1
|
Kong L, Zhang Z, Bao J, Zhu X, Tan Y, Xia X, Zhang Q, Hao Y. Influences of cognitive load on center of pressure trajectory of young male adults with excess weight during gait initiation. Front Bioeng Biotechnol 2024; 11:1297068. [PMID: 38249798 PMCID: PMC10796550 DOI: 10.3389/fbioe.2023.1297068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction: Falls and fall-related injuries in young male adults with excess weight are closely related to an increased cognitive load. Previous research mainly focuses on analyzing the postural control status of these populations performing cognitive tasks while stabilized walking progress but overlooked a specific period of walking known as gait initiation (GI). It is yet unknown the influences of cognitive load on this population's postural control status during GI. Objective: This study aimed to determine the influences of cognitive load on the center of pressure (CoP) trajectory of young male adults with excess weight during GI. Design: A controlled laboratory study. Methods: Thirty-six male undergraduate students were recruited and divided into normal-weight, overweight, and obese groups based on their body mass index (BMI). Participants' CoP parameters during GI under single and dual-task conditions were collected by two force platforms. A mixed ANOVA was utilized to detect significant differences. Results: Compared with the normal-weight group, the obese group showed significant changes in the duration and CoP parameters during sub-phases of GI, mainly reflecting prolonged duration, increased CoP path length, higher mediolateral CoP displacement amplitude, and decreased velocity of anteroposterior CoP displacement. During GI with 1-back task, significantly increased mediolateral CoP displacement amplitude occurred in the obese group. During GI with 2-back task, the obese group had increased CoP path length, higher mediolateral CoP displacement amplitude, as well as a decreased velocity of CoP displacement. Conclusion: Based on the changes in CoP parameters during GI with cognitive tasks, young male adults with excess weight, mainly obese ones, have compromised postural stability. During GI with a difficult cognitive task, obese young male adults are more susceptible to deterioration in their lateral postural balance. These findings indicate that the increased cognitive load could exacerbate obese young male adults' postural control difficulty during GI under dual-task conditions, putting them at a higher risk of experiencing incidents of falls. Based on these findings, we offer suggestions for therapists to intervene with these young male adults to ensure their safety of GI.
Collapse
Affiliation(s)
- Lingyu Kong
- School of Physical Education, Soochow University, Suzhou, China
| | - Zhiqi Zhang
- School of Physical Education, Soochow University, Suzhou, China
| | - Jiawei Bao
- School of Mathematical Sciences, Soochow University, Suzhou, China
| | - Xinrui Zhu
- Rehabilitation Medicine Department, Xuzhou Rehabilitation Hospital, Xuzhou, China
| | - Yong Tan
- School of Physical Education, Soochow University, Suzhou, China
| | - Xihao Xia
- Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Qiuxia Zhang
- School of Physical Education, Soochow University, Suzhou, China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
2
|
Parasiliti-Caprino M, Lopez C, Bollati M, Bioletto F, Sola C, Di Carlo MC, Ponzetto F, Gesmundo I, Settanni F, Ghigo E, Mengozzi G, Maccario M, Giordano R. A retrospective study on the association between urine metanephrines and cardiometabolic risk in patients with nonfunctioning adrenal incidentaloma. Sci Rep 2022; 12:14913. [PMID: 36050396 PMCID: PMC9436965 DOI: 10.1038/s41598-022-19321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Several studies argued that cardiovascular evaluation of patients with nonfunctioning adrenal incidentaloma is of particular importance. Therefore, we aimed to evaluate the possibility of stratifying the cardiometabolic risk using metanephrine levels in this setting of patients. A retrospective cross-sectional study was designed, collecting data of metanephrine values in 828 patients with nonfunctioning adrenal incidentaloma, referred to our Division within the University of Turin between 2007 and 2021. The univariate analysis showed associations between urine metanephrines and cardiometabolic variables/parameters, particularly considering the noradrenaline metabolite. At the univariate regression, normetanephrine was associated with metabolic syndrome (OR = 1.13, p = 0.002), hypertensive cardiomyopathy (OR = 1.09, p = 0.026), microalbuminuria (OR = 1.14, p = 0.024), and eGFR < 60 mL/min/1.73 m2 (OR = 1.11, p = 0.013), while metanephrine was associated with microalbuminuria (OR = 1.50, p = 0.008). At multivariate regression, considering all major cardiovascular risk factors as possible confounders, normetanephrine retained a significant association with metabolic syndrome (OR = 1.10, p = 0.037). Moreover, metanephrine retained a significant association with the presence of microalbuminuria (OR = 1.66, p = 0.003). The present study showed a further role for metanephrines in the cardiovascular risk stratification of patients with nonfunctioning adrenal incidentaloma. Individuals with high levels of these indirect markers of sympathetic activity should be carefully monitored and may benefit from an aggressive treatment to reduce their additional cardiometabolic burden.
Collapse
Affiliation(s)
- Mirko Parasiliti-Caprino
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| | - Chiara Lopez
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Martina Bollati
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Fabio Bioletto
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Chiara Sola
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Maria Chiara Di Carlo
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Federico Ponzetto
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Iacopo Gesmundo
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Fabio Settanni
- Clinical Biochemistry Laboratory, City of Health and Science University Hospital, Turin, Italy
| | - Ezio Ghigo
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Giulio Mengozzi
- Clinical Biochemistry Laboratory, City of Health and Science University Hospital, Turin, Italy
| | - Mauro Maccario
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Roberta Giordano
- Department of Biological and Clinical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Chi ZC. Metabolic associated fatty liver disease is a disease related to sympathetic nervous system activation. Shijie Huaren Xiaohua Zazhi 2022; 30:465-476. [DOI: 10.11569/wcjd.v30.i11.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Strong evidence from animal and human studies shows that sympathetic nervous system (SNS) activation is a key factor in the development of metabolic associated fatty liver disease (MAFLD). Activation of the sympathetic nervous system plays an important role in the pathogenesis of obesity, metabolic syndrome, diabetes, hypertension, and MAFLD. When genetically susceptible subjects are exposed to a variety of epigenetic changes, their liver damage may develop into MAFLD. Thus, the pathogenesis of MAFLD is complex, involving the complex interaction of insulin resistance, abnormal hormone secretion, obesity, diet, genetic factors, immune activation, gut microbiota, and other factors. In these processes, the role of sympathetic nerves cannot be underestimated. Notably, SNS has been proposed as a therapeutic target for MAFLD by inhibiting sympathetic nerves. It is worthy of further discussion and research.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
4
|
The Role of Obesity-Induced Perivascular Adipose Tissue (PVAT) Dysfunction in Vascular Homeostasis. Nutrients 2021; 13:nu13113843. [PMID: 34836100 PMCID: PMC8621306 DOI: 10.3390/nu13113843] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is an additional special type of adipose tissue surrounding blood vessels. Under physiological conditions, PVAT plays a significant role in regulation of vascular tone, intravascular thermoregulation, and vascular smooth muscle cell (VSMC) proliferation. PVAT is responsible for releasing adipocytes-derived relaxing factors (ADRF) and perivascular-derived relaxing factors (PDRF), which have anticontractile properties. Obesity induces increased oxidative stress, an inflammatory state, and hypoxia, which contribute to PVAT dysfunction. The exact mechanism of vascular dysfunction in obesity is still not well clarified; however, there are some pathways such as renin-angiotensin-aldosterone system (RAAS) disorders and PVAT-derived factor dysregulation, which are involved in hypertension and endothelial dysfunction development. Physical activity has a beneficial effect on PVAT function among obese patients by reducing the oxidative stress and inflammatory state. Diet, which is the second most beneficial non-invasive strategy in obesity treatment, may have a positive impact on PVAT-derived factors and may restore the balance in their concentration.
Collapse
|
5
|
Association of Urine Metanephrine Levels with CardiometaBolic Risk: An Observational Retrospective Study. J Clin Med 2021; 10:jcm10091967. [PMID: 34064307 PMCID: PMC8125207 DOI: 10.3390/jcm10091967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/20/2023] Open
Abstract
No research has explored the role of catecholamine metabolites in the stratification of cardiovascular risk. We aimed to evaluate the relationship between urine metanephrines and cardiometabolic risk/complications. In this retrospective cross-sectional study, we collected the data of 1374 patients submitted to the evaluation of urine metanephrines at the City of Health and Science University Hospital of Turin between 2007 and 2015, mainly for investigating the suspicion of secondary hypertension or the secretion of an adrenal lesion. The univariate analysis showed associations between metanephrines and cardiometabolic variables/parameters, particularly considering noradrenaline metabolite. At univariate regression, normetanephrine was associated with hypertensive cardiomyopathy (OR = 1.18, 95% CI 1.11–1.25; p < 0.001) and metabolic syndrome (OR = 1.11, 95% CI 1.03–1.20; p = 0.004), while metanephrine was associated with hypertensive cardiomyopathy (OR = 1.23, 95% CI 1.06–1.43; p = 0.006) and microalbuminuria (OR = 1.30, 95% CI 1.03–1.60; p = 0.018). At multivariate regression, considering all major cardiovascular risk factors as possible confounders, normetanephrine retained a significant association with hypertensive cardiomyopathy (OR = 1.14, 95% CI 1.07–1.22; p < 0.001) and metabolic syndrome (OR = 1.10, 95% CI 1.02–1.19; p = 0.017). Moreover, metanephrine retained a significant association with the presence of hypertensive cardiomyopathy (OR = 1.18, 95% CI 1.01–1.41; p = 0.049) and microalbuminuria (OR = 1.34, 95% CI 1.03–1.69; p = 0.019). The study showed a strong relationship between metanephrines and cardiovascular complications/metabolic alterations. Individuals with high levels of these indirect markers of sympathetic activity should be carefully monitored, and they may benefit from an aggressive treatment to reduce the cardiometabolic risk.
Collapse
|
6
|
Carnagarin R, Tan K, Adams L, Matthews VB, Kiuchi MG, Marisol Lugo Gavidia L, Lambert GW, Lambert EA, Herat LY, Schlaich MP. Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD)-A Condition Associated with Heightened Sympathetic Activation. Int J Mol Sci 2021; 22:ijms22084241. [PMID: 33921881 PMCID: PMC8073135 DOI: 10.3390/ijms22084241] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver disease affecting a quarter of the global population and is often associated with adverse health outcomes. The increasing prevalence of MAFLD occurs in parallel to that of metabolic syndrome (MetS), which in fact plays a major role in driving the perturbations of cardiometabolic homeostasis. However, the mechanisms underpinning the pathogenesis of MAFLD are incompletely understood. Compelling evidence from animal and human studies suggest that heightened activation of the sympathetic nervous system is a key contributor to the development of MAFLD. Indeed, common treatment strategies for metabolic diseases such as diet and exercise to induce weight loss have been shown to exert their beneficial effects at least in part through the associated sympathetic inhibition. Furthermore, pharmacological and device-based approaches to reduce sympathetic activation have been demonstrated to improve the metabolic alterations frequently present in patients with obesity, MetSand diabetes. Currently available evidence, while still limited, suggests that sympathetic activation is of specific relevance in the pathogenesis of MAFLD and consequentially may offer an attractive therapeutic target to attenuate the adverse outcomes associated with MAFLD.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Kearney Tan
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Leon Adams
- Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Vance B. Matthews
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Marcio G. Kiuchi
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Leslie Marisol Lugo Gavidia
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Gavin W. Lambert
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (G.W.L.); (E.A.L.)
- Human Neurotransmitter Lab, Melbourne, VIC 3004, Australia
| | - Elisabeth A. Lambert
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (G.W.L.); (E.A.L.)
- Human Neurotransmitter Lab, Melbourne, VIC 3004, Australia
| | - Lakshini Y. Herat
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
| | - Markus P. Schlaich
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, RPH Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA 6000, Australia; (R.C.); (K.T.); (V.B.M.); (M.G.K.); (L.M.L.G.); (L.Y.H.)
- Neurovascular Hypertension and Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
- Correspondence: ; Tel.: +61-8-9224-0382; Fax: +61-8-9224-0374
| |
Collapse
|
7
|
Varkaneh Kord H, M Tinsley G, O Santos H, Zand H, Nazary A, Fatahi S, Mokhtari Z, Salehi-Sahlabadi A, Tan SC, Rahmani J, Gaman MA, Sathian B, Sadeghi A, Hatami B, Soltanieh S, Aghamiri S, Bawadi H, Hekmatdoost A. The influence of fasting and energy-restricted diets on leptin and adiponectin levels in humans: A systematic review and meta-analysis. Clin Nutr 2021; 40:1811-1821. [PMID: 33158587 DOI: 10.1016/j.clnu.2020.10.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/05/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Fasting and energy-restricted diets have been evaluated in several studies as a means of improving cardiometabolic biomarkers related to body fat loss. However, further investigation is required to understand potential alterations of leptin and adiponectin concentrations. Thus, we performed a systematic review and meta-analysis to derive a more precise estimate of the influence of fasting and energy-restricted diets on leptin and adiponectin levels in humans, as well as to detect potential sources of heterogeneity in the available literature. METHODS A comprehensive systematic search was performed in Web of Science, PubMed/MEDLINE, Cochrane, SCOPUS and Embase from inception until June 2019. All clinical trials investigating the effects of fasting and energy-restricted diets on leptin and adiponectin in adults were included. RESULTS Twelve studies containing 17 arms and a total of 495 individuals (intervention = 249, control = 246) reported changes in serum leptin concentrations, and 10 studies containing 12 arms with a total of 438 individuals (intervention = 222, control = 216) reported changes in serum adiponectin concentrations. The combined effect sizes suggested a significant effect of fasting and energy-restricted diets on leptin concentrations (WMD: -3.690 ng/ml, 95% CI: -5.190, -2.190, p ≤ 0.001; I2 = 84.9%). However, no significant effect of fasting and energy-restricted diets on adiponectin concentrations was found (WMD: -159.520 ng/ml, 95% CI: -689.491, 370.451, p = 0.555; I2 = 74.2%). Stratified analyses showed that energy-restricted regimens significantly increased adiponectin (WMD: 554.129 ng/ml, 95% CI: 150.295, 957.964; I2 = 0.0%). In addition, subsequent subgroup analyses revealed that energy restriction, to ≤50% normal required daily energy intake, resulted in significantly reduced concentrations of leptin (WMD: -4.199 ng/ml, 95% CI: -7.279, -1.118; I2 = 83.9%) and significantly increased concentrations of adiponectin (WMD: 524.04 ng/ml, 95% CI: 115.618, 932.469: I2 = 0.0%). CONCLUSION Fasting and energy-restricted diets elicit significant reductions in serum leptin concentrations. Increases in adiponectin may also be observed when energy intake is ≤50% of normal requirements, although limited data preclude definitive conclusions on this point.
Collapse
Affiliation(s)
- Hamed Varkaneh Kord
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Grant M Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, United States
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nazary
- Department of Cellular and Molecular, Nutrition School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Somaye Fatahi
- Student Research Committee, Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Mokhtari
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ammar Salehi-Sahlabadi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jamal Rahmani
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mihnea-Alexandru Gaman
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Brijesh Sathian
- Department of Geriatrics and Long Term Care, Rumailah Hospital, Doha, Qatar
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Soltanieh
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hiba Bawadi
- College of Health Sciences, QU-Health, Qatar University, Doha, Qatar
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Meng H, Zhu L, Kord-Varkaneh H, O Santos H, Tinsley GM, Fu P. Effects of intermittent fasting and energy-restricted diets on lipid profile: A systematic review and meta-analysis. Nutrition 2020; 77:110801. [PMID: 32428841 DOI: 10.1016/j.nut.2020.110801] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To the best of our knowledge, no systematic review and meta-analysis has evaluated the cholesterol-lowering effects of intermittent fasting (IF) and energy-restricted diets (ERD) compared with control groups. The aim of this review and meta-analysis was to summarize the effects of controlled clinical trials examining the influence of IF and ERD on lipid profiles. METHODS A systematic review of four independent databases (PubMed/Medline, Scopus, Web of Science and Google Scholar) was performed to identify clinical trials reporting the effects of IF or ERD, relative to non-diet controls, on lipid profiles in humans. A random-effects model, employing the method of DerSimonian and Laird, was used to evaluate effect sizes, and results were expressed as weighted mean difference (WMD) and 95% confidence intervals (CIs). Heterogeneity between studies was calculated using Higgins I2, with values ≥50% considered to represent high heterogeneity. Subgroup analyses were performed to examine the influence of intervention type, baseline lipid concentrations, degree of energy deficit, sex, health status, and intervention duration. RESULTS For the outcomes of low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and triacylglycerols (TG), there were 34, 33, 35, and 33 studies meeting all inclusion criteria, respectively. Overall, results from the random-effects model indicated that IF and ERD interventions resulted significant changes in TC (WMD, -6.93 mg/dL; 95% CI, -10.18 to -3.67; P < 0.001; I2 = 78.2%), LDL-C (WMD, -6.16 mg/dL; 95% CI, -8.42 to -3.90; P ˂ 0.001; I2 = 52%), and TG concentrations (WMD, -6.46 mg/dL; 95% CI, -10.64 to -2.27; P = 0.002; I2 = 61%). HDL-C concentrations did not change significantly after IF or ERD (WMD, 0.50 mg/dL; 95% CI, -0.69 to 1.70; P = 0.411; I2 = 80%). Subgroup analyses indicated potentially differential effects between subgroups for one or more lipid parameters in the majority of analyses. CONCLUSIONS Relative to a non-diet control, IF and ERD are effective for the improvement of circulating TC, LDL-C, and TG concentrations, but have no meaningful effects on HDL-C concentration. These effects are influenced by several factors that may inform clinical practice and future research. The present results suggest that these dietary practices are a means of enhancing the lipid profile in humans.
Collapse
Affiliation(s)
- Haiyan Meng
- Department of Cardiovascular Medicine, Shandong Provincial Third Hospital, Jinan, Shandong Province, People's Republic of China
| | - Lei Zhu
- Department of Endocrinology, Shandong Provincial Third Hospital, Shadowless Hill Road, Tianqiao District, Jinan, Shandong Province, People's Republic of China
| | - Hamed Kord-Varkaneh
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Grant M Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Peng Fu
- Department of Endocrinology, Shandong Provincial Third Hospital, Shadowless Hill Road, Tianqiao District, Jinan, Shandong Province, People's Republic of China.
| |
Collapse
|
9
|
Jewson J, Lambert E, Sari C, Jona E, Shorakae S, Lambert G, Gaida J. Does moxonidine reduce Achilles tendon or musculoskeletal pain in women with polycystic ovarian syndrome? A secondary analysis of a randomised controlled trial. BMC Endocr Disord 2020; 20:131. [PMID: 32847570 PMCID: PMC7449016 DOI: 10.1186/s12902-020-00610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sympathetic activity and insulin resistance have recently been linked with chronic tendon and musculoskeletal pain. Polycystic ovarian syndrome is linked with insulin resistance and increased sympathetic drive and was therefore an appropriate condition to study the effects of modulating sympathetic activity on Achilles tendon and musculoskeletal symptoms. METHODS A secondary analysis of a double-blinded, randomised controlled trial on women with polycystic ovarian syndrome was conducted. Participants received 12 weeks of moxonidine (n = 14) or placebo (n = 18). Musculoskeletal symptom and Victorian Institute of Sport Assessment - Achilles (VISA-A) questionnaires were distributed, and ultrasound tissue characterisation quantified tendon structure at 0 and 12 weeks. 2-way ANOVA was used for multiple comparisons. RESULTS There was no difference in mean change in musculoskeletal symptoms (- 0.6 ± 1.7 vs - 0.4 ± 1.8, p = 0.69) or VISA-A (moxonidine - 0.2 ± 8.8 vs placebo + 4.2 ± 14.6, p = 0.24) attributable to the intervention. There was no difference in any measures of Achilles structure. Moxonidine did not reduce sympathetic drive when compared to placebo. CONCLUSIONS This was the first study to investigate the effects of blocking sympathetic drive on musculoskeletal and Achilles tendon symptoms in a metabolically diverse population. While the study was limited by small sample size and lack of sympathetic modulation, moxonidine did not change tendon pain/structure or musculoskeletal symptoms. TRIAL REGISTRATION ClinicalTrials.gov, NCT01504321 . Registered 5 January 2012.
Collapse
Affiliation(s)
- Jacob Jewson
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.
- Present Address: Olympic Park Sports Medicine Centre, Melbourne, Victoria, Australia.
| | - Elisabeth Lambert
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Carolina Sari
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Eveline Jona
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Soulmaz Shorakae
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Diabetes and Vascular Medicine Unit, Monash Health, Melbourne, Victoria, Australia
| | - Gavin Lambert
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jamie Gaida
- University of Canberra Research Institute for Sport and Exercise (UCRISE), Canberra, ACT, Australia
- Discipline of Physiotherapy, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
10
|
Fatahi S, Nazary-Vannani A, Sohouli MH, Mokhtari Z, Kord-Varkaneh H, Moodi V, Tan SC, Low TY, Zanghelini F, Shidfar F. The effect of fasting and energy restricting diets on markers of glucose and insulin controls: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 61:3383-3394. [PMID: 32744094 DOI: 10.1080/10408398.2020.1798350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inconsistencies exist with regard to influence of fasting and energy-restricting diets on markers of glucose and insulin controls. To address these controversial, this study was conducted to determine the impact of fasting diets on fasting blood sugars (FBSs), insulin, homeostatic model assessment insulin resistance (HOMA-IR) and hemoglobin A1c (HbA1c) levels. A comprehensive systematic search was carried out in electronic databases, i.e., Scopus, PubMed, and Web of Science through June 2019 for RCTs that investigated the impact of fasting and energy-restricting diets on circulating FBS, insulin, HOMA-IR and HbA1c levels from. Weighted mean difference (WMD) with the 95% CI were used for estimating combined effect size. The subgroup analysis was applied to specify the source of heterogeneity among articles. Pooled results from 30 eligible articles with 35 arms demonstrated a significant decrease in FBS (WMD): -3.376 mg/dl, 95% CI: -5.159, -1.594, p < 0.001), insulin (WMD: -1.288 μU/ml, 95% CI: -2.385, -0.191, p = 0.021), HOMA-IR (WMD: -0.41 mg/dl, 95% CI: -0.71, -0.10, p = 0.01) levels following fasting or energy-restricting diets. Nevertheless, no significant changes were observed in serum HbA1c levels. The subgroup analyses showed that overweight or obese people with energy restricting diets and treatment duration >8 weeks had a greater reduction in FBS, insulin and HOMA-IR level compared with other subgroups. The evidence from available studies suggests that the fasting or energy-restricting diets leads to significant reductions in FBS, insulin and HOMA-IR level and has modest, but, non-significant effects on HbA1c levels.
Collapse
Affiliation(s)
- Somaye Fatahi
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Nazary-Vannani
- Students' Scientific Research Center (SSRC), Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Hassan Sohouli
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Mokhtari
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition and dietetics, Faculty of Nutrition 12 Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Kord-Varkaneh
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vihan Moodi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fernando Zanghelini
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle Upon Tyne, UK
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Kord-Varkaneh H, Nazary-Vannani A, Mokhtari Z, Salehi-sahlabadi A, Rahmani J, Clark CCT, Fatahi S, Zanghelini F, Hekmatdoost A, Okunade K, Mirmiran P. The Influence of Fasting and Energy Restricting Diets on Blood Pressure in Humans: A Systematic Review and Meta-Analysis. High Blood Press Cardiovasc Prev 2020; 27:271-280. [DOI: 10.1007/s40292-020-00391-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
|
12
|
Sari CI, Eikelis N, Head GA, Schlaich M, Meikle P, Lambert G, Lambert E. Android Fat Deposition and Its Association With Cardiovascular Risk Factors in Overweight Young Males. Front Physiol 2019; 10:1162. [PMID: 31620011 PMCID: PMC6759693 DOI: 10.3389/fphys.2019.01162] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022] Open
Abstract
Objective Excess adiposity increases the risk of type-2 diabetes and cardiovascular disease development. Beyond the simple level of adiposity, the pattern of fat distribution may influence these risks. We sought to examine if higher android fat distribution was associated with different hemodynamic, metabolic or vascular profile compared to a lower accumulation of android fat deposits in young overweight males. Methods Forty-six participants underwent dual-energy X-ray absorptiometry and were stratified into two groups. Group 1: low level of android fat (<9.5%) and group 2: high level of android fat (>9.5%). Assessments comprised measures of plasma lipid and glucose profile, blood pressure, endothelial function [reactive hyperemia index (RHI)] and muscle sympathetic nerve activity (MSNA). Results There were no differences in weight, BMI, total body fat and lean mass between the two groups. Glucose tolerance and insulin resistance (fasting plasma insulin) were impaired in group 2 (p < 0.05). Levels of plasma triglycerides and 5 lipid species were higher in group 2 (p < 0.05). Endothelial function was less in group 2 (RHI: 1.64 vs. 2.26, p = 0.003) and heart rate was higher (76 vs. 67 bpm, p = 0.004). No difference occurred in MSNA nor blood pressure between the 2 groups. Conclusion Preferential fat accumulation in the android compartment is associated with increased cardiovascular and metabolic risk via alteration of endothelial function.
Collapse
Affiliation(s)
- Carolina Ika Sari
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nina Eikelis
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Iverson Health Innovation Research Institute, School of Health Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Markus Schlaich
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit, The University of Western Australia, Perth, WA, Australia
| | - Peter Meikle
- Metabolomics Laboratories, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Gavin Lambert
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Iverson Health Innovation Research Institute, School of Health Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Elisabeth Lambert
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Iverson Health Innovation Research Institute, School of Health Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
13
|
Grassi G, Biffi A, Seravalle G, Trevano FQ, Dell'Oro R, Corrao G, Mancia G. Sympathetic Neural Overdrive in the Obese and Overweight State. Hypertension 2019; 74:349-358. [PMID: 31203727 DOI: 10.1161/hypertensionaha.119.12885] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nerve traffic recordings (muscle sympathetic nerve traffic [MSNA]) have shown that sympathetic activation may occur in obesity. However, the small sample size of the available studies, presence of comorbidities, heterogeneity of the subjects examined represented major weaknesses not allowing to draw definite conclusions. This is the case for the overweight state. The present meta-analysis evaluated 1438 obese or overweight subjects recruited in 45 microneurographic studies. The analysis was primarily based on MSNA quantification in obesity and overweight, excluding as concomitant conditions hypertension, metabolic syndrome, and other comorbidities. Assessment was extended to the relationships of MSNA with other neuroadrenergic markers, such as plasma norepinephrine and heart rate, anthropometric variables, as body mass index, waist-to-hip ratio, presence/absence of obstructive sleep apnea, and metabolic profile. Compared with normoweights MSNA was significantly greater in overweight and more in obese individuals (37.0±4.1 versus 43.2±3.5 and 50.4±5.0 burts/100 heartbeats, P<0.01). This was the case even in the absence of obstructive sleep apnea. MSNA was significantly directly related to body mass index and waist-to-hip ratio ( r=0.41 and r=0.64, P<0.04 and <0.01, respectively), clinic blood pressure ( r=0.68, P<0.01), total cholesterol, LDL (low-density lipoprotein) cholesterol, and triglycerides ( r=0.91, r=0.94, and r=0.80, respectively, P<0.01) but unrelated to plasma insulin, glucose, and homeostatic model assessment for insulin resistance. No significant correlation was found between MSNA, heart rate, and norepinephrine. Thus, obesity and overweight are characterized by sympathetic overactivity which mirrors the severity of the clinical condition and reflects metabolic alterations, with the exclusion of glucose/insulin profile. Neither heart rate nor norepinephrine appear to represent faithful markers of the muscle sympathetic overdrive.
Collapse
Affiliation(s)
- Guido Grassi
- From the Clinica Medica, Department of Medicine and Surgery (G.G., F.Q.T., R.D.).,University of Milano-Bicocca (G.G.)
| | - Annalisa Biffi
- National Centre for Healthcare Research and Pharmacoepidemiology (A.B., G.C.).,Division of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods (A.B., G.D.)
| | | | - Fosca Quarti Trevano
- From the Clinica Medica, Department of Medicine and Surgery (G.G., F.Q.T., R.D.)
| | - Raffaella Dell'Oro
- From the Clinica Medica, Department of Medicine and Surgery (G.G., F.Q.T., R.D.)
| | - Giovanni Corrao
- National Centre for Healthcare Research and Pharmacoepidemiology (A.B., G.C.).,Division of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods (A.B., G.D.)
| | | |
Collapse
|
14
|
Lambert EA, Esler MD, Schlaich MP, Dixon J, Eikelis N, Lambert GW. Obesity-Associated Organ Damage and Sympathetic Nervous Activity. Hypertension 2019; 73:1150-1159. [DOI: 10.1161/hypertensionaha.118.11676] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Elisabeth A. Lambert
- From the Iverson Health Innovation Research Institute and School of Health Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia (E.A.L., N.E., G.W.L.)
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (E.A.L., M.D.E., N.E., G.W.L.)
| | - Murray D. Esler
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (E.A.L., M.D.E., N.E., G.W.L.)
| | - Markus P. Schlaich
- Dobney Hypertension Centre, School of Medicine–Royal Perth Hospital Unit, University of Western Australia (M.P.S.)
| | - John Dixon
- Clinical Obesity Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (J.D.)
| | - Nina Eikelis
- From the Iverson Health Innovation Research Institute and School of Health Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia (E.A.L., N.E., G.W.L.)
| | - Gavin W. Lambert
- From the Iverson Health Innovation Research Institute and School of Health Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia (E.A.L., N.E., G.W.L.)
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (E.A.L., M.D.E., N.E., G.W.L.)
| |
Collapse
|
15
|
Persil-Ozkan O, Yigit E, Yigit Z. Does weight loss affect the parameters that are metabolically related to cardiovascular diseases? Saudi Med J 2019; 40:347-352. [PMID: 30957127 PMCID: PMC6506665 DOI: 10.15537/smj.2019.4.24007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To assess the differences in the parameters that are metabolically related to cardiovascular diseases after weight loss in obese people with coronary artery diseases (CADs). METHODS This study was conducted on 184 patients who were diagnosed with CADs in Istanbul University Cardiology Institute Hospital, Istanbul, Turkey. The levels of leptin, fibrinogen, homocysteine, high-sensitivity C-reactive protein (hs-CRP), triglycerides, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol (LDL-C), fasting blood glucose and insulin, glycated hemoglobin, and uric acid of the obese patients who were put on calorie restricted diet were evaluated retrospectively and compared before and after weight loss. For comparison, non-obese control patients were also studied. Student's t-test and Chi-square test were used for the statistical analysis. Results: Levels of homocysteine, glycated hemoglobin, and leptin were significantly higher in the obese patients than in the non-obese patients. Diabetic obese patients with CADs lost (11.1%) and non-diabetic obese patients with CADs lost (10.5%) of their body weight in 6 months. The levels of cholesterol, LDL-C, and fibrinogen were significantly improved in both groups. Conclusion: The obese patients lost weight after being on calorie-restricted diets and showed significant improvement in the levels of cholesterol, LDL-C, fibrinogen. There was no significant difference in the levels of homocysteine, hs-CRP, and leptin before and after weight loss in both diabetic and non-diabetic obese patients.
Collapse
Affiliation(s)
- Ozlem Persil-Ozkan
- Department of Nutrition and Dietetics, Istanbul Arel University, Istanbul, Turkey. E-mail.
| | | | | |
Collapse
|
16
|
Cierpka-Kmieć K, Hering D. Tachycardia: The hidden cardiovascular risk factor in uncomplicated arterial hypertension. Cardiol J 2019; 27:857-867. [PMID: 30799548 DOI: 10.5603/cj.a2019.0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 12/30/2022] Open
Abstract
Early detection and management of elevated blood pressure is crucial in reducing the burden of cardiovascular disease (CVD). The importance of an absolute risk assessment and patient risk stratification has been highlighted in the European hypertension guidelines since 2003. Amongst numerous risk factors influencing patient prognosis, elevated heart rate (HR) has been indicated as important predictor of future risk of hypertension, coronary heart disease, sudden cardiac death, heart failure, CVD, stroke, total cancer and mortality. Given that resting HR can be easily determined in clinical practice and modified by lifestyle changes as well as beta-blocker therapy, it seems reasonable that lowering resting HR should be a potential target to reduce disease burden and premature mortality. However, there is a lack of outcome studies of HR lowering in tachycardia-related hypertension. This review outlines the underlying mechanisms of early course hypertension pathophysiology with the critical role of the sympathetic nervous system activation, the prognostic significance of fast HR and the mechanistic rationale for the use of non-pharmacological approaches and/or highly long-acting cardioselective beta-blockers with some consideration given to betaxolol properties.
Collapse
Affiliation(s)
| | - Dagmara Hering
- Medical University of Gdansk, Poland, Debinki 7, 80-952 Gdansk, Poland.
| |
Collapse
|
17
|
Cobos-Puc L, Aguayo-Morales H. Cardiovascular Effects Mediated by Imidazoline Drugs: An Update. Cardiovasc Hematol Disord Drug Targets 2019; 19:95-108. [PMID: 29962350 DOI: 10.2174/1871529x18666180629170336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/05/2017] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Clonidine is a centrally acting antihypertensive drug. Hypotensive effect of clonidine is mediated mainly by central α2-adrenoceptors and/or imidazoline receptors located in a complex network of the brainstem. Unfortunately, clonidine produces side effects such as sedation, mouth dry, and depression. Moxonidine and rilmenidine, compounds of the second generation of imidazoline drugs, with fewer side effects, display a higher affinity for the imidazoline receptors compared with α2-adrenoceptors. The antihypertensive action of these drugs is due to inhibition of the sympathetic outflow primarily through central I1-imidazoline receptors in the RVLM, although others anatomical sites and mechanisms/receptors are involved. Agmatine is regarded as the endogenous ligand for imidazoline receptors. This amine modulates the cardiovascular function. Indeed, when administered in the RVLM mimics the hypotension of clonidine. RESULTS Recent findings have shown that imidazoline drugs also exert biological response directly on the cardiovascular tissues, which can contribute to their antihypertensive response. Currently, new imidazoline receptors ligands are in development. CONCLUSION In the present review, we provide a brief update on the cardiovascular effects of clonidine, moxonidine, rilmenidine, and the novel imidazoline agents since representing an important therapeutic target for some cardiovascular diseases.
Collapse
Affiliation(s)
- Luis Cobos-Puc
- Department of Pharmacology, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Hilda Aguayo-Morales
- Department of Pharmacology, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| |
Collapse
|
18
|
Development of insulin resistance in Nischarin mutant female mice. Int J Obes (Lond) 2018; 43:1046-1057. [PMID: 30546133 DOI: 10.1038/s41366-018-0241-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/18/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVES NISCH-STAB1 is a newly identified locus correlated to human waist-hip ratio (WHR), which is a risk indicator of developing obesity-associated diabetes. Our previous studies have shown that Nisch mutant male mice increased glucose tolerance in chow-fed conditions. Thus we hypothesized that Nisch mutant mice will have changes in insulin resistance, adipocytes, hepatic steatosis when mice are fed with high-fat diet (HFD). METHODS Insulin resistance was assessed in Nisch mutant mice and WT mice fed with high-fat diet (60% by kCal) or chow diet. Whole-body energy metabolism was examined using an indirect calorimeter. Adipose depots including inguinal white adipose tissue (WAT), perigonadal WAT, retroperitoneal WAT, and mesenteric WAT were extracted. Area and eqdiameter of each adipocyte were determined, and insulin signaling was examined as well. Paired samples of subcutaneous and omental visceral adipose tissue were obtained from 400 individuals (267 women, 133 men), and examined the expression of Nischarin. RESULTS We found that insulin signaling was impaired in major insulin-sensitive tissues of Nisch mutant female mice. When mice were fed with HFD for 15 weeks, the Nisch mutant female mice not only developed severe insulin resistance and decreased glucose tolerance compared with wild-type control mice, but also accumulated more white fat, had larger adipocytes and developed severe hepatic steatosis than wild-type control mice. To link our animal studies to human diseases, we further analyzed Nischarin expression in the paired human samples of visceral and subcutaneous adipose tissue from Caucasians. In humans, we found that Nischarin expression is attenuated in adipose tissue with obesity. More importantly, we found that Nischarin mRNA inversely correlated with parameters of obesity, fat distribution, lipid and glucose metabolism. CONCLUSIONS Taken together, our data revealed sexual dimorphism of Nischarin in body fat distribution, insulin resistance, and glucose tolerance in mice.
Collapse
|
19
|
Shorakae S, Lambert EA, Jona E, Ika Sari C, de Courten B, Dixon JB, Lambert GW, Teede HJ. Effect of Central Sympathoinhibition With Moxonidine on Sympathetic Nervous Activity in Polycystic Ovary Syndrome-A Randomized Controlled Trial. Front Physiol 2018; 9:1486. [PMID: 30410448 PMCID: PMC6210452 DOI: 10.3389/fphys.2018.01486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
Sympathetic nervous system (SNS) activity is increased in polycystic ovary syndrome (PCOS). Moxonidine is a centrally acting sympatholytic drug with known beneficial effects on hypertension, insulin sensitivity, dyslipidemia and inflammation. In this double-blind placebo controlled randomized clinical trial we examined the effect of moxonidine on modulating sympathetic activity and downstream metabolic abnormalities in 48 pre-menopausal women with PCOS (Rotterdam diagnostic criteria), recruited from the community (January 2013-August 2015). Participants received moxonidine (0.2 mg daily initially, up titrated to 0.4 mg daily in 2 weeks) (n = 23) or placebo (n = 25) for 12 weeks. Multiunit muscle sympathetic activity (by microneurography) and plasma noradrenaline levels were measured (primary outcomes). Fasting lipids, insulin resistance, serum androgens, and inflammatory markers were measured as secondary outcomes. Forty three women completed the trial (19 moxonidine, 24 placebo). Mean change in burst frequency (-3 ± 7 vs. -3 ± 8 per minute) and burst incidence (-3 ± 10 vs. -4 ± 12 per 100 heartbeat) did not differ significantly between moxonidine and placebo groups. Women on moxonidine had a significant reduction in hs-CRP compared to placebo group (-0.92 ± 2.3 vs. -0.04 ± 1.5) which did not persist post Bonferroni correction. There was a significant association between markers of insulin resistance at baseline and reduction in sympathetic activity with moxonidine. Moxonidine was not effective in modulating sympathetic activity in PCOS. Anti-inflammatory effects of moxonidine and a relationship between insulin resistance and sympathetic response to moxonidine are suggested which need to be further explored. Clinical Trial Registration Number: (NCT01504321).
Collapse
Affiliation(s)
- Soulmaz Shorakae
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Diabetes and Vascular Medicine Unit, Monash Health, Melbourne, VIC, Australia
| | - Elisabeth A Lambert
- Faculty of Health, Arts and Design, Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Eveline Jona
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Carolina Ika Sari
- Human Neurotransmitters Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Diabetes and Vascular Medicine Unit, Monash Health, Melbourne, VIC, Australia
| | - John B Dixon
- Human Neurotransmitters Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia.,Clinical Obesity Research Laboratories, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Gavin W Lambert
- Faculty of Health, Arts and Design, Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, VIC, Australia.,Human Neurotransmitters Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Helena J Teede
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Diabetes and Vascular Medicine Unit, Monash Health, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Lambert EA, Phillips S, Belski R, Tursunalieva A, Eikelis N, Sari CI, Dixon JB, Straznicky N, Grima M, Head GA, Schlaich M, Lambert GW. Endothelial Function in Healthy Young Individuals Is Associated with Dietary Consumption of Saturated Fat. Front Physiol 2017; 8:876. [PMID: 29170641 PMCID: PMC5684178 DOI: 10.3389/fphys.2017.00876] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/18/2017] [Indexed: 11/24/2022] Open
Abstract
Background: A diet rich in fat, in particular saturated fat (SF), may be linked to cardiovascular disease development, possibly due to a detrimental effect of fat on endothelial function (EF). Objective: We aimed to determine whether the habitual SF intake [as a ratio to total fat (the sum of saturated, polyunsaturated, and monounsaturated fat)] might influence endothelial function in young, overweight but otherwise healthy adults. Design: Sixty-nine young adults (49 males, mean age: 23 ± 1 years, mean BMI: 29.1 ± 0.8 kg/m2) were classified into three tertiles according to their habitual SF intake consumption (low SF: <39%, medium SF 39.1–43.7%, and high SF: >43.7% of total fat). Endothelial function was assessed using digital amplitude tonometry. Results: The three groups of individuals were comparable for total energy intake and calories from: fat, protein, and carbohydrates. There was no difference in anthropometric and hemodynamic variables among the groups. Those in the high SF group presented with impaired endothelial function [reactive hyperemia index (RHI): high SF: 1.60 ± 0.08 compared to 2.23 ± 0.16 in the medium SF and 2.12 ± 0.14 in the low SF group, P < 0.01]. Regression analysis, including gender, age, ethnicity, body mass index indicated that the ratio of SF to total fat was an independent predictor of the RHI (P < 0.05). Conclusion: The habitual consumption of a diet high in SF in relation to polyunsaturated and monounsaturated fat was strongly associated with impaired endothelial function in young overweight adults, potentially contributing to increased risk of developing cardiovascular disease.
Collapse
Affiliation(s)
- Elisabeth A Lambert
- Faculty of Health, Arts and Design, Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia.,Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Sarah Phillips
- Faculty of Health, Arts and Design, Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia.,Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Regina Belski
- Department of Health Professions, School of Health Science, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Ainura Tursunalieva
- Department of Statistics Data Science and Epidemiology, School of Health Science, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Nina Eikelis
- Faculty of Health, Arts and Design, Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia.,Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Carolina I Sari
- Faculty of Health, Arts and Design, Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - John B Dixon
- Faculty of Health, Arts and Design, Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia.,Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Clinical Obesity Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of General Practice, Monash University, Clayton, VIC, Australia
| | - Nora Straznicky
- Faculty of Health, Arts and Design, Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Mariee Grima
- Faculty of Health, Arts and Design, Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Markus Schlaich
- Dobney Hypertension Centre, School of Medicine-Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Gavin W Lambert
- Faculty of Health, Arts and Design, Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia.,Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|