1
|
Roggenbuck EC, Hall EA, Hanson IB, Roby AA, Zhang KK, Alkatib KA, Carter JA, Clewner JE, Gelfius AL, Gong S, Gordon FR, Iseler JN, Kotapati S, Li M, Maysun A, McCormick EO, Rastogi G, Sengupta S, Uzoma CU, Wolkov MA, Clowney EJ. Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria. WIREs Mech Dis 2024; 16:e1636. [PMID: 38185860 DOI: 10.1002/wsbm.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Emma C Roggenbuck
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elijah A Hall
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabel B Hanson
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa A Roby
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine K Zhang
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle A Alkatib
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Carter
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jarred E Clewner
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna L Gelfius
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiyuan Gong
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Finley R Gordon
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolene N Iseler
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Samhita Kotapati
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Marilyn Li
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Areeba Maysun
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elise O McCormick
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Geetanjali Rastogi
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Srijani Sengupta
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Chantal U Uzoma
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison A Wolkov
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Friedrich SR, Nevue AA, Andrade ALP, Velho TAF, Mello CV. Emergence of sex-specific transcriptomes in a sexually dimorphic brain nucleus. Cell Rep 2022; 40:111152. [PMID: 35926465 PMCID: PMC9385264 DOI: 10.1016/j.celrep.2022.111152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/26/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
We present the transcriptomic changes underlying the development of an extreme neuroanatomical sex difference. The robust nucleus of the arcopallium (RA) is a key component of the songbird vocal motor system. In zebra finch, the RA is initially monomorphic and then atrophies in females but grows up to 7-fold larger in males. Mirroring this divergence, we show here that sex-differential gene expression in the RA expands from hundreds of predominantly sex chromosome Z genes in early development to thousands of predominantly autosomal genes by the time sexual dimorphism asymptotes. Male-specific developmental processes include cell and axonal growth, synapse assembly and activity, and energy metabolism; female-specific processes include cell polarity and differentiation, transcriptional repression, and steroid hormone and immune signaling. Transcription factor binding site analyses support female-biased activation of pro-apoptotic regulatory networks. The extensive and sex-specific transcriptomic reorganization of RA provides insights into potential drivers of sexually dimorphic neurodevelopment.
Collapse
Affiliation(s)
- Samantha R Friedrich
- Department of Behavioral Neuroscience, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Alexander A Nevue
- Department of Behavioral Neuroscience, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Abraão L P Andrade
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Tarciso A F Velho
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University (OHSU), Portland, OR 97239, USA.
| |
Collapse
|
3
|
Kuang G, Tao W, Zheng S, Wang X, Wang D. Genome-Wide Identification, Evolution and Expression of the Complete Set of Cytoplasmic Ribosomal Protein Genes in Nile Tilapia. Int J Mol Sci 2020; 21:ijms21041230. [PMID: 32059409 PMCID: PMC7072992 DOI: 10.3390/ijms21041230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/03/2022] Open
Abstract
Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. In the present study, we carried out a comprehensive analysis of RPs in chordates and examined the expression profiles of the complete set of 92 cytoplasmic RP genes in Nile tilapia. The RP genes were randomly distributed throughout the tilapia genome. Phylogenetic and syntenic analyses revealed the existence of duplicated RP genes from 2R (RPL3, RPL7, RPL22 and RPS27) and 3R (RPL5, RPL19, RPL22, RPL41, RPLP2, RPS17, RPS19 and RPS27) in tilapia and even more from 4R in common carp and Atlantic salmon. The RP genes were found to be expressed in all tissues examined, but their expression levels differed among different tissues. Gonadal transcriptome analysis revealed that almost all RP genes were highly expressed, and their expression levels were highly variable between ovaries and testes at different developmental stages in tilapia. No sex- and stage-specific RP genes were found. Eleven RP genes displayed sexually dimorphic expression with nine higher in XY gonad and two higher in XX gonad at all stages examined, which were proved to be phenotypic sex dependent. Quantitative real-time PCR and immunohistochemistry ofRPL5b and RPL24 were performed to validate the transcriptome data. The genomic resources and expression data obtained in this study will contribute to a better understanding of RPs evolution and functions in chordates.
Collapse
|
4
|
Wade J. Genetic regulation of sex differences in songbirds and lizards. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150112. [PMID: 26833833 DOI: 10.1098/rstb.2015.0112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 01/06/2023] Open
Abstract
Sex differences in the morphology of neural and peripheral structures related to reproduction often parallel the frequency of particular behaviours displayed by males and females. In a variety of model organisms, these sex differences are organized in development by gonadal steroids, which also act in adulthood to modulate behavioural expression and in some cases to generate parallel anatomical changes on a seasonal basis. Data collected from diverse species, however, suggest that changes in hormone availability are not sufficient to explain sex and seasonal differences in structure and function. This paper pulls together some of this literature from songbirds and lizards and considers the information in the broader context of taking a comparative approach to investigating genetic mechanisms associated with behavioural neuroendocrinology.
Collapse
Affiliation(s)
- Juli Wade
- Departments of Psychology and Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Beach LQ, Wade J. Masculinisation of the zebra finch song system: roles of oestradiol and the Z-chromosome gene tubulin-specific chaperone protein A. J Neuroendocrinol 2015; 27:324-34. [PMID: 25702708 PMCID: PMC4422980 DOI: 10.1111/jne.12267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/10/2015] [Accepted: 02/14/2015] [Indexed: 11/26/2022]
Abstract
Robust sex differences in brain and behaviour exist in zebra finches. Only males sing, and forebrain song control regions are more developed in males. The factors driving these differences are not clear, although numerous experiments have shown that oestradiol (E2 ) administered to female hatchlings partially masculinises brain and behaviour. Recent studies suggest that an increased expression of Z-chromosome genes in males (ZZ; females: ZW) might also play a role. The Z-gene tubulin-specific chaperone A (TBCA) exhibits increased expression in the lateral magnocellular nucleus of the anterior nidopallium (LMAN) of juvenile males compared to females; TBCA+ cells project to the robust nucleus of the arcopallium (RA). In the present study, we investigated the role of TBCA and tested hypotheses with respect to the interactive or additive effects of E2 and TBCA. We first examined whether E2 in hatchling zebra finches modulates TBCA expression in the LMAN. It affected neither the mRNA, nor protein in either sex. We then unilaterally delivered TBCA small interfering (si)RNA to the LMAN of developing females treated with E2 or vehicle and males treated with the aromatase inhibitor, fadrozole, or its control. In both sexes, decreasing TBCA in LMAN reduced RA cell number, cell size and volume. It also decreased LMAN volume in females. Fadrozole in males increased LMAN volume and RA cell size. TBCA siRNA delivered to the LMAN also decreased the projection from this brain region to the RA, as indicated by anterograde tract tracing. The results suggest that TBCA is involved in masculinising the song system. However, because no interactions between the siRNA and hormone manipulations were detected, TBCA does not appear to modulate effects of E2 in the zebra finch song circuit.
Collapse
Affiliation(s)
- L. Q. Beach
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - J. Wade
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Departments of Psychology and Zoology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Olson CR, Hodges LK, Mello CV. Dynamic gene expression in the song system of zebra finches during the song learning period. Dev Neurobiol 2015; 75:1315-38. [PMID: 25787707 DOI: 10.1002/dneu.22286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
The brain circuitry that controls song learning and production undergoes marked changes in morphology and connectivity during the song learning period in juvenile zebra finches, in parallel to the acquisition, practice and refinement of song. Yet, the genetic programs and timing of regulatory change that establish the neuronal connectivity and plasticity during this critical learning period remain largely undetermined. To address this question, we used in situ hybridization to compare the expression patterns of a set of 30 known robust molecular markers of HVC and/or area X, major telencephalic song nuclei, between adult and juvenile male zebra finches at different ages during development (20, 35, 50 days post-hatch, dph). We found that several of the genes examined undergo substantial changes in expression within HVC or its surrounds, and/or in other song nuclei. They fit into broad patterns of regulation, including those whose expression within HVC during this period increases (COL12A1, COL 21A1, MPZL1, PVALB, and CXCR7) or decreases (e.g., KCNT2, SAP30L), as well as some that show decreased expression in the surrounding tissue with little change within song nuclei (e.g. SV2B, TAC1). These results reveal a broad range of molecular changes that occur in the song system in concert with the song learning period. Some of the genes and pathways identified are potential modulators of the developmental changes associated with the emergence of the adult properties of the song control system, and/or the acquisition of learned vocalizations in songbirds.
Collapse
Affiliation(s)
- Christopher R Olson
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, Oregon, 97239-3098
| | - Lisa K Hodges
- Biology Department, Lewis and Clark College, 0615 S.W. Palatine Hill Road, Portland, Oregon 97219
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, Oregon, 97239-3098
| |
Collapse
|
7
|
Zinzow-Kramer WM, Horton BM, Maney DL. Evaluation of reference genes for quantitative real-time PCR in the brain, pituitary, and gonads of songbirds. Horm Behav 2014; 66:267-75. [PMID: 24780145 PMCID: PMC4131286 DOI: 10.1016/j.yhbeh.2014.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/01/2014] [Accepted: 04/20/2014] [Indexed: 01/18/2023]
Abstract
Quantitative real-time PCR (qPCR) is becoming a popular tool for the quantification of gene expression in the brain and endocrine tissues of songbirds. Accurate analysis of qPCR data relies on the selection of appropriate reference genes for normalization, yet few papers on songbirds contain evidence of reference gene validation. Here, we evaluated the expression of ten potential reference genes (18S, ACTB, GAPDH, HMBS, HPRT, PPIA, RPL4, RPL32, TFRC, and UBC) in brain, pituitary, ovary, and testis in two species of songbirds: zebra finch and white-throated sparrow. We used two algorithms, geNorm and NormFinder, to assess the stability of these reference genes in our samples. We found that the suitability of some of the most popular reference genes for target gene normalization in mammals, such as 18S, depended highly on tissue type. Thus, they are not the best choices for brain and gonad in these songbirds. In contrast, we identified alternative genes, such as HPRT, RPL4 and PPIA, that were highly stable in brain, pituitary, and gonad in these species. Our results suggest that the validation of reference genes in mammals does not necessarily extrapolate to other taxonomic groups. For researchers wishing to identify and evaluate suitable reference genes for qPCR in songbirds, our results should serve as a starting point and should help increase the power and utility of songbird models in behavioral neuroendocrinology.
Collapse
Affiliation(s)
| | - Brent M Horton
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
8
|
Qi LM, Wade J. Sexually dimorphic and developmentally regulated expression of tubulin-specific chaperone protein A in the LMAN of zebra finches. Neuroscience 2013; 247:182-90. [PMID: 23727504 DOI: 10.1016/j.neuroscience.2013.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 01/06/2023]
Abstract
Sex differences in brain and behavior exist across vertebrates, but the molecular factors regulating their development are largely unknown. Songbirds exhibit substantial sexual dimorphisms. In zebra finches, only males sing, and the brain areas regulating song learning and production are much larger in males. Recent data suggest that sex chromosome genes (males ZZ; females ZW) may play roles in sexual differentiation. The present studies tested the hypothesis that a Z-gene, tubulin-specific chaperone protein A (TBCA), contributes to sexual differentiation of the song system. This taxonomically conserved gene is integral to microtubule synthesis, and within the song system, its mRNA is specifically increased in males compared to females in the lateral magnocellular nucleus of the anterior nidopallium (LMAN), a region critical for song learning and plasticity. Using in situ hybridization, Western blot analysis, and immunohistochemistry, we observed effects of both age and sex on TBCA mRNA and protein expression. The transcript is increased in males compared to females at three juvenile ages, but not in adults. TBCA protein, both the number of immunoreactive cells and relative concentration in LMAN, is diminished in adults compared to juveniles. The latter was also increased in males compared to females at post-hatching day 25. With double-label immunofluorescence and retrograde tract tracing, we also document that the majority of TBCA+ cells in LMAN are neurons, and that they include robust nucleus of the arcopallium-projecting cells. These results indicate that TBCA is both temporally and spatially primed to facilitate the development of a sexually dimorphic neural pathway critical for song.
Collapse
Affiliation(s)
- L M Qi
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, USA.
| | | |
Collapse
|
9
|
Tang YP, Wade J. Sex- and age-related differences in ribosomal proteins L17 and L37, as well as androgen receptor protein, in the song control system of zebra finches. Neuroscience 2010; 171:1131-40. [PMID: 20933575 DOI: 10.1016/j.neuroscience.2010.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/31/2010] [Accepted: 10/03/2010] [Indexed: 01/05/2023]
Abstract
The zebra finch song system is sexually dimorphic--only males sing, and the morphology of forebrain regions controlling the learning and production of this song is greatly enhanced in males compared to females. Masculinization appears to involve effects of steroid hormones as well as other factors, perhaps including the expression of sex chromosome genes (males: ZZ, females: ZW). The present study investigated three proteins--two encoded by Z-linked genes, ribosomal proteins L17 and L37 (RPL17 and RPL37), including their co-localization with androgen receptor (AR), from post-hatching day 25 to adulthood. Extensive co-expression of AR with the ribosomal proteins was detected in the three song nuclei investigated (HVC, robust nucleus of the arcopallium (RA), and Area X) across these ages. In general, more cells expressed each of these proteins in males compared to females, and the sex differences increased as animals matured. Specific patterns differed across regions and between RPL17 and RPL37, which suggest potential roles of one or both of these proteins in the incorporation and/or differentiation of song system cells.
Collapse
Affiliation(s)
- Y P Tang
- Michigan State University, Department of Psychology and Neuroscience Program, East Lansing, MI 48824, USA
| | | |
Collapse
|
10
|
Identification of male-biased gene: Parvalbumin in song control nuclei of the Bengalese finch. Neurosci Res 2010; 68:22-34. [DOI: 10.1016/j.neures.2010.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/06/2010] [Accepted: 05/18/2010] [Indexed: 11/22/2022]
|
11
|
London SE, Itoh Y, Lance VA, Wise PM, Ekanayake PS, Oyama RK, Arnold AP, Schlinger BA. Neural expression and post-transcriptional dosage compensation of the steroid metabolic enzyme 17beta-HSD type 4. BMC Neurosci 2010; 11:47. [PMID: 20359329 PMCID: PMC2858028 DOI: 10.1186/1471-2202-11-47] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 04/01/2010] [Indexed: 11/10/2022] Open
Abstract
Background Steroids affect many tissues, including the brain. In the zebra finch, the estrogenic steroid estradiol (E2) is especially effective at promoting growth of the neural circuit specialized for song. In this species, only the males sing and they have a much larger and more interconnected song circuit than females. Thus, it was surprising that the gene for 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4), an enzyme that converts E2 to a less potent estrogen, had been mapped to the Z sex chromosome. As a consequence, it was likely that HSD17B4 was differentially expressed in males (ZZ) and females (ZW) because dosage compensation of Z chromosome genes is incomplete in birds. If a higher abundance of HSD17B4 mRNA in males than females was translated into functional enzyme in the brain, then contrary to expectation, males could produce less E2 in their brains than females. Results Here, we used molecular and biochemical techniques to confirm the HSD17B4 Z chromosome location in the zebra finch and to determine that HSD17B4 mRNA and activity were detectable in the early developing and adult brain. As expected, HSD17B4 mRNA expression levels were higher in males compared to females. This provides further evidence of the incomplete Z chromosome inactivation mechanisms in birds. We detected HSD17B4 mRNA in regions that suggested a role for this enzyme in the early organization and adult function of song nuclei. We did not, however, detect significant sex differences in HSD17B4 activity levels in the adult brain. Conclusions Our results demonstrate that the HSD17B4 gene is expressed and active in the zebra finch brain as an E2 metabolizing enzyme, but that dosage compensation of this Z-linked gene may occur via post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Sarah E London
- Interdepartmental Program in Neuroscience, University of California at Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Matsui A, Yamaguchi T, Maekawa S, Miyazaki C, Takano S, Uetake T, Inoue T, Otaka M, Otsuka H, Sato T, Yamashita A, Takahashi Y, Enomoto N. DICKKOPF-4 and -2 genes are upregulated in human colorectal cancer. Cancer Sci 2009; 100:1923-30. [PMID: 19659606 PMCID: PMC11159872 DOI: 10.1111/j.1349-7006.2009.01272.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To comprehensively screen for genetic events underlying colorectal cancer, we performed suppression subtraction hybridization analysis on an advanced colon cancer. Because Dickkopf-4, a member of the Dickkopf family acting as a Wnt-signaling modulator, was identified as one of the upregulated genes in this specimen, we investigated expression profiles of all the Dickkopf family members in 55 colorectal tumors (21 cancers and 34 adenomas). We also investigated mechanisms regulating the expression of Dickkopf-4 in these cancers in vitro and in vivo. Compared with normal adjacent mucosae, Dickkopf-4 (median 27.4, P < 0.01) and -2 (median 51.4, P < 0.01) were strongly expressed in colorectal cancers. The level of Dickkopf-4 was positively correlated with fibroblast growth factor-20 (r(s) = 0.61, P = 0.00017), a representative beta-catenin transcriptional target gene, and with the degree of nuclear accumulation of beta-catenin in colorectal tumors. Dickkopf-4 was induced by activated beta-catenin in vitro. Reciprocally, recombinant Dickkopf-4 significantly inhibited T-cell factor/lymphocyte enhancer factor reporter activity stimulated by recombinant Wnt3a in human embryonic kidney 293 cells. We conclude that Dickkopf-4 and -2 are significantly upregulated in most colorectal tumors, and that Dickkopf-4 upregulation reflects activation of the Wnt/canonical pathway.
Collapse
Affiliation(s)
- Akira Matsui
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tang YP, Wade J. Effects of estradiol on incorporation of new cells in the developing zebra finch song system: potential relationship to expression of ribosomal proteins L17 and L37. Dev Neurobiol 2009; 69:462-75. [PMID: 19373862 DOI: 10.1002/dneu.20721] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mechanisms regulating masculinization of the zebra finch song system are unclear; both estradiol and sex-specific genes may be important. This study was designed to investigate relationships between estrogen and ribosomal proteins (RPL17 and RPL37; sex-linked genes) that exhibit greater expression in song control nuclei in juvenile males than females. Four studies on zebra finches were conducted using bromodeoxyuridine (BrdU) injections on posthatching days 6-10 with immunohistochemistry for the ribosomal proteins and the neuronal marker HuC/D at day 25. Volumes of brain regions were also assessed in Nissl-stained tissue. Most BrdU+ cells expressed RPL17 and RPL37. The density and percentage of cells co-expressing BrdU and HuC/D was greatest in Area X. The density of BrdU+ cells in Area X (or its equivalent) and the percentage of these cells that were neurons were greater in males than females. In RA and HVC, total BrdU+ cells were increased in males. A variety of effects of estradiol were also detected, including inducing an Area X in females with a masculine total number of BrdU+ cells, and increasing the volume and percentage of new neurons in the HVC of females. The same manipulation in males decreased the density of BrdU+ cells in Area X, total number of BrdU+ cells in RA, and density of new neurons in HVC and RA. These data are consistent with the idea that RPL17, RPL37, and estradiol might all influence sexual differentiation, perhaps with the hormone and proteins interacting, such that an appropriate balance is required for normal development.
Collapse
Affiliation(s)
- Yu Ping Tang
- Department of Psychology and Zoology, Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
14
|
Lee S, Lee W, Shin J, Han B, Moon S, Cho S, Park T, Kim H, Han J. Sexually dimorphic gene expression in the chick brain before gonadal differentiation. Poult Sci 2009; 88:1003-15. [DOI: 10.3382/ps.2008-00197] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Tomaszycki ML, Peabody C, Replogle K, Clayton DF, Tempelman RJ, Wade J. Sexual differentiation of the zebra finch song system: potential roles for sex chromosome genes. BMC Neurosci 2009; 10:24. [PMID: 19309515 PMCID: PMC2664819 DOI: 10.1186/1471-2202-10-24] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Accepted: 03/23/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent evidence suggests that some sex differences in brain and behavior might result from direct genetic effects, and not solely the result of the organizational effects of steroid hormones. The present study examined the potential role for sex-biased gene expression during development of sexually dimorphic singing behavior and associated song nuclei in juvenile zebra finches. RESULTS A microarray screen revealed more than 2400 putative genes (with a false discovery rate less than 0.05) exhibiting sex differences in the telencephalon of developing zebra finches. Increased expression in males was confirmed in 12 of 20 by qPCR using cDNA from the whole telencephalon; all of these appeared to be located on the Z sex chromosome. Six of the genes also showed increased expression in one or more of the song control nuclei of males at post-hatching day 25. Although the function of half of the genes is presently unknown, we have identified three as: 17-beta-hydroxysteroid dehydrogenase type IV, methylcrotonyl-CoA carboxylase, and sorting nexin 2. CONCLUSION The data suggest potential influences of these genes in song learning and/or masculinization of song system morphology, both of which are occurring at this developmental stage.
Collapse
Affiliation(s)
- Michelle L Tomaszycki
- Department of Psychology & Program in Neuroscience, Michigan State University, East Lansing, MI, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Arnold AP, Itoh Y, Melamed E. A bird's-eye view of sex chromosome dosage compensation. Annu Rev Genomics Hum Genet 2008; 9:109-27. [PMID: 18489256 DOI: 10.1146/annurev.genom.9.081307.164220] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intensive study of a few genetically tractable species with XX/XY sex chromosomes has produced generalizations about the process of sex chromosome dosage compensation that do not fare well when applied to ZZ/ZW sex chromosome systems, such as those in birds. The inherent sexual imbalance in dose of sex chromosome genes has led to the evolution of sex-chromosome-wide mechanisms for balancing gene dosage between the sexes and relative to autosomal genes. Recent advances in our knowledge of avian genomes have led to a reexamination of sex-specific dosage compensation (SSDC) in birds, which is less effective than in known XX/XY systems. Insights about the mechanisms of SSDC in birds also suggest similarities to and differences from those in XX/XY species. Birds are thus offering new opportunities for studying dosage compensation in a ZZ/ZW system, which should shed light on the evolution of SSDC more broadly.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Physiological Science and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
17
|
Duncan KA, Carruth LL. The sexually dimorphic expression of L7/SPA, an estrogen receptor coactivator, in zebra finch telencephalon. Dev Neurobiol 2008; 67:1852-66. [PMID: 17823931 DOI: 10.1002/dneu.20539] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sex differences in the zebra finch (Taeniopygia guttata) brain are robust and include differences in morphology (song control nuclei in males are significantly larger) and behavior (only males sing courtship songs). In zebra finches, hormonal manipulations during development fail to reverse sex differences in song nuclei size and suggest that the classical model of sexual differentiation is incomplete for birds. Coactivators act to initiate transcriptional activity of steroid receptors, and may help explain why hormonal manipulations alone are not sufficient to demasculinize the male zebra finch brain. The present study investigated the expression and localization of L7/SPA (an estrogen receptor coactivator) mRNA and protein expression across the development of zebra finch song nuclei from males and females collected on P1 (song nuclei not yet formed), P10 (posthatch day 10, song nuclei formed), P30 (30 days posthatch, sexually immature but song nuclei formed and birds learning to sing), and adult birds (older than 65 days and sexually mature). Northern blot analysis showed a significant sex difference in P1 and adult L7/SPA mRNA expression while Western blot analysis also showed enhanced expression in the male brain at all age points. Both in situ hybridization and immunohistochemistry demonstrated that L7/SPA mRNA and protein were located in the song nuclei as well as expressed globally. Elevated coactivator expression may be a possible mechanism controlling the development of male song control nuclei, and coactivators such as L7/SPA may be important regulators of the masculinizing effects of estradiol on brain sexual differentiation.
Collapse
Affiliation(s)
- Kelli A Duncan
- Department of Biology, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | | |
Collapse
|
18
|
Tang YP, Peabody C, Tomaszycki ML, Wade J. Sexually dimorphic SCAMP1 expression in the forebrain motor pathway for song production of juvenile zebra finches. Dev Neurobiol 2007; 67:474-82. [PMID: 17443802 PMCID: PMC2878128 DOI: 10.1002/dneu.20354] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mechanisms regulating sexual differentiation of the zebra finch song system are not well understood. The present study was designed to more fully characterize secretory carrier membrane protein 1 (SCAMP1), which was identified in a cDNA microarray screen as showing increased expression in the forebrains of developing male compared with female zebra finches. We completed the sequence of the open reading frame and used in situ hybridization to compare mRNA in song control regions of juvenile (25-day-old) individuals. Expression was significantly greater in the HVC (used as a proper name) and robust nucleus of the arcopallium (RA) in males than in females. Immunohistochemistry revealed that SCAMP1 protein is also expressed in these two brain regions, and qualitatively appears greater in males. Western analysis confirmed that the protein is increased in the telencephalon of males when compared with females at 25 days of age. These results are consistent with the idea that SCAMP1 is involved in masculinization of these brain areas, perhaps facilitating the survival of cells within them.
Collapse
Affiliation(s)
- Yu Ping Tang
- Department of Psychology, Michigan State University, East Lansing, Michigan 48824-1101
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824-1101
| | - Camilla Peabody
- Department of Psychology, Michigan State University, East Lansing, Michigan 48824-1101
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824-1101
| | - Michelle L. Tomaszycki
- Department of Psychology, Michigan State University, East Lansing, Michigan 48824-1101
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824-1101
| | - Juli Wade
- Department of Psychology, Michigan State University, East Lansing, Michigan 48824-1101
- Department of Zoology, Michigan State University, East Lansing, Michigan 48824-1101
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824-1101
- Correspondence to: J. Wade ()
| |
Collapse
|
19
|
Wagner AP, Frank LG, Creel S, Coscia EM. Transient genital abnormalities in striped hyenas (Hyaena hyaena). Horm Behav 2007; 51:626-32. [PMID: 17442316 DOI: 10.1016/j.yhbeh.2007.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 03/05/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
The highly masculinized genitalia of female spotted hyenas Crocuta crocuta is unique among mammals: Crocuta have no external vagina so urination, penile intromission and parturition take place through the clitoris, which mimics a fully erectile male penis. Among hyenids, virilization of external female genitalia has previously been observed only in Crocuta, so functional explanations of masculinization have focused on aspects of social ecology unique to the species. Here we first show that the striped hyena Hyaena hyaena exhibits both unusual similarity in male and female androgen concentrations and transient genital anomalies characterized by a convergence in genital appearance among young males and females. We then evaluate hypotheses regarding the evolution of genital masculinization in the Hyaenidae and other taxa. Hyaena are behaviorally solitary, so discovery of unusual genital development patterns in this species does not support any current evolutionary models for masculinization in Crocuta, which all rely on the trait originating within a highly social species. Some hypotheses can be modified so that masculinization in Crocuta represents an extreme elaboration of a preexisting trait, shared as a homology with Hyaena.
Collapse
Affiliation(s)
- Aaron P Wagner
- Department of Ecology, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | |
Collapse
|
20
|
Gahr M. Sexual Differentiation of the Vocal Control System of Birds. GENETICS OF SEXUAL DIFFERENTIATION AND SEXUALLY DIMORPHIC BEHAVIORS 2007; 59:67-105. [PMID: 17888795 DOI: 10.1016/s0065-2660(07)59003-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Birds evolved neural circuits of various complexities in relation to their capacity to produce learned or unlearned vocalizations. These vocalizations, in particular those that function in the realm of reproduction, are frequently sexually dimorphic, both in vocal learners (songbirds, parrots, some hummingbirds) and vocal nonlearners (all other birds). In many cases, the development and/or the adult differentiation of vocalizations of sociosexual function is sensitive to sex hormones, androgens and estrogens. The underlying mechanisms have been studied in detail in songbirds, a bird group that comprises about half of all bird species. Next to unlearned calls, songbirds produce learned songs that require forebrain vocal control areas that express receptors for androgens and estrogens. These forebrain vocal areas are sexually dimorphic in many species, but a clear relation between the degree of "brain sex" and sex differences in vocal pattern is lacking, except that a minimum number of vocal neurons is necessary to sing learned songs. Genetic brain-intrinsic mechanisms are likely to determine the neuron pools that develop into forebrain song control areas. Subsequently, gonadal steroid hormones, androgens and estrogens, modulate the fate of these neurons and thus the functionality of the vocal control systems. Further action of gonadal hormones, and may be other factors signaling the sociosexual and physical environment, affect the phenotype of vocal control areas in adulthood. Despite the clear evidence of hormone dependency of both adult vocalizations and phenotypes of vocal neuron pools, their causal relation is little understood.
Collapse
Affiliation(s)
- Manfred Gahr
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
21
|
Itoh Y, Melamed E, Yang X, Kampf K, Wang S, Yehya N, Van Nas A, Replogle K, Band MR, Clayton DF, Schadt EE, Lusis AJ, Arnold AP. Dosage compensation is less effective in birds than in mammals. J Biol 2007; 6:2. [PMID: 17352797 PMCID: PMC2373894 DOI: 10.1186/jbiol53] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 09/15/2006] [Accepted: 01/12/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In animals with heteromorphic sex chromosomes, dosage compensation of sex-chromosome genes is thought to be critical for species survival. Diverse molecular mechanisms have evolved to effectively balance the expressed dose of X-linked genes between XX and XY animals, and to balance expression of X and autosomal genes. Dosage compensation is not understood in birds, in which females (ZW) and males (ZZ) differ in the number of Z chromosomes. RESULTS Using microarray analysis, we compared the male:female ratio of expression of sets of Z-linked and autosomal genes in two bird species, zebra finch and chicken, and in two mammalian species, mouse and human. Male:female ratios of expression were significantly higher for Z genes than for autosomal genes in several finch and chicken tissues. In contrast, in mouse and human the male:female ratio of expression of X-linked genes is quite similar to that of autosomal genes, indicating effective dosage compensation even in humans, in which a significant percentage of genes escape X-inactivation. CONCLUSION Birds represent an unprecedented case in which genes on one sex chromosome are expressed on average at constitutively higher levels in one sex compared with the other. Sex-chromosome dosage compensation is surprisingly ineffective in birds, suggesting that some genomes can do without effective sex-specific sex-chromosome dosage compensation mechanisms.
Collapse
Affiliation(s)
- Yuichiro Itoh
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA
| | - Esther Melamed
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kathy Kampf
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA
| | - Susanna Wang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Nadir Yehya
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Atila Van Nas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kirstin Replogle
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | - Mark R Band
- W.M. Keck Center for Comparative and Functional Genomics, University of Illinois, Urbana, IL 61801, USA
| | - David F Clayton
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | | | - Aldons J Lusis
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Arthur P Arnold
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Schoumans J, Wincent J, Barbaro M, Djureinovic T, Maguire P, Forsberg L, Staaf J, Thuresson AC, Borg A, Nordgren A, Malm G, Anderlid BM. Comprehensive mutational analysis of a cohort of Swedish Cornelia de Lange syndrome patients. Eur J Hum Genet 2006; 15:143-9. [PMID: 17106445 DOI: 10.1038/sj.ejhg.5201737] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS; OMIM 122470) is a rare multiple congenital anomaly/mental retardation syndrome characterized by distinctive dysmorphic facial features, severe growth and developmental delay and abnormalities of the upper limbs. About 50% of CdLS patients have been found to have heterozygous mutations in the NIPBL gene and a few cases were recently found to be caused by mutations in the X-linked SMC1L1 gene. We performed a mutation screening of all NIPBL coding exons by direct sequencing in 11 patients (nine sporadic and two familial cases) diagnosed with CdLS in Sweden and detected mutations in seven of the cases. All were de novo, and six of the mutations have not been previously described. Four patients without identifiable NIPBL mutations were subsequently subjected to multiplex ligation-dependent probe amplification analysis to exclude whole exon deletions/duplications of NIPBL. In addition, mutation analysis of the 5' untranslated region (5' UTR) of NIPBL was performed. Tiling resolution array comparative genomic hybridization analysis was carried out on these four patients to detect cryptic chromosome imbalances and in addition the boys were screened for SMC1L1 mutations. We found a de novo 9p duplication with a size of 0.6 Mb in one of the patients with a CdLS-like phenotype but no mutations were detected in SMC1L1. So far, two genes (NIPBL and SMC1L1) have been identified causing CdLS or CdLS-like phenotypes. However, in a considerable proportion of individuals demonstrating the CdLS phenotype, mutations in any of these two genes are not found and other potential loci harboring additional CdLS-causing genes should be considered.
Collapse
Affiliation(s)
- Jacqueline Schoumans
- Department of Molecular Medicine and Surgery, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tang YP, Wade J. Sexually dimorphic expression of the genes encoding ribosomal proteins L17 and L37 in the song control nuclei of juvenile zebra finches. Brain Res 2006; 1126:102-8. [PMID: 16938280 PMCID: PMC2878125 DOI: 10.1016/j.brainres.2006.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 07/31/2006] [Accepted: 08/03/2006] [Indexed: 11/25/2022]
Abstract
Studies evaluating the role of steroid hormones in sexual differentiation of the zebra finch song system have produced complicated and at times paradoxical results, and indicate that additional factors may be critical. Therefore, in a previous study we initiated a screen for differential gene expression in the telencephalon of developing male and female zebra finches. The use of cDNA microarrays and real-time quantitative PCR revealed increased expression of the genes encoding ribosomal proteins L17 and L37 (RPL17 and RPL37) in the male forebrain as a whole. Preliminary in situ hybridization data then indicated enhanced expression of both these genes in song control regions. Two experiments in the present study quantified the mRNA expression. The first utilized 25-day-old male and female zebra finches. The second compared a separate set of juveniles to adults of both sexes to both re-confirm enhanced expression in juvenile males and to determine whether it is limited to developing animals. In Experiment 1, males exhibited increased expression of both RPL17 and RPL37 compared to females in Area X, the robust nucleus of the arcopallium (RA), and the ventral ventricular zone (VVZ), which may provide neurons to Area X. Experiment 2 replicated the sexually dimorphic expression of these genes at post-hatching day 25, and documented that the sex differences are eliminated or greatly reduced in adults. The results are consistent with the idea that these ribosomal proteins may influence sexual differentiation of Area X and RA, potentially regulating the genesis and/or survival of neurons.
Collapse
Affiliation(s)
| | - Juli Wade
- Corresponding author. Fax: +1 517 432 2744. (J. Wade)
| |
Collapse
|
24
|
Kim YH, Arnold AP. Distribution and onset of retinaldehyde dehydrogenase (zRalDH) expression in zebra finch brain: Lack of sex difference in HVC and RA at early posthatch ages. ACTA ACUST UNITED AC 2005; 65:260-8. [DOI: 10.1002/neu.20192] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|