencies of 25 and 50 Hz were tested in the lower leg of five healthy volunteers with relaxed musculature and during active dorsiflexion and plantarflexion, and compared with a conventional PGSE approach. A significant reduction of areas of signal voids using OGSE compared with PGSE was observed in the tibialis anterior for the scans obtained in active dorsiflexion and in the soleus during active plantarflexion. The use of PGSE sequences led to unrealistically elevated axial diffusivity values in the tibialis anterior during dorsiflexion and in the soleus during plantarflexion, while the corresponding values obtained using the OGSE sequences were significantly reduced. Similar findings were seen for radial diffusivity, with significantly higher diffusivity measured in plantarflexion in the soleus muscle using the PGSE sequence. Our preliminary results indicate that DTI with OGSE diffusion encoding is feasible in human musculature and allows to quantitatively assess diffusion properties in actively contracting skeletal muscle. OGSE holds great potential to assess microstructural changes occurring in the skeletal muscle during contraction, and for non-invasive assessment of contraction abnormalities in patients with muscle diseases.
Collapse
Affiliation(s)
- Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, CA, United States
| | | | | | | | | |
Collapse
|
8
|
Di Pietro G, Scimeca M, Iundusi R, Celi M, Gasbarra E, Tarantino U, Capuani S. Differences between muscle from osteoporotic and osteoarthritic subjects: in vitro study by diffusion-tensor MRI and histological findings. Aging Clin Exp Res 2020; 32:2489-2499. [PMID: 32026431 DOI: 10.1007/s40520-020-01483-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Osteoarthritis and osteoporosis are strongly coupled with alterations of muscles quality and fats metabolism. However, there are no studies for investigating possible differences between osteoporotic and osteoarthritic muscles. Understanding muscle-bone and muscle-cartilage interactions would be of high clinical value. AIM Investigate potential microstructural and physiological differences between osteoporotic and osteoarthritic muscles by diffusion Nuclear Magnetic Resonance (NMR) imaging (diffusion MRI) and histological findings. METHODS Vastus-lateralis muscles excised from osteoporotic (n = 26, T Score < - 2.5, Kellgren-Lawrence ≤ 2) and osteoarthritic (n = 26, T Score > - 2.5, Kellgren--Lawrence 3 and 4) age-matched women were investigated by NMR relaxometry, diffusion-tensor imaging (DTI) at 9.4 T, and histological techniques. Intramyocellular (IMCL) and extramyocellular (EMCL) lipid were quantified. The percentage and mean diameters of fibers I and II were evaluated. Relationship between mean diffusivity (MD), fractional anisotropy (FA), the DTI eigenvalues (λ1, λ2, λ3), histological findings in muscles and clinical data (Kellgren-Lawrence and T score, age, menopausal age, body mass index) were studied. Pairwise comparisons between groups were made using one-way analysis of variance and correlation between variables was assessed with linear correlation analysis (Pearson's r coefficient). RESULTS Osteoporotic muscles showed higher MD, λ1, λ2, λ3 compared to osteoarthritis ones. This is explainable with a significant higher density of IMCL droplets found inside the osteoarthritic muscles and a large amount of fibrotic tissue and IMCL infiltration between fibers, i.e. in endomysium and perimysium that lead to a more hindered diffusion. Furthermore, histological analysis suggests mitochondrial degeneration as the origin of the greatest amount of IMCL droplets in osteoarthritic muscles. CONCLUSION This work highlights differences between muscles of osteoporotic and osteoarthritic subjects that can be quantified by NMR DTI investigations.
Collapse
|
9
|
Porcari P, Hall MG, Clark CA, Greally E, Straub V, Blamire AM. Time-dependent diffusion MRI as a probe of microstructural changes in a mouse model of Duchenne muscular dystrophy. NMR IN BIOMEDICINE 2020; 33:e4276. [PMID: 32101354 DOI: 10.1002/nbm.4276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/05/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Dystrophic muscles show a high variability of fibre sizes and altered sarcolemmal integrity, which are typically assessed by histology. Time-dependent diffusion MRI is sensitive to tissue microstructure and its investigation through age-related changes in dystrophic and healthy muscles may help the understanding of the onset and progression of Duchenne muscular dystrophy (DMD). We investigated the capability of time-dependent diffusion MRI to quantify age and disease-related changes in hind-limb muscle microstructure between dystrophic (mdx) and wild-type (WT) mice of three age groups (7.5, 22 and 44 weeks). Diffusion time-dependent apparent diffusion coefficients (ADCs) of the gastrocnemius and tibialis anterior muscles were determined versus age and diffusion-gradient orientation at six diffusion times (Δ; range: 25-350 ms). Mean muscle ADCs were compared between groups and ages, and correlated with T2 , using Student's t test, one-way analysis of variance and Pearson correlation, respectively. Muscle fibre sizes and sarcolemmal integrity were evaluated by histology and compared with diffusion measurements. Hind-limb muscle ADC showed characteristic restricted diffusion behaviour in both mdx and WT animals with decreasing ADC values at longer Δ. Significant differences in ADC were observed at long Δ values (≥ 250 ms; p < 0.05, comparison between groups; p < 0.01, comparison between ages) with ADC increased by 5-15% in dystrophic muscles, indicative of reduced diffusion restriction. No significant correlation was found between T2 and ADC. Additionally, muscle fibre size distributions showed higher variability and lower mean fibre size in mdx than WT animals (p < 0.001). The extensive Evans Blue Dye uptake shown in dystrophic muscles revealed substantial sarcolemmal damage, suggesting diffusion measurements as more consistent with altered permeability rather than changes in muscle fibre sizes. This study shows the potential of diffusion MRI to non-invasively discriminate between dystrophic and healthy muscles with enhanced sensitivity when using long Δ.
Collapse
Affiliation(s)
- Paola Porcari
- Institute of Genetic Medicine and Centre for In Vivo Imaging, Newcastle University, Newcastle upon Tyne, UK
| | - Matt G Hall
- Developmental Imaging and Biophysics Section, UCL GOS Institute of Child Health, London, UK
| | - Chris A Clark
- Developmental Imaging and Biophysics Section, UCL GOS Institute of Child Health, London, UK
| | - Elizabeth Greally
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew M Blamire
- Institute of Cellular Medicine and Centre for In Vivo Imaging, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Strijkers GJ, Araujo EC, Azzabou N, Bendahan D, Blamire A, Burakiewicz J, Carlier PG, Damon B, Deligianni X, Froeling M, Heerschap A, Hollingsworth KG, Hooijmans MT, Karampinos DC, Loudos G, Madelin G, Marty B, Nagel AM, Nederveen AJ, Nelissen JL, Santini F, Scheidegger O, Schick F, Sinclair C, Sinkus R, de Sousa PL, Straub V, Walter G, Kan HE. Exploration of New Contrasts, Targets, and MR Imaging and Spectroscopy Techniques for Neuromuscular Disease - A Workshop Report of Working Group 3 of the Biomedicine and Molecular Biosciences COST Action BM1304 MYO-MRI. J Neuromuscul Dis 2020; 6:1-30. [PMID: 30714967 PMCID: PMC6398566 DOI: 10.3233/jnd-180333] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromuscular diseases are characterized by progressive muscle degeneration and muscle weakness resulting in functional disabilities. While each of these diseases is individually rare, they are common as a group, and a large majority lacks effective treatment with fully market approved drugs. Magnetic resonance imaging and spectroscopy techniques (MRI and MRS) are showing increasing promise as an outcome measure in clinical trials for these diseases. In 2013, the European Union funded the COST (co-operation in science and technology) action BM1304 called MYO-MRI (www.myo-mri.eu), with the overall aim to advance novel MRI and MRS techniques for both diagnosis and quantitative monitoring of neuromuscular diseases through sharing of expertise and data, joint development of protocols, opportunities for young researchers and creation of an online atlas of muscle MRI and MRS. In this report, the topics that were discussed in the framework of working group 3, which had the objective to: Explore new contrasts, new targets and new imaging techniques for NMD are described. The report is written by the scientists who attended the meetings and presented their data. An overview is given on the different contrasts that MRI can generate and their application, clinical needs and desired readouts, and emerging methods.
Collapse
Affiliation(s)
| | - Ericky C.A. Araujo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Noura Azzabou
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | | | - Andrew Blamire
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jedrek Burakiewicz
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Bruce Damon
- Vanderbilt University Medical Center, Nashville, USA
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Arend Heerschap
- Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany & Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Olivier Scheidegger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Fritz Schick
- University of Tübingen, Section on Experimental Radiology, Tübingen, Germany
| | | | | | | | - Volker Straub
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Hermien E. Kan
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
11
|
Naughton NM, Georgiadis JG. Global sensitivity analysis of skeletal muscle dMRI metrics: Effects of microstructural and pulse parameters. Magn Reson Med 2019; 83:1458-1470. [DOI: 10.1002/mrm.28014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Noel M. Naughton
- Department of Mechanical Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois
| | - John G. Georgiadis
- Department of Mechanical Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois
- Department of Biomedical Engineering Illinois Institute of Technology Chicago Illinois
| |
Collapse
|
12
|
Naughton NM, Georgiadis JG. Comparison of two-compartment exchange and continuum models of dMRI in skeletal muscle. ACTA ACUST UNITED AC 2019; 64:155004. [DOI: 10.1088/1361-6560/ab2aa6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|