1
|
Chen J, Zhang B, Huang Q, Fang R, Ren Z, Liu D. Key RNA-binding proteins in renal fibrosis: a comprehensive bioinformatics and machine learning framework for diagnostic and therapeutic insights. Ren Fail 2025; 47:2463560. [PMID: 39957043 PMCID: PMC11834823 DOI: 10.1080/0886022x.2025.2463560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/19/2025] [Accepted: 02/01/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Renal fibrosis is a critical factor in chronic kidney disease progression, with limited diagnostic and therapeutic options. Emerging evidence suggests RNA-binding proteins (RBPs) are pivotal in regulating cellular mechanisms underlying fibrosis. METHODS Utilizing an extensive GEO dataset (175 renal fibrosis and 99 normal kidney samples), we identified and validated key RBPs through integrated bioinformatics and machine learning approaches, including lasso and logistic regression models. Differentially expressed genes were analyzed for pathway enrichment using Gene Ontology and KEGG. Single-cell RNA sequencing delineated cell-specific RBP expression, and a murine unilateral ureteral obstruction (UUO) model provided experimental validation. RESULTS A diagnostic model incorporating five RBPs (FKBP11, DCDC2, COL6A3, PLCB4, and GNB5) achieved high accuracy (AUC = 0.899) and robust external validation. These RBPs are implicated in immune-mediated pathways such as cytokine signaling and inflammatory responses. Single-cell analysis highlighted their expression in specific renal cell populations, underscoring functional diversity. Immunofluorescence linked FKBP11 with macrophage infiltration, suggesting its potential as a therapeutic target. CONCLUSION his study identifies novel RBPs associated with renal fibrosis, advancing the understanding of its pathogenesis and offering actionable biomarkers and therapeutic targets. The integration of bioinformatics and machine learning emphasizes their translational potential in kidney care.
Collapse
Affiliation(s)
- Jie Chen
- Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrinology, the Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Binghan Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qixuan Huang
- Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ronghua Fang
- Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziyu Ren
- Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Mou L, Zhang F, Liu X, Lu Y, Yue M, Lai Y, Pu Z, Huang X, Wang M. Integrative analysis of COL6A3 in lupus nephritis: insights from single-cell transcriptomics and proteomics. Front Immunol 2024; 15:1309447. [PMID: 38855105 PMCID: PMC11157080 DOI: 10.3389/fimmu.2024.1309447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/30/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Lupus nephritis (LN), a severe complication of systemic lupus erythematosus (SLE), presents significant challenges in patient management and treatment outcomes. The identification of novel LN-related biomarkers and therapeutic targets is critical to enhancing treatment outcomes and prognosis for patients. Methods In this study, we analyzed single-cell expression data from LN (n=21) and healthy controls (n=3). A total of 143 differentially expressed genes were identified between the LN and control groups. Then, proteomics analysis of LN patients (n=9) and control (SLE patients without LN, n=11) revealed 55 differentially expressed genes among patients with LN and control group. We further utilizes protein-protein interaction network and functional enrichment analyses to elucidate the pivotal role of COL6A3 in key signaling pathways. Its diagnostic value is evaluate through its correlation with disease progression and renal function metrics, as well as Receiver Operating Characteristic Curve (ROC) analysis. Additionally, immunohistochemistry and qPCR experiments were performed to validate the expression of COL6A3 in LN. Results By comparison of single-cell and proteomics data, we discovered that COL6A3 is significantly upregulated, highlighting it as a critical biomarker of LN. Our findings emphasize the substantial involvement of COL6A3 in the pathogenesis of LN, particularly noting its expression in mesangial cells. Through comprehensive protein-protein interaction network and functional enrichment analyses, we uncovered the pivotal role of COL6A3 in key signaling pathways including integrin-mediated signaling pathways, collagen-activated signaling pathways, and ECM-receptor interaction, suggesting potential therapeutic targets. The diagnostic utility is confirmed by its correlation with disease progression and renal function metrics of the glomerular filtration rate. ROC analysis further validates the diagnostic value of COL6A3, with the area under the ROC values of 0.879 in the in-house cohort, and 0.802 and 0.915 in tubular and glomerular external cohort samples, respectively. Furthermore, immunohistochemistry and qPCR experiments were consistent with those obtained from the single-cell RNA sequencing and proteomics studies. Discussion These results proved that COL6A3 is a promising biomarker and therapeutic target, advancing personalized medicine strategies for LN.
Collapse
Affiliation(s)
- Lisha Mou
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Fan Zhang
- Department of Nephrology, Beijing University Shenzhen Hospital, Shenzhen, China
| | - Xingjiao Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Ying Lu
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Mengli Yue
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yupeng Lai
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zuhui Pu
- Imaging Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xiaoyan Huang
- Department of Nephrology, Beijing University Shenzhen Hospital, Shenzhen, China
| | - Meiying Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
3
|
Hruska P, Kucera J, Kuruczova D, Buzga M, Pekar M, Holeczy P, Potesil D, Zdrahal Z, Bienertova-Vasku J. Unraveling adipose tissue proteomic landscapes in severe obesity: insights into metabolic complications and potential biomarkers. Am J Physiol Endocrinol Metab 2023; 325:E562-E580. [PMID: 37792298 PMCID: PMC10864023 DOI: 10.1152/ajpendo.00153.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
In this study, we aimed to comprehensively characterize the proteomic landscapes of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in patients with severe obesity, to establish their associations with clinical characteristics, and to identify potential serum protein biomarkers indicative of tissue-specific alterations or metabolic states. We conducted a cross-sectional analysis of 32 patients with severe obesity (16 males and 16 females) of Central European descent who underwent bariatric surgery. Clinical parameters and body composition were assessed using dual-energy X-ray absorptiometry (DXA) and bioelectrical impedance, with 15 patients diagnosed with type 2 diabetes (T2D) and 17 with hypertension. Paired SAT and VAT samples, along with serum samples, were subjected to state-of-the-art proteomics liquid chromatography-mass spectrometry (LC-MS). Our analysis identified 7,284 proteins across SAT and VAT, with 1,249 differentially expressed proteins between the tissues and 1,206 proteins identified in serum. Correlation analyses between differential protein expression and clinical traits suggest a significant role of SAT in the pathogenesis of obesity and related metabolic complications. Specifically, the SAT proteomic profile revealed marked alterations in metabolic pathways and processes contributing to tissue fibrosis and inflammation. Although we do not establish a definitive causal relationship, it appears that VAT might respond to SAT metabolic dysfunction by potentially enhancing mitochondrial activity and expanding its capacity. However, when this adaptive response is exceeded, it could possibly contribute to insulin resistance (IR) and in some cases, it may be associated with the progression to T2D. Our findings provide critical insights into the molecular foundations of SAT and VAT in obesity and may inform the development of targeted therapeutic strategies.NEW & NOTEWORTHY This study provides insights into distinct proteomic profiles of subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and serum in patients with severe obesity and their associations with clinical traits and body composition. It underscores SAT's crucial role in obesity development and related complications, such as insulin resistance (IR) and type 2 diabetes (T2D). Our findings emphasize the importance of understanding the SAT and VAT balance in energy homeostasis, proteostasis, and the potential role of SAT capacity in the development of metabolic disorders.
Collapse
Affiliation(s)
- Pavel Hruska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Kucera
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Daniela Kuruczova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marek Buzga
- Department of Laboratory Medicine, University hospital Ostrava, Ostrava, Czech Republic
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Matej Pekar
- Vascular and Miniinvasive Surgery Center, Hospital AGEL Trinec-Podlesi, Trinec, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavol Holeczy
- Department of Surgery, Vitkovice Hospital, Ostrava, Czech Republic
- Department of Surgical Disciplines, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - David Potesil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbynek Zdrahal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Julie Bienertova-Vasku
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Chen C, Ren H, Li H, Deng Y, Cui Q, Zhu J, Zhang S, Yu J, Wang H, Yu X, Yang S, Hu X, Peng Y. Identification of crucial modules and genes associated with backfat tissue development by WGCNA in Ningxiang pigs. Front Genet 2023; 14:1234757. [PMID: 37662841 PMCID: PMC10469685 DOI: 10.3389/fgene.2023.1234757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Fat deposition is an economically important trait in pigs. Ningxiang pig, one of the four famous indigenous breeds in China, is characterized by high fat content. The underlying gene expression pattern in different developmental periods of backfat tissue remains unclear, and the purpose of this investigation is to explore the potential molecular regulators of backfat tissue development in Ningxiang pigs. Backfat tissue (three samples for each stage) was initially collected from different developmental stages (60, 120, 180, 240, 300, and 360 days after birth), and histological analysis and RNA sequencing (RNA-seq) were then conducted. Fragments per kilobase of transcript per million (FPKM) method was used to qualify gene expressions, and differentially expressed genes (DEGs) were identified. Furthermore, strongly co-expressed genes in modules, which were named by color, were clustered by Weighted gene co-expression network analysis (WGCNA) based on dynamic tree cutting algorithm. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment were subsequently implemented, and hub genes were described in each module. Finally, QPCR analysis was employed to validate RNA-seq data. The results showed that adipocyte area increased and adipocyte number decreased with development of backfat tissue. A total of 1,024 DEGs were identified in five comparison groups (120 days vs. 60 days, 180 days vs. 120 days, 240 days vs. 180 days, 300 days vs. 240 days, and 360 days vs. 300 days). The turquoise, red, pink, paleturquoise, darkorange, and darkgreen module had the highest correlation coefficient with 60, 120, 180, 240, 300, and 360 days developmental stage, while the tan, black and turquoise module had strong relationship with backfat thickness, adipocyte area, and adipocyte number, respectively. Thirteen hub genes (ACSL1, ACOX1, FN1, DCN, CHST13, COL1A1, COL1A2, COL6A3, COL5A1, COL14A1, OAZ3, DNM1, and SELP) were recognized. ACSL1 and ACOX1 might perform function in the early developmental stage of backfat tissue (60 days), and FN1, DCN, COL1A1, COL1A2, COL5A1, COL6A3, and COL14A1 have unignorable position in backfat tissue around 120 days developmental stage. Besides, hub genes SELP and DNM1 in modules significantly associated with backfat thickness and adipocyte area might be involved in the process of backfat tissue development. These findings contribute to understand the integrated mechanism underlying backfat tissue development and promote the progress of genetic improvement in Ningxiang pigs.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Huibo Ren
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Huali Li
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Yuan Deng
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Qingming Cui
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Ji Zhu
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Siyang Zhang
- Hunan Liushahe Ecological Animal Husbandry Co, Ltd., Changsha, China
| | - Jine Yu
- Hunan Liushahe Ecological Animal Husbandry Co, Ltd., Changsha, China
| | - Huiming Wang
- Hunan Liushahe Ecological Animal Husbandry Co, Ltd., Changsha, China
| | - Xiaodan Yu
- Hunan Liushahe Ecological Animal Husbandry Co, Ltd., Changsha, China
| | - Shiliu Yang
- Hunan Liushahe Ecological Animal Husbandry Co, Ltd., Changsha, China
| | - Xionggui Hu
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Yinglin Peng
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
5
|
La Y, Wong W, Peng K, Tian Z, Pan J, Sun R, Luan J, Yan K, Zhang Q, Zhang Z. Decreased Imiquimod-Induced Psoriasis-Like Skin Inflammation in a Novel Mvd F250S/+ Knock-In Mouse Model. Inflammation 2023:10.1007/s10753-023-01828-z. [PMID: 37227548 DOI: 10.1007/s10753-023-01828-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
The mevalonate-diphosphate decarboxylase (MVD) gene, a member of the mevalonate pathway, plays a critical role in regulating the biosynthesis of cholesterol, steroid hormones, and non-steroid isoprenoids. Previous studies have suggested that the MVD c.746 T > C mutation is a major pathogenic gene of porokeratosis (PK), an autoinflammatory keratinization disease (AIKD) with unclear pathogenesis, few effective treatments, and no suitable animal model. To investigate the function of MvdF250S/+ mutation, we developed a novel MvdF250S/+ mouse model carrying an equivalent point mutation to the most common genetic variation among Chinese PK patients (MVDF249S/+) using CRISPR/Cas9 technology, which exhibited reduced cutaneous expression of Mvd protein. In the absence of external stimulation, MvdF250S/+ mice did not display specific phenotypes. However, upon induction with imiquimod (IMQ), MvdF250S/+ mice exhibited decreased susceptibility to skin acute inflammation compared to wild-type (WT) mice, as evidenced by reduced cutaneous proliferation and lower protein levels of IL-17a and IL-1β. Additionally, after IMQ induction, the MvdF250S/+mice exhibited downregulated collagen generation and upregulated expression of Fabp3 compared to WT mice, whereas no significant changes in the key genes related to cholesterol regulation were found. Furthermore, the MvdF250S/+ mutation activated autophagy. Our findings provided insights into the biological function of MVD in the skin.
Collapse
Affiliation(s)
- Yumeng La
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, People's Republic of China
| | - Wenghong Wong
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, People's Republic of China
| | - Kexin Peng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, People's Republic of China
| | - Zhen Tian
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, People's Republic of China
| | - Jiewen Pan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, People's Republic of China
| | - Ruilin Sun
- Shanghai Model Organisms Center Inc, Shanghai, China
| | - Jing Luan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, People's Republic of China
| | - Kexiang Yan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, People's Republic of China
| | - Qiaoan Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, People's Republic of China
| | - Zhenghua Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Araki M, Noguchi S, Kubo Y, Yasuda A, Koh M, Otsuka H, Yokosuka M, Soeta S. Expression of type VI collagen α3 chain in canine mammary carcinomas. Res Vet Sci 2023; 159:171-182. [PMID: 37148736 DOI: 10.1016/j.rvsc.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 05/08/2023]
Abstract
This study aimed to investigate the expression of type VI collagen α3 chain (COL6a3) in neoplastic cells of canine mammary gland carcinomas (CMGCs) using immunohistochemistry (IHC) and to evaluate the association between COL6a3 expression and tumor histological features, histological grades, and the differentiation status of neoplastic epithelial cells. COL6a3 expression in carcinoma cells was significantly associated with histologically low malignancy and low mitotic indices. In addition, COL6a3+ carcinoma cells were more frequently detected in simple carcinomas (tubular and tubulopapillary types) than in solid carcinomas. These findings indicate that reduced expression of COL6a3 in carcinoma cells contributes to the malignant phenotype in CMGCs. We also showed that COL6a3 expression in the carcinoma cells was more frequently detected in CK19+/CD49f + and/or CK19+/CK5+ tumors. In addition, COL6a3+/CK19+/CD49f + and COL6a3+/CK19+/CK5+ tumors consisted of CK19+/CD49f + and CK19+/CD49f- cells, and CK19+/CK5+ and CK19+/CK5- cells, respectively. Most of these tumors more frequently expressed GATA3, but not Notch1. These results indicate that COL6a3 is expressed in CMGCs containing both luminal progenitor-like and mature luminal-like cells and showing differentiation ability into mature luminal cells. It is possible that COL6 may be involved in the differentiation of luminal progenitor-like carcinoma cells into mature luminal-like carcinoma cells in CMGCs, which may suppresses the development of malignant phenotypes in CMGCs.
Collapse
Affiliation(s)
- Mami Araki
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, Japan
| | - Syunya Noguchi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Yoshiaki Kubo
- Veterinary Medical Teaching Hospital, Attached Facility, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, Japan
| | - Akiko Yasuda
- Veterinary Medical Teaching Hospital, Attached Facility, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, Japan
| | - Miki Koh
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, Japan
| | - Hirotada Otsuka
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, Japan
| | - Makoto Yokosuka
- Laboratory of Comparative and Behavioral Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, Japan
| | - Satoshi Soeta
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, Japan.
| |
Collapse
|
7
|
Meen AJ, Doncheva AI, Böttcher Y, Dankel SN, Hoffmann A, Blüher M, Fernø J, Mellgren G, Ghosh A, Sun W, Dong H, Noé F, Wolfrum C, Pejler G, Dalen KT, Kolset SO. Obesity Is Associated with Distorted Proteoglycan Expression in Adipose Tissue. Int J Mol Sci 2023; 24:ijms24086884. [PMID: 37108048 PMCID: PMC10138342 DOI: 10.3390/ijms24086884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Proteoglycans are central components of the extracellular matrix (ECM) and binding partners for inflammatory chemokines. Morphological differences in the ECM and increased inflammation are prominent features of the white adipose tissues in patients with obesity. The impact of obesity and weight loss on the expression of specific proteoglycans in adipose tissue is not well known. This study aimed to investigate the relationship between adiposity and proteoglycan expression. We analyzed transcriptomic data from two human bariatric surgery cohorts. In addition, RT-qPCR was performed on adipose tissues from female and male mice fed a high-fat diet. Both visceral and subcutaneous adipose tissue depots were analyzed. Adipose mRNA expression of specific proteoglycans, proteoglycan biosynthetic enzymes, proteoglycan partner molecules, and other ECM-related proteins were altered in both human cohorts. We consistently observed more profound alterations in gene expression of ECM targets in the visceral adipose tissues after surgery (among others VCAN (p = 0.000309), OGN (p = 0.000976), GPC4 (p = 0.00525), COL1A1 (p = 0.00221)). Further, gene analyses in mice revealed sex differences in these two tissue compartments in obese mice. We suggest that adipose tissue repair is still in progress long after surgery, which may reflect challenges in remodeling increased adipose tissues. This study can provide the basis for more mechanistic studies on the role of proteoglycans in adipose tissues in obesity.
Collapse
Affiliation(s)
- Astri J Meen
- Department of Medical Biology, UIT The Arctic University of Norway, 9019 Tromsø, Norway
| | | | - Yvonne Böttcher
- EpiGen, Medical Division, Akershus University Hospital, 1474 Nordbyhagen, Norway
- Department of Endocrinology, Division of Medicine, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Simon N Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Johan Fernø
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Adhideb Ghosh
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Schwerzenbach, Switzerland
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Schwerzenbach, Switzerland
| | - Falko Noé
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Schwerzenbach, Switzerland
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | | | - Svein O Kolset
- Department of Nutrition, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
8
|
Poojari A, Dev K, Rabiee A. Lipedema: Insights into Morphology, Pathophysiology, and Challenges. Biomedicines 2022; 10:biomedicines10123081. [PMID: 36551837 PMCID: PMC9775665 DOI: 10.3390/biomedicines10123081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lipedema is an adipofascial disorder that almost exclusively affects women. Lipedema leads to chronic pain, swelling, and other discomforts due to the bilateral and asymmetrical expansion of subcutaneous adipose tissue. Although various distinctive morphological characteristics, such as the hyperproliferation of fat cells, fibrosis, and inflammation, have been characterized in the progression of lipedema, the mechanisms underlying these changes have not yet been fully investigated. In addition, it is challenging to reduce the excessive fat in lipedema patients using conventional weight-loss techniques, such as lifestyle (diet and exercise) changes, bariatric surgery, and pharmacological interventions. Therefore, lipedema patients also go through additional psychosocial distress in the absence of permanent treatment. Research to understand the pathology of lipedema is still in its infancy, but promising markers derived from exosome, cytokine, lipidomic, and metabolomic profiling studies suggest a condition distinct from obesity and lymphedema. Although genetics seems to be a substantial cause of lipedema, due to the small number of patients involved in such studies, the extrapolation of data at a broader scale is challenging. With the current lack of etiology-guided treatments for lipedema, the discovery of new promising biomarkers could provide potential solutions to combat this complex disease. This review aims to address the morphological phenotype of lipedema fat, as well as its unclear pathophysiology, with a primary emphasis on excessive interstitial fluid, extracellular matrix remodeling, and lymphatic and vasculature dysfunction. The potential mechanisms, genetic implications, and proposed biomarkers for lipedema are further discussed in detail. Finally, we mention the challenges related to lipedema and emphasize the prospects of technological interventions to benefit the lipedema community in the future.
Collapse
|
9
|
Latorre J, Aroca A, Fernández-Real JM, Romero LC, Moreno-Navarrete JM. The Combined Partial Knockdown of CBS and MPST Genes Induces Inflammation, Impairs Adipocyte Function-Related Gene Expression and Disrupts Protein Persulfidation in Human Adipocytes. Antioxidants (Basel) 2022; 11:antiox11061095. [PMID: 35739994 PMCID: PMC9220337 DOI: 10.3390/antiox11061095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies in mice and humans demonstrated the relevance of H2S synthesising enzymes, such as CTH, CBS, and MPST, in the physiology of adipose tissue and the differentiation of preadipocyte into adipocytes. Here, our objective was to investigate the combined role of CTH, CBS, and MPST in the preservation of adipocyte protein persulfidation and adipogenesis. Combined partial CTH, CBS, and MPST gene knockdown was achieved treating fully human adipocytes with siRNAs against these transcripts (siRNA_MIX). Adipocyte protein persulfidation was analyzed using label-free quantitative mass spectrometry coupled with a dimedone-switch method for protein labeling and purification. Proteomic analysis quantified 216 proteins with statistically different levels of persulfidation in KD cells compared to control adipocytes. In fully differentiated adipocytes, CBS and MPST mRNA and protein levels were abundant, while CTH expression was very low. It is noteworthy that siRNA_MIX administration resulted in a significant decrease in CBS and MPST expression, without impacting on CTH. The combined partial knockdown of the CBS and MPST genes resulted in reduced cellular sulfide levels in parallel to decreased expression of relevant genes for adipocyte biology, including adipogenesis, mitochondrial biogenesis, and lipogenesis, but increased proinflammatory- and senescence-related genes. It should be noted that the combined partial knockdown of CBS and MPST genes also led to a significant disruption in the persulfidation pattern of the adipocyte proteins. Although among the less persulfidated proteins, we identified several relevant proteins for adipocyte adipogenesis and function, among the most persulfidated, key mediators of adipocyte inflammation and dysfunction as well as some proteins that might play a positive role in adipogenesis were found. In conclusion, the current study indicates that the combined partial elimination of CBS and MPST (but not CTH) in adipocytes affects the expression of genes related to the maintenance of adipocyte function and promotes inflammation, possibly by altering the pattern of protein persulfidation in these cells, suggesting that these enzymes were required for the functional maintenance of adipocytes.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, Universitat de Girona, 17003 Girona, Spain
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-872-987087 (ext. 70)
| |
Collapse
|
10
|
Meng Z, Chen Y, Wu W, Yan B, Meng Y, Liang Y, Yao X, Luo J. Exploring the Immune Infiltration Landscape and M2 Macrophage-Related Biomarkers of Proliferative Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:841813. [PMID: 35692390 PMCID: PMC9186015 DOI: 10.3389/fendo.2022.841813] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUNDS Diabetic retinopathy (DR), especially proliferative diabetic retinopathy (PDR), is the major cause of irreversible blindness in the working-age population. Increasing evidence indicates that immune cells and the inflammatory microenvironment play an important role during PDR development. Herein, we aim to explore the immune landscape of PDR and then identify potential biomarkers correlated with specific infiltrating immune cells. METHODS We mined and re-analyzed PDR-related datasets from the Gene Expression Omnibus (GEO) database. Using the cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm, we investigated the infiltration of 22 types of immune cells in all selected samples; analyses of differences and correlations between infiltrating cells were used to reveal the immune landscape of PDR. Thereafter, weighted gene co-expression network analysis (WGCNA) and differential expression analysis were applied to identify the hub genes on M2 macrophages that may affect PDR progression. RESULTS Significant differences were found between infiltration levels of immune cells in fibrovascular membranes (FVMs) from PDR and normal retinas. The percentages of follicular helper T cells, M1 macrophages, and M2 macrophages were increased significantly in FVMs. Integrative analysis combining the differential expression and co-expression revealed the M2 macrophage-related hub genes in PDR. Among these, COL5A2, CALD1, COL6A3, CORO1C, and CALU showed increased expression in FVM and may be potential biomarkers for PDR. CONCLUSIONS Our findings provide novel insights into the immune mechanisms involved in PDR. COL5A2, CALD1, COL6A3, CORO1C, and CALU are M2 macrophage-related biomarkers, further study of these genes could inform novel ideas and basis for the understanding of disease progression and targeted treatment of PDR.
Collapse
Affiliation(s)
- Zhishang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanzhu Chen
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenyi Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongan Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Youling Liang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxi Yao
- Shenzhen College of International Education, Shenzhen, China
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jing Luo,
| |
Collapse
|
11
|
De Luca M, Mandala M, Rose G. Towards an understanding of the mechanoreciprocity process in adipocytes and its perturbation with aging. Mech Ageing Dev 2021; 197:111522. [PMID: 34147549 DOI: 10.1016/j.mad.2021.111522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Adipose tissue (AT) is a complex organ, with multiple functions that are essential for maintaining metabolic health. A feature of AT is its capability to expand in response to physiological challenges, such as pregnancy and aging, and during chronic states of positive energy balance occurring throughout life. AT grows through adipogenesis and/or an increase in the size of existing adipocytes. One process that is required for healthy AT growth is the remodeling of the extracellular matrix (ECM), which is a necessary step to restore mechanical homeostasis and maintain tissue integrity and functionality. While the relationship between mechanobiology and adipogenesis is now well recognized, less is known about the role of adipocyte mechanosignaling pathways in AT growth. In this review article, we first summarize evidence linking ECM remodelling to AT expansion and how its perturbation is associated to a metabolically unhealthy phenotype. Subsequently, we highlight findings suggesting that molecules involved in the dynamic, bidirectional process (mechanoreciprocity) enabling adipocytes to sense changes in the mechanical properties of the ECM are interconnected to pathways regulating lipid metabolism. Finally, we discuss processes through which aging may influence the ability of adipocytes to appropriately respond to alterations in ECM composition.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Maurizio Mandala
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| |
Collapse
|
12
|
Williams L, Layton T, Yang N, Feldmann M, Nanchahal J. Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J 2021; 289:3603-3629. [PMID: 34109754 DOI: 10.1111/febs.16039] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Fibrosis of visceral organs such as the lungs, heart, kidneys and liver remains a major cause of morbidity and mortality and is also associated with many other disorders, including cancer and metabolic disease. In this review, we focus upon the microfibrillar collagen VI, which is present in the extracellular matrix (ECM) of most tissues. However, expression is elevated in numerous fibrotic conditions, such as idiopathic pulmonary disease (IPF), and chronic liver and kidney diseases. Collagen VI is composed of three subunits α1, α2 and α3, which can be replaced with alternate chains of α4, α5 or α6. The C-terminal globular domain (C5) of collagen VI α3 can be proteolytically cleaved to form a biologically active fragment termed endotrophin, which has been shown to actively drive fibrosis, inflammation and insulin resistance. Tissue biopsies have long been considered the gold standard for diagnosis and monitoring of progression of fibrotic disease. The identification of neoantigens from enzymatically processed collagen chains have revolutionised the biomarker field, allowing rapid diagnosis and evaluation of prognosis of numerous fibrotic conditions, as well as providing valuable clinical trial endpoint determinants. Collagen VI chain fragments such as endotrophin (PRO-C6), C6M and C6Mα3 are emerging as important biomarkers for fibrotic conditions.
Collapse
Affiliation(s)
- Lynn Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Thomas Layton
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Nan Yang
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Jagdeep Nanchahal
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| |
Collapse
|
13
|
Yang J, Yao L, Li Y, Gao R, Huo R, Xia L, Shen H, Lu J. Interleukin-35 Regulates Angiogenesis Through P38 Mitogen-Activated Protein Kinase Signaling Pathway in Interleukin-1β-Stimulated SW1353 Cells and Cartilage Bioinformatics Analysis. J Interferon Cytokine Res 2021; 41:164-171. [PMID: 34003680 DOI: 10.1089/jir.2021.0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We aimed to investigate the effects of interleukin (IL)-35 on proangiogenic factors in IL-1β-pretreated chondrocyte-like SW1353 cells and screen-related genes that participated in osteoarthritis (OA) cartilage with IL-35, proangiogenic factors, and P38 mitogen-activated protein kinase (MAPK) signaling pathway. Different concentrations of IL-35 incubated with IL-1β stimulated SW1353 cells with or without SB203580 (inhibitor of P38 MAPK). Proangiogenic molecule expression was assessed by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Microarray datasets were downloaded from the Gene Expression Omnibus database of OA cartilage. Protein-protein interaction of genes was visualized by Search Tool for the Retrieval Interacting Genes and Cytoscape. Database for Annotation, Visualization, and Integrated Discovery was used to screen biological processes and pathways. IL-35 inhibited mRNA expression of proangiogenic factors in IL-1β-stimulated SW1353 cells through the P38 MAPK signaling pathway. IL-35 inhibited angiopoietin-2 secretion. We found that 8 related genes, 18 biological processes, and 6 pathways may associate with IL-35, P38 MAPK signaling pathway, and cartilage angiogenesis. IL-35 regulated the expression of proangiogenic factors through P38 MAPK signaling pathway in IL-1β-stimulated SW1353 cells. IL-35 and P38 MAPK pathway may participate in neovascularization of cartilage. Our findings may provide molecular mechanisms and possible genes target treatment for OA.
Collapse
Affiliation(s)
- Jie Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Lutian Yao
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Yuxuan Li
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Ruoxi Gao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Ran Huo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Liping Xia
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Hui Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Jing Lu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
14
|
Oh J, Kim CS, Kim M, Jo W, Sung YH, Park J. Type VI collagen and its cleavage product, endotrophin, cooperatively regulate the adipogenic and lipolytic capacity of adipocytes. Metabolism 2021; 114:154430. [PMID: 33188786 DOI: 10.1016/j.metabol.2020.154430] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2020] [Accepted: 11/06/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Obesity-induced adipose tissue remodeling is closely associated with systemic insulin resistance. However, the mechanistic involvement of adipocyte-derived extracellular matrix proteins under pathophysiological conditions remains unclear. Our aim was to investigate the distinctive contributions of each chain of type VI collagens (Col6) and its cleavage protein endotrophin to adipocyte functions and insulin sensitivity. METHODS Col6 comprises three alpha chains: Col6a1, Col6a2, and Col6a3. We generated Col6a1-, Col6a2-, and Col6a3-deficient 3T3-L1 adipocytes using the CRISPR-Cas9 system as well as a novel Col6a3-deficient (Col6a3KO) mouse model for loss-of-function studies. Adenoviral-endotrophin and adipocyte-specific doxycycline-inducible endotrophin transgenic mice were utilized for the gain-of-function analysis. RESULTS The holo-Col6 fibrils were found to be required for mature adipocyte differentiation. Only Col6a3-deficient 3T3-L1 adipocytes showed decreased inflammation and basal adipocyte lipolysis and prevented ER-stress-induced insulin resistance. Consistently, Col6a3KO mice showed decreased adipocyte size and fat mass of epididymal adipose tissues due to a defect in adipogenic and lipolytic capacity of adipocytes. Beyond the structural role of Col6a3, overexpression of endotrophin in obese mice further augmented insulin resistance, which was tightly associated with a significant increase in lipolysis, inflammation, and cellular apoptosis in adipose tissues, whereas this showed a limited effect on adipogenesis. CONCLUSIONS These novel findings corroborate our previous observations suggesting that adipose tissue extracellular matrix regulates adipocyte function and insulin sensitivity in pathophysiological conditions. Mechanistically, holo-Col6 fibrils and their signaling derivative endotrophin govern adipocyte function independently of their role as structural supports via MAPK signaling pathways, and the latter could be an important metabolic effector in obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Jiyoung Oh
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Chu-Sook Kim
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Min Kim
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Woobeen Jo
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Young Hoon Sung
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Jiyoung Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
15
|
Dankel SN, Grytten E, Bjune JI, Nielsen HJ, Dietrich A, Blüher M, Sagen JV, Mellgren G. COL6A3 expression in adipose tissue cells is associated with levels of the homeobox transcription factor PRRX1. Sci Rep 2020; 10:20164. [PMID: 33214660 PMCID: PMC7678848 DOI: 10.1038/s41598-020-77406-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/21/2020] [Indexed: 01/28/2023] Open
Abstract
Fibrillar collagen COL6α3 in adipose tissue has been associated with obesity, inflammation, insulin resistance and cancer. We here aimed to identify novel transcriptional regulators of COL6A3 expression. Based on a transcriptome dataset of adipose tissue, we identified strong correlations for 56 genes with COL6A3 mRNA, including targets of TGF-β/SMAD signaling. Among the identified candidates, the homeobox transcription factor PRRX1 showed a particularly striking co-expression with COL6A3, validated across several different cohorts, including patients with extreme obesity, insulin sensitive and resistant obesity (subcutaneous and omental), after profound fat loss (subcutaneous), and lean controls (subcutaneous). In human and mouse adipose cells, PRRX1 knockdown reduced COL6A3 mRNA and PRRX1 overexpression transactivated a reporter construct with the endogenous human COL6A3 promoter. Stable PRRX1 overexpression in 3T3-L1 cells induced Col6a3 mRNA threefold specifically after adipogenic induction, whereas TGF-β1 treatment upregulated Col6a3 mRNA also in the preadipocyte state. Interestingly, pro-inflammatory stimulus (i.e., TNF-α treatment) decreased PRRX1-mediated Col6a3 transactivation and mRNA expression, supporting a role for this mechanism in the regulation of adipose tissue inflammation. In conclusion, we identified the homeobox factor PRRX1 as a novel transcriptional regulator associated with COL6A3 expression, providing new insight into the regulatory mechanisms of altered adipose tissue function in obesity and insulin resistance.
Collapse
Affiliation(s)
- Simon N Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.
| | - Elise Grytten
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Jan-Inge Bjune
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | | | - Arne Dietrich
- Department of Surgery, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Jørn V Sagen
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
16
|
3D Spheroids Derived from Human Lipedema ASCs Demonstrated Similar Adipogenic Differentiation Potential and ECM Remodeling to Non-Lipedema ASCs In Vitro. Int J Mol Sci 2020; 21:ijms21218350. [PMID: 33171717 PMCID: PMC7664323 DOI: 10.3390/ijms21218350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023] Open
Abstract
The growth and differentiation of adipose tissue-derived stem cells (ASCs) is stimulated and regulated by the adipose tissue (AT) microenvironment. In lipedema, both inflammation and hypoxia influence the expansion and differentiation of ASCs, resulting in hypertrophic adipocytes and deposition of collagen, a primary component of the extracellular matrix (ECM). The goal of this study was to characterize the adipogenic differentiation potential and assess the levels of expression of ECM-remodeling markers in 3D spheroids derived from ASCs isolated from both lipedema and healthy individuals. The data showed an increase in the expression of the adipogenic genes (ADIPOQ, LPL, PPAR-γ and Glut4), a decrease in matrix metalloproteinases (MMP2, 9 and 11), with no significant changes in the expression of ECM markers (collagen and fibronectin), or integrin A5 in 3D differentiated lipedema spheroids as compared to healthy spheroids. In addition, no statistically significant changes in the levels of expression of inflammatory genes were detected in any of the samples. However, immunofluorescence staining showed a decrease in fibronectin and increase in laminin and Collagen VI expression in the 3D differentiated spheroids in both groups. The use of 3D ASC spheroids provide a functional model to study the cellular and molecular characteristics of lipedema AT.
Collapse
|
17
|
The impact of endotrophin on the progression of chronic liver disease. Exp Mol Med 2020; 52:1766-1776. [PMID: 33110211 PMCID: PMC8080612 DOI: 10.1038/s12276-020-00520-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 01/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and can lead to multiple complications, including non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. The fibrotic liver is characterized by the pathological accumulation of extracellular matrix (ECM) proteins. Type VI collagen alpha3 (Col6a3) is a biomarker of hepatic fibrosis, and its cleaved form, endotrophin (ETP), plays a critical role in adipose tissue dysfunction, insulin resistance, and breast cancer development. Here, we studied the effects of the Col6a3-derived peptide ETP on the progression of chronic liver diseases, such as NASH and liver cancer. We used a doxycycline (Dox)-inducible liver-specific ETP-overexpressing mouse model on a NAFLD-prone (liver-specific SREBP1a transgenic) background. For this, we evaluated the consequences of local ETP expression in the liver and its effect on hepatic inflammation, fibrosis, and insulin resistance. Accumulation of ETP in the liver induced hepatic inflammation and the development of fibrosis with associated insulin resistance. Surprisingly, ETP overexpression also led to the emergence of liver cancer within 10 months in the SREBP1a transgenic background. Our data revealed that ETP can act as a “second hit” during the progression of NAFLD and can play an important role in the development of NASH and hepatocellular carcinoma (HCC). These observations firmly link elevated levels of ETP to chronic liver disease. Localized buildup in the liver of a collagen-derived cleavage fragment plays a critical role in accelerating the development of tissue scarring and liver cancer in mice. Using a transgenic mouse model of fatty liver disease, a team led by Philipp Scherer from the University of Texas Southwestern Medical Center, Dallas, USA, and Jiyoung Park of Ulsan National Institute of Science and Technology, South Korea, showed that liver-specific accumulation of a collagen fragment known as endotrophin leads to activation of inflammatory and fibrotic pathways. The mice subsequently develop metabolic dysfunction, insulin resistance and, with time, cancerous nodules in the liver. The findings suggest that endotrophin accumulation, when it occurs in liver tissue that already contains large depositions of fat, can overwhelm normal liver physiology and accelerate organ damage.
Collapse
|
18
|
Inazumi T, Yamada K, Shirata N, Sato H, Taketomi Y, Morita K, Hohjoh H, Tsuchiya S, Oniki K, Watanabe T, Sasaki Y, Oike Y, Ogata Y, Saruwatari J, Murakami M, Sugimoto Y. Prostaglandin E2-EP4 Axis Promotes Lipolysis and Fibrosis in Adipose Tissue Leading to Ectopic Fat Deposition and Insulin Resistance. Cell Rep 2020; 33:108265. [DOI: 10.1016/j.celrep.2020.108265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
|
19
|
Rashid MBMA. Artificial Intelligence Effecting a Paradigm Shift in Drug Development. SLAS Technol 2020; 26:3-15. [PMID: 32940124 DOI: 10.1177/2472630320956931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The inverse relationship between the cost of drug development and the successful integration of drugs into the market has resulted in the need for innovative solutions to overcome this burgeoning problem. This problem could be attributed to several factors, including the premature termination of clinical trials, regulatory factors, or decisions made in the earlier drug development processes. The introduction of artificial intelligence (AI) to accelerate and assist drug development has resulted in cheaper and more efficient processes, ultimately improving the success rates of clinical trials. This review aims to showcase and compare the different applications of AI technology that aid automation and improve success in drug development, particularly in novel drug target identification and design, drug repositioning, biomarker identification, and effective patient stratification, through exploration of different disease landscapes. In addition, it will also highlight how these technologies are translated into the clinic. This paradigm shift will lead to even greater advancements in the integration of AI in automating processes within drug development and discovery, enabling the probability and reality of attaining future precision and personalized medicine.
Collapse
|
20
|
Wang J, Pan W. The Biological Role of the Collagen Alpha-3 (VI) Chain and Its Cleaved C5 Domain Fragment Endotrophin in Cancer. Onco Targets Ther 2020; 13:5779-5793. [PMID: 32606789 PMCID: PMC7319802 DOI: 10.2147/ott.s256654] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
The collagen alpha-3 (VI) chain encoded by the gene COL6A3 is one of the 3 subunits of collagen VI which is a microfibrillar component of the extracellular matrix and is essential for the stable assembly process of collagen VI. The collagen alpha-3 (VI) chain and the cleaved C5 domain fragment, called endotrophin, are highly expressed in a variety of cancers and play a crucial role in cancer progression. The biological functions of endotrophin in tumors can be driven by adipocytes. Studies have demonstrated that endotrophin can directly affect the malignancy of cancer cells through TGF-β-dependent mechanisms, inducing epithelial–mesenchymal transition and fibrosis of the tumor microenvironment. In addition, endotrophin can also recruit macrophages and endothelial cells through chemotaxis to regulate the tumor microenvironment and ultimately promote tumor inflammation and angiogenesis. Furthermore, COL6A3 and endotrophin serve as novel diagnostic and prognostic biomarkers in cancer and contribute to clinical therapeutic applications in the future. In summary, in this review, we discuss the importance of the collagen alpha-3 (VI) chain and endotrophin in cancer progression, the future clinical applications of endotrophin and the remaining challenges in this field.
Collapse
Affiliation(s)
- Jingya Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Wensheng Pan
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
21
|
Tian R, Wang X, Pan T, Li R, Wang J, Liu Z, Chen E, Mao E, Tan R, Chen Y, Liu J, Qu H. Plasma PTX3, MCP1 and Ang2 are early biomarkers to evaluate the severity of sepsis and septic shock. Scand J Immunol 2019; 90:e12823. [PMID: 31489646 PMCID: PMC6900011 DOI: 10.1111/sji.12823] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
Sepsis is associated with significant mortality. Early diagnosis and prognosis of patients with sepsis is still a difficult clinical challenge. In this study, the ability of plasma PTX3 (pentraxin 3), MCP1 (monocyte chemoattractant protein 1) and Ang (angiopoietin)1/2 was investigated to evaluate the severity of sepsis. Blood samples were obtained from 43 patients with sepsis. A total of 33 post-surgery patients with infections and 25 healthy individuals served as controls. The results showed that plasma PTX3, MCP1 and Ang2 significantly increased in patients on the first day of septic shock onset, while sepsis patients had significantly higher Ang2 level, compared with controls. Furthermore, PTX3, MCP1 and Ang2 had high AUROC values in patients with septic shock on the first day of sepsis onset. The findings suggest that PTX3, MCP1 and Ang2 maybe early predictors to evaluate the severity of sepsis and septic shock with the latest Sepsis 3.0 definitions.
Collapse
Affiliation(s)
- Rui Tian
- Department of Critical Care MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoli Wang
- Department of Critical Care MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tingting Pan
- Department of Critical Care MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ranran Li
- Department of Critical Care MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiahui Wang
- Department of Critical Care MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhaojun Liu
- Department of Critical Care MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Erzhen Chen
- Department of EmergencyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Enqiang Mao
- Department of EmergencyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ruoming Tan
- Department of Critical Care MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yang Chen
- Department of Critical Care MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jialin Liu
- Department of Critical Care MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hongping Qu
- Department of Critical Care MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
22
|
Duan Y, Liu G, Sun Y, Wu J, Xiong Z, Jin T, Chen M. COL6A3 polymorphisms were associated with lung cancer risk in a Chinese population. Respir Res 2019; 20:143. [PMID: 31286980 PMCID: PMC6615180 DOI: 10.1186/s12931-019-1114-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
Background Lung cancer is one of the leading cause of cancer-related death in the world. Recently, many clinical researches have reported that COL6A3 had strong role in many diseases. The aim of this study was to evaluate the association between single nucleotide polymorphisms (SNPs) in COL6A3 and lung cancer susceptibility. Method Eight variants in COL6A3 were genotyped in a Chinese Han population including 510 cases and 495 controls using Agena MassARRAY. Genetic models and haplotype analyses were used to calculate the association between COL6A3 SNPs and lung cancer risk. And we assessed the relative risk by the odds ratio (OR) and 95% confidence interval (CI). Results In our results, we observed that rs115510139 was linked to an increased risk of lung cancer in the codominant (adjusted OR = 1.61, 95%CI: 1.14–2.27, p = 0.007), dominant (adjusted OR = 1.36, 95%CI: 1.02–1.83, p = 0.037), recessive (adjusted OR = 1.41, 95%CI: 1.07–1.85, p = 0.015), and log-additive (adjusted OR = 1.27, 95%CI: 1.07–1.51, p = 0.006) models. After gender stratification analysis, we found that rs115510139, rs3736341 and rs12052971 were significant in males but were non-significant in females. Rs115510139 also can increase the risk of lung cancer in the population of age less than 61 years. When analyzed for the association with lung squamous carcinoma, rs13032404, rs115510139 and rs3736341 were related to the risk of lung cancer. Conclusions Our findings indicated potential associations between COL6A3 polymorphisms and lung cancer risk, which may contribute to the identification of lung cancer patients in a Chinese population. Electronic supplementary material The online version of this article (10.1186/s12931-019-1114-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Duan
- Department of Respiratory Medicine, The First Affiliated Hospital of School of Medicine of Xi'an Jiao Tong University, #277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Gaowen Liu
- Xianyang Central Hospital, Xianyang, 712000, Shaanxi, China
| | - Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Mingwei Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of School of Medicine of Xi'an Jiao Tong University, #277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
23
|
Ao R, Guan L, Wang Y, Wang JN. Silencing of COL1A2, COL6A3, and THBS2 inhibits gastric cancer cell proliferation, migration, and invasion while promoting apoptosis through the PI3k-Akt signaling pathway. J Cell Biochem 2018; 119:4420-4434. [PMID: 29143985 DOI: 10.1002/jcb.26524] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022]
Abstract
This study explores the effect of COL1A2, COL6A3, and THBS2 gene silencing on proliferation, migration, invasion, and apoptosis of gastric cancer cells through the PI3K-Akt signaling pathway. The gastric cancer microarray expression data (GSE19826, GSE79973, and GSE65801) was analyzed. Gastric cancer tissues and corresponding adjacent normal tissues were extracted from patients. Positive expression rate of PI3K, Akt, and p-Akt was measured with immunohistochemistry. Two cell lines, BGC-823 and SGC-7901, were transfected and cells were grouped into blank, negative control, COL1A2-shRNA, COL6A3-shRNA, and THBS2-shRNA groups. Expressions of COL1A2, COL6A3, and THBS2 in gastric cancer cells transfected with corresponding silencing sequences were evaluated by RT-qPCR and Western blot. MTT assay, Transwell, and cell scratch tests were conducted to evaluate cell proliferation, invasion, and migration capacity, respectively. Flow cytometry was used to evaluate cell cycle distribution and apoptosis. The positive expression of PI3K, Akt, and p-Akt was higher in gastric cancer tissues compared with adjacent normal tissues, and the mRNA expression of COL1A2, COL6A3, and THBS2 was increased in gastric cancer tissues. Akt, p-Akt, and PI3K expression drastically decreased in cells transfected with COL1A2, COL6A3, and THBS2 silencing sequences. Cells transfected with COL1A2, COL6A3, and THBS2 silencing sequences exhibited promoted apoptosis but inhibited proliferation, migration, and invasion. This study demonstrates that COL1A2, COL6A3, and THBS2 gene silencing inhibits gastric cancer cell proliferation, migration, and invasion while promoting apoptosis through the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Ran Ao
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Lin Guan
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Ying Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Jia-Ni Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
24
|
Macchi V, Porzionato A, Rossato M, De Caro R. Regional differences between perisynovial and infrapatellar adipose tissue depots and their response to class II and III obesity in patients with osteoarthritis: comment on the article by Harasymowicz et al. Arthritis Rheumatol 2017; 70:146-147. [PMID: 28853225 DOI: 10.1002/art.40241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Kruglikov IL, Wollina U. Local effects of adipose tissue in psoriasis and psoriatic arthritis. PSORIASIS-TARGETS AND THERAPY 2017; 7:17-25. [PMID: 29387604 PMCID: PMC5774600 DOI: 10.2147/ptt.s122959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The structure and physiological state of the local white adipose tissue (WAT) located underneath the lesional psoriatic skin and inside of the joints affected by psoriatic arthritis play an important role in the pathophysiology of these diseases. WAT pads associated with inflammatory sites in psoriasis and psoriatic arthritis are, correspondingly, dermal WAT and articular adipose tissue; these pads demonstrate inflammatory phenotypes in both diseases. Such local WAT inflammation could be the primary effect in the pathophysiology of psoriasis leading to the modification of the local expression of adipokines, a change in the structure of the basement membrane and the release of keratinocytes with consequent epidermal hyperproliferation during psoriasis. Similar articular adipose tissue inflammation can lead to the induction of structural modifications and synovial inflammation in the joints of patients with psoriatic arthritis.
Collapse
Affiliation(s)
| | - Uwe Wollina
- Department of Dermatology and Allergology, Hospital Dresden-Friedrichstadt Academic Teaching Hospital of the Technical University of Dresden, Dresden, Germany
| |
Collapse
|