1
|
Du SY, Hu L, Zhou BH, Zhang Z, Li MC, Chang D, Xu CJ, Dou X. Sox6 impairs the adipogenic commitment of mesenchymal stem cells by targeting lysyl oxidase and preadipocyte factor 1. Biochem Biophys Res Commun 2023; 681:225-231. [PMID: 37783121 DOI: 10.1016/j.bbrc.2023.09.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
The commitment of mesenchymal stem cells (MSCs) to preadipocytes and the termination of differentiation to adipocytes are critical for maintaining systemic energy homeostasis. However, our knowledge of the molecular mechanisms governing the commitment of MSCs to preadipocytes and the subsequent termination of their differentiation into adipocytes remain limited. Additionally, the role of Sox6 sex-determining region Y (SRY)-box6 (Sox6), a transcription factor that regulates gene transcription, is reportedly involved in various cellular processes, including adipogenesis; however, its function in regulating preadipocyte development and the factors involved in the termination of adipogenic differentiation remain unexplored. Therefore, we investigated the role of Sox6 in regulating the differentiation of adipocytes by monitoring the effects of its overexpression in C3H10T1/2 cells (in vitro) and C57BL/6J mouse (in vivo) models of adipogenesis. We observed lower Sox6 expression in the adipose tissue of obese mice than that in control mice. Sox6 overexpression inhibited the differentiation of MSC by directly binding to the lysyl oxidase (Lox) and preadipocyte factor 1 (Pref1) promoters, which was potentiated by histone deacetylase-1(HDAC1). Our findings suggest that Sox6 is a key regulator of MSC commitment to adipocytes; therefore, targeting the Sox6-mediated regulation of this process could offer potential therapeutic avenues for addressing obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Shao-Yue Du
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China
| | - Liang Hu
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China
| | - Bing-He Zhou
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China
| | - Ze Zhang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China
| | - Ming-Chao Li
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China
| | - Dong Chang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China.
| | - Cong-Jian Xu
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China.
| | - Xin Dou
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China.
| |
Collapse
|
2
|
Zhang T, Li H, Sun S, Zhou W, Zhang T, Yu Y, Wang Q, Wang M. Microfibrillar-associated protein 5 suppresses adipogenesis by inhibiting essential coactivator of PPARγ. Sci Rep 2023; 13:5589. [PMID: 37020143 PMCID: PMC10076305 DOI: 10.1038/s41598-023-32868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/04/2023] [Indexed: 04/07/2023] Open
Abstract
Femoral head necrosis is responsible for severe pain and its incidence is increasing. Abnormal adipogenic differentiation and fat cell hypertrophy of bone marrow mesenchymal stem cells increase intramedullary cavity pressure, leading to osteonecrosis. By analyzing gene expression before and after adipogenic differentiation, we found that Microfibril-Associated Protein 5 (MFAP5) is significantly down-regulated in adipogenesis whilst the mechanism of MFAP5 in regulating the differentiation of bone marrow mesenchymal stem cells is unknown. The purpose of this study was to clarify the role of MAFP5 in adipogenesis and therefore provide a theoretical basis for future therapeutic options of osteonecrosis. By knockdown or overexpression of MFAP5 in C3H10 and 3T3-L1 cells, we found that MFAP5 was significantly down-regulated as a key regulator of adipogenic differentiation, and identified the underlying downstream molecular mechanism. MFAP5 directly bound to and inhibited the expression of Staphylococcal Nuclease And Tudor Domain Containing 1, an essential coactivator of PPARγ, exerting an important regulatory role in adipogenesis.
Collapse
Affiliation(s)
- Tianlong Zhang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Haoran Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shiwei Sun
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Wuling Zhou
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Tieqi Zhang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Yueming Yu
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China.
- Center of Community-Based Health Research, Fudan University, Shanghai, China.
| | - Minghai Wang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China.
- Center of Community-Based Health Research, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Tang Y, Yang LJ, Liu H, Song YJ, Yang QQ, Liu Y, Qian SW, Tang QQ. Exosomal miR-27b-3p secreted by visceral adipocytes contributes to endothelial inflammation and atherogenesis. Cell Rep 2023; 42:111948. [PMID: 36640325 DOI: 10.1016/j.celrep.2022.111948] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/28/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023] Open
Abstract
Obesity, particularly increased visceral fat, positively correlates with various metabolic challenges, including atherosclerosis, but the mechanism is not fully understood. The aim of this study is to determine the role of visceral-fat-derived exosomes (Exo) in endothelial cells and atherosclerosis. We show that obesity changes the miRNA profile of visceral adipose exosomes in mice. Importantly, exosomal miR-27b-3p efficiently enters into the vascular endothelial cells and activates the NF-κB pathway by downregulating PPARα. Mechanistically, miR-27b-3p binds directly to the CDS region of PPARα mRNA, thereby promoting mRNA degradation and suppressing translation. In ApoE-deficient mice, administration of miR-27b-3p mimic increases inflammation and atherogenesis, while overexpression of PPARα protects against atherosclerosis. Thus, obesity-induced exosomal miR-27b-3p promotes endothelial inflammation and facilitates atherogenesis by PPARα suppression. We reveal an exosomal pathway by which obesity aggravates atherosclerosis and proposed therapeutic strategies for atherosclerosis in people with obesity.
Collapse
Affiliation(s)
- Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li-Jie Yang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Liu
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University of Medicine College, Shanghai 200032, China
| | - Yan-Jue Song
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Qi Yang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shu-Wen Qian
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Huang W, Wu X, Xiang S, Qiao M, Li H, Zhu Y, Zhu Z, Zhao Z. Regulatory of miRNAs in tri-lineage differentiation of C3H10T1/2. Stem Cell Res Ther 2022; 13:521. [PMID: 36414991 PMCID: PMC9682817 DOI: 10.1186/s13287-022-03205-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes, which play a vital role in cell generation, metabolism, apoptosis and stem cell differentiation. C3H10T1/2, a mesenchymal cell extracted from mouse embryos, is capable of osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. Extensive studies have shown that not only miRNAs can directly trigger targeted genes to regulate the tri-lineage differentiation of C3H10T1/2, but it also can indirectly regulate the differentiation by triggering different signaling pathways or various downstream molecules. This paper aims to clarify the regulatory roles of different miRNAs on C3H10T1/2 differentiation, and discussing their balance effect among osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation of C3H10T1/2. We also review the biogenesis of miRNAs, Wnt signaling pathways, MAPK signaling pathways and BMP signaling pathways and provide some specific examples of how these signaling pathways act on C3H10T1/2 tri-lineage differentiation. On this basis, we hope that a deeper understanding of the differentiation and regulation mechanism of miRNAs in C3H10T1/2 can provide a promising therapeutic method for the clinical treatment of bone defects, osteoporosis, osteoarthritis and other diseases.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaoyue Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mingxin Qiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hanfei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yujie Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
5
|
Machado SA, Pasquarelli-do-Nascimento G, da Silva DS, Farias GR, de Oliveira Santos I, Baptista LB, Magalhães KG. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond) 2022; 19:61. [PMID: 36068578 PMCID: PMC9446768 DOI: 10.1186/s12986-022-00694-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
Adipose tissues are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. Although white adipose tissue and brown adipose tissue are currently considered key endocrine organs, they differ functionally and morphologically. The existence of the beige or brite adipocytes, cells displaying intermediary characteristics between white and brown adipocytes, illustrates the plastic nature of the adipose tissue. These cells are generated through white adipose tissue browning, a process associated with augmented non-shivering thermogenesis and metabolic capacity. This process involves the upregulation of the uncoupling protein 1, a molecule that uncouples the respiratory chain from Adenosine triphosphate synthesis, producing heat. β-3 adrenergic receptor system is one important mediator of white adipose tissue browning, during cold exposure. Surprisingly, hyperthermia may also induce beige activation and white adipose tissue beiging. Physical exercising copes with increased levels of specific molecules, including Beta-Aminoisobutyric acid, irisin, and Fibroblast growth factor 21 (FGF21), which induce adipose tissue browning. FGF21 is a stress-responsive hormone that interacts with beta-klotho. The central roles played by hormones in the browning process highlight the relevance of the individual lifestyle, including circadian rhythm and diet. Circadian rhythm involves the sleep-wake cycle and is regulated by melatonin, a hormone associated with UCP1 level upregulation. In contrast to the pro-inflammatory and adipose tissue disrupting effects of the western diet, specific food items, including capsaicin and n-3 polyunsaturated fatty acids, and dietary interventions such as calorie restriction and intermittent fasting, favor white adipose tissue browning and metabolic efficiency. The intestinal microbiome has also been pictured as a key factor in regulating white tissue browning, as it modulates bile acid levels, important molecules for the thermogenic program activation. During embryogenesis, in which adipose tissue formation is affected by Bone morphogenetic proteins that regulate gene expression, the stimuli herein discussed influence an orchestra of gene expression regulators, including a plethora of transcription factors, and chromatin remodeling enzymes, and non-coding RNAs. Considering the detrimental effects of adipose tissue browning and the disparities between adipose tissue characteristics in mice and humans, further efforts will benefit a better understanding of adipose tissue plasticity biology and its applicability to managing the overwhelming burden of several chronic diseases.
Collapse
Affiliation(s)
- Sabrina Azevedo Machado
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | | | - Debora Santos da Silva
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Gabriel Ribeiro Farias
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Luana Borges Baptista
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
6
|
Jin M, Fei X, Li T, Lu Z, Chu M, Di R, He X, Wang X, Wei C. Transcriptome study digs out BMP2 involved in adipogenesis in sheep tails. BMC Genomics 2022; 23:457. [PMID: 35725366 PMCID: PMC9210821 DOI: 10.1186/s12864-022-08657-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Background Hu sheep and Tibetan sheep in China are characterized by fat tails and thin tails, respectively. Several transcriptomes have been conducted in different sheep breeds to identify the differentially expressed genes (DEGs) underlying this trait. However, these studies identified different DEGs in different sheep breeds. Results Hence, RNA sequencing was performed on Hu sheep and Tibetan sheep. We obtained a total of 45.57 and 43.82 million sequencing reads, respectively. Two libraries mapped reads from 36.93 and 38.55 million reads after alignment to the reference sequences. 2108 DEGs were identified, including 1247 downregulated and 861 upregulated DEGs. GO and KEGG analyses of all DEGs demonstrated that pathways were enriched in the regulation of lipolysis in adipocytes and terms related to the chemokine signalling pathway, lysosomes, and glycosaminoglycan degradation. Eight genes were selected for validation by RT–qPCR. In addition, the transfection of BMP2 overexpression into preadipocytes resulted in increased PPAR-γ expression and expression. BMP2 potentially induces adipogenesis through LOX in preadipocytes. The number of lipid drops in BMP2 overexpression detected by oil red O staining was also greater than that in the negative control. Conclusion In summary, these results showed that significant genes (BMP2, HOXA11, PPP1CC and LPIN1) are involved in the regulation of adipogenesis metabolism and suggested novel insights into metabolic molecules in sheep fat tails. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08657-8.
Collapse
Affiliation(s)
- Meilin Jin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaojuan Fei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taotao Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Mingxing Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
7
|
Ru L, Wang XM, Niu JQ. The miR-23-27-24 cluster: an emerging target in NAFLD pathogenesis. Acta Pharmacol Sin 2022; 43:1167-1179. [PMID: 34893685 PMCID: PMC9061717 DOI: 10.1038/s41401-021-00819-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing globally, being the most widespread form of chronic liver disease in the west. NAFLD includes a variety of disease states, the mildest being non-alcoholic fatty liver that gradually progresses to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Small non-coding single-stranded microRNAs (miRNAs) regulate gene expression at the miRNA or translational level. Numerous miRNAs have been shown to promote NAFLD pathogenesis and progression through increasing lipid accumulation, oxidative stress, mitochondrial damage, and inflammation. The miR-23-27-24 clusters, composed of miR-23a-27a-24-2 and miR-23b-27b-24-1, have been implicated in various biological processes as well as many diseases. Herein, we review the current knowledge on miR-27, miR-24, and miR-23 in NAFLD pathogenesis and discuss their potential significance in NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- Lin Ru
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xiao-mei Wang
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| | - Jun-qi Niu
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
8
|
Integrative Analysis of Exosomal miR-452 and miR-4713 Downregulating NPY1R for the Prevention of Childhood Obesity. DISEASE MARKERS 2022; 2022:2843353. [PMID: 35401881 PMCID: PMC8986441 DOI: 10.1155/2022/2843353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 12/25/2022]
Abstract
Neuropeptides are associated with childhood obesity and exploring their regulatory mechanisms may reveal new insights for novel treatments. Childhood obesity data were downloaded from the GEO database and were used to screen for differentially expressed neuropeptides in patients with obesity. NPY1R expression was significantly upregulated in children with obesity compared to children without obesity (p < 0.05). The GEO database was used to filter differentially expressed miRNAs in patients with obesity. And hsa-mir-4713 and hsa-mir-452 were found significantly downregulated in adipose tissue. The GEO, TRRUST, and TFacts databases were used to screen all transcription factors for differentially expressed genes (DEGs). The potential regulatory networks between the differentially expressed miRNAs, TFs, and neuropeptides were mapped. In the constructed NPY1R regulatory network, the transcription factors TCF4, HEY1, and GATA3 are significantly associated with NPY1R. TCF4 and HEY1 were positively correlated with NPY1R, while GATA3 was negatively correlated with NPY1R. In the clinical peripheral blood samples, NPY1R, TCF4, and HEY1 were significantly more expressed in the obesity and the obesity with fracture group compared to the control group, while there was no statistically significant difference between the obesity group and the obesity with fracture group in terms of expression. The expression of GATA3, miR-452, and miR-4713 was also significantly lower in the obesity and the obesity with fracture groups when compared to the NC group. Therefore, NPY1R, TCF4, HEY1, GATA3, miR-452, and miR-4713 may be risk factors for fracture in obese children. The potential NPY1R regulatory function was exerted by two pathways: positive regulation caused by TCF4 and HEY1 acting on miR-4713 and negative regulation via GATA3 acting on miR-452. Potential NPY1R-related targets for the treatment of childhood obesity were provided in this study.
Collapse
|
9
|
Lehmann TP, Guderska U, Kałek K, Marzec M, Urbanek A, Czernikiewicz A, Sąsiadek M, Karpiński P, Pławski A, Głowacki M, Jagodziński PP. The Regulation of Collagen Processing by miRNAs in Disease and Possible Implications for Bone Turnover. Int J Mol Sci 2021; 23:91. [PMID: 35008515 PMCID: PMC8745169 DOI: 10.3390/ijms23010091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
This article describes several recent examples of miRNA governing the regulation of the gene expression involved in bone matrix construction. We present the impact of miRNA on the subsequent steps in the formation of collagen type I. Collagen type I is a main factor of mechanical bone stiffness because it constitutes 90-95% of the organic components of the bone. Therefore, the precise epigenetic regulation of collagen formation may have a significant influence on bone structure. We also describe miRNA involvement in the expression of genes, the protein products of which participate in collagen maturation in various tissues and cancer cells. We show how non-collagenous proteins in the extracellular matrix are epigenetically regulated by miRNA in bone and other tissues. We also delineate collagen mineralisation in bones by factors that depend on miRNA molecules. This review reveals the tissue variability of miRNA regulation at different levels of collagen maturation and mineralisation. The functionality of collagen mRNA regulation by miRNA, as proven in other tissues, has not yet been shown in osteoblasts. Several collagen-regulating miRNAs are co-expressed with collagen in bone. We suggest that collagen mRNA regulation by miRNA could also be potentially important in bone metabolism.
Collapse
Affiliation(s)
- Tomasz P. Lehmann
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Urszula Guderska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Klaudia Kałek
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Maria Marzec
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Agnieszka Urbanek
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Alicja Czernikiewicz
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Maria Sąsiadek
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.S.); (P.K.)
| | - Paweł Karpiński
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.S.); (P.K.)
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
| | - Maciej Głowacki
- Department of Paediatric Orthopaedics and Traumatology, Poznan University of Medical Sciences, 61-545 Poznan, Poland;
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| |
Collapse
|
10
|
Hu C, Zhang K, Jiang F, Wang H, Shao Q. Epigenetic modifications in thymic epithelial cells: an evolutionary perspective for thymus atrophy. Clin Epigenetics 2021; 13:210. [PMID: 34819170 PMCID: PMC8612001 DOI: 10.1186/s13148-021-01197-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023] Open
Abstract
Background The thymic microenvironment is mainly comprised of thymic epithelial cells, the cytokines, exosomes, surface molecules, and hormones from the cells, and plays a vital role in the development, differentiation, maturation and homeostasis of T lymphocytes. However, the thymus begins to degenerate as early as the second year of life and continues through aging in human beings, leading to a decreased output of naïve T cells, the limited TCR diversity and an expansion of monoclonal memory T cells in the periphery organs. These alternations will reduce the adaptive immune response to tumors and emerging infectious diseases, such as COVID-19, also it is easier to suffer from autoimmune diseases in older people. In the context of global aging, it is important to investigate and clarify the causes and mechanisms of thymus involution. Main body Epigenetics include histone modification, DNA methylation, non-coding RNA effects, and chromatin remodeling. In this review, we discuss how senescent thymic epithelial cells determine and control age-related thymic atrophy, how this process is altered by epigenetic modification. How the thymus adipose influences the dysfunctions of the thymic epithelial cells, and the prospects of targeting thymic epithelial cells for the treatment of thymus atrophy. Conclusion Epigenetic modifications are emerging as key regulators in governing the development and senescence of thymic epithelial cells. It is beneficial to re-establish effective thymopoiesis, identify the potential therapeutic strategy and rejuvenate the immune function in the elderly.
Collapse
Affiliation(s)
- Cexun Hu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Keyu Zhang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Feng Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hui Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, 223002, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Wu H, Pula T, Tews D, Amri EZ, Debatin KM, Wabitsch M, Fischer-Posovszky P, Roos J. microRNA-27a-3p but Not -5p Is a Crucial Mediator of Human Adipogenesis. Cells 2021; 10:cells10113205. [PMID: 34831427 PMCID: PMC8625276 DOI: 10.3390/cells10113205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small, non-coding RNA molecules, play an important role in the posttranscriptional regulation of gene expression, thereby influencing important cellular functions. In adipocytes, miRNAs show import regulatory features and are described to influence differentiation as well as metabolic, endocrine, and inflammatory functions. We previously identified miR-27a being upregulated under inflammatory conditions in human adipocytes and aimed to elucidate its function in adipocyte biology. Both strands of miR-27a, miR-27a-3p and -5p, were downregulated during the adipogenic differentiation of Simpson–Golabi–Behmel syndrome (SGBS) cells, human multipotent adipose-derived stem cells (hMADS), and human primary adipose-derived stromal cells (hASCs). Using miRNA-mimic transfection, we observed that miR-27a-3p is a crucial regulator of adipogenesis, while miR-27a-5p did not alter the differentiation capacity in SGBS cells. In silico screening predicted lipoprotein lipase (LPL) and peroxisome proliferator activated receptor γ (PPARγ) as potential targets of miR-27a-3p. The downregulation of both genes was verified in vitro, and the interaction of miR-27-3p with target sites in the 3′ UTRs of both genes was confirmed via a miRNA-reporter-gene assay. Here, the knockdown of LPL did not interfere with adipogenic differentiation, while PPARγ knockdown decreased adipogenesis significantly, suggesting that miR-27-3p exerts its inhibitory effect on adipogenesis by repressing PPARγ. Taken together, we identified and validated a crucial role for miR-27a-3p in human adipogenesis played by targeting the essential adipogenic transcription factor PPARγ. Though we confirmed LPL as an additional target of miR-27a-3p, it does not appear to be involved in regulating human adipogenesis. Thereby, our findings call the conclusions drawn from previous studies, which identified LPL as a crucial regulator for murine and human adipogenesis, into question.
Collapse
Affiliation(s)
- Hang Wu
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Taner Pula
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (D.T.); (M.W.)
| | - Ez-Zoubir Amri
- Inserm, CNRS, iBV, Université Côte d’Azur, 06103 Nice, France;
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (D.T.); (M.W.)
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Julian Roos
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
- Correspondence: ; Tel.: +49-731-500-57255
| |
Collapse
|
12
|
Li J, Lu L, Liu Y, Yu X. Bone marrow adiposity during pathologic bone loss: molecular mechanisms underlying the cellular events. J Mol Med (Berl) 2021; 100:167-183. [PMID: 34751809 DOI: 10.1007/s00109-021-02164-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023]
Abstract
Bone marrow (BM) is a heterogeneous niche where bone marrow stromal cells (BMSCs), osteoblasts, osteoclasts, adipocytes, hematopoietic cells, and immune cells coexist. The cellular composition of BM changes with various pathophysiological states. A reduction in osteoblast number and a concomitant increase in adipocyte number in aging and pathological conditions put bone marrow adipose tissue (BMAT) into spotlight. Accumulating evidence strongly supports that an overwhelming production of BMAT is a major contributor to bone loss disorders. Therefore, BMAT-targeted therapy can be an efficient and feasible intervention for osteoporosis. However, compared to blocking bone-destroying molecules produced by BMAT, suppressing BMAT formation is theoretically a more effective and fundamental approach in treating osteoporotic bone diseases. Thus, a deep insight into the molecular basis underlying increased BM adiposity during pathologic bone loss is critical to formulate strategies for therapeutically manipulating BMAT. In this review, we comprehensively summarize the molecular mechanisms involved in adipocyte differentiation of BMSCs as well as the interaction between bone marrow adipocytes and osteoclasts. More importantly, we further discuss the potential clinical implications of therapeutically targeting the upstream of BMAT formation in bone loss diseases.
Collapse
Affiliation(s)
- Jiao Li
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
13
|
Upregulation of miR-29a suppressed the migration and invasion of trophoblasts by directly targeting LOXL2 in preeclampsia. J Hypertens 2021; 39:1642-1651. [PMID: 33657581 DOI: 10.1097/hjh.0000000000002837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Preeclampsia is a pregnancy-specific disorder that is a major cause of maternal and foetal morbidity and mortality, with a prevalence of 6-8% of pregnancies. Although the downregulation of lysyl oxidase (LOX) and LOX-like protein 2 (LOXL2), which leads to reduced trophoblast cell migration and invasion through activation of the TGF-β1/Smad3/collagen pathway, is relevant to preeclampsia, the mechanisms regulating differences in the gene expression of LOX and LOXL2 in placentas are not yet understood. This study aimed to investigate the mechanisms regulating differences in the gene expression of LOX and LOXL2 in placentas. METHODS The expression of miRNAs, LOX and LOXL2 in preeclamptic placentas and control placentas was analysed by qPCR. Localisation of miR29a and LOXL2 in preeclamptic placentas was performed by RNA-Fluorescence in-situ hybridization assay. The direct regulation of LOXL2 by miR-29a was assessed by dual-luciferase reporter assays in human extravillous trophoblast cells (HTR8/SVneo). Cell migration and invasion were evaluated by Transwell assays in HTR8/SVneo cells. RESULTS miR-29a expression was upregulated in preeclamptic placentas and negatively correlated with LOXL2 mRNA expression levels. RNA-Fluorescence in-situ hybridization assay revealed a clear overlap between miR-29a and LOXL2 in the placentas of preeclampic women. LOXL2 was a direct target gene of miR-29a, as confirmed by a dual-luciferase reporter assay in HTR8/SVneo trophoblast cells. miR-29a suppressed HTR8/SVneo trophoblast cell migration and invasion. LOXL2 overexpression reversed the inhibitory effects of miR-29a on HTR8/SVneo trophoblast cell migration and invasion. CONCLUSION Our results suggest that the upregulation of miR-29a suppresses the migration and invasion of HTR8/SVneo trophoblast cells by directly targeting LOXL2 in preeclampsia.
Collapse
|
14
|
Heyn GS, Corrêa LH, Magalhães KG. The Impact of Adipose Tissue-Derived miRNAs in Metabolic Syndrome, Obesity, and Cancer. Front Endocrinol (Lausanne) 2020; 11:563816. [PMID: 33123088 PMCID: PMC7573351 DOI: 10.3389/fendo.2020.563816] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is a multifactorial and complex condition that is characterized by abnormal and excessive white adipose tissue accumulation, which can lead to the development of metabolic diseases, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, cardiovascular diseases, and several types of cancer. Obesity is characterized by excessive adipose tissue accumulation and associated with alterations in immunity, displaying a chronic low-grade inflammation profile. Adipose tissue is a dynamic and complex endocrine organ composed not only by adipocytes, but several immunological cells, which can secrete hormones, cytokines and many other factors capable of regulating metabolic homeostasis and several critical biological pathways. Remarkably, adipose tissue is a major source of circulating microRNAs (miRNAs), recently described as a novel form of adipokines. Several adipose tissue-derived miRNAs are deeply associated with adipocytes differentiation and have been identified with an essential role in obesity-associated inflammation, insulin resistance, and tumor microenvironment. During obesity, adipose tissue can completely change the profile of the secreted miRNAs, influencing circulating miRNAs and impacting the development of different pathological conditions, such as obesity, metabolic syndrome, and cancer. In this review, we discuss how miRNAs can act as epigenetic regulators affecting adipogenesis, adipocyte differentiation, lipid metabolism, browning of the white adipose tissue, glucose homeostasis, and insulin resistance, impacting deeply obesity and metabolic diseases. Moreover, we characterize how miRNAs can often act as oncogenic and tumor suppressor molecules, significantly modulating cancer establishment and progression. Furthermore, we highlight in this manuscript how adipose tissue-derived miRNAs can function as important new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
15
|
Jang HY, Lim SM, Lee HJ, Hong JS, Kim GJ. Identification of microRNAs and their target genes in the placenta as biomarkers of inflammation. Clin Exp Reprod Med 2020; 47:42-53. [PMID: 32146774 PMCID: PMC7127901 DOI: 10.5653/cerm.2019.03013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Recently, microRNA (miRNA) has been identified both as a powerful regulator involved in various biological processes through the regulation of numerous genes and as an effective biomarker for the prediction and diagnosis of various disease states. The objective of this study was to identify and validate miRNAs and their target genes involved in inflammation in placental tissue. METHODS Microarrays were utilized to obtain miRNA and gene expression profiles from placentas with or without inflammation obtained from nine normal pregnant women and 10 preterm labor patients. Quantitative real-time polymerase chain reaction and Western blots were performed to validate the miRNAs and differentially-expressed genes in the placentas with inflammation. Correlations between miRNA and target gene expression were confirmed by luciferase assays in HTR-8/SVneo cells. RESULTS We identified and validated miRNAs and their target genes that were differentially expressed in placentas with inflammation. We also demonstrated that several miRNAs (miR-371a-5p, miR-3065-3p, miR-519b-3p, and miR-373-3p) directly targeted their target genes (LEF1, LOX, ITGB4, and CD44). However, some miRNAs and their direct target genes showed no correlation in tissue samples. Interestingly, miR-373-3p and miR-3065-3p were markedly regulated by lipopolysaccharide (LPS) treatment, although the expression of their direct targets CD44 and LOX was not altered by LPS treatment. CONCLUSION These results provide candidate miRNAs and their target genes that could be used as placental biomarkers of inflammation. These candidates may be useful for further miRNA-based biomarker development.
Collapse
Affiliation(s)
- Hee Yeon Jang
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Seung Mook Lim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Hyun Jung Lee
- Non-Clinical Evaluation Center, CHA Advanced Research Institute, Seongnam, Korea
| | - Joon-Seok Hong
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| |
Collapse
|
16
|
Up-Regulated MicroRNA-27b Promotes Adipocyte Differentiation via Induction of Acyl-CoA Thioesterase 2 Expression. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2916243. [PMID: 31930115 PMCID: PMC6942750 DOI: 10.1155/2019/2916243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by a spectrum of liver pathologies, from simple steatosis to steatohepatitis. Recent studies have increasingly noted the aberrant expression of microRNAs closely related to NAFLD pathologies. We have previously shown the presence of increased levels of microRNA-27b (miR-27b) in patients with NAFLD. In this study, we investigated the role of miR-27b in NAFLD by examining the impact of up-regulated miR-27b on the differentiation of preadipocytes into mature adipocytes. We found that miR-27b-3p remarkably enhances the adipocyte differentiation of 3T3-L1 cells associated with lipid accumulation and intracellular triglyceride contents. Furthermore, we have demonstrated not only that miR-27b-3p induces acyl-CoA thioesterase 2 (ACOT2) expression in 3T3-L1 cells, but also that the knockdown of ACOT2 suppresses lipid accumulation and adipocyte differentiation in both the presence and absence of miR-27b-3p treatment. Our data strongly suggest that the miR-27b-ACOT2 axis is an important pathway in adipocyte differentiation and may play a role in the pathogenesis of NAFLD.
Collapse
|
17
|
Ma M, Yin Z, Zhong H, Liang T, Guo L. Analysis of the expression, function, and evolution of miR-27 isoforms and their responses in metabolic processes. Genomics 2019; 111:1249-1257. [DOI: 10.1016/j.ygeno.2018.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
|
18
|
Kulyté A, Kwok KHM, de Hoon M, Carninci P, Hayashizaki Y, Arner P, Arner E. MicroRNA-27a/b-3p and PPARG regulate SCAMP3 through a feed-forward loop during adipogenesis. Sci Rep 2019; 9:13891. [PMID: 31554889 PMCID: PMC6761119 DOI: 10.1038/s41598-019-50210-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNA) modulate gene expression through feed-back and forward loops. Previous studies identified miRNAs that regulate transcription factors, including Peroxisome Proliferator Activated Receptor Gamma (PPARG), in adipocytes, but whether they influence adipogenesis via such regulatory loops remain elusive. Here we predicted and validated a novel feed-forward loop regulating adipogenesis and involved miR-27a/b-3p, PPARG and Secretory Carrier Membrane Protein 3 (SCAMP3). In this loop, expression of both PPARG and SCAMP3 was independently suppressed by miR-27a/b-3p overexpression. Knockdown of PPARG downregulated SCAMP3 expression at the late phase of adipogenesis, whereas reduction of SCAMP3 mRNA levels increased PPARG expression at early phase in differentiation. The latter was accompanied with upregulation of adipocyte-enriched genes, including ADIPOQ and FABP4, suggesting an anti-adipogenic role for SCAMP3. PPARG and SCAMP3 exhibited opposite behaviors regarding correlations with clinical phenotypes, including body mass index, body fat mass, adipocyte size, lipolytic and lipogenic capacity, and secretion of pro-inflammatory cytokines. While adipose PPARG expression was associated with more favorable metabolic phenotypes, SCAMP3 expression was linked to increased fat mass and insulin resistance. Together, we identified a feed-forward loop through which miR-27a/b-3p, PPARG and SCAMP3 cooperatively fine tune the regulation of adipogenesis, which potentially may impact whole body metabolism.
Collapse
Affiliation(s)
- Agné Kulyté
- Lipid laboratory, Department of Medicine H7, Karolinska Institutet, Huddinge, Sweden.
| | - Kelvin Ho Man Kwok
- Lipid laboratory, Department of Medicine H7, Karolinska Institutet, Huddinge, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshihide Hayashizaki
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Kanagawa, 230-0045, Japan
| | - Peter Arner
- Lipid laboratory, Department of Medicine H7, Karolinska Institutet, Huddinge, Sweden
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
19
|
Yu J, Lv Y, Wang F, Kong X, Di W, Liu J, Sheng Y, Lv S, Ding G. MiR-27b-3p Inhibition Enhances Browning of Epididymal Fat in High-Fat Diet Induced Obese Mice. Front Endocrinol (Lausanne) 2019; 10:38. [PMID: 30778336 PMCID: PMC6369196 DOI: 10.3389/fendo.2019.00038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/17/2019] [Indexed: 11/24/2022] Open
Abstract
Objective: Long-term dysregulation of energy balance is the key component of the obesity epidemic. Given the harm of central obesity and the discovery that beige cells appear within white adipose tissue (WAT), enhancing the energy-expending or "browning" ability of visceral adipose tissue (VAT) has become of therapeutic interest. In this study, we focused on the regulating role of microRNA (miRNA)-27b-3p in mice epididymal white adipose tissue (eWAT) browning. Methods: High-fat diet (HFD) induced obese mice model was constructed. Expression of miR-27b-3p and Ucp1 in eWAT was measured during the course of HFD. Through tail vein injection of antimiR-27b-3p, miR-27b-3p expression was inhibited to analyze the potential role of miR-27b-3p in fat browning and metabolism. Results: miR-27b-3p was predominantly expressed in eWAT and browning ability of eWAT in HFD induced obese mice was impaired. Inhibition of miR-27b-3p enhanced browning capacity of eWAT in mice fed an HFD and led to weight loss and insulin sensitivity improvement. Conclusions: High expression of miR-27b-3p in eWAT inhibits browning ability and leads to visceral fat accumulation. It is suggested miR-27b-3p may become a potential therapeutic option for visceral obesity and its associated diseases.
Collapse
Affiliation(s)
- Jing Yu
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Lv
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengliang Wang
- Department of Breast Surgery, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaocen Kong
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjuan Di
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Liu
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlu Sheng
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shan Lv
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoxian Ding
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Guoxian Ding
| |
Collapse
|
20
|
Sun S, Zhou L, Yu Y, Zhang T, Wang M. Knocking down clock control gene CRY1 decreases adipogenesis via canonical Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2018; 506:746-753. [DOI: 10.1016/j.bbrc.2018.10.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
|
21
|
Jiang WY, Xing C, Wang HW, Wang W, Chen SZ, Ning LF, Xu X, Tang QQ, Huang HY. A Lox/CHOP-10 crosstalk governs osteogenic and adipogenic cell fate by MSCs. J Cell Mol Med 2018; 22:5097-5108. [PMID: 30044535 PMCID: PMC6156357 DOI: 10.1111/jcmm.13798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/31/2018] [Accepted: 06/23/2018] [Indexed: 12/20/2022] Open
Abstract
Accelerated marrow adipogenesis has been associated with ageing and osteoporosis and is thought to be because of an imbalance between adipogenic and osteogenic differentiation of mesenchymal stem cell (MSCs). We have previously found that lysyl oxidase (Lox) inhibition disrupts BMP4‐induced adipocytic lineage commitment and differentiation of MSCs. In this study, we found that lox inhibition dramatically up‐regulates BMP4‐induced expression of CCAAT/enhancer binding protein (C/EBP) homologous protein 10 (CHOP‐10), which then promotes BMP4‐induced osteogenesis of MSCs both in vitro and in vivo. Specifically, Lox inhibition or CHOP‐10 up‐regulation activated Wnt/β‐catenin signalling to enhance BMP4‐induced osteogenesis, with pro‐adipogenic p38 MAPK and Smad signalling suppressed. Together, we demonstrate that Lox/CHOP‐10 crosstalk regulates BMP4‐induced osteogenic and adipogenic fate determination of MSCs, presenting a promising therapeutic target for osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Wen-Yan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chun Xing
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hong-Wei Wang
- Biliary and Pancreatic Center, Huadong Hospital, Fudan University, Shanghai, China
| | - Wei Wang
- Biliary and Pancreatic Center, Huadong Hospital, Fudan University, Shanghai, China
| | - Su-Zhen Chen
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liu-Fang Ning
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xu Xu
- Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hai-Yan Huang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Matoušková P, Hanousková B, Skálová L. MicroRNAs as Potential Regulators of Glutathione Peroxidases Expression and Their Role in Obesity and Related Pathologies. Int J Mol Sci 2018; 19:ijms19041199. [PMID: 29662007 PMCID: PMC5979329 DOI: 10.3390/ijms19041199] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Glutathione peroxidases (GPxs) belong to the eight-member family of phylogenetically related enzymes with different cellular localization, but distinct antioxidant function. Several GPxs are important selenoproteins. Dysregulated GPx expression is connected with severe pathologies, including obesity and diabetes. We performed a comprehensive bioinformatic analysis using the programs miRDB, miRanda, TargetScan, and Diana in the search for hypothetical microRNAs targeting 3′untranslated regions (3´UTR) of GPxs. We cross-referenced the literature for possible intersections between our results and available reports on identified microRNAs, with a special focus on the microRNAs related to oxidative stress, obesity, and related pathologies. We identified many microRNAs with an association with oxidative stress and obesity as putative regulators of GPxs. In particular, miR-185-5p was predicted by a larger number of programs to target six GPxs and thus could play the role as their master regulator. This microRNA was altered by selenium deficiency and can play a role as a feedback control of selenoproteins’ expression. Through the bioinformatics analysis we revealed the potential connection of microRNAs, GPxs, obesity, and other redox imbalance related diseases.
Collapse
Affiliation(s)
- Petra Matoušková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| | - Barbora Hanousková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| | - Lenka Skálová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
23
|
Zaiou M, El Amri H, Bakillah A. The clinical potential of adipogenesis and obesity-related microRNAs. Nutr Metab Cardiovasc Dis 2018; 28:91-111. [PMID: 29170059 DOI: 10.1016/j.numecd.2017.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 02/07/2023]
Abstract
Obesity is a growing health problem commonly associated with numerous metabolic disorders including type 2 diabetes, hypertension, cardiovascular disease, and some forms of cancer. The burden of obesity and associated cardiometabolic diseases are believed to arise through complex interplay between genetics and epigenetics predisposition, nutrition, environment, and lifestyle. However, the molecular basis and the repertoire of obesity-affecting factors are still unknown. Emerging evidence is connecting microRNAs (miRNAs) dysregulation with adipogenesis and obesity. Alteration in miRNAs expression could result in changes in the pattern of genes controlling a range of biological processes including inflammation, lipid metabolism, insulin resistance and adipogenesis. Hence, understanding exact roles of miRNAs as well as the degree of their contribution to the regulation of adipogenesis and fat cell development in obesity would provide new therapeutic targets for the development of novel and effective anti-obesity drugs. The objective of the current review is to: (i) discuss some of the latest development on relevant miRNAs dysregulation mainly in human adipogenesis and obesity, (ii) emphasize the role of circulating miRNAs as new promising therapeutics and attractive potential biomarkers for treating obesity and associated risk factor diseases, (iii) describe how dietary factors may influence obesity through modulation of miRNAs expression, (iv) highlight some of the actual limitations to the promise of miRNAs as novel therapeutics as well as to their translation for the benefit of patients, and finally (v) provide recommendations for future research on miRNA-based therapeutics that could lead to a breakthrough in the treatment of obesity and its associated pathologies.
Collapse
Affiliation(s)
- M Zaiou
- Université de Lorraine, Faculté de Pharmacie, 5 rue Albert Lebrun, 54000, Nancy, France.
| | - H El Amri
- Laboratoire de Génétique de la Gendarmerie Royale, Avenue Ibn Sina, Agdal, Rabat, Morocco
| | - A Bakillah
- State University of New York, Downstate Medical Center, Department of Medicine, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| |
Collapse
|
24
|
Gäbel G, Northoff BH, Weinzierl I, Ludwig S, Hinterseher I, Wilfert W, Teupser D, Doderer SA, Bergert H, Schönleben F, Lindeman JHN, Holdt LM. Molecular Fingerprint for Terminal Abdominal Aortic Aneurysm Disease. J Am Heart Assoc 2017; 6:JAHA.117.006798. [PMID: 29191809 PMCID: PMC5779007 DOI: 10.1161/jaha.117.006798] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Clinical decision making in abdominal aortic aneurysms (AAA) relies completely on diameter. At this point, improved decision tools remain an unmet medical need. Our goal was to identify changes at the molecular level specifically leading up to AAA rupture. Methods and Results Aortic wall tissue specimens were collected during open elective (eAAA; n=31) or emergency repair of ruptured AAA (rAAA; n=17), and gene expression was investigated using microarrays. Identified candidate genes were validated with quantitative real‐time polymerase chain reaction in an independent sample set (eAAA: n=46; rAAA: n=18). Two gene sets were identified, 1 set containing 5 genes linked to terminal progression, that is, positively associated with progression of larger AAA, and with rupture (HILPDA,ANGPTL4,LOX,SRPX2,FCGBP), and a second set containing 5 genes exclusively upregulated in rAAA (ADAMTS9,STC1,GFPT2,GAL3ST4,CCL4L1). Genes in both sets essentially associated with processes related to impaired tissue remodeling, such as angiogenesis and adipogenesis. In gene expression experiments we were able to show that upregulated gene expression for identified candidate genes is unique for AAA. Functionally, the selected upregulated factors converge at processes coordinated by the canonical HIF‐1α signaling pathway and are highly expressed in fibroblasts but not inflammatory cells of the aneurysmatic wall. Histological quantification of angiogenesis and exploration of the HIF‐1α network in rAAA versus eAAA shows enhanced microvessel density but also clear activation of the HIF‐1α network in rAAA. Conclusions Our study shows a specific molecular fingerprint for terminal AAA disease. These changes appear to converge at activation of HIF‐1α signaling in mesenchymal cells. Aspects of this cascade might represent targets for rupture risk assessment.
Collapse
Affiliation(s)
- Gabor Gäbel
- Department of Vascular and Endovascular Surgery, Ludwig-Maximilians-University Munich, Munich, Germany .,Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
| | - Bernd H Northoff
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Irina Weinzierl
- Department of Vascular and Endovascular Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
| | - Stefan Ludwig
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
| | - Irene Hinterseher
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Technische Universität Dresden, Dresden, Germany.,Department of General, Visceral, Vascular and Thoracic Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Wilfert
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefan A Doderer
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Hendrik Bergert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Technische Universität Dresden, Dresden, Germany.,Vascular and Endovascular Surgery, HELIOS Clinic Erfurt, Erfurt, Germany
| | - Frank Schönleben
- Department of Vascular and Endovascular Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan H N Lindeman
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Lesca M Holdt
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
25
|
Si MS. MicroRNA-30a-lysyl oxidase axis in aortic dissection pathogenesis. J Thorac Cardiovasc Surg 2017; 154:1870-1871. [PMID: 28919141 DOI: 10.1016/j.jtcvs.2017.08.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 08/19/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Ming-Sing Si
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
26
|
Rodriguez D, Braden BP, Boyer SW, Taketa DA, Setar L, Calhoun C, Maio AD, Langenbacher A, Valentine MT, De Tomaso AW. In vivo manipulation of the extracellular matrix induces vascular regression in a basal chordate. Mol Biol Cell 2017; 28:1883-1893. [PMID: 28615322 PMCID: PMC5541839 DOI: 10.1091/mbc.e17-01-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 01/07/2023] Open
Abstract
We investigated the physical role of the extracellular matrix (ECM) in vascular homeostasis in the basal chordate Botryllus schlosseri, which has a large, transparent, extracorporeal vascular network encompassing an area >100 cm2 We found that the collagen cross-linking enzyme lysyl oxidase is expressed in all vascular cells and that in vivo inhibition using β-aminopropionitrile (BAPN) caused a rapid, global regression of the entire network, with some vessels regressing >10 mm within 16 h. BAPN treatment changed the ultrastructure of collagen fibers in the vessel basement membrane, and the kinetics of regression were dose dependent. Pharmacological inhibition of both focal adhesion kinase (FAK) and Raf also induced regression, and levels of phosphorylated FAK in vascular cells decreased during BAPN treatment and FAK inhibition but not Raf inhibition, suggesting that physical changes in the vessel ECM are detected via canonical integrin signaling pathways. Regression is driven by apoptosis and extrusion of cells through the basal lamina, which are then engulfed by blood-borne phagocytes. Extrusion and regression occurred in a coordinated manner that maintained vessel integrity, with no loss of barrier function. This suggests the presence of regulatory mechanisms linking physical changes to a homeostatic, tissue-level response.
Collapse
Affiliation(s)
- Delany Rodriguez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Brian P Braden
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Scott W Boyer
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Daryl A Taketa
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Leah Setar
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Chris Calhoun
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Alessandro Di Maio
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Adam Langenbacher
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Anthony W De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|
27
|
Hypoxia mimetic induces lipid accumulation through mitochondrial dysfunction and stimulates autophagy in murine preadipocyte cell line. Biochim Biophys Acta Gen Subj 2017; 1861:673-682. [DOI: 10.1016/j.bbagen.2016.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 01/05/2023]
|
28
|
Shamsi F, Zhang H, Tseng YH. MicroRNA Regulation of Brown Adipogenesis and Thermogenic Energy Expenditure. Front Endocrinol (Lausanne) 2017; 8:205. [PMID: 28878735 PMCID: PMC5572399 DOI: 10.3389/fendo.2017.00205] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Obesity, diabetes, and associated metabolic diseases have become global epidemics. Obesity results from excess accumulation of white fat, while brown and its related beige fat function to dissipate energy as heat, thus counteracting obesity and its related metabolic disorders. Understanding the regulatory mechanisms for both white and brown adipogenesis provides new insights for prevention and treatment of these metabolic diseases. In addition to traditional gene transcription and translation, microRNA (miRNA) represents a new layer of regulatory mechanism in many biological processes and has attracted a great deal of research interests in exploring their roles in physiological and pathophysiological conditions. This review focuses on the recent advances of regulating brown adipogenesis and energy metabolism by miRNAs, aiming to delineate the regulatory principles of miRNAs on this unique aspect of energy homeostasis.
Collapse
Affiliation(s)
- Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
| | - Hongbin Zhang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
- *Correspondence: Yu-Hua Tseng,
| |
Collapse
|
29
|
Lysyl Oxidase and the Tumor Microenvironment. Int J Mol Sci 2016; 18:ijms18010062. [PMID: 28036074 PMCID: PMC5297697 DOI: 10.3390/ijms18010062] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022] Open
Abstract
The lysyl oxidase (LOX) family of oxidases contains a group of extracellular copper-dependent enzymes that catalyze the cross-linking of collagen and elastin by oxidation, thus maintaining the rigidity and structural stability of the extracellular matrix (ECM). Aberrant expression or activation of LOX alters the cellular microenvironment, leading to many diseases, including atherosclerosis, tissue fibrosis, and cancer. Recently, a number of studies have shown that LOX is overexpressed in most cancers and that it is involved in the regulation of tumor progression and metastasis. In contrast, a few reports have also indicated the tumor-suppressing role of LOX. In this short review, we discuss recent research on the correlations between LOX and cancer. Further, the role of LOX in tumor microenvironment remodeling, tumorigenesis, and metastasis and the underlying mechanisms have also been elucidated.
Collapse
|