1
|
Montastier É, Ye RZ, Noll C, Amrani M, Frisch F, Fortin M, Bouffard L, Phoenix S, Sarrhini O, Cunnane SC, Guérin B, Turcotte EE, Carpentier AC. Nicotinic acid increases adipose tissue dietary fatty acid trapping and reduces postprandial hepatic and cardiac fatty acid uptake in prediabetes. Eur J Pharmacol 2025; 998:177563. [PMID: 40157702 DOI: 10.1016/j.ejphar.2025.177563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Increased adipose tissue (AT) dietary fatty acids (DFA) trapping limits fatty acid exposure to lean organs in the face of elevated postprandial nonesterified fatty acid (NEFA) flux from excess AT intracellular lipolysis in prediabetes. We hypothesized that pharmacological inhibition of postprandial AT intracellular lipolysis using short-acting nicotinic acid (NA) would increase AT DFA trapping and limit AT NEFA spillover to lean organs in subjects with prediabetes. Twenty subjects with impaired glucose tolerance and 19 individuals with normal glucose tolerance underwent four postprandial studies with positron emission tomography/computed tomography with radio-labeled fatty acid tracers and stable isotopic palmitate tracers. Over the 6-h postprandial period, NA increased AT DFA partitioning with reciprocal reduction in liver and in muscle. NA also robustly reduced cardiac and liver total (DFA + NEFA) postprandial fatty acid uptake. Short-acting NA administered postprandially thus enhances AT DFA trapping and markedly reduces postprandial hepatic and cardiac fatty acid uptake. (clinicaltrials.gov NCT02808182).
Collapse
Affiliation(s)
- Émilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mehdi Amrani
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Fortin
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - Otman Sarrhini
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada.
| |
Collapse
|
2
|
Sullivan AE, Courvan MCS, Aday AW, Wasserman DH, Niswender KD, Shardelow EM, Wells EK, Wells QS, Freiberg MS, Beckman JA. The Role of Serum Free Fatty Acids in Endothelium-Dependent Microvascular Function. Endocrinol Diabetes Metab 2025; 8:e70031. [PMID: 39888728 PMCID: PMC11784902 DOI: 10.1002/edm2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/28/2024] [Accepted: 01/11/2025] [Indexed: 02/02/2025] Open
Abstract
BACKGROUND Elevated serum free fatty acid (FFA) concentration is associated with insulin resistance and is a hallmark of metabolic syndrome. A pathological feature of insulin resistance is impaired endothelial function. OBJECTIVE To investigate the effect of FFA reduction with either acipimox, a nicotinic acid derivative that impairs lipolysis, or salsalate, a salicylate that reduces basal and inflammation-induced lipolysis, on insulin-mediated endothelium-dependent vasodilation. METHODS This was a post hoc, combined analysis of two randomised, double-blind, placebo-controlled crossover trials. Sixteen subjects were recruited (6 with metabolic syndrome and 10 controls) and randomised to acipimox 250 mg orally every 6 h for 7 days or placebo. Nineteen subjects were recruited (13 with metabolic syndrome and 6 controls) and randomised to receive salsalate 4.5 g/day for 4 weeks or placebo. The primary outcome was the association between FFA concentration and insulin-mediated vasodilation, measured by venous-occlusion strain-gauge plethysmography at baseline and following FFA modulation with the study drugs. RESULTS At baseline, FFA concentration (R = -0.35, p = 0.043) and insulin sensitivity (HOMA-IR: R = -0.42, p = 0.016, Adipo-IR: R = -0.39, p = 0.025) predicted insulin-mediated vasodilation. FFA levels were significantly reduced after drug pretreatment (0.604 vs. 0.491 mmol/L, p = 0.036) while insulin levels, insulin sensitivity and inflammatory markers were unchanged. Despite a reduction in circulating FFA with drug therapy, neither insulin-stimulated vasodilation nor insulin sensitivity improved. CONCLUSIONS Short-term reduction of FFA concentration does not improve insulin-stimulated vasodilation in patients with metabolic syndrome. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT00759291 and NCT00760019 (formerly NCT00762827).
Collapse
Affiliation(s)
- Alexander E. Sullivan
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Aaron W. Aday
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - David H. Wasserman
- Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Kevin D. Niswender
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Veteran AffairsTennessee Valley Healthcare SystemNashvilleTennesseeUSA
| | - Emily M. Shardelow
- Vanderbilt University Medical CenterProgram for Metabolic Bone DisordersNashvilleTennesseeUSA
| | - Emily K. Wells
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Quinn S. Wells
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Matthew S. Freiberg
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Geriatric Research Education and Clinical Centers (GRECC)Veterans Affairs Tennessee Valley Healthcare SystemNashvilleTennesseeUSA
| | - Joshua A. Beckman
- Division of Vascular Medicine, Department of MedicineUniversity of Texas SouthwesternDallasTexasUSA
| |
Collapse
|
3
|
Wang G, Li X, Zhao J, Chen S, Qin Y, Guan L, Mu Y. Integrating myocardial metabolic imaging and stress myocardial contrast echocardiography to improve the diagnosis of coronary microvascular diseases in rabbits. Quant Imaging Med Surg 2024; 14:5915-5931. [PMID: 39144025 PMCID: PMC11320533 DOI: 10.21037/qims-23-1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Background Persistent challenges associated with misdiagnosis and underdiagnosis of coronary microvascular disease (CMVD) necessitate the exploration of noninvasive imaging techniques to enhance diagnostic accuracy. Therefore, we aimed to integrate multimodal imaging approaches to achieve a higher diagnostic rate for CMVD using high-quality myocardial metabolism imaging (MMI) and myocardial contrast echocardiography (MCE). This combination diagnostic strategy may help address the urgent need for improved CMVD diagnosis. Methods In this study, we established five distinct pretreatment groups, each consisting of nine male rabbit: a fasted group, a nonfasted group, a sugar load group, an acipimox group, and a combination group of nonfasted rabbits administered insulin. Moreover, positron emission tomography-computed tomography (PET/CT) scan windows were established at 30-, 60-, and 90-minute intervals. We developed 10 CMVD models and conducted a diagnosis of CMVD through an integrated analysis of MMI and MCE, including image acquisition and processing. For each heart segment, we calculated the standardized uptake value (SUV) based on body weight (SUVbw), as well as certain ratios of SUV including SUV of the heart (SUVheart) to that of the liver (SUVliver) and SUVheart to SUV of the lung (SUVlung). Additionally, we obtained three coronary SUVbw uptake values. To clarify the relationship between SUVbw uptake values and echocardiographic parameters of the myocardial contrast agent more thoroughly, we conducted a comprehensive analysis across different pretreatment protocols. Receiver operating characteristic (ROC) curve analysis was employed to evaluate the diagnostic accuracy of each parameter in the context of CMVD. Results In the context of MMI, the nonfasted-plus-insulin group, as observed during the 60-minute examination, exhibited a noteworthy total 18F-fluorodeoxyglucose (18F-FDG) uptake of 47.44±6.53 g/mL, which was found to be statistically different from the other groups. To ascertain the reliability of the results, two double-blind investigators independently assessed the data and achieved a good level of agreement, according to the intraclass correlation coefficient (ICC) (0.957). The SUVbw of the nonfasted-plus-insulin group exhibited a moderate correlation with the microvascular blood flow reserve (MBFR) parameters derived from the MCE examination, as evidenced by a r value of 0.686. For the diagnosis of CMVD disease, the diagnostic accuracy of the combined diagnostic method [area under the curve (AUC) =0.789; 95% confidence interval (CI): 0.705-0.873] was significantly higher than that of the MBFR (AUC =0.697; 95% CI: 0.597-0.797) and SUVbw (AUC =0.715; 95% CI: 0.622-0.807) methods (P<0.05). Conclusions Our study demonstrated the feasibility of a simple premedication approach involving free feeding and intravenous insulin in producing high-quality gated heart 18F-FDG PET/CT images in adult male New Zealand white rabbits. This technique holds considerable potential for ischemic heart disease research in rabbits and can enhance CMVD diagnosis via the comprehensive assessment of myocardial metabolism and perfusion.
Collapse
Affiliation(s)
- Guodong Wang
- Department of Echocardiography, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Xiaohong Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiaxin Zhao
- Department of Echocardiography, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Shangke Chen
- Department of Echocardiography, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Yongde Qin
- Department of Nuclear Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lina Guan
- Department of Echocardiography, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Yuming Mu
- Department of Echocardiography, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| |
Collapse
|
4
|
Muniyappa R. Vascular Insulin Resistance and Free Fatty Acids: The Micro-Macro Circulation Nexus. J Clin Endocrinol Metab 2024; 109:e1671-e1672. [PMID: 38181432 DOI: 10.1210/clinem/dgae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Affiliation(s)
- Ranganath Muniyappa
- Clinical Endocrine Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1613, USA
| |
Collapse
|
5
|
Love KM, Jahn LA, Hartline LM, Aylor KW, Liu Z. Impact of Free Fatty Acids on Vascular Insulin Responses Across the Arterial Tree: A Randomized Crossover Study. J Clin Endocrinol Metab 2024; 109:1041-1050. [PMID: 37951842 PMCID: PMC10940257 DOI: 10.1210/clinem/dgad656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
CONTEXT Vascular insulin resistance is commonly observed in obesity and diabetes; yet, insulin action across the vascular tree and the relationship between insulin responses at different vascular locations remains incompletely defined. OBJECTIVE To elucidate the impact of elevated free fatty acids (FFAs) on insulin action across the arterial tree and define the relationship among insulin actions in the different arterial segments. METHODS This randomized crossover study assigned healthy lean adults to 2 separate admissions with euglycemic insulin clamp superimposed for the final 120 minutes of 5-hour lipid or matched-volume saline infusion. Vascular measures including peripheral and central arterial blood pressure, brachial artery flow-mediated dilation (FMD), carotid femoral pulse wave velocity (cfPWV), augmentation index (AIx), pulse wave separation analysis, subendocardial viability ratio (SEVR), and skeletal and cardiac muscle microvascular perfusion were determined before and after insulin clamp. Insulin-mediated whole body glucose disposal was calculated. RESULTS Insulin enhanced FMD, AIx, reflection magnitude, and cardiac and skeletal muscle microvascular perfusion. Elevation of plasma FFA concentrations to the levels seen in the postabsorptive state in people with insulin resistance suppressed SEVR, blunted insulin-induced increases in FMD and cardiac and skeletal muscle microvascular blood volume, and lowered insulin's ability to reduce AIx and reflection magnitude. In multivariate regression, insulin-mediated muscle microvascular perfusion was independently associated with insulin-mediated FMD and cfPWV. CONCLUSION Clinically relevant elevation of plasma FFA concentrations induces pan-arterial insulin resistance, the vascular insulin resistance outcomes are interconnected, and insulin-mediated muscle microvascular perfusion associates with cardiovascular disease predictors. Our data provide biologic plausibility whereby a causative relationship between FFAs and cardiovascular disease could exist, and suggest that further attention to interventions that block FFA-mediated vascular insulin resistance may be warranted.
Collapse
Affiliation(s)
- Kaitlin M Love
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Linda A Jahn
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Lee M Hartline
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Kevin W Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
6
|
Wu L, Huang W, Liu X, Yang B. Investigation of the clinical effects of acipimox in patients with vulnerable carotid atherosclerosis. Vascular 2023; 31:1201-1208. [PMID: 35857037 DOI: 10.1177/17085381221112551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the clinical effects of acipimox in patients with vulnerable carotid atherosclerosis. METHODS 80 patients with vulnerable carotid atherosclerosis who were admitted to the Department of Cardiology in Wuxi Second People's Hospital between February 2020 and October 2021 were enrolled in this study. All of these patients were randomly divided into an observation group (n = 40), who were given acipimox and conventional treatment, and a control group (n = 40), who were given conventional treatment. The levels of blood lipids and adiponectin (APN), the carotid intima-media thickness (IMT), the area, thickness and number of CAS, peak systolic velocities (PSV) and end-diastolic blood velocity (EDV) of common carotid artery (CCA), and the level of inflammatory markers were measured and compared between the two groups pretherapy and posttreatment. Then, the adverse events were collected and compared between the two groups posttreatment. RESULTS The demographics and basic clinical characteristics were not significantly different between the two groups. At posttreatment, the levels of TC, LDL-C, ANP, IL-6, TNF-α and hs-CRP in the observation group were significantly lower than those in the control group at posttreatment. Moreover, the IMT and the area and thickness of CAS in the observation group were significantly lower than those in the control group. After treatment, PSV was lower and EDV was higher in two groups than before treatment; after treatment, compared with control group, PSV in observation group was lower, while EDV was higher. Most importantly, the rate of adverse events was similar in the two groups. CONCLUSIONS Acipimox reduced the blood lipid levels in patients with vulnerable carotid atherosclerosis. It also stabilized vulnerable plaques and reduced CAS.
Collapse
Affiliation(s)
- Lin Wu
- Department of Pharmacy, The Affiliated Wuxi NO. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Weiyi Huang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xiaoxiao Liu
- Department of Cardiology, The Affiliated Wuxi NO. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Baochun Yang
- Department of Pharmacy, The Affiliated Wuxi NO. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
7
|
Pan B, Liu X, Shi J, Chen Y, Xu Z, Shi D, Ruan G, Wang F, Huang Y, Xu C. A Meta-Analysis of Microbial Therapy Against Metabolic Syndrome: Evidence From Randomized Controlled Trials. Front Nutr 2021; 8:775216. [PMID: 34977119 PMCID: PMC8714845 DOI: 10.3389/fnut.2021.775216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Background and aims: Metabolic syndrome (MetS), accompanied with significant intestinal dysbiosis, causes a great public health burden to human society. Here, we carried out a meta-analysis to qualify randomized controlled trials (RCTs) and to systematically evaluate the effect of microbial therapy on MetS. Methods and results: Forty-two RCTs were eligible for this meta-analysis after searching the PubMed, Cochrane, and Embase databases. Pooled estimates demonstrated that treatment with microbial therapy significantly reduced the waist circumference (WC) (SMD = -0.26, 95% CI -0.49, -0.03), fasting blood glucose (FBG) (SMD = -0.35, 95% CI -0.52, -0.18), total cholesterol (TC) (SMD = -0.36, 95% CI -0.55, -0.17), low-density lipoprotein cholesterol (LDL-C) (SMD = -0.42, 95% CI -0.61, -0.22), and triacylglycerol (TG)(SMD = -0.38, 95% CI -0.55, -0.20), but increased the high-density lipoprotein cholesterol (HDL-C) (SMD = 0.28, 95% CI.03, 0.52). Sensitivity analysis indicated that after eliminating one study utilizing Bifidobacteriumlactis, results became statistically significant in diastolic blood pressure (DBP) (SMD = -0.24, 95% CI -0.41, -0.07) and in Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) (SMD = -0.28, 95% CI -0.54, -0.03), while the body mass index (BMI) showed significant difference after eliminating one study utilizing oat bran (SMD = -0.16, 95% CI -0.31, -0.01). There was still no significant effect in systolic blood pressure (SBP) and in hemoglobin A1c (HbA1c%). Conclusion: In patients with MetS, the conditioning with microbial therapy notably improves FBG, TC, TG, HDL-C, LDL-C, WC, BMI (except for the study using oat bran), HOMA-IR, and DBP (except for the Study using Bifidobacteriumlactis), however, with no effect in SBP and in HbA1c%.
Collapse
Affiliation(s)
- Binhui Pan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiujie Liu
- Institute of Ischemia/Reperfusion Injury, Wenzhou Medical University, Wenzhou, China
| | - Jiangmin Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaoxuan Chen
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihua Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dibang Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gaoyi Ruan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Yingpeng Huang
- Department of Gastrointestinal Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changlong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Yuan J, Jiang Q, Song L, Liu Y, Li M, Lin Q, Li Y, Su K, Ma Z, Wang Y, Liu D, Dong J. L-Carnitine Is Involved in Hyperbaric Oxygen-Mediated Therapeutic Effects in High Fat Diet-Induced Lipid Metabolism Dysfunction. Molecules 2020; 25:molecules25010176. [PMID: 31906305 PMCID: PMC6982999 DOI: 10.3390/molecules25010176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/14/2019] [Accepted: 12/25/2019] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism dysfunction and obesity are serious health issues to human beings. The current study investigated the effects of hyperbaric oxygen (HBO) against high fat diet (HFD)-induced lipid metabolism dysfunction and the roles of L-carnitine. C57/B6 mice were fed with HFD or normal chew diet, with or without HBO treatment. Histopathological methods were used to assess the adipose tissues, serum free fatty acid (FFA) levels were assessed with enzymatic methods, and the endogenous circulation and skeletal muscle L-carnitine levels were assessed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Additionally, western blotting was used to assess the expression levels of PPARα, CPT1b, pHSL/HSL, and UCP1. HFD treatment increased body/adipose tissue weight, serum FFA levels, circulation L-carnitines and decreased skeletal muscle L-carnitine levels, while HBO treatment alleviated such changes. Moreover, HFD treatment increased fatty acid deposition in adipose tissues and decreased the expression of HSL, while HBO treatment alleviated such changes. Additionally, HFD treatment decreased the expression levels of PPARα and increased those of CPT1b in skeletal muscle, while HBO treatment effectively reverted such changes as well. In brown adipose tissues, HFD increased the expression of UCP1 and the phosphorylation of HSL, which was abolished by HBO treatment as well. In summary, HBO treatment may alleviate HFD-induced fatty acid metabolism dysfunction in C57/B6 mice, which seems to be associated with circulation and skeletal muscle L-carnitine levels and PPARα expression.
Collapse
Affiliation(s)
- Junhua Yuan
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266071, China
- Correspondence: (Q.J.); (J.D.); Tel.: +86-18300267138 (Q.J.); +86-0532-83780035 (J.D.)
| | - Limin Song
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Yuan Liu
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Manwen Li
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Qian Lin
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Yanrun Li
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Kaizhen Su
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Zhengye Ma
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Yifei Wang
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Defeng Liu
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Jing Dong
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- Correspondence: (Q.J.); (J.D.); Tel.: +86-18300267138 (Q.J.); +86-0532-83780035 (J.D.)
| |
Collapse
|