1
|
Saida AB, Mahaut D, Tumanov N, Wouters J, Champagne B, Vanthuyne N, Robiette R, Berionni G. Reactivity and Steric Parameters from 2D to 3D Bulky Pyridines: Increasing Steric Demand at Nitrogen with Chiral Azatriptycenes. Angew Chem Int Ed Engl 2024; 63:e202407503. [PMID: 38781114 DOI: 10.1002/anie.202407503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Sterically hindered pyridines embedded in a three-dimensional triptycene framework have been synthesized, and their resolution by chiral HPLC enabled access to unprecedented enantiopure pyridines exceeding the known steric limits. The design principles for new axially chiral pyridine derivatives are then described. To rationalize their associations with Lewis acids and transition metals, a comprehensive determination of the steric and electronic parameters for this new class of pyridines was performed. This led to the general parameterization of the steric parameters (percent buried volume %VBur, Tolman cone angle θ, and He8_steric descriptor) for a large set of two- and three-dimensional pyridine derivatives. These parameters are shown to describe quantitatively their interactions with carbon- and boron-centered Lewis acids and were used to predict the ΔG° of association with the prototypical B(C6F5)3 Lewis acid widely used in frustrated Lewis pair catalysis. This first parameterization of pyridine sterics is a fundamental basis for the future development of predictive reactivity models and for guiding new applications of bulky and chiral pyridines in organocatalysis, frustrated Lewis pairs, and transition-metal catalysis.
Collapse
Affiliation(s)
- Ali Ben Saida
- Department of Chemistry and Namur Institute of Structured Matter, Université de Namur, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Damien Mahaut
- Department of Chemistry and Namur Institute of Structured Matter, Université de Namur, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Nikolay Tumanov
- Department of Chemistry and Namur Institute of Structured Matter, Université de Namur, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Johan Wouters
- Department of Chemistry and Namur Institute of Structured Matter, Université de Namur, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Benoît Champagne
- Department of Chemistry and Namur Institute of Structured Matter, Université de Namur, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Raphaël Robiette
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 Box L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Guillaume Berionni
- Department of Chemistry and Namur Institute of Structured Matter, Université de Namur, 61 Rue de Bruxelles, 5000, Namur, Belgium
| |
Collapse
|
2
|
Tang C, Han H, Zhang R, de Moraes LS, Qi Y, Wu G, Jones CG, Rodriguez IH, Jiao Y, Liu W, Li X, Chen H, Bancroft L, Zhao X, Stern CL, Guo QH, Krzyaniak MD, Wasielewski MR, Nelson HM, Li P, Stoddart JF. A Geometrically Flexible Three-Dimensional Nanocarbon. J Am Chem Soc 2024; 146:20158-20167. [PMID: 38978232 DOI: 10.1021/jacs.4c05189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The development of architecturally unique molecular nanocarbons by bottom-up organic synthesis is essential for accessing functional organic materials awaiting technological developments in fields such as energy, electronics, and biomedicine. Herein, we describe the design and synthesis of a triptycene-based three-dimensional (3D) nanocarbon, GFN-1, with geometrical flexibility on account of its three peripheral π-panels being capable of interconverting between two curved conformations. An effective through-space electronic communication among the three π-panels of GFN-1 has been observed in its monocationic radical form, which exhibits an extensively delocalized spin density over the entire 3D π-system as revealed by electron paramagnetic resonance and UV-vis-NIR spectroscopies. The flexible 3D molecular architecture of GFN-1, along with its densely packed superstructures in the presence of fullerenes, is revealed by microcrystal electron diffraction and single-crystal X-ray diffraction, which establish the coexistence of both propeller and tweezer conformations in the solid state. GFN-1 exhibits strong binding affinities for fullerenes, leading to host-guest complexes that display rapid photoinduced electron transfer within a picosecond. The outcomes of this research could pave the way for the utilization of shape and electronically complementary nanocarbons in the construction of functional coassemblies.
Collapse
Affiliation(s)
- Chun Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Han Han
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ruihua Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lygia S de Moraes
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yue Qi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Guangcheng Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher G Jones
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Isabel Hernandez Rodriguez
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuesong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hongliang Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Laura Bancroft
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qing-Hui Guo
- MOE Key Laboratory of Bioorganic Phosphorous and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Matthew D Krzyaniak
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Hosea M Nelson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Penghao Li
- Department of Chemistry & Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - J Fraser Stoddart
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Yu Y, Hu Y, Ning C, Shi W, Yang A, Zhao Y, Cao ZY, Xu Y, Du P. BINOL-Based Chiral Macrocycles and Cages. Angew Chem Int Ed Engl 2024; 63:e202407034. [PMID: 38708741 DOI: 10.1002/anie.202407034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/07/2024]
Abstract
Chirality, a fundamental principle in chemistry, biology, and medicine, is prevalent in nature and in organisms. Chiral molecules, such as DNA, RNA, and proteins, are crucial in biomolecular synthesis, as well as in the development of functional materials. Among these, 1,1'-binaphthyl-2,2'-diol (BINOL) stands out for its stable chiral configuration, versatile functionality, and commercial availability. BINOL is widely employed in asymmetric catalysis and chiral materials. This review mainly focuses on recent research over the past five years concerning the use of BINOL derivatives for constructing chiral macrocycles and cages. Their contributions to chiral luminescence, enantiomeric separation, transmembrane transport, and asymmetric catalysis were examined.
Collapse
Affiliation(s)
- Yabing Yu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Yaning Hu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Chengbing Ning
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Wudi Shi
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Ao Yang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Yibo Zhao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Pingwu Du
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
- Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| |
Collapse
|
4
|
Mobili R, Preda G, Dondi D, Monzani E, Vadivel D, Massera C, Pasini D, Amendola V. Triptycene-based diiron(II) mesocates: spin-crossover in solution. Chem Commun (Camb) 2024; 60:5522-5525. [PMID: 38695185 DOI: 10.1039/d4cc00812j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Triptycene-based diiron(II) and dizinc(II) mesocates were obtained using a novel rigid ligand with two pyridylbenzimidazole chelating units fused into the triptycene scaffold. Studies on the diiron(II) assembly in solution showed that the complex undergoes thermal-induced one-step spin-crossover with T1/2 at 243 K (Evans method).
Collapse
Affiliation(s)
- Riccardo Mobili
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100 Pavia, Italy. valeria.amendola@unipv
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, Paris, France.
| | - Giovanni Preda
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100 Pavia, Italy. valeria.amendola@unipv
| | - Daniele Dondi
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100 Pavia, Italy. valeria.amendola@unipv
| | - Enrico Monzani
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100 Pavia, Italy. valeria.amendola@unipv
| | - Dhanalakshmi Vadivel
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100 Pavia, Italy. valeria.amendola@unipv
| | - Chiara Massera
- Department of Chemistry, Life Science and Environmental Sustainability University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Dario Pasini
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100 Pavia, Italy. valeria.amendola@unipv
| | - Valeria Amendola
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100 Pavia, Italy. valeria.amendola@unipv
| |
Collapse
|
5
|
Preda G, Mobili R, Ravelli D, Amendola V, Pasini D. Homoconjugation and Tautomeric Isomerism in Triptycene-Fused Pyridylbenzimidazoles. J Org Chem 2024; 89:5690-5698. [PMID: 38567891 DOI: 10.1021/acs.joc.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The facile, metal-free synthesis and characterization of three new series of triptycene-fused pyridylbenzimidazoles are reported; such compounds possess an imidazole moiety fused within the benzene rings of the trypticene and a pyridine ring installed at position 2 of the imidazole rings. The position of the nitrogen atom of the pyridyl moiety linked to position 2 of the fused benzimidazole scaffold is systematically changed from the ortho to para position. The number of substituted blades bearing the pyridyl-substituted fused benzimidazole scaffolds has been increased from one to three. Such a library of compounds allowed us to evaluate the enhancement of two main effects: tautomeric isomerism and homoconjugation. The characteristic dynamic equilibrium between different isomers induced by prototropic tautomerization was examined by 1H nuclear magnetic resonance spectroscopy. By comparison of the photophysical properties of the new compounds with those of classical planar pyridylbenzimidazoles, the presence of the homoconjugation effect between the different triptycene blades was demonstrated. Fine details of the electronic structure of the new derivatives were unraveled by a computational analysis. The novel compounds can be employed for the construction of intriguing self-assembled supramolecular architectures.
Collapse
Affiliation(s)
- Giovanni Preda
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Riccardo Mobili
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Davide Ravelli
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Valeria Amendola
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
6
|
Preda G, Aricò A, Botta C, Ravelli D, Merli D, Mattiello S, Beverina L, Pasini D. Activation of Solid-State Emission and Photostability through Molecular Confinement: The Case of Triptycene-Fused Quinacridone Dyes. Org Lett 2023; 25:6490-6494. [PMID: 37638412 PMCID: PMC10496147 DOI: 10.1021/acs.orglett.3c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Indexed: 08/29/2023]
Abstract
We report the facile, metal-free convergent synthesis and the characterization of novel quinacridone dyes in which two triptycene units end-cap and sterically confine the quinacridone chromophore. A precise comparison of the confined dyes with their known homologues reveals that the reduction of π-π interactions in triptycene-fused quinacridone dyes compared to classical quinacridone results not only in an increase of solubility and processability but also in an enhancement of fluorescence quantum yield and photostability in the solid state.
Collapse
Affiliation(s)
- Giovanni Preda
- Department
of Chemistry and INSTM, University of Pavia
Via Taramelli 12, 27100 Pavia PV, Italy
| | - Andrea Aricò
- Department
of Chemistry and INSTM, University of Pavia
Via Taramelli 12, 27100 Pavia PV, Italy
| | - Chiara Botta
- SCITEC−CNR,
Consiglio Nazionale delle Ricerche, Istituto
di Scienze e Tecnologie Chimiche ‘G. Natta’, Via A. Corti 12, 20133 Milano, Italy
| | - Davide Ravelli
- Department
of Chemistry and INSTM, University of Pavia
Via Taramelli 12, 27100 Pavia PV, Italy
| | - Daniele Merli
- Department
of Chemistry and INSTM, University of Pavia
Via Taramelli 12, 27100 Pavia PV, Italy
| | - Sara Mattiello
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano-Bicocca and INSTM, Via R. Cozzi 55, 20125, Milano, Italy
| | - Luca Beverina
- Dipartimento
di Scienza dei Materiali, Università
degli Studi Milano-Bicocca and INSTM, Via R. Cozzi 55, 20125, Milano, Italy
| | - Dario Pasini
- Department
of Chemistry and INSTM, University of Pavia
Via Taramelli 12, 27100 Pavia PV, Italy
| |
Collapse
|
7
|
Dauvergne G, Naubron JV, Giorgi M, Bugaut X, Rodriguez J, Carissan Y, Coquerel Y. Enantiospecific Syntheses of Congested Atropisomers through Chiral Bis(aryne) Synthetic Equivalents. Chemistry 2022; 28:e202202473. [PMID: 35943888 PMCID: PMC10087792 DOI: 10.1002/chem.202202473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 12/13/2022]
Abstract
The synthetic equivalents of the enantiopure binaphthyl bis(aryne) atropisomers derived from BINOL (1,1'-bi-2,2'-naphtol) featuring a stereogenic axis vicinal to the two reactive triple bonds can be generated for the first time in solution in an enantiospecific manner. Using a two-step sequence based on the bidirectional [4+2] cycloaddition of furan derivatives followed by an aromatizative deoxygenation reaction, several 9,9'-bianthracenyl-based atropisomers could be prepared enantiospecifically in high enantiomeric purity. Alternatively, bidirectional reactions with anthracene, 2-bromostyrene, and perylene as the arynophiles afforded very congested bis(benzotriptycene), bis(tetraphene) and bis(anthra[1,2,3,4-ghi]perylene) nanocarbon atropisomers in equally high enantiomeric purity. In complement, cross reactions with two different arynophiles revealed possible. The unusual atropisomer prototypes described in this study open the way to enantiopure nanographene atropisomers designed for functions.
Collapse
Affiliation(s)
| | | | - Michel Giorgi
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Marseille, France
| | - Xavier Bugaut
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Yannick Carissan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|
8
|
Rizzo S, Benincori T, Fontana F, Pasini D, Cirilli R. HPLC Enantioseparation of Rigid Chiral Probes with Central, Axial, Helical, and Planar Stereogenicity on an Amylose (3,5-Dimethylphenylcarbamate) Chiral Stationary Phase. Molecules 2022; 27:molecules27238527. [PMID: 36500620 PMCID: PMC9741213 DOI: 10.3390/molecules27238527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The chiral resolving ability of the commercially available amylose (3,5-dimethylphenylcarbamate)-based chiral stationary phase (CSP) toward four chiral probes representative of four kinds of stereogenicity (central, axial, helical, and planar) was investigated. Besides chirality, the evident structural feature of selectands is an extremely limited conformational freedom. The chiral rigid analytes were analyzed by using pure short alcohols as mobile phases at different column temperatures. The enantioselectivity was found to be suitable for all compounds investigated. This evidence confirms that the use of the amylose-based CSP in HPLC is an effective strategy for obtaining the resolution of chiral compounds containing any kind of stereogenic element. In addition, the experimental retention and enantioselectivity behavior, as well as the established enantiomer elution order of the investigated chiral analytes, may be used as key information to track essential details on the enantiorecognition mechanism of the amylose-based chiral stationary phase.
Collapse
Affiliation(s)
- Simona Rizzo
- CNR Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via C. Golgi 19, 20133 Milano, Italy
| | - Tiziana Benincori
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Francesca Fontana
- Dipartimento di Ingegneria e Scienze Applicate, Università di Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
- CSGI Bergamo R.U., Viale Marconi 5, 24044 Dalmine, Italy
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, 27100 Pavia, Italy
| | - Roberto Cirilli
- Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
9
|
Khan N, Itaya K, Wirth T. Chiral Iodotriptycenes: Synthesis and Catalytic Applications. ChemistryOpen 2022; 11:e202200145. [PMID: 35822927 PMCID: PMC9278095 DOI: 10.1002/open.202200145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
New iodotriptycenes, including some chiral derivatives, have been synthesised, and their catalytic potential towards oxidative transformations has been investigated. The enantioselectivities observed in the products using chiral iodotriptycene catalysts are low, probably owing to the large distances between the coordinating groups and the iodine moieties in these compounds.
Collapse
Affiliation(s)
- Nasim Khan
- School of ChemistryCardiff UniversityPark Place, Main BuildingCF10 3ATCardiffUK
| | - Katsunori Itaya
- School of ChemistryCardiff UniversityPark Place, Main BuildingCF10 3ATCardiffUK
| | - Thomas Wirth
- School of ChemistryCardiff UniversityPark Place, Main BuildingCF10 3ATCardiffUK
| |
Collapse
|
10
|
Yamaguchi K, Yokoi K, Umezawa M, Tsuchiya K, Yamada Y, Aoki S. Design, Synthesis, and Anticancer Activity of Triptycene-Peptide Hybrids that Induce Paraptotic Cell Death in Cancer Cells. Bioconjug Chem 2022; 33:691-717. [PMID: 35404581 DOI: 10.1021/acs.bioconjchem.2c00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report on the design and synthesis of triptycene-peptide hybrids (TPHs), 5, syn-6, and anti-6, which are conjugates of a triptycene core unit with two or three cationic KKKGG peptides (K: lysine and G: glycine) through a C8 alkyl chain. It was discovered that syn-6 and anti-6 induce paraptosis, a type of programmed cell death (PCD), in Jurkat cells (leukemia T-lymphocytes). Mechanistic studies indicate that these TPHs induce the transfer of Ca2+ from the endoplasmic reticulum (ER) to mitochondria, a loss of mitochondrial membrane potential (ΔΨm), tethering of the ER and mitochondria, and cytoplasmic vacuolization in the paraptosis processes.
Collapse
Affiliation(s)
- Kohei Yamaguchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Masakazu Umezawa
- Faculty of Advanced Engineering, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,Research Center of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan.,Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan.,Research Institute for Biomedical Science (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| |
Collapse
|
11
|
Inoue R, Furumoto K, Osada T, Morisaki Y. Heterotriptycene Consisting of Unsubstituted Bispyrrole: Synthesis, Crystal Structures, and 2D Nested Hexagonal Array Constructed by NH···π Intermolecular Interactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryo Inoue
- Kwansei Gakuin University: Kansei Gakuin Daigaku Department of Applied Chemistry for Environment 2-1, Gakuene 669-1337 Sanda JAPAN
| | - Kyosuke Furumoto
- Kwansei Gakuin University: Kansei Gakuin Daigaku Department of Applied Chemistry for Environment 2-1 Gakuen 669-1337 Sanda JAPAN
| | - Toshiki Osada
- Kwansei Gakuin University: Kansei Gakuin Daigaku Department of Applied Chemistry for Environment 2-1 Gakuen 669-1337 Sanda JAPAN
| | - Yasuhiro Morisaki
- Kwansei Gakuin University: Kansei Gakuin Daigaku Department of Applied Chemistry for Environment 2-1 Gakuen 669-1337 Sanda JAPAN
| |
Collapse
|
12
|
Woźny M, Mames A, Ratajczyk T. Triptycene Derivatives: From Their Synthesis to Their Unique Properties. Molecules 2021; 27:250. [PMID: 35011478 PMCID: PMC8746337 DOI: 10.3390/molecules27010250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Since the first preparation of triptycene, great progress has been made with respect to its synthesis and the understanding of its properties. Interest in triptycene-based systems is intense; in recent years, advances in the synthetic methodology and properties of new triptycenes have been reported by researchers from various fields of science. Here, an account of these new developments is given and placed in reference to earlier pivotal works that underpin the field. First, we discuss new approaches to the synthesis of new triptycenes. Progress in the regioselective synthesis of sterically demanding systems is discussed. The application of triptycenes in catalysis is also presented. Next, progress in the understanding of the relations between triptycene structures and their properties is discussed. The unique properties of triptycenes in the liquid and solid states are elaborated. Unique interactions, which involve triptycene molecular scaffolds, are presented. Molecular interactions within a triptycene unit, as well as between triptycenes or triptycenes and other molecules, are also evaluated. In particular, the summary of the synthesis and useful features will be helpful to researchers who are using triptycenes as building blocks in the chemical and materials sciences.
Collapse
Affiliation(s)
- Mateusz Woźny
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
13
|
Gu MJ, Wang YF, Han Y, Chen CF. Recent advances on triptycene derivatives in supramolecular and materials chemistry. Org Biomol Chem 2021; 19:10047-10067. [PMID: 34751696 DOI: 10.1039/d1ob01818c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Triptycene derivatives, a type of specific aromatic compound, have been attracting much attention in many research areas. Over the past several years, triptycene and its derivatives have been described to be useful and efficient building blocks for the design and synthesis of novel supramolecular acceptors, porous materials and luminescent materials with specific structures and properties. In this review, recent researches on triptycene derivatives in supramolecular and materials chemistry are summarized. Especially, the construction of a new type of macrocyclic arenes and organic cages with triptycene and its derivatives as building blocks are focused on, and their applications in molecular recognition, self-assembly and gas selective sorption are highlighted. Moreover, the applications of triptycene and its derivatives in porous organic materials and thermally activated delayed fluorescence (TADF) materials are also discussed.
Collapse
Affiliation(s)
- Meng-Jie Gu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-Feng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Rosetti A, Preda G, Villani C, Pierini M, Pasini D, Cirilli R. Triptycene derivatives as chiral probes for studying the molecular enantiorecognition on sub-2-μm particle cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phase. Chirality 2021; 33:883-890. [PMID: 34571576 DOI: 10.1002/chir.23358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022]
Abstract
Two chiral triptycene derivatives were analyzed on the Chiralpak IB-U column packed with cellulose tris(3,5-dimethylphenylcarbamate)-based sub-2-μm diameter particles. Under normal-phase conditions, sub-minute baseline enantioseparations were obtained. Differences in structural elements and chromatographic behavior of the investigated compounds were evaluated to identify the interactions that drive the chiral discrimination process. From the evaluation of the experimental chromatographic data, it was found that hydrogen bond formation is essential for the separation of enantiomers.
Collapse
Affiliation(s)
- Alessia Rosetti
- Department of Chemistry and Drug Technology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Preda
- Department of Chemistry and INSTM Research Unit, University of Pavia, Pavia, Italy
| | - Claudio Villani
- Department of Chemistry and Drug Technology, Sapienza University of Rome, Rome, Italy
| | - Marco Pierini
- Department of Chemistry and Drug Technology, Sapienza University of Rome, Rome, Italy
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Pavia, Italy
| | - Roberto Cirilli
- National Center for the Control and Evaluation of Drugs, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
15
|
Affiliation(s)
- Liwei Zhao
- Haike Group Research Institute of Innovation & Technology, Haike Group, Dongying City, P. R. China
| |
Collapse
|
16
|
Prusinowska N, Czapik A, Kwit M. Chiral Triphenylacetic Acid Esters: Residual Stereoisomerism and Solid-State Variability of Molecular Architectures. J Org Chem 2021; 86:6433-6448. [PMID: 33908243 PMCID: PMC8279475 DOI: 10.1021/acs.joc.1c00279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/29/2022]
Abstract
We have proven the usability and versatility of chiral triphenylacetic acid esters, compounds of high structural diversity, as chirality-sensing stereodynamic probes and as molecular tectons in crystal engineering. The low energy barrier to stereoisomer interconversion has been exploited to sense the chirality of an alkyl substituent in the esters. The structural information are cascaded from the permanently chiral alcohol (inducer) to the stereodynamic chromophoric probe through cooperative interactions. The ECD spectra of triphenylacetic acid esters are highly sensitive to very small structural differences in the inducer core. The tendencies to maximize the C-H···O hydrogen bonds, van der Waals interactions, and London dispersion forces determine the way of packing molecules in the crystal lattice. The phenyl embraces of trityl groups allowed, to some extent, the control of molecular organization in the crystal. However, the spectrum of possible molecular arrangements is very broad and depends on the type of substituent, the optical purity of the sample, and the presence of a second trityl group in the proximity. Racemates crystallize as the solid solution of enantiomers, where the trityl group acts as a protecting group for the stereogenic center. Therefore, the absolute configuration of the inducer is irrelevant to the packing mode of molecules in the crystal.
Collapse
Affiliation(s)
- Natalia Prusinowska
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznań, Poland
- Centre
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu
Poznańskiego 10, 61 614 Poznań, Poland
| | - Agnieszka Czapik
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznań, Poland
| | - Marcin Kwit
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznań, Poland
- Centre
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu
Poznańskiego 10, 61 614 Poznań, Poland
| |
Collapse
|
17
|
Khan MN, Wirth T. Chiral Triptycenes: Concepts, Progress and Prospects. Chemistry 2021; 27:7059-7068. [PMID: 33433031 PMCID: PMC8248085 DOI: 10.1002/chem.202005317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/27/2020] [Indexed: 02/02/2023]
Abstract
Triptycenes have been established as unique scaffolds because of their backbone π-structure with a propeller-like shape and saddle-like cavities. They are some of the key organic molecules that have been extensively studied in polymer chemistry, in supramolecular chemistry and in material science. Triptycenes become chiral molecules when substituents are unsymmetrically attached in at least two of their different aromatic rings. This Minireview highlights the chirality of triptycenes from basics to an advanced stage for the development of functional molecules.
Collapse
Affiliation(s)
- Md. Nasim Khan
- School of ChemistryCardiff UniversityPark Place, Main BuildingCardiffCF10 3ATUK
| | - Thomas Wirth
- School of ChemistryCardiff UniversityPark Place, Main BuildingCardiffCF10 3ATUK
| |
Collapse
|
18
|
Gama M, Antognini Silva X, Doan T, Osi A, Chardon A, Tumanov N, Wouters J, Berionni G. Triptycene Boronates, Boranes, and Boron Ate‐Complexes: Toward Sterically Hindered Triarylboranes and Trifluoroborates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mathieu Gama
- Department of Chemistry Namur Institute of Structured Matter University of Namur 61, rue de Bruxelles 5000 Namur Belgium
| | - Xavier Antognini Silva
- Department of Chemistry Namur Institute of Structured Matter University of Namur 61, rue de Bruxelles 5000 Namur Belgium
| | - Thu‐Hong Doan
- Department of Chemistry Namur Institute of Structured Matter University of Namur 61, rue de Bruxelles 5000 Namur Belgium
| | - Arnaud Osi
- Department of Chemistry Namur Institute of Structured Matter University of Namur 61, rue de Bruxelles 5000 Namur Belgium
| | - Aurélien Chardon
- Department of Chemistry Namur Institute of Structured Matter University of Namur 61, rue de Bruxelles 5000 Namur Belgium
| | - Nikolay Tumanov
- Department of Chemistry Namur Institute of Structured Matter University of Namur 61, rue de Bruxelles 5000 Namur Belgium
| | - Johan Wouters
- Department of Chemistry Namur Institute of Structured Matter University of Namur 61, rue de Bruxelles 5000 Namur Belgium
| | - Guillaume Berionni
- Department of Chemistry Namur Institute of Structured Matter University of Namur 61, rue de Bruxelles 5000 Namur Belgium
| |
Collapse
|
19
|
Baumgärtner K, Hoffmann M, Rominger F, Elbert SM, Dreuw A, Mastalerz M. Homoconjugation and Intramolecular Charge Transfer in Extended Aromatic Triptycenes with Different π-Planes. J Org Chem 2020; 85:15256-15272. [DOI: 10.1021/acs.joc.0c02100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kevin Baumgärtner
- Organisch-Chemisches Institut, Ruprecht-Karls Universität-Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Marvin Hoffmann
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls Universität-Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Sven M. Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls Universität-Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls Universität-Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Wei YL, Dauvergne G, Rodriguez J, Coquerel Y. Enantiospecific Generation and Trapping Reactions of Aryne Atropisomers. J Am Chem Soc 2020; 142:16921-16925. [PMID: 32955266 DOI: 10.1021/jacs.0c08218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Enantioenriched aryne atropisomers having a biaryl stereogenic axis vicinal to the reactive triple bond are demonstrated to exist. These reaction intermediates are easily produced in situ and can undergo the standard aryne cycloaddition chemistry in an enantiospecific manner. Notably, the aryne atropisomers herein have allowed the practical syntheses of a small nanographene as well as some triptycene and anthracene derivatives that embed stereogenic axes of controlled absolute configurations.
Collapse
Affiliation(s)
- Yun-Long Wei
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, 13397 Marseille, France
| | | | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, 13397 Marseille, France
| | - Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, 13397 Marseille, France
| |
Collapse
|