1
|
Zhang Z, Li X, Wang C, Zhang F, Liu J, Xu XZS. Shear stress sensing in C. elegans. Curr Biol 2024; 34:5382-5391.e3. [PMID: 39471806 PMCID: PMC11576262 DOI: 10.1016/j.cub.2024.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 09/26/2024] [Indexed: 11/01/2024]
Abstract
Shear stress sensing represents a vital mode of mechanosensation.1 Previous efforts have mainly focused on characterizing how various cell types-for example, vascular endothelial cells-sense shear stress arising from fluid flow within the animal body.1,2 How animals sense shear stress derived from their external environment, however, is not well understood. Here, using C. elegans as a model, we show that external fluid flow triggers behavioral responses in C. elegans, facilitating their navigation of the environment during swimming. Such behavioral responses primarily result from shear stress generated by fluid flow. The sensory neurons AWC, ASH, and ASER are the major shear stress-sensitive neurons, among which AWC shows the most robust response to shear stress and is required for shear stress-induced behavior. Mechanistically, shear stress signals are transduced by G protein signaling in AWC, with cGMP as the second messenger, culminating in the opening of cGMP-sensitive cyclic nucleotide-gated (CNG) channels and neuronal excitation. These studies demonstrate that C. elegans senses and responds to shear stress and characterize the underlying neural and molecular mechanisms. Our work helps establish C. elegans as a genetic model for studying shear stress sensing.
Collapse
Affiliation(s)
- Zhiyong Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; Life Sciences Institute, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xia Li
- Life Sciences Institute, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Can Wang
- Life Sciences Institute, Ann Arbor, MI, USA
| | - Fengfan Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; Life Sciences Institute, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianfeng Liu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - X Z Shawn Xu
- Life Sciences Institute, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Jee Lee H, Vallier J, Lu H. Microfluidic Localized Hydrogel Polymerization Enables Simultaneous Recording of Neural Activity and Behavior in C. elegans. REACT CHEM ENG 2024; 9:666-676. [PMID: 38680986 PMCID: PMC11046317 DOI: 10.1039/d3re00516j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Monitoring an animal's brain activity during motion provides a means to interpret the brain activity in the context of movement. However, it is challenging to obtain information about the animal's movement during neural imaging in the popular model organism C. elegans due to its small size. Here, we present a microfluidic tool to immobilize only the head region of C. elegans for simultaneous recording of neuronal activity and tail movement. We combine hydrogel photopolymerization and microfluidics to realize controlled head immobilization in a semi-continuous fashion. To optimize the immobilization process, we characterize the hydrogel polymerization under different experimental conditions, including under the effect of fluid flow. We show that the Damköhler number specifically defined for our reactive transport phenomena can predict the success of such photopolymerized hydrogels used for sample immobilization. In addition to simultaneous recording of neural activity and behavior in C. elegans, we demonstrate our method's capability to temporarily reconfigure fluid flow and deliver chemical stimuli to the animal's nose to examine the animal's responses. We envision this approach to be useful for similar recordings for other small motile organisms, as well as scenarios where microfluidics and polymerization are used to control flow and rection.
Collapse
Affiliation(s)
- Hyun Jee Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, USA
| | - Julia Vallier
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, USA
| |
Collapse
|
3
|
Lee SH, Park CM. Novel Features for Binary Time Series Based on Branch Length Similarity Entropy. ENTROPY (BASEL, SWITZERLAND) 2021; 23:480. [PMID: 33919528 PMCID: PMC8073327 DOI: 10.3390/e23040480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/16/2022]
Abstract
Branch length similarity (BLS) entropy is defined in a network consisting of a single node and branches. In this study, we mapped the binary time-series signal to the circumference of the time circle so that the BLS entropy can be calculated for the binary time-series. We obtained the BLS entropy values for "1" signals on the time circle. The set of values are the BLS entropy profile. We selected the local maximum (minimum) point, slope, and inflection point of the entropy profile as the characteristic features of the binary time-series and investigated and explored their significance. The local maximum (minimum) point indicates the time at which the rate of change in the signal density becomes zero. The slope and inflection points correspond to the degree of change in the signal density and the time at which the signal density changes occur, respectively. Moreover, we show that the characteristic features can be widely used in binary time-series analysis by characterizing the movement trajectory of Caenorhabditis elegans. We also mention the problems that need to be explored mathematically in relation to the features and propose candidates for additional features based on the BLS entropy profile.
Collapse
Affiliation(s)
- Sang-Hee Lee
- Division of Industrial Mathematics, National Institute for Mathematical Sciences, Daejeon 34047, Korea;
| | | |
Collapse
|
4
|
Breimann L, Preusser F, Preibisch S. Light-microscopy methods in C. elegans research. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2018.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
GEI-8, a homologue of vertebrate nuclear receptor corepressor NCoR/SMRT, regulates gonad development and neuronal functions in Caenorhabditis elegans. PLoS One 2013; 8:e58462. [PMID: 23484030 PMCID: PMC3590189 DOI: 10.1371/journal.pone.0058462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 02/05/2013] [Indexed: 12/29/2022] Open
Abstract
NCoR and SMRT are two paralogous vertebrate proteins that function as corepressors with unliganded nuclear receptors. Although C. elegans has a large number of nuclear receptors, orthologues of the corepressors NCoR and SMRT have not unambiguously been identified in Drosophila or C. elegans. Here, we identify GEI-8 as the closest homologue of NCoR and SMRT in C. elegans and demonstrate that GEI-8 is expressed as at least two isoforms throughout development in multiple tissues, including neurons, muscle and intestinal cells. We demonstrate that a homozygous deletion within the gei-8 coding region, which is predicted to encode a truncated protein lacking the predicted NR domain, results in severe mutant phenotypes with developmental defects, slow movement and growth, arrested gonadogenesis and defects in cholinergic neurotransmission. Whole genome expression analysis by microarrays identified sets of de-regulated genes consistent with both the observed mutant phenotypes and a role of GEI-8 in regulating transcription. Interestingly, the upregulated transcripts included a predicted mitochondrial sulfide:quinine reductase encoded by Y9C9A.16. This locus also contains non-coding, 21-U RNAs of the piRNA class. Inhibition of the expression of the region coding for 21-U RNAs leads to irregular gonadogenesis in the homozygous gei-8 mutants, but not in an otherwise wild-type background, suggesting that GEI-8 may function in concert with the 21-U RNAs to regulate gonadogenesis. Our results confirm that GEI-8 is the orthologue of the vertebrate NCoR/SMRT corepressors and demonstrate important roles for this putative transcriptional corepressor in development and neuronal function.
Collapse
|
6
|
Padmanabhan V, Khan ZS, Solomon DE, Armstrong A, Rumbaugh KP, Vanapalli SA, Blawzdziewicz J. Locomotion of C. elegans: a piecewise-harmonic curvature representation of nematode behavior. PLoS One 2012; 7:e40121. [PMID: 22792224 PMCID: PMC3391229 DOI: 10.1371/journal.pone.0040121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/01/2012] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans, a free-living soil nematode, displays a rich variety of body shapes and trajectories during its undulatory locomotion in complex environments. Here we show that the individual body postures and entire trails of C. elegans have a simple analytical description in curvature representation. Our model is based on the assumption that the curvature wave is generated in the head segment of the worm body and propagates backwards. We have found that a simple harmonic function for the curvature can capture multiple worm shapes during the undulatory movement. The worm body trajectories can be well represented in terms of piecewise sinusoidal curvature with abrupt changes in amplitude, wavevector, and phase.
Collapse
Affiliation(s)
- Venkat Padmanabhan
- Venkat Padmanabhan Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, United States of America.
| | | | | | | | | | | | | |
Collapse
|
7
|
Vidal-Gadea A, Topper S, Young L, Crisp A, Kressin L, Elbel E, Maples T, Brauner M, Erbguth K, Axelrod A, Gottschalk A, Siegel D, Pierce-Shimomura JT. Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin. Proc Natl Acad Sci U S A 2011; 108:17504-9. [PMID: 21969584 PMCID: PMC3198358 DOI: 10.1073/pnas.1108673108] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many animals, including humans, select alternate forms of motion (gaits) to move efficiently in different environments. However, it is unclear whether primitive animals, such as nematodes, also use this strategy. We used a multifaceted approach to study how the nematode Caenorhabditis elegans freely moves into and out of water. We demonstrate that C. elegans uses biogenic amines to switch between distinct crawling and swimming gaits. Dopamine is necessary and sufficient to initiate and maintain crawling after swimming. Serotonin is necessary and sufficient to transition from crawling to swimming and to inhibit a set of crawl-specific behaviors. Further study of locomotory switching in C. elegans and its dependence on biogenic amines may provide insight into how gait transitions are performed in other animals.
Collapse
Affiliation(s)
- Andrés Vidal-Gadea
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Stephen Topper
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Layla Young
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Ashley Crisp
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Leah Kressin
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Erin Elbel
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Thomas Maples
- Section of Neurobiology, Waggoner Center for Alcohol and Addiction Research, and
| | - Martin Brauner
- Institute of Biochemistry and Frankfurt Institute for Molecular Life Sciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Karen Erbguth
- Institute of Biochemistry and Frankfurt Institute for Molecular Life Sciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Abram Axelrod
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712; and
| | - Alexander Gottschalk
- Institute of Biochemistry and Frankfurt Institute for Molecular Life Sciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Dionicio Siegel
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712; and
| | | |
Collapse
|
8
|
Microfluidic devices for analysis of spatial orientation behaviors in semi-restrained Caenorhabditis elegans. PLoS One 2011; 6:e25710. [PMID: 22022437 PMCID: PMC3192130 DOI: 10.1371/journal.pone.0025710] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 09/08/2011] [Indexed: 11/19/2022] Open
Abstract
This article describes the fabrication and use of microfluidic devices for investigating spatial orientation behaviors in nematode worms (Caenorhabditis elegans). Until now, spatial orientation has been studied in freely moving nematodes in which the frequency and nature of encounters with the gradient are uncontrolled experimental variables. In the new devices, the nematode is held in place by a restraint that aligns the longitudinal axis of the body with the border between two laminar fluid streams, leaving the animal's head and tail free to move. The content of the fluid streams can be manipulated to deliver step gradients in space or time. We demonstrate the utility of the device by identifying previously uncharacterized aspects of the behavioral mechanisms underlying chemotaxis, osmotic avoidance, and thermotaxis in this organism. The new devices are readily adaptable to behavioral and imaging studies involving fluid borne stimuli in a wide range of sensory modalities.
Collapse
|
9
|
LeBoeuf B, Guo X, García LR. The effects of transient starvation persist through direct interactions between CaMKII and ether-a-go-go K+ channels in C. elegans males. Neuroscience 2011; 175:1-17. [PMID: 21145946 PMCID: PMC3059131 DOI: 10.1016/j.neuroscience.2010.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 12/29/2022]
Abstract
Prolonged nutrient limitation has been extensively studied due to its positive effects on life span. However, less is understood of how brief periods of starvation can have lasting consequences. In this study, we used genetics, biochemistry, pharmacology and behavioral analysis to show that after a limited period of starvation, the synthesis of egl-2-encoded ether-a-go-go (EAG) K+ channels and its C-terminal modifications by unc-43-encoded CaMKII have a perduring effect on C. elegans male sexual behavior. EGL-2 and UNC-43 interactions, induced after food deprivation, maintain reduced excitability in muscles involved in sex. In young adult males, spastic contractions occur in cholinergic-activated sex muscles that lack functional unc-103-encoded ERG-like K+ channels. Promoting EGL-2 and UNC-43 interactions in unc-103 mutant adult males by starving them for a few hours reduce spastic muscle contractions over multiple days. Although transient starvation during early adulthood has a hormetic effect of suppressing mutation-induced muscle contractions, the treatment reduces the ability of young wild-type (WT) males to compete with well-fed cohorts in siring progeny.
Collapse
Affiliation(s)
- Brigitte LeBoeuf
- Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| | - Xiaoyan Guo
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| | - L. René García
- Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| |
Collapse
|
10
|
Lindsay TH, Thiele TR, Lockery SR. Optogenetic analysis of synaptic transmission in the central nervous system of the nematode Caenorhabditis elegans. Nat Commun 2011; 2:306. [PMID: 21556060 PMCID: PMC3935721 DOI: 10.1038/ncomms1304] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/06/2011] [Indexed: 02/06/2023] Open
Abstract
A reliable method for recording evoked synaptic events in identified neurons in Caenorhabditis elegans would greatly accelerate our understanding of its nervous system at the molecular, cellular and network levels. Here we describe a method for recording synaptic currents and potentials from identified neurons in nearly intact worms. Dissection and exposure of postsynaptic neurons is facilitated by microfabricated agar substrates, and ChannelRhodopsin-2 is used to stimulate presynaptic neurons. We used the method to analyse functional connectivity between a polymodal nociceptor and a command neuron that initiates a stochastic escape behaviour. We find that escape probability mirrors the time course of synaptic current in the command neuron. Moreover, synaptic input increases smoothly as stimulus strength is increased, suggesting that the overall input-output function of the connection is graded. We propose a model in which the energetic cost of escape behaviours in C. elegans is tuned to the intensity of the threat.
Collapse
Affiliation(s)
- Theodore H Lindsay
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|
11
|
Motoneurons dedicated to either forward or backward locomotion in the nematode Caenorhabditis elegans. J Neurosci 2010; 30:11151-6. [PMID: 20720122 DOI: 10.1523/jneurosci.2244-10.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multifunctional motoneurons and muscles, which are active during forward and backward locomotion are ubiquitous in animal models. However, studies in the nematode Caenorhabditis elegans suggest that some locomotor motoneurons are necessary only for forward locomotion (dorsal B-motoneurons, DB), while others (dorsal A-motoneurons, DA) are necessary only for backward locomotion. We tested this hypothesis directly by recording the activity of these motoneurons during semirestrained locomotion. For this purpose, we used epifluorescence imaging of the genetically encoded calcium sensor cameleon, expressed in specific motoneurons, while monitoring locomotor behavior through the microscope condenser using a second camera. We found that ventral and dorsal B-motoneurons (DB and VB) were coactive during forward locomotion while ventral A-motoneurons (VA) were only active during backward locomotion. The signals we recorded correlated with the direction of locomotion but not with the faster undulatory cycles. To our knowledge, these are the first recordings of motoneuron activity in C. elegans and the only direction-dedicated motoneurons described to date.
Collapse
|
12
|
Hulme SE, Shevkoplyas SS, McGuigan AP, Apfeld J, Fontana W, Whitesides GM. Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans. LAB ON A CHIP 2010; 10:589-97. [PMID: 20162234 PMCID: PMC3060707 DOI: 10.1039/b919265d] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This article describes the fabrication of a microfluidic device for the liquid culture of many individual nematode worms (Caenorhabditis elegans) in separate chambers. Each chamber houses a single worm from the fourth larval stage until death, and enables examination of a population of individual worms for their entire adult lifespans. Adjacent to the chambers, the device includes microfluidic worm clamps, which enable periodic, temporary immobilization of each worm. The device made it possible to track changes in body size and locomotion in individual worms throughout their lifespans. This ability to perform longitudinal measurements within the device enabled the identification of age-related phenotypic changes that correlate with lifespan in C. elegans.
Collapse
Affiliation(s)
- S. Elizabeth Hulme
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138, USA
| | - Sergey S. Shevkoplyas
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138, USA
- Department of Biomedical Engineering, Tulane University, 624 Lindy Boggs Building, New Orleans, LA, 70118, USA
| | - Alison P. McGuigan
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138, USA
| | - Javier Apfeld
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA, 02115, USA
| | - Walter Fontana
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA, 02115, USA
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138, USA
| |
Collapse
|
13
|
Abstract
Caenorhabditis elegans shows chemotaxis to various odorants and water-soluble chemoattractants such as NaCl. Previous studies described the pirouette mechanism for chemotaxis, in which C. elegans quickly changes the direction of locomotion by using a set of stereotyped behaviors, a pirouette, in response to a decrease in the concentration of the chemical. Here, we report the discovery of a second mechanism for chemotaxis, called the weathervane mechanism. In this strategy animals respond to a spatial gradient of chemoattractant and gradually curve toward higher concentration of the chemical. By computer simulation, we find that both of these mechanisms contribute to chemotaxis and both mechanisms need to act in parallel for efficient chemotaxis. Using laser ablation of individual neurons to examine the underlying neural circuit, we find the ASE sensory neurons and AIZ interneurons are essential for both the pirouette and weathervane mechanisms in chemotaxis to NaCl. Salt-conditioned animals show reversed responses in both of these behaviors, leading to avoidance of NaCl. These results provide a platform for detailed molecular and cellular analyses of chemotaxis and its plasticity in this model organism.
Collapse
|
14
|
Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature 2008; 454:114-7. [PMID: 18596810 DOI: 10.1038/nature06927] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 03/20/2008] [Indexed: 11/09/2022]
Abstract
Chemotaxis in Caenorhabditis elegans, like chemotaxis in bacteria, involves a random walk biased by the time derivative of attractant concentration, but how the derivative is computed is unknown. Laser ablations have shown that the strongest deficits in chemotaxis to salts are obtained when the ASE chemosensory neurons (ASEL and ASER) are ablated, indicating that this pair has a dominant role. Although these neurons are left-right homologues anatomically, they exhibit marked asymmetries in gene expression and ion preference. Here, using optical recordings of calcium concentration in ASE neurons in intact animals, we demonstrate an additional asymmetry: ASEL is an ON-cell, stimulated by increases in NaCl concentration, whereas ASER is an OFF-cell, stimulated by decreases in NaCl concentration. Both responses are reliable yet transient, indicating that ASE neurons report changes in concentration rather than absolute levels. Recordings from synaptic and sensory transduction mutants show that the ON-OFF asymmetry is the result of intrinsic differences between ASE neurons. Unilateral activation experiments indicate that the asymmetry extends to the level of behavioural output: ASEL lengthens bouts of forward locomotion (runs) whereas ASER promotes direction changes (turns). Notably, the input and output asymmetries of ASE neurons are precisely those of a simple yet novel neuronal motif for computing the time derivative of chemosensory information, which is the fundamental computation of C. elegans chemotaxis. Evidence for ON and OFF cells in other chemosensory networks suggests that this motif may be common in animals that navigate by taste and smell.
Collapse
|
15
|
Luo L, Gabel CV, Ha HI, Zhang Y, Samuel ADT. Olfactory Behavior of Swimming C. elegans Analyzed by Measuring Motile Responses to Temporal Variations of Odorants. J Neurophysiol 2008; 99:2617-25. [DOI: 10.1152/jn.00053.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caenorhabditis elegans responds to chemical cues using a small number of chemosensory neurons that detect a large variety of molecules in its environment. During chemotaxis, C. elegans biases its migration in spatial chemical gradients by lengthening (/shortening) periods of forward movement when it happens to be moving toward (/away) from preferred locations. In classical assays of chemotactic behavior, a group of crawling worms is placed on an agar plate containing a point source of chemical, the group is allowed to navigate for a period of time, and aggregation of worms near the source is quantified. Here we show that swimming worms exhibit acute motile responses to temporal variations of odor in their surrounding environment, allowing our development of an automated assay of chemotactic behavior with single-animal resolution. By placing individual worms in small microdroplets and quantifying their movements as they respond to the addition and removal of odorized airstreams, we show that the sensorimotor phenotypes of swimming worms (wild-type behavior, the effects of certain mutations, and the effects of laser ablation of specific olfactory neurons) are consistent with aggregation phenotypes previously obtained in crawling assays. The microdroplet swimming assay has certain advantages over crawling assays, including flexibility and precision in defining the stimulus waveform and automated quantification of motor response during stimulus presentation. In this study, we use the microdroplet assay to quantify the temporal dynamics of the olfactory response, the sensitivity to odorant concentration, combinations, and gradients, and the contribution of specific olfactory neurons to overall behavior.
Collapse
|
16
|
Nehrke K, Denton J, Mowrey W. Intestinal Ca2+ wave dynamics in freely moving C. elegans coordinate execution of a rhythmic motor program. Am J Physiol Cell Physiol 2008; 294:C333-44. [PMID: 17942636 DOI: 10.1152/ajpcell.00303.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Defecation in the nematode worm Caenorhabditis elegans is a highly rhythmic behavior that is regulated by a Ca(2+) wave generated in the 20 epithelial cells of the intestine, in part through activation of the inositol 1,4,5-trisphosphate receptor. Execution of the defecation motor program (DMP) can be modified by external cues such as nutrient availability or mechanical stimulation. To address the likelihood that environmental regulation of the DMP requires integrating distinct cellular and organismal processes, we have developed a method for studying coordinate Ca(2+) oscillations and defecation behavior in intact, freely behaving animals. We tested this technique by examining how mutations in genes known to alter Ca(2+) handling [including egl-8/phospholipase C (PLC)-beta, kqt-3/KCNQ1, sca-1/sarco(endo)plasmic reticulum Ca(2+) ATPase, and unc-43/Ca(2+)-CaMKII] contribute to shaping the Ca(2+) wave and asked how Ca(2+) wave dynamics in the mutant backgrounds altered execution of the DMP. Notably, we find that Ca(2+) waves in the absence of PLCbeta initiate ectopically, often traveling in reverse, and fail to trigger a complete DMP. These results suggest that the normal supremacy of the posterior intestinal cells is not obligatory for Ca(2+) wave occurrence but instead helps to coordinate the DMP. Furthermore, we present evidence suggesting that an underlying pacemaker appears to oscillate at a faster frequency than the defecation cycle and that arrhythmia may result from uncoupling the pacemaker from the DMP rather than from disrupting the pacemaker itself. We also show that chronic elevations in Ca(2+) have limited influence on the defecation period but instead alter the interval between successive steps of the DMP. Finally, our results demonstrate that it is possible to assess Ca(2+) dynamics and muscular contractions in a completely unrestrained model organism.
Collapse
Affiliation(s)
- K Nehrke
- Dept. of Medicine, Nephrology Division, Medical Center Box 675, 601 Elmwood Ave., Rochester NY 14642, USA.
| | | | | |
Collapse
|
17
|
Reiner DJ, Weinshenker D, Tian H, Thomas JH, Nishiwaki K, Miwa J, Gruninger T, Leboeuf B, Garcia LR. Behavioral genetics of caenorhabditis elegans unc-103-encoded erg-like K(+) channel. J Neurogenet 2007; 20:41-66. [PMID: 16807195 DOI: 10.1080/01677060600788826] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Caenorhabditis elegans unc-103 gene encodes a potassium channel whose sequence is most similar to the ether-a-go-go related gene (erg) type of K+ channels. We find that the n 500 and e 1597 gain-of-function (gf) mutations in unc-103 cause reduced excitation in most muscles, while loss-of-function (lf) mutations cause mild muscle hyper-excitability. Both gf alleles change the same residue near the cytoplasmic end of S6, consistent with this region regulating channel activation. We also report additional dominant-negative and lf alleles of unc-103 that can antagonize or reduce the function of both gf and wild-type alleles. The unc-103 locus contains 6 promoter regions that express unc-103 in different combinations of body-wall and sex-specific muscles, motor-, inter- and sensory-neurons. Each promoter drives transcripts containing a unique first exon, conferring sequence variability to the N-terminus of the UNC-103 protein, while three splice variants introduce variability into the UNC-103 C-terminus. unc-103(0) hermaphrodites prematurely lay embryos that would normally be retained in the uterus and lay eggs under conditions that inhibit egg-laying behavior. In the egg-laying circuit, unc-103 is expressed in vulval muscles and the HSN neurons from different promoters. Supplying the proper UNC-103 isoform to the vulval muscles is sufficient to restore regulation to egg-laying behavior.
Collapse
Affiliation(s)
- David J Reiner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tomioka M, Adachi T, Suzuki H, Kunitomo H, Schafer WR, Iino Y. The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Neuron 2006; 51:613-25. [PMID: 16950159 DOI: 10.1016/j.neuron.2006.07.024] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 06/23/2006] [Accepted: 07/24/2006] [Indexed: 11/25/2022]
Abstract
The insulin-like signaling pathway is known to regulate fat metabolism, dauer formation, and longevity in Caenorhabditis elegans. Here, we report that this pathway is also involved in salt chemotaxis learning, in which animals previously exposed to a chemoattractive salt under starvation conditions start to show salt avoidance behavior. Mutants of ins-1, daf-2, age-1, pdk-1, and akt-1, which encode the homologs of insulin, insulin/IGF-I receptor, PI 3-kinase, phosphoinositide-dependent kinase, and Akt/PKB, respectively, show severe defects in salt chemotaxis learning. daf-2 and age-1 act in the ASER salt-sensing neuron, and the activity level of the DAF-2/AGE-1 pathway in this neuron determines the extent and orientation of salt chemotaxis. On the other hand, ins-1 acts in AIA interneurons, which receive direct synaptic inputs from sensory neurons and also send synaptic outputs to ASER. These results suggest that INS-1 secreted from AIA interneurons provides feedback to ASER to generate plasticity of chemotaxis.
Collapse
Affiliation(s)
- Masahiro Tomioka
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Ortiz CO, Etchberger JF, Posy SL, Frøkjaer-Jensen C, Lockery S, Honig B, Hobert O. Searching for neuronal left/right asymmetry: genomewide analysis of nematode receptor-type guanylyl cyclases. Genetics 2006; 173:131-49. [PMID: 16547101 PMCID: PMC1461427 DOI: 10.1534/genetics.106.055749] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 03/03/2006] [Indexed: 11/18/2022] Open
Abstract
Functional left/right asymmetry ("laterality") is a fundamental feature of many nervous systems, but only very few molecular correlates to functional laterality are known. At least two classes of chemosensory neurons in the nematode Caenorhabditis elegans are functionally lateralized. The gustatory neurons ASE left (ASEL) and ASE right (ASER) are two bilaterally symmetric neurons that sense distinct chemosensory cues and express a distinct set of four known chemoreceptors of the guanylyl cyclase (gcy) gene family. To examine the extent of lateralization of gcy gene expression patterns in the ASE neurons, we have undertaken a genomewide analysis of all gcy genes. We report the existence of a total of 27 gcy genes encoding receptor-type guanylyl cyclases and of 7 gcy genes encoding soluble guanylyl cyclases in the complete genome sequence of C. elegans. We describe the expression pattern of all previously uncharacterized receptor-type guanylyl cyclases and find them to be highly biased but not exclusively restricted to the nervous system. We find that >41% (11/27) of all receptor-type guanylyl cyclases are expressed in the ASE gustatory neurons and that one-third of all gcy genes (9/27) are expressed in a lateral, left/right asymmetric manner in the ASE neurons. The expression of all laterally expressed gcy genes is under the control of a gene regulatory network composed of several transcription factors and miRNAs. The complement of gcy genes in the related nematode C. briggsae differs from C. elegans as evidenced by differences in chromosomal localization, number of gcy genes, and expression patterns. Differences in gcy expression patterns in the ASE neurons of C. briggsae arise from a difference in cis-regulatory elements and trans-acting factors that control ASE laterality. In sum, our results indicate the existence of a surprising multitude of putative chemoreceptors in the gustatory ASE neurons and suggest the existence of a substantial degree of laterality in gustatory signaling mechanisms in nematodes.
Collapse
Affiliation(s)
- Christopher O Ortiz
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Faumont S, Lockery SR. The Awake Behaving Worm: Simultaneous Imaging of Neuronal Activity and Behavior in Intact Animals at Millimeter Scale. J Neurophysiol 2006; 95:1976-81. [PMID: 16319197 DOI: 10.1152/jn.01050.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genetically encoded optical probes of neuronal activity offer the prospect of simultaneous recordings of neuronal activity and behavior in intact animals. A central problem in simultaneous imaging is that the field of view of the high-power objective required for imaging the neuron is often too small to allow the experimenter to assess the overall behavioral state of the animal. Here we present a method that solves this problem using a microscope with two objectives focused on the preparation: a high-power lens dedicated to imaging the neuron and low-power lens dedicated to imaging the behavior. Images of activity and behavior are acquired simultaneously but separately using different wavelengths of light. The new approach was tested using the cameleon calcium sensor expressed in Caenorhabditis elegans sensory neurons. We show that simultaneous recordings of neuronal activity and behavior are practical in C. elegans and, moreover, that such recordings can reveal subtle, transient correlations between calcium levels and behavior that may be missed in nonsimultaneous recordings. The new method is likely to be useful whenever it would be desirable to record simultaneously at two different spatial resolutions from a single location, or from two different locations in space.
Collapse
Affiliation(s)
- Serge Faumont
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|