1
|
Loft A, Emont MP, Weinstock A, Divoux A, Ghosh A, Wagner A, Hertzel AV, Maniyadath B, Deplancke B, Liu B, Scheele C, Lumeng C, Ding C, Ma C, Wolfrum C, Strieder-Barboza C, Li C, Truong DD, Bernlohr DA, Stener-Victorin E, Kershaw EE, Yeger-Lotem E, Shamsi F, Hui HX, Camara H, Zhong J, Kalucka J, Ludwig JA, Semon JA, Jalkanen J, Whytock KL, Dumont KD, Sparks LM, Muir LA, Fang L, Massier L, Saraiva LR, Beyer MD, Jeschke MG, Mori MA, Boroni M, Walsh MJ, Patti ME, Lynes MD, Blüher M, Rydén M, Hamda N, Solimini NL, Mejhert N, Gao P, Gupta RK, Murphy R, Pirouzpanah S, Corvera S, Tang S, Das SK, Schmidt SF, Zhang T, Nelson TM, O'Sullivan TE, Efthymiou V, Wang W, Tong Y, Tseng YH, Mandrup S, Rosen ED. Towards a consensus atlas of human and mouse adipose tissue at single-cell resolution. Nat Metab 2025; 7:875-894. [PMID: 40360756 DOI: 10.1038/s42255-025-01296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025]
Abstract
Adipose tissue (AT) is a complex connective tissue with a high relative proportion of adipocytes, which are specialized cells with the ability to store lipids in large droplets. AT is found in multiple discrete depots throughout the body, where it serves as the primary repository for excess calories. In addition, AT has an important role in functions as diverse as insulation, immunity and regulation of metabolic homeostasis. The Human Cell Atlas Adipose Bionetwork was established to support the generation of single-cell atlases of human AT as well as the development of unified approaches and consensus for cell annotation. Here, we provide a first roadmap from this bionetwork, including our suggested cell annotations for humans and mice, with the aim of describing the state of the field and providing guidelines for the production, analysis, interpretation and presentation of AT single-cell data.
Collapse
Affiliation(s)
- Anne Loft
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense, Denmark.
| | - Margo P Emont
- Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, USA.
| | - Ada Weinstock
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Adhideb Ghosh
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Allon Wagner
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ann V Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, The University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Babukrishna Maniyadath
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense, Denmark
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Boxiang Liu
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Carey Lumeng
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Changhai Ding
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Chenkai Ma
- Human Health, Health and Biosecurity, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Christian Wolfrum
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Clarissa Strieder-Barboza
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX, USA
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Congru Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Danh D Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, The University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | | | - Erin E Kershaw
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Farnaz Shamsi
- Department of Molecular Pathobiology, New York University, New York, NY, USA
- Departments of Cell Biology and Medicine, Grossman School of Medicine, New York University, New York, NY, USA
| | - Hannah X Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Henrique Camara
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Jiawei Zhong
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julie A Semon
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| | - Jutta Jalkanen
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Kyle D Dumont
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Lindsey A Muir
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Lucas Massier
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Luis R Saraiva
- Sidra Medicine, Doha, Qatar
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Marc D Beyer
- Immunogenomics and Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases (DZNE) and University of Bonn and West German Genome Center (WGGC), Bonn, Germany
| | - Marc G Jeschke
- Centre for Burn Research, Hamilton Health Sciences Centre, Department of Surgery and Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Mariana Boroni
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary-Elizabeth Patti
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Department of Medicine - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, Stockholm, Sweden
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Nicole L Solimini
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, Stockholm, Sweden
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Peng Gao
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rana K Gupta
- Department of Medicine, Division of Endocrinology, and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Rinki Murphy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Silvia Corvera
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Su'an Tang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Swapan K Das
- Department of Internal Medicine, Section on Endocrinology and Metabolism, Medical Center Boulevard, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Søren F Schmidt
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense, Denmark
| | - Tao Zhang
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Theodore M Nelson
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Vissarion Efthymiou
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Wenjing Wang
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yihan Tong
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense, Denmark.
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Samouda H, De Beaufort C, Stranges S, Hirsch M, Van Nieuwenhuyse JP, Dooms G, Gilson G, Keunen O, Leite S, Vaillant M, Lair ML, Dadoun F. Cardiometabolic risk: leg fat is protective during childhood. Pediatr Diabetes 2016; 17:300-8. [PMID: 26083149 DOI: 10.1111/pedi.12292] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/25/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Childhood obesity is associated with early cardiometabolic risk (CMR), increased risk of adulthood obesity, and worse health outcomes. Leg fat mass (LFM) is protective beyond total fat mass (TFM) in adults. However, the limited evidence in children remains controversial. OBJECTIVE We investigated the relationship between LFM and CMR factors in youth. SUBJECTS A total of 203 overweight/obese children, 7-17-yr-old, followed in the Pediatric Clinic, Luxembourg. METHODS TFM and LFM by dual energy x-ray absorptiometry and a detailed set of CMR markers were analyzed. RESULTS After TFM, age, sex, body mass index (BMI) Z-score, sexual maturity status, and physical activity adjustments, negative significant partial correlations were shown between LFM and homeostasis model assessment of insulin resistance (HOMA) (variance explained: 6.05% by LFM*; 7.18% by TFM**), fasting insulin (variance explained: 5.71% by LFM*; 6.97% by TFM**), triglycerides (variance explained: 3.96% by LFM*; 2.76% by TFM*), systolic blood pressure (variance explained: 2.68% by LFM*; 4.33% by TFM*), C-reactive protein (variance explained: 2.31% by LFM*; 4.28% by TFM*), and resistin (variance explained: 2.16% by LFM*; 3.57% by TFM*). Significant positive partial correlations were observed between LFM and high-density lipoprotein (HDL) cholesterol (variance explained: 4.16% by LFM*) and adiponectin (variance explained: 3.09% by LFM*) (*p-value < 0.05 and **p-value < 0.001). In order to adjust for multiple testing, Benjamini-Hochberg method was applied and the adjusted significance level was determined for each analysis. LFM remained significant in the aforementioned models predicting HOMA, fasting insulin, triglycerides, and HDL cholesterol (Benjamini and Hochberg corrected p-value < 0.01). CONCLUSIONS LFM is protective against CMR in children, at least in terms of insulin resistance and adverse blood lipid profiles.
Collapse
Affiliation(s)
- Hanen Samouda
- Population Health Department, Center for Health Studies, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Carine De Beaufort
- Diabetes & Endocrinology Care Clinique Pédiatrique (DECCP), Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Saverio Stranges
- Population Health Department, Center for Health Studies, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Marco Hirsch
- Rheumatology Department, ZithaKlinik, Luxembourg, Luxembourg
| | | | - Georges Dooms
- Radiology Department, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Georges Gilson
- Department of Clinical Biology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Olivier Keunen
- Norlux Neuro-Oncology Laboratory, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Sonia Leite
- Centre of Competence for Methodology and Statistics (CCMS), Luxembourg Institute of Health, Strassen, Luxembourg
| | | | - Marie-Lise Lair
- Population Health Department, Center for Health Studies, Luxembourg Institute of Health, Strassen, Luxembourg.,Santé et Prospectives, Sanem, Luxembourg
| | - Frédéric Dadoun
- Population Health Department, Center for Health Studies, Luxembourg Institute of Health, Strassen, Luxembourg.,Endocrinology and Diabetology Department, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|