1
|
Helou V, Smith JD, Harris M, Earland N, Contrera KJ, Chaudhuri AA, Zevallos JP. Emerging Proximal Liquid Biopsy Approaches for Detecting Residual Disease and Predicting Recurrence in Head and Neck Cancer: A Review and Proposal of Novel Liquid Staging. Head Neck 2025; 47:1779-1787. [PMID: 40114519 PMCID: PMC12068541 DOI: 10.1002/hed.28138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma remains challenging due to high recurrence rates and poor survival outcomes. Developing precise technologies for disease burden assessment, treatment response, and minimal residual disease (MRD) surveillance is crucial for improving prognosis. METHODS This review explores the potential of liquid biopsy for MRD and recurrence detection. A novel liquid TNM (LiTNM) staging system is introduced, integrating biomarkers from saliva, surgical drain lymphatic fluid (SLF), and peripheral blood. RESULTS Proximal liquid biopsies, particularly saliva and SLF, offer advantages due to their proximity to the tumor microenvironment. Saliva demonstrates high sensitivity in HPV-associated oropharyngeal cancers, while SLF holds potential in identifying early postoperative recurrence. Despite these advancements, standardization and validation remain challenges. CONCLUSIONS Liquid biopsy approaches show promise for postoperative disease monitoring, yet their clinical implementation remains in the early stages. The proposed LiTNM staging system could complement TNM staging by providing a molecular framework for risk stratification. However, rigorous prospective studies are necessary to validate its clinical utility and facilitate adoption.
Collapse
Affiliation(s)
- Vanessa Helou
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Joshua D. Smith
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Micah Harris
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Noah Earland
- Division of Cancer Biology, Department of Radiation OncologyWashington University School of MedicineSt. LouisMissouriUSA
- Division of Biology and Biomedical SciencesWashington University School of MedicineSt. LouisMissouriUSA
| | - Kevin J. Contrera
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Aadel A. Chaudhuri
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
- Mayo Clinic Comprehensive Cancer CenterRochesterMinnesotaUSA
| | - Jose P. Zevallos
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Kono T, Ozawa H. A comprehensive review of current therapeutic strategies in cancers targeting DNA damage response mechanisms in head and neck squamous cell cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189255. [PMID: 39746459 DOI: 10.1016/j.bbcan.2024.189255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
The DNA damage response (DDR) is an essential mechanism for maintaining genomic stability. Although DDR-targeted therapeutic strategies are being developed in several familial cancers, evaluation of their utility in head and neck squamous cell cancer (HNSCC) is lagging. This review briefly summarizes the mechanisms of DDR and the current knowledge on discovering DDR-related predictive biomarkers in HNSCC. This review also presents novel therapeutic strategies targeting DDR pathways for HNSCC based on the synthetic lethal concept. The combination of DDR inhibitors with cytotoxic treatments such as radiotherapy, chemotherapy, and immune checkpoint inhibitors is being evaluated, and several clinical trials are ongoing in patients with HNSCC. While DDR inhibitors are considered promising treatment options, resistance to these drugs is frequently observed, and their mechanisms are currently active research areas. A better understanding of the correlation between DDR pathways and cancer biology provides new therapeutic strategies for personalized medicine in HNSCC.
Collapse
Affiliation(s)
- Takeyuki Kono
- Department of Otolaryngology-Head Neck Surgery, Keio University School of Medicine, Japan.
| | - Hiroyuki Ozawa
- Department of Otolaryngology-Head Neck Surgery, Keio University School of Medicine, Japan
| |
Collapse
|
3
|
Herreros‐Pomares A, Hervás D, Bagán L, Proaño A, Bagan J. Proliferative verrucous and homogeneous Leukoplakias exhibit differential methylation patterns. Oral Dis 2025; 31:137-147. [PMID: 38852153 PMCID: PMC11808169 DOI: 10.1111/odi.15028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/20/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE Proliferative verrucous leukoplakia (PVL) is considered a clinically distinct entity from other oral leucoplakias (OLs) due to its clinical presentation and evolution. However, molecular differences between them remain unclear. We aimed to determine whether there are methylation differences between PVL and other forms of OLs. MATERIALS AND METHODS Oral biopsies from 12 patients with PVL, eight patients with homogeneous leucoplakia (HL), and 10 healthy individuals were obtained for a genome-wide DNA methylation analysis via the Infinium EPIC Platform. RESULTS A total of 1815 differentially methylated CpGs were found between PVL and HL, with a prominent state of hypermethylation in HL patients. CpGs covered 813 genes with distinct roles, including cell adhesion, extracellular matrix organization, and cell and synaptic signaling. 43% of these genes had been previously described in cancer and associated with prognosis. We developed a multinomial logistic regression model able to differentiate HL, PVL, and control samples. The model had a cross-validated estimate of 73% and included differentially methylated cancer-related genes between the pathological conditions and the healthy donors, including ADNP, BRCA2, CDK13, GNB1, NIN, NUMB, PIK3C2B, PTK2, SHISA4, THSD7B, WWP1, and ZNF292. It also included CpGs covering differentially methylated genes in HL (MEN1 and TNRC6B) and PVL (ACOXL, ADH1B, CAMTA1, CBFA2T3, CPXM2, LRFN2, SORCS2, and SPN). CONCLUSIONS PVL and HL present differential methylation patterns that could be linked to their differential clinical behavior. Our findings show the potential of methylation markers and suggest novel diagnostic biomarkers.
Collapse
Affiliation(s)
- Alejandro Herreros‐Pomares
- Department of BiotechnologyUniversitat Politècnica de ValènciaValenciaSpain
- Centro de Investigación Biomédica en Red CáncerCIBERONCMadridSpain
| | - David Hervás
- Departament of Applied Statistics and Operational Research, and QualityUniversitat Politècnica de ValènciaValenciaSpain
| | - Leticia Bagán
- Medicina Oral Unit, Stomatology DepartmentValencia UniversityValenciaSpain
| | - Alex Proaño
- Medicina Oral Unit, Stomatology DepartmentValencia UniversityValenciaSpain
| | - José Bagan
- Centro de Investigación Biomédica en Red CáncerCIBERONCMadridSpain
- Medicina Oral Unit, Stomatology DepartmentValencia UniversityValenciaSpain
- Department of Stomatology and Maxillofacial SurgeryHospital General Universitario de ValenciaValenciaSpain
- Precancer and Oral Cancer Research Group of Valencia UniversityValenciaSpain
| |
Collapse
|
4
|
Yang R, Li T, Zhang S, Shui C, Ma H, Li C. The effect of circulating tumor DNA on the prognosis of patients with head and neck squamous cell carcinoma: a systematic review and meta-analysis. BMC Cancer 2024; 24:1434. [PMID: 39574043 PMCID: PMC11580464 DOI: 10.1186/s12885-024-13116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Circulating tumour DNA (ctDNA) has emerged as a valuable liquid biopsy biomarker in the field of oncology, including head and neck squamous cell carcinomas (HNSCCs), offering potential insights into cancer diagnosis, progression, and prognosis. This review aims to comprehensively evaluate the utility of ctDNA as a prognostic biomarker in HNSCC. METHODS PubMed and Ovid were searched as part of our review. Studies that investigated the relationship between ctDNA and prognosis in HNSCC patients were included. Outcomes extracted included basic characteristics, ctDNA details and survival data. Meta-analysis was performed on eligible studies to determine pooled progression-free/recurrence-free survival (RFS/PFS) and overall survival (OS). RESULTS Twenty-two studies were included, involving 5062 HNSCC patients from 11 countries. The meta-analysis demonstrated that the positive ctDNA/methylation detection was associated with worse OS (HR = 2.00, 95% CI 1.35-2.96) and worse PFS/RFS (HR = 3.54, 95% CI 1.05-11.85). Positive ctEBV DNA was associated with poorer OS (HR = 2.86, 95% CI 1.84-4.45) and poorer PFS/RFS (HR = 1.93, 95% CI 1.74-2.13). Positive ctHPV DNA was associated with poorer OS (HR = 1.38, 95% CI 1.07-1.38) but not PFS/PFS (HR = 1.33, 95% CI 0.96-1.85). CONCLUSION Meta-analysis indicates that the status of ctDNA is significantly associated with the prognosis of HNSCC patients, with ctDNA/methylation-negative patients demonstrating better PFS/RFS and OS.
Collapse
Affiliation(s)
- Ruoyi Yang
- Head and Neck Surgery Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, 550004, China
| | - Teng Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, 550004, China
| | - Sicheng Zhang
- Head and Neck Surgery Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Chunyan Shui
- Head and Neck Surgery Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Hong Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, 550004, China.
| | - Chao Li
- Head and Neck Surgery Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
5
|
Ghiyasimoghaddam N, Shayan N, Mirkatuli HA, Baghbani M, Ameli N, Ashari Z, Mohtasham N. Does circulating tumor DNA apply as a reliable biomarker for the diagnosis and prognosis of head and neck squamous cell carcinoma? Discov Oncol 2024; 15:427. [PMID: 39259454 PMCID: PMC11390992 DOI: 10.1007/s12672-024-01308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Oral cavity cancer is the most common type of head and neck cancer. There is no definitive standard diagnosis, prognosis, or treatment response biomarker panel based on simple, specific, non-invasive, and reliable methods for head and neck squamous cell carcinoma (HNSCC) patients. On the other hand, the frequent post-treatment biopsies make it challenging to discriminate residual disease or recurrent tumors following postoperative reparative and post-radiation changes. Saliva, blood plasma, and serum samples were commonly used to monitor HNSCC through liquid biopsies. Based on the evidence, the most prominent molecular-based fluid biomarker, such as circulating tumor DNA (ctDNA), has potential applications for early cancer diagnosis, screening, patient management, and surveillance. ctDNA showed genomic and epigenomic changes and the status of human papillomavirus (HPV) with the real-time monitoring of tumor status through cancer therapy. Due to the intra and inter-tumor heterogeneity of tumor cells like cancer stem cells (CSCs) and tumor microenvironment (TME) in HNSCC, the tiny tissue biopsy cannot reflect all genomic and transcriptomic abnormality. Most liquid biopsies are applied to detect circulating molecular biomarkers consisting of cell-free DNA (cfDNA), ctDNA, microRNA, mRNA, and exosome for monitoring tumor progression. Based on the results of previous studies, liquid biopsy can be applied for comprehensive multi-omic discovery by assessing the predictive value of ctDNA in both early and advanced cancers. Liquid biopsy can be used to evaluate molecular signature profiles in HNSCC patients, with great potential to help in early diagnosis, prognosis, surveillance, and treatment monitoring of tumors. These happen by designing longitudinal extensive cohort studies and the utility of organoid technology that promotes the context of personalized and precision cancer medicine.
Collapse
Affiliation(s)
- Negin Ghiyasimoghaddam
- Department of Emergency Medicine, Bohlool Hospital, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Navidreza Shayan
- Department of Medical Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | | - Nima Ameli
- Sinus and Surgical Endoscopic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeynab Ashari
- Department of Cellular and Molecular (Genetic), Faculty of Biology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, P.O. Box: 9177948959, Mashhad, Iran.
| |
Collapse
|
6
|
Nassar SI, Suk A, Nguyen SA, Adilbay D, Pang J, Nathan CAO. The Role of ctDNA and Liquid Biopsy in the Diagnosis and Monitoring of Head and Neck Cancer: Towards Precision Medicine. Cancers (Basel) 2024; 16:3129. [PMID: 39335101 PMCID: PMC11430155 DOI: 10.3390/cancers16183129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Recent data have shown a continued rise in the worldwide annual incidence and mortality rates of head and neck cancers. The present standard for diagnosis and monitoring for disease recurrence or progression involves clinical examination, imaging, and invasive biopsy techniques of lesions suspected of being malignant. In addition to limitations relating to cost, time, and patient discomfort, these methodologies have inherent inaccuracies for detecting recurrence. In view of these limitations, the analysis of patient bodily fluid samples via liquid biopsy proposes a cost-effective and convenient alternative, which provides insight on the biogenetic and biomolecular underpinnings of oncologic disease processes. The monitoring of biomarkers for head and neck cancer via liquid biopsy, including circulating tumor DNA, circulating tumor cells, and circulating cell-free RNA, has shown clinical utility in the screening, diagnosis, prognostication, and monitoring of patients with various forms of head and neck cancer. The present review will provide an update on the current literature examining the use of liquid biopsy in head and neck cancer care and the clinical applicability of potential biomarkers, with a focus on viral and non-viral circulating tumor DNA. Possible future avenues for research to address specific shortcomings of liquid biopsy will be discussed.
Collapse
Affiliation(s)
- Sami I. Nassar
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Amber Suk
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Shaun A. Nguyen
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Dauren Adilbay
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - John Pang
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Cherie-Ann O. Nathan
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| |
Collapse
|
7
|
Huang X, Leo P, Jones L, Duijf PHG, Hartel G, Kenny L, Vasani S, Punyadeera C. A comparison between mutational profiles in tumour tissue DNA and circulating tumour DNA in head and neck squamous cell carcinoma - A systematic review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108477. [PMID: 37977279 DOI: 10.1016/j.mrrev.2023.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Head and neck cancer is the seventh most common malignancy globally. Head and neck squamous cell carcinoma (HNSCC) originates from squamous cells and 90% of HNC are HNSCC. The gold standard for diagnosing HNSCC is tissue biopsy. However, given tumour heterogeneity, biopsies may miss important cancer-associated molecular signatures, and more importantly, after the tumour is excised, there is no means of tracking response to treatment in patients. Captured under liquid biopsy, circulating tumour DNA (ctDNA), may identify in vivo molecular genotypes and complements tumour tissue analysis in cancer management. A systematic search was conducted in PubMed, Embase, Scopus and the Cochran Library between 2012 to early 2023 on ctDNA in HNSCC using publications written in English. We summarise 20 studies that compared mutational profiles between tumour tissue DNA (tDNA) and ctDNA, using a cohort of 631 HNSCC patients and 139 controls. Among these studies, the concordance rates varied greatly and the most mutated and the most concordant gene was TP53, followed by PIK3CA, CDKN2A, NOTCH1 and FAT1. Concordant variants were mainly found in Stage IV tumours, and the mutation type is mostly single nucleotide variants (SNV). We conclude that, as a biomarker for HNSCC, ctDNA demonstrates great promise as it recapitulates tumour genotypes, however additional multi-central trials are needed.
Collapse
Affiliation(s)
- Xiaomin Huang
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery, The School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Paul Leo
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Center for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Australian Translational Genomics Center, Brisbane, QLD, Australia
| | - Lee Jones
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Research Methods Group, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, Australia
| | - Pascal H G Duijf
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Center for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia & SA Pathology, Adelaide, SA, Australia; Department of Medical Genetics, Oslo University Hospital, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Gunter Hartel
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lizbeth Kenny
- School of Medicine, University of Queensland, Brisbane, QLD, Australia; Cancer Care Service, Royal Brisbane Women's Hospital, Brisbane, QLD, Australia
| | - Sarju Vasani
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Otolaryngology, Royal Brisbane Women's Hospital, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery, The School of Environment and Science, Griffith University, Brisbane, QLD, Australia; Menzies Health Institute Queensland, Griffith University, QLD, Australia.
| |
Collapse
|
8
|
Rapado-González Ó, Rodríguez-Ces AM, López-López R, Suárez-Cunqueiro MM. Liquid biopsies based on cell-free DNA as a potential biomarker in head and neck cancer. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:289-302. [PMID: 37680614 PMCID: PMC10480573 DOI: 10.1016/j.jdsr.2023.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
In the era of 'precision medicine', liquid biopsies based on cell-free DNA (cfDNA) have emerged as a promising tool in the oncology field. cfDNA from cancer patients is a mixture of tumoral (ctDNA) and non-tumoral DNA originated from healthy, cancer and tumor microenvironmental cells. Apoptosis, necrosis, and active secretion from extracellular vesicles represent the main mechanisms of cfDNA release into the physiological body fluids. Focused on HNC, two main types of cfDNA can be identified: the circulating cfDNA (ccfDNA) and the salivary cfDNA (scfDNA). Numerous studies have reported on the potential of cfDNA analysis as potential diagnostic, prognostic, and monitoring biomarker for HNC. Thus, ctDNA has emerged as an attractive strategy to detect cancer specific genetic and epigenetic alterations including DNA somatic mutations and DNA methylation patterns. This review aims to provide an overview of the up-to-date studies evaluating the value of the analysis of total cfDNA, cfDNA fragment length, and ctDNA analysis at DNA mutation and methylation level in HNC patients.
Collapse
Affiliation(s)
- Óscar Rapado-González
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana María Rodríguez-Ces
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Rafael López-López
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706 Santiago de Compostela, Spain
| | - María Mercedes Suárez-Cunqueiro
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Koukourakis MI, Xanthopoulou E, Koukourakis IM, Fortis SP, Kesesidis N, Kakouratos C, Karakasiliotis I, Baxevanis CN. Next-Generation Sequencing Analysis of Mutations in Circulating Tumor DNA from the Plasma of Patients with Head-Neck Cancer Undergoing Chemo-Radiotherapy Using a Pan-Cancer Cell-Free Assay. Curr Oncol 2023; 30:8902-8915. [PMID: 37887543 PMCID: PMC10604986 DOI: 10.3390/curroncol30100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Using next-generation sequencing (NGS), we investigated DNA mutations in the plasma tumor cell-free circulating DNA (ctDNA) of 38 patients with inoperable squamous cell head neck cancer (SCHNC) before and after the completion of chemoradiotherapy (CRT). Baseline mutations of the TP53 were recorded in 10/38 (26.3%) and persisted in 4/10 patients after CRT. ΤP53 mutations were further detected post CRT in 7/38 additional patients with undetectable mutations at baseline (overall rate 44.7%). Furthermore, 4/38 patients exhibited baseline mutations of the EGFR, AR, FGFR3, and FBXW3, and four new gene mutations were detected after CRT (MTOR, EGFR3, ALK, and SF3B1). Τ4 stage was related with a significantly higher rate of mutations (TP53 and overall). Mutations were observed in 8/30 (26.6%) responders (complete/partial response) vs. in 6/8 (75%) of the rest of the patients (p = 0.03). Significant poorer LRFS was noted for patients with mutations detected before and after CRT (p = 0.02). Patients who had detectable mutations either before or after CRT had significantly worse DMFS (p = 0.04 overall, and p = 0.02 for TP53 mutations). It was concluded that assessment of mutations before and after the end of CRT is essential to characterize patients with a high risk of locoregional recurrence or metastatic progression.
Collapse
Affiliation(s)
- Michael I. Koukourakis
- Department of Radiotherapy—Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (C.K.)
| | - Erasmia Xanthopoulou
- Department of Radiotherapy—Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (C.K.)
| | - Ioannis M. Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, 11528 Athens, Greece;
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (S.P.F.); (C.N.B.)
| | - Nikolaos Kesesidis
- Laboratory of Biology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (I.K.)
| | - Christos Kakouratos
- Department of Radiotherapy—Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (C.K.)
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (I.K.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (S.P.F.); (C.N.B.)
| |
Collapse
|
10
|
Kampel L, Feldstein S, Tsuriel S, Hannes V, Carmel Neiderman NN, Horowitz G, Warshavsky A, Leider-Trejo L, Hershkovitz D, Muhanna N. Mutated TP53 in Circulating Tumor DNA as a Risk Level Biomarker in Head and Neck Squamous Cell Carcinoma Patients. Biomolecules 2023; 13:1418. [PMID: 37759818 PMCID: PMC10527516 DOI: 10.3390/biom13091418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/28/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Circulating tumor DNA (ctDNA) has been suggested as a surrogate biomarker for early detection of cancer recurrence. We aimed to explore the utility of ctDNA as a noninvasive prognostic biomarker in newly diagnosed head and neck squamous cell carcinoma (HNSCC) patients. Seventy HNSCC specimens were analysed for the detection of TP53 genetic alterations utilizing next-generation sequencing (NGS). TP53 mutations were revealed in 55 (79%). Upon detection of a significant TP53 mutation, circulating cell-free DNA was scrutinized for the presence of the tumor-specific mutation. ctDNA was identified at a minimal allele frequency of 0.08% in 21 out of 30 processed plasma samples. Detectable ctDNA correlated with regional spread (N stage ≥ 1, p = 0.011) and poorer 5-year progression-free survival (20%, 95% CI 10.9 to 28.9, p = 0.034). The high-risk worst pattern of invasion (WPOI grade 4-5) and deep invasion were frequently found in patients whose ctDNA was detected (p = 0.087 and p = 0.072, respectively). Detecting mutated TP53 ctDNA was associated with poor progression-free survival and regional metastases, indicating its potential role as a prognostic biomarker. However, ctDNA detectability in early-stage disease and the mechanisms modulating its release into the bloodstream must be further elucidated.
Collapse
Affiliation(s)
- Liyona Kampel
- The Head and Neck Cancer Research Laboratory, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (L.K.); (N.N.C.N.)
- The Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (G.H.); (A.W.)
| | - Sara Feldstein
- The Cancer Research and Pathology Institute, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (S.F.); (S.T.); (V.H.); (L.L.-T.); (D.H.)
| | - Shlomo Tsuriel
- The Cancer Research and Pathology Institute, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (S.F.); (S.T.); (V.H.); (L.L.-T.); (D.H.)
| | - Victoria Hannes
- The Cancer Research and Pathology Institute, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (S.F.); (S.T.); (V.H.); (L.L.-T.); (D.H.)
| | - Narin N. Carmel Neiderman
- The Head and Neck Cancer Research Laboratory, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (L.K.); (N.N.C.N.)
- The Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (G.H.); (A.W.)
| | - Gilad Horowitz
- The Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (G.H.); (A.W.)
- The Cancer Research and Pathology Institute, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (S.F.); (S.T.); (V.H.); (L.L.-T.); (D.H.)
| | - Anton Warshavsky
- The Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (G.H.); (A.W.)
- The Cancer Research and Pathology Institute, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (S.F.); (S.T.); (V.H.); (L.L.-T.); (D.H.)
| | - Leonor Leider-Trejo
- The Cancer Research and Pathology Institute, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (S.F.); (S.T.); (V.H.); (L.L.-T.); (D.H.)
| | - Dov Hershkovitz
- The Cancer Research and Pathology Institute, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (S.F.); (S.T.); (V.H.); (L.L.-T.); (D.H.)
| | - Nidal Muhanna
- The Head and Neck Cancer Research Laboratory, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (L.K.); (N.N.C.N.)
- The Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (G.H.); (A.W.)
| |
Collapse
|
11
|
Wei C, Lan X, Qiu M, Cui R, Fu Q, Shinge SAU, Muluh TA, Jiang O. Expanding the role of combined immunochemotherapy and immunoradiotherapy in the management of head and neck cancer (Review). Oncol Lett 2023; 26:372. [PMID: 37965160 PMCID: PMC10641411 DOI: 10.3892/ol.2023.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 11/16/2023] Open
Abstract
Immunotherapy has become one of the most promising approaches in tumor therapy, and there are numerous associated clinical trials in China. As an immunosuppressive tumor, head and neck squamous cell carcinoma (HNSCC) carries a high mutation burden, making immune checkpoint inhibitors promising candidates in this field due to their unique mechanism of action. The present review outlines a comprehensive multidisciplinary cancer treatment approach and elaborates on how combining immunochemotherapy and immunoradiotherapy guidelines could enhance clinical efficacy in patients with HNSCC. Furthermore, the present review explores the immunology of HNSCC, current immunotherapeutic strategies to enhance antitumor activity, ongoing clinical trials and the future direction of the current immune landscape in HNSCC. Advanced-stage HNSCC presents with a poor prognosis, low survival rates and minimal improvement in patient survival trends over time. Understanding the potential of immunotherapy and ways to combine it with surgery, chemotherapy and radiotherapy confers good prospects for the management of human papillomavirus (HPV)-positive HNSCC, as well as other HPV-positive malignancies. Understanding the immune system and its effect on HNSCC progression and metastasis will help to uncover novel biomarkers for the selection of patients and to enhance the efficacy of treatments. Further research on why current immune checkpoint inhibitors and targeted drugs are only effective for some patients in the clinic is needed; therefore, further research is required to improve the overall survival of affected patients.
Collapse
Affiliation(s)
- Chun Wei
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Xiaojun Lan
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Maona Qiu
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Ran Cui
- Department of Oncology, The First People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Qiuxia Fu
- Department of General Medicine, The People's Hospital of Luzhou City, Luzhou, Sichuan 646000, P.R. China
| | - Shafiu A. Umar Shinge
- Department of Cardiothoracic Surgery, Sun Yat Sen Memorial Hospital, Sun Yat Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Ou Jiang
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| |
Collapse
|
12
|
Huang X, Duijf PHG, Sriram S, Perera G, Vasani S, Kenny L, Leo P, Punyadeera C. Circulating tumour DNA alterations: emerging biomarker in head and neck squamous cell carcinoma. J Biomed Sci 2023; 30:65. [PMID: 37559138 PMCID: PMC10413618 DOI: 10.1186/s12929-023-00953-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/16/2023] [Indexed: 08/11/2023] Open
Abstract
Head and Neck cancers (HNC) are a heterogeneous group of upper aero-digestive tract cancer and account for 931,922 new cases and 467,125 deaths worldwide. About 90% of these cancers are of squamous cell origin (HNSCC). HNSCC is associated with excessive tobacco and alcohol consumption and infection with oncogenic viruses. Genotyping tumour tissue to guide clinical decision-making is becoming common practice in modern oncology, but in the management of patients with HNSCC, cytopathology or histopathology of tumour tissue remains the mainstream for diagnosis and treatment planning. Due to tumour heterogeneity and the lack of access to tumour due to its anatomical location, alternative methods to evaluate tumour activities are urgently needed. Liquid biopsy approaches can overcome issues such as tumour heterogeneity, which is associated with the analysis of small tissue biopsy. In addition, liquid biopsy offers repeat biopsy sampling, even for patients with tumours with access limitations. Liquid biopsy refers to biomarkers found in body fluids, traditionally blood, that can be sampled to provide clinically valuable information on both the patient and their underlying malignancy. To date, the majority of liquid biopsy research has focused on blood-based biomarkers, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), and circulating microRNA. In this review, we will focus on ctDNA as a biomarker in HNSCC because of its robustness, its presence in many body fluids, adaptability to existing clinical laboratory-based technology platforms, and ease of collection and transportation. We will discuss mechanisms of ctDNA release into circulation, technological advances in the analysis of ctDNA, ctDNA as a biomarker in HNSCC management, and some of the challenges associated with translating ctDNA into clinical and future perspectives. ctDNA provides a minimally invasive method for HNSCC prognosis and disease surveillance and will pave the way in the future for personalized medicine, thereby significantly improving outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Xiaomin Huang
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD), School of Environment and Science, Griffith University, QLD, Brisbane, Australia
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- University Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Ganganath Perera
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Sarju Vasani
- Department of Otolaryngology, Royal Brisbane Women's Hospital, Brisbane, QLD, Australia
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Lizbeth Kenny
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Paul Leo
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Translational Genomics Centre, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD), School of Environment and Science, Griffith University, QLD, Brisbane, Australia.
- Menzies Health Institute Queensland (MIHQ), Griffith University, Gold coast, QLD, Australia.
| |
Collapse
|
13
|
Silvoniemi A, Laine J, Aro K, Nissi L, Bäck L, Schildt J, Hirvonen J, Hagström J, Irjala H, Aaltonen LM, Seppänen M, Minn H. Circulating Tumor DNA in Head and Neck Squamous Cell Carcinoma: Association with Metabolic Tumor Burden Determined with FDG-PET/CT. Cancers (Basel) 2023; 15:3970. [PMID: 37568786 PMCID: PMC10416934 DOI: 10.3390/cancers15153970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The detection of circulating tumor DNA (ctDNA) with next-generation sequencing (NGS) in venous blood is a promising tool for the genomic profiling of head and neck squamous cell carcinoma (HNSCC). The association between ctDNA findings and metabolic tumor burden detected with FDG-PET/CT imaging is of particular interest for developing prognostic and predictive algorithms in HNSCC. METHODS Twenty-six prospectively enrolled HNSCC patients were eligible for further analysis. All patients underwent tumor tissue and venous liquid biopsy sampling and FDG-PET/CT before definitive oncologic treatment. An NGS-based commercial panel was used for a genomic analysis of the samples. RESULTS Maximum variant allele frequency (VAF) in blood correlated positively with whole-body (WB) metabolic tumor volume (MTV) and total lesion glycolysis (TLG) (r = 0.510, p = 0.008 and r = 0.584, p = 0.002, respectively). A positive liquid biopsy was associated with high WB-TLG using VAF ≥ 1.00% or ≥5.00% as a cut-off value (p = 0.006 or p = 0.003, respectively). Additionally, ctDNA detection was associated with WB-TLG when only concordant variants detected in both ctDNA and tissue samples were considered. CONCLUSIONS A high metabolic tumor burden based on FDG imaging is associated with a positive liquid biopsy and high maximum VAF. Our findings suggest a complementary role of metabolic and genomic signatures in the pre-treatment evaluation of HNSCC.
Collapse
Affiliation(s)
- Antti Silvoniemi
- Department of Otorhinolaryngology—Head and Neck Surgery, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
- Turku PET Centre, University of Turku, FI-20521 Turku, Finland
| | - Jukka Laine
- Department of Pathology, Turku University Hospital, University of Turku, FI-20520 Turku, Finland
| | - Katri Aro
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, FI-00029 Helsinki, Finland
| | - Linda Nissi
- Department of Oncology, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
| | - Leif Bäck
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, FI-00029 Helsinki, Finland
| | - Jukka Schildt
- Department of Nuclear Medicine, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki, FI-00029 Helsinki, Finland
| | - Jussi Hirvonen
- Department of Radiology, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
- Department of Radiology, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, FI-33520 Tampere, Finland
| | - Jaana Hagström
- Department of Oral Pathology and Radiology, University of Turku, FI-20520 Turku, Finland
- Department of Pathology, Helsinki University Hospital, Helsinki University, FI-00290 Helsinki, Finland
| | - Heikki Irjala
- Department of Otorhinolaryngology—Head and Neck Surgery, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
| | - Leena-Maija Aaltonen
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, FI-00029 Helsinki, Finland
| | - Marko Seppänen
- Turku PET Centre, University of Turku, FI-20521 Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
| | - Heikki Minn
- Turku PET Centre, University of Turku, FI-20521 Turku, Finland
- Department of Oncology, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
| |
Collapse
|
14
|
Heft Neal ME, Walline HM, Haring CT. Circulating Tumor DNA in Human Papillomavirus-Mediated Oropharynx Cancer: Leveraging Early Data to Inform Future Directions. Cancer J 2023; 29:215-219. [PMID: 37471611 DOI: 10.1097/ppo.0000000000000670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
ABSTRACT Circulating tumor DNA (ctDNA) has become an area of intense study in many solid malignancies including head and neck cancer. This is of particular interest for human papillomavirus-mediated oropharyngeal squamous cell carcinoma as this cohort of patients has excellent survival and is undergoing current clinical trials aimed at treatment de-escalation. Recent studies have demonstrated the prognostic implications of pretreatment ctDNA and the utility of monitoring ctDNA during and posttreatment; however, there is a need for a more critical understanding of ctDNA as it is beginning to be incorporated into clinical trials. This review discusses the current state of ctDNA in oropharynx cancer focusing on ctDNA kinetics and minimal residual disease detection and ends with a discussion of future applications.
Collapse
Affiliation(s)
| | - Heather M Walline
- From the Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - Catherine T Haring
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH
| |
Collapse
|
15
|
Lin LH, Chang KW, Cheng HW, Liu CJ. Identification of Somatic Mutations in Plasma Cell-Free DNA from Patients with Metastatic Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:10408. [PMID: 37373553 DOI: 10.3390/ijms241210408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The accurate diagnosis and treatment of oral squamous cell carcinoma (OSCC) requires an understanding of its genomic alterations. Liquid biopsies, especially cell-free DNA (cfDNA) analysis, are a minimally invasive technique used for genomic profiling. We conducted comprehensive whole-exome sequencing (WES) of 50 paired OSCC cell-free plasma with whole blood samples using multiple mutation calling pipelines and filtering criteria. Integrative Genomics Viewer (IGV) was used to validate somatic mutations. Mutation burden and mutant genes were correlated to clinico-pathological parameters. The plasma mutation burden of cfDNA was significantly associated with clinical staging and distant metastasis status. The genes TTN, PLEC, SYNE1, and USH2A were most frequently mutated in OSCC, and known driver genes, including KMT2D, LRP1B, TRRAP, and FLNA, were also significantly and frequently mutated. Additionally, the novel mutated genes CCDC168, HMCN2, STARD9, and CRAMP1 were significantly and frequently present in patients with OSCC. The mutated genes most frequently found in patients with metastatic OSCC were RORC, SLC49A3, and NUMBL. Further analysis revealed that branched-chain amino acid (BCAA) catabolism, extracellular matrix-receptor interaction, and the hypoxia-related pathway were associated with OSCC prognosis. Choline metabolism in cancer, O-glycan biosynthesis, and protein processing in the endoplasmic reticulum pathway were associated with distant metastatic status. About 20% of tumors carried at least one aberrant event in BCAA catabolism signaling that could possibly be targeted by an approved therapeutic agent. We identified molecular-level OSCC that were correlated with etiology and prognosis while defining the landscape of major altered events of the OSCC plasma genome. These findings will be useful in the design of clinical trials for targeted therapies and the stratification of patients with OSCC according to therapeutic efficacy.
Collapse
Affiliation(s)
- Li-Han Lin
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11121, Taiwan
| | - Hui-Wen Cheng
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
| | - Chung-Ji Liu
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Oral and Maxillofacial Surgery, Taipei MacKay Memorial Hospital, Taipei 10449, Taiwan
| |
Collapse
|
16
|
Worakitchanon W, Panvongsa W, Siripoon T, Kitdumrongthum S, Wongpan A, Arsa L, Trachu N, Jinawath N, Chairoungdua A, Ngamphaiboon N. Six-MicroRNA Prognostic Signature in Patients With Locally Advanced Head and Neck Squamous Cell Carcinoma. JCO Precis Oncol 2023; 7:e2300003. [PMID: 37163716 DOI: 10.1200/po.23.00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 05/12/2023] Open
Abstract
PURPOSE MicroRNAs (miRNAs) have been evaluated as biomarkers in cancers. Therefore, we aimed to identify a prognostic miRNA signature from The Cancer Genome Atlas (TCGA) database and validate it in the Ramathibodi (RA) locally advanced head and neck squamous cell carcinoma (LA-HNSCC) cohort. METHODS The correlation between candidate miRNAs and the survival of patients with LA-HNSCC in TCGA database was analyzed. A prognostic miRNA signature model was generated that classified patients into high-risk and low-risk groups. This candidate miRNA signature was further validated in the independent RA cohort using droplet-digital polymerase chain reaction. RESULTS In TCGA database, we compared the expression of 277 miRNAs between 519 head and neck squamous cell carcinoma tissues and 44 normal tissues. The expression of hsa-miR-10b, hsa-miR-148b, hsa-miR-99a, hsa-miR-127, hsa-miR-370, and hsa-miR-500a was independently associated with overall survival (OS). Thus, we established the miRNA signature risk score from these six miRNAs and categorized patients into low-risk and high-risk groups. The median OS of TCGA patients was significantly shorter in the low-risk group than in the high-risk group (P < .001). The six-miRNA signature was further validated in the RA cohort (N = 87). The median OS of the low-risk group was significantly shorter compared with the high-risk group (P = .03). In multivariate analysis, the six-miRNA signature was an independent prognostic factor for OS in the RA cohort (HR, 1.958; 95% CI, 1.006 to 3.812; P = .048). CONCLUSION We identified a prognostic six-miRNA signature for patients with LA-HNSCC from TCGA cohort and validated it in our independent cohort. However, larger studies are warranted to confirm these results.
Collapse
Affiliation(s)
| | - Wittaya Panvongsa
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Teerada Siripoon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Anongnat Wongpan
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Lalida Arsa
- Molecular Histopathology Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Narumol Trachu
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Integrative Computational BioScience Center (ICBS), Mahidol University, Nakhon Pathom, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Nuttapong Ngamphaiboon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Tinhofer I, Staudte S, George S. Liquid biopsy in head neck cancer: ready for clinical routine diagnostics? Curr Opin Oncol 2023; 35:151-157. [PMID: 36966499 DOI: 10.1097/cco.0000000000000935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
PURPOSE OF REVIEW The bodily fluids of patients with solid cancers representing a minimally-invasive source of clinically exploitable biomarkers have attracted an increasing amount of attention in recent years. In patients with head and neck squamous cell carcinoma (HNSCC), cell-free tumour DNA (ctDNA) belongs to the most promising liquid biomarkers for monitoring disease burden and identifying patients at high risk of recurrence. In this review, we highlight recent studies, evaluating the analytical validity and clinical utility of ctDNA as a dynamic biomarker in HNSCC, especially as it relates to risk stratification and contrasting human papilloma virus (HPV+ and HPV-) and carcinomas. RECENT FINDINGS The clinical potential of minimal residual disease monitoring through viral ctDNA in identifying HPV+ oropharyngeal carcinoma patients at higher risk of recurrence has recently been demonstrated. Furthermore, accumulating evidence supports a potential diagnostic value of ctDNA dynamics in HPV-negative HNSCC. Altogether, recent data suggest that ctDNA analysis may be a valuable tool in guiding (de)escalation of surgical interventions as well as adaptation in radiotherapy dosage, both in the definitive and adjuvant settings. SUMMARY Rigorous clinical trials with patient-relevant endpoints are critical in order to demonstrate that treatment decisions based on ctDNA dynamics result in better outcomes in HNSCC.
Collapse
Affiliation(s)
- Ingeborg Tinhofer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK) partner site Berlin, Germany
| | - Stephanie Staudte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK) partner site Berlin, Germany
| | - Stephen George
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK) partner site Berlin, Germany
| |
Collapse
|
18
|
Extracellular Vesicles as Biomarkers in Head and Neck Squamous Cell Carcinoma: From Diagnosis to Disease-Free Survival. Cancers (Basel) 2023; 15:cancers15061826. [PMID: 36980712 PMCID: PMC10046514 DOI: 10.3390/cancers15061826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arising from different anatomical sites present with different incidences and characteristics, which requires a personalized treatment strategy. Despite the extensive research that has conducted on this malignancy, HNSCC still has a poor overall survival rate. Many attempts have been made to improve the outcomes, but one of the bottlenecks is thought to be the lack of an effective biomarker with high sensitivity and specificity. Extracellular vesicles (EVs) are secreted by various cells and participate in a great number of intercellular communications. Based on liquid biopsy, EV detection in several biofluids, such as blood, saliva, and urine, has been applied to identify the existence and progression of a variety of cancers. In HNSCC, tumor-derived EVs exhibit many functionalities by transporting diverse cargoes, which highlights their importance in tumor screening, the determination of multidisciplinary therapy, prediction of prognosis, and evaluation of therapeutic effects. This review illustrates the classification and formation of EV subtypes, the cargoes conveyed by these vesicles, and their respective functions in HNSCC cancer biology, and discloses their potential as biomarkers during the whole process of tumor diagnosis, treatment, and follow-up.
Collapse
|
19
|
Economopoulou P, Spathis A, Kotsantis I, Maratou E, Anastasiou M, Moutafi MK, Kirkasiadou M, Pantazopoulos A, Giannakakou M, Edelstein DL, Sloane H, Fredebohm J, Jones FS, Kyriazoglou A, Gavrielatou N, Foukas P, Panayiotides I, Psyrri A. Next-generation sequencing (NGS) profiling of matched tumor and circulating tumor DNA (ctDNA) in head and neck squamous cell carcinoma (HNSCC). Oral Oncol 2023; 139:106358. [PMID: 36871349 DOI: 10.1016/j.oraloncology.2023.106358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVES The aim of this pilot study was to evaluate the presence of somatic mutations in matched tumor and circulating DNA (ctDNA) samples from patients with primary head and neck squamous cell carcinoma (HNSCC) and assess the association of changes in ctDNA levels with survival. MATERIALS AND METHODS Our study included 62 patients with stage I-IVB HNSCC treated with surgery or radical chemoradiotherapy with curative intent. Plasma samples were obtained at baseline, at the end of treatment (EOT), and at disease progression. Tumor DNA was extracted from plasma (ctDNA) and tumor tissue (tDNA). The Safe Sequencing System was used assess the presence of pathogenic variants in four genes (TP53, CDKN2A, HRAS and PI3KCA) in both ctDNA and tDNA. RESULTS Forty-five patients had available tissue and plasma samples. Concordance of genotyping results between tDNA and ctDNA at baseline was 53.3%. TP53 mutations were most commonly identified at baseline in both ctDNA (32.6%) and tDNA (40%). The presence of mutations in this restricted set of 4 genes in tissue samples at baseline was associated with decreased overall survival (OS) [median 58.3 months for patients with mutations vs. 89 months for patients without mutations, p < 0.013]. Similarly, patients presenting with mutations in ctDNA had shorter OS [median 53.8 vs. 78.6 months, p < 0.037]. CtDNA clearance at EOT did not show any association with PFS or OS. CONCLUSIONS Liquid biopsy enables real-time molecular characterization of HNSCC and might predict survival. Larger studies are needed to validate the utility of ctDNA as a biomarker in HNSCC.
Collapse
Affiliation(s)
- Panagiota Economopoulou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Aris Spathis
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Ioannis Kotsantis
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Eirini Maratou
- Second Department of Internal Medicine and Research Institute, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Maria Anastasiou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Myrto K Moutafi
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Maria Kirkasiadou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Anastasios Pantazopoulos
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Maria Giannakakou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Daniel L Edelstein
- Medical Affairs, Sysmex Inostics Inc., 1812 Ashland Ave #500, Baltimore, MD 21205, USA
| | - Hillary Sloane
- Medical Affairs, Sysmex Inostics Inc., 1812 Ashland Ave #500, Baltimore, MD 21205, USA
| | - Johannes Fredebohm
- Research and Innovation, Sysmex Inostics GmbH, Alkenried 88, 20251 Hamburg, Germany.
| | - Frederick S Jones
- Research and Innovation, Sysmex Inostics GmbH, Alkenried 88, 20251 Hamburg, Germany.
| | - Anastasios Kyriazoglou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Niki Gavrielatou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece.
| | - Periklis Foukas
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Ioannis Panayiotides
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Amanda Psyrri
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece.
| |
Collapse
|
20
|
Lei H, He A, Jiang Y, Ruan M, Han N. Targeting DNA damage response as a potential therapeutic strategy for head and neck squamous cell carcinoma. Front Oncol 2022; 12:1031944. [PMID: 36338767 PMCID: PMC9634729 DOI: 10.3389/fonc.2022.1031944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 12/20/2023] Open
Abstract
Cells experience both endogenous and exogenous DNA damage daily. To maintain genome integrity and suppress tumorigenesis, individuals have evolutionarily acquired a series of repair functions, termed DNA damage response (DDR), to repair DNA damage and ensure the accurate transmission of genetic information. Defects in DNA damage repair pathways may lead to various diseases, including tumors. Accumulating evidence suggests that alterations in DDR-related genes, such as somatic or germline mutations, single nucleotide polymorphisms (SNPs), and promoter methylation, are closely related to the occurrence, development, and treatment of head and neck squamous cell carcinoma (HNSCC). Despite recent advances in surgery combined with radiotherapy, chemotherapy, or immunotherapy, there has been no substantial improvement in the survival rate of patients with HNSCC. Therefore, targeting DNA repair pathways may be a promising treatment for HNSCC. In this review, we summarized the sources of DNA damage and DNA damage repair pathways. Further, the role of DNA damage repair pathways in the development of HNSCC and the application of small molecule inhibitors targeting these pathways in the treatment of HNSCC were focused.
Collapse
Affiliation(s)
- Huimin Lei
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Ading He
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Yingying Jiang
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Min Ruan
- School of Stomatology, Weifang Medical University, Weifang, China
- Department of Oral Maxillofacio-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Nannan Han
- School of Stomatology, Weifang Medical University, Weifang, China
- Department of Oral Maxillofacio-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Liquid Biopsy in Head and Neck Cancer: Current Evidence and Future Perspective on Squamous Cell, Salivary Gland, Paranasal Sinus and Nasopharyngeal Cancers. Cancers (Basel) 2022; 14:cancers14122858. [PMID: 35740523 PMCID: PMC9221064 DOI: 10.3390/cancers14122858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Head and neck cancer is the sixth most common type of solid tumor and harbors a poor prognosis since most patients are diagnosed at an advanced stage. The study of different tumor components in the blood, saliva or other body fluids is called liquid biopsy. The introduction of novel diagnostic tools such as liquid biopsy could aid in achieving earlier diagnoses and more accurate disease monitoring during treatment. In this manuscript, the reader will find an in-depth review of the current evidence and a future perspective on the role of liquid biopsy in head and neck cancer. Abstract Head and neck cancer (HNC) is currently the sixth most common solid malignancy, accounting for a 50% five-year mortality rate. In the past decade, substantial improvements in understanding its molecular biology have allowed for a growing development of new biomarkers. Among these, the field of liquid biopsy has seen a sustained growth in HNC, demonstrating the feasibility to detect different liquid biomarkers such as circulating tumor DNA (ctDNA), circulating tumor cells (CTC), extracellular vesicles and microRNAs. Liquid biopsy has been studied in HPV-negative squamous cell carcinoma of the head and neck (SCCHN) but also in other subentities such as HPV-related SCCHN, EBV-positive nasopharyngeal cancer and oncogene-driven salivary gland cancers. However, future studies should be internally and externally validated, and ideally, clinical trials should incorporate the use of liquid biomarkers as endpoints in order to prospectively demonstrate their role in HNC. A thorough review of the current evidence on liquid biopsy in HNC as well as its prospects will be conducted.
Collapse
|
22
|
Li CL, Yeh SH, Chen PJ. Circulating Virus–Host Chimera DNAs in the Clinical Monitoring of Virus-Related Cancers. Cancers (Basel) 2022; 14:cancers14102531. [PMID: 35626135 PMCID: PMC9139492 DOI: 10.3390/cancers14102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cell-free tumor DNA (ctDNA), the DNA released into circulation from tumors, is a promising tumor marker with versatile applications. The associations of the amount, somatic mutation frequency, and epigenetic modifications of ctDNA with the tumor burden, tumor behavior, and prognosis have been widely investigated in different types of tumors. However, there are still some challenging issues to be resolved before ctDNA can complement or even replace current serum tumor markers. We propose employing exogenous viral DNA integration that produces unique virus–host chimera DNA (vh-DNA) at junction sites. Cell-free vh-DNA may become a new biomarker because it overcomes background interference detection problems, takes advantage of virus tropism to localize the tumor, and acts as a universal marker for monitoring clonal expansion or tumor loads in tumors related to oncogenic viruses. Abstract The idea of using tumor-specific cell-free DNA (ctDNA) as a tumor biomarker has been widely tested and validated in various types of human cancers and different clinical settings. ctDNA can reflect the presence or size of tumors in a real-time manner and can enable longitudinal monitoring with minimal invasiveness, allowing it to be applied in treatment response assessment and recurrence monitoring for cancer therapies. However, tumor detection by ctDNA remains a great challenge due to the difficulty in enriching ctDNA from a large amount of homologous non-tumor cell-free DNA (cfDNA). Only ctDNA with nonhuman sequences (or rearrangements) can be selected from the background of cfDNA from nontumor DNAs. This is possible for several virus-related cancers, such as hepatitis B virus (HBV)-related HCC or human papillomavirus (HPV)-related cervical or head and neck cancers, which frequently harbor randomly integrated viral DNA. The junction fragments of the integrations, namely virus–host chimera DNA (vh-DNA), can represent the signatures of individual tumors and are released into the blood. Such ctDNA can be enriched by capture with virus-specific probes and therefore exploited as a circulating biomarker to track virus-related cancers in clinical settings. Here, we review virus integrations in virus-related cancers to evaluate the feasibility of vh-DNA as a cell-free tumor marker and update studies on the development of detection and applications. vh-DNA may be a solution to the development of specific markers to manage virus-related cancers in the future.
Collapse
Affiliation(s)
- Chiao-Ling Li
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Shiou-Hwei Yeh
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Center for Genomic Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: (S.-H.Y.); (P.-J.C.)
| | - Pei-Jer Chen
- Center for Genomic Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Correspondence: (S.-H.Y.); (P.-J.C.)
| |
Collapse
|
23
|
Yang X, Xu X, Zhang C, Ji T, Wan T, Liu W. The diagnostic value and prospects of gene mutations in circulating tumor DNA for head and neck cancer monitoring. Oral Oncol 2022; 128:105846. [DOI: 10.1016/j.oraloncology.2022.105846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
24
|
Jiang C, Zhou X, Han J, Yue Z, Li B. OUP accepted manuscript. Oncologist 2022; 27:e604-e605. [PMID: 35536754 PMCID: PMC9256032 DOI: 10.1093/oncolo/oyac087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/29/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chao Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University; Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Xuanchen Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University; Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Jie Han
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University; Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Zhiyong Yue
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University; Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Butuo Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan 250117, Shandong Province, People's Republic of China
| |
Collapse
|
25
|
Burcher KM, Wilson HL, Gavrila E, Abreu A, D’Agostino RB, Zhang W, Porosnicu M. OUP accepted manuscript. Oncologist 2022; 27:e606-e607. [PMID: 35552454 PMCID: PMC9256026 DOI: 10.1093/oncolo/oyac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/29/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Harper L Wilson
- Department of Anesthesiology & Perioperative Medicine, Medical University of South Carolina College of Medicine, Charleston, SC, USA
| | - Elena Gavrila
- Wake Forest School of Medicine, Winston-Salem, Salem, VA, USA
| | - Arianne Abreu
- Department of Internal Medicine, LewisGale Medical Center, Salem, VA, USA
| | - Ralph B D’Agostino
- Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Wei Zhang
- Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mercedes Porosnicu
- Medical Oncology and Hematology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
26
|
Hudečková M, Koucký V, Rottenberg J, Gál B. Gene Mutations in Circulating Tumour DNA as a Diagnostic and Prognostic Marker in Head and Neck Cancer-A Systematic Review. Biomedicines 2021; 9:1548. [PMID: 34829777 PMCID: PMC8615469 DOI: 10.3390/biomedicines9111548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/21/2023] Open
Abstract
(1) Background: Head and Neck Squamous Cell Carcinoma (HNSCC) is one of the most common malignancies globally. An early diagnosis of this disease is crucial, and the detection of gene mutations in circulating tumour DNA (ctDNA) through a liquid biopsy is a promising non-invasive diagnostic method. This review aims to provide an overview of ctDNA mutations in HNSCC patients and discuss the potential use of this tool in diagnosis and prognosis. (2) Methods: A systematic search for articles published in the English language between January 2000 and April 2021 in the Medline and Scopus databases was conducted. (3) Results: A total of 10 studies published in nine publications were selected and analysed. Altogether, 390 samples were obtained from HNSCC patients, and 79 control samples were evaluated. The most often explored gene mutation in ctDNA was TP53. (4) Conclusions: The examination of a larger group of gene mutations and the use of a combination of multiple detection methods contribute to a higher detection rate of mutated ctDNA. More studies are necessary to verify these conclusions and to translate them into clinical practice.
Collapse
Affiliation(s)
- Markéta Hudečková
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, Masaryk University and St. Anne’s University Hospital, 65691 Brno, Czech Republic; (M.H.); (J.R.)
| | - Vladimír Koucký
- Department of Otorhinolaryngology and Head and Neck Surgery, First Medical Faculty, Motol University Hospital, 15000 Prague, Czech Republic;
| | - Jan Rottenberg
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, Masaryk University and St. Anne’s University Hospital, 65691 Brno, Czech Republic; (M.H.); (J.R.)
| | - Břetislav Gál
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, Masaryk University and St. Anne’s University Hospital, 65691 Brno, Czech Republic; (M.H.); (J.R.)
| |
Collapse
|
27
|
Burcher KM, Faucheux AT, Lantz JW, Wilson HL, Abreu A, Salafian K, Patel MJ, Song AH, Petro RM, Lycan T, Furdui CM, Topaloglu U, D’Agostino RB, Zhang W, Porosnicu M. Prevalence of DNA Repair Gene Mutations in Blood and Tumor Tissue and Impact on Prognosis and Treatment in HNSCC. Cancers (Basel) 2021; 13:3118. [PMID: 34206538 PMCID: PMC8267691 DOI: 10.3390/cancers13133118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
PARP inhibitors are currently approved for a limited number of cancers and targetable mutations in DNA damage repair (DDR) genes. In this single-institution retrospective study, the profiles of 170 patients with head and neck squamous cell cancer (HNSCC) and available tumor tissue DNA (tDNA) and circulating tumor DNA (ctDNA) results were analyzed for mutations in a set of 18 DDR genes as well as in gene subsets defined by technical and clinical significance. Mutations were correlated with demographic and outcome data. The addition of ctDNA to the standard tDNA analysis contributed to identification of a significantly increased incidence of patients with mutations in one or more genes in each of the study subsets of DDR genes in groups of patients older than 60 years, patients with laryngeal primaries, patients with advanced stage at diagnosis and patients previously treated with chemotherapy and/or radiotherapy. Patients with DDR gene mutations were found to be significantly less likely to have primary tumors within the in oropharynx or HPV-positive disease. Patients with ctDNA mutations in all subsets of DDR genes analyzed had significantly worse overall survival in univariate and adjusted multivariate analysis. This study underscores the utility of ctDNA analysis, alone, and in combination with tDNA, for defining the prevalence and the role of DDR gene mutations in HNSCC. Furthermore, this study fosters research promoting the utilization of PARP inhibitors in HNSCC precision oncology treatments.
Collapse
Affiliation(s)
- Kimberly M. Burcher
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Andrew T. Faucheux
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Jeffrey W. Lantz
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Harper L. Wilson
- University of Kentucky Medical Center, Lexington, KY 40536, USA;
| | - Arianne Abreu
- Campbell University School of Osteopathic Medicine (CUSOM), Lillington, NC 27546, USA;
| | - Kiarash Salafian
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Manisha J. Patel
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Alexander H. Song
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Robin M. Petro
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Thomas Lycan
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Cristina M. Furdui
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Umit Topaloglu
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Ralph B. D’Agostino
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Wei Zhang
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Mercedes Porosnicu
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| |
Collapse
|