1
|
Rwei P, Shiu JW, Senel M, Hajiaghajani A, Qian C, Chen CW, Tseng P, Khine M. A Waterborne, Flexible, and Highly Conductive Silver Ink for Ultra-Rapid Fabrication of Epidermal Electronics. SENSORS (BASEL, SWITZERLAND) 2025; 25:2092. [PMID: 40218605 PMCID: PMC11991362 DOI: 10.3390/s25072092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025]
Abstract
Epidermal electronics provide a promising solution to key challenges in wearable electronics, such as motion artifacts and low signal-to-noise ratios caused by an imperfect sensor-skin interface. To achieve the optimal performance, skin-worn electronics require high conductivity, flexibility, stability, and biocompatibility. Herein, we present a nontoxic, waterborne conductive ink made of silver and child-safe slime for the fabrication of skin-compatible electronics. The ink formulation includes polyvinyl acetate (PVAc), known as school glue, as a matrix, glyceryl triacetate (GTA) as a plasticizer, sodium tetraborate (Borax) as a crosslinker, and silver (Ag) flakes as the conducting material. Substituting citric acid (CA) for GTA enhances the deformability by more than 100%. With exceptional conductivity (up to 1.17 × 104 S/cm), we demonstrate the ink's potential in applications such as an epidermal near-field communication (NFC) antenna patch and a wireless ECG system for motion monitoring.
Collapse
Affiliation(s)
- Patrick Rwei
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA 92697, USA; (P.R.); (A.H.); (P.T.)
| | - Jia-Wei Shiu
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (J.-W.S.); (C.-W.C.)
| | - Mehmet Senel
- Department of Biochemistry, Faculty of Pharmacy, Biruni University, 34010 Istanbul, Türkiye;
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA;
| | - Amirhossein Hajiaghajani
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA 92697, USA; (P.R.); (A.H.); (P.T.)
| | - Chengyang Qian
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA;
| | - Chin-Wen Chen
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (J.-W.S.); (C.-W.C.)
| | - Peter Tseng
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA 92697, USA; (P.R.); (A.H.); (P.T.)
| | - Michelle Khine
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA;
| |
Collapse
|
2
|
Fornaro M, Liguori B, Ambrogi V, Caputo D. Zeolite Additives for Flexible Packaging Polymers: Current Status Review and Future Perspectives. Polymers (Basel) 2024; 16:3399. [PMID: 39684145 DOI: 10.3390/polym16233399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Zeolites are interesting inorganic additives that could be employed for plastic packaging applications. Polyethylene (PE) and polypropylene (PP) are intensively used for packaging as they provide great performance at low cost, even though they have poor environmental sustainability and may be more valorized. Biodegradable polymers may therefore represent a more eco-friendly alternative, but still, they have limited applications due to their generally inferior properties. Therefore, this review focuses on the use of zeolites as additives for flexible packaging applications to mainly improve the mechanical and barrier properties of PE, PP, and some biodegradable polymers, possibly with antimicrobial and scavenging activities, by exploiting zeolites' cation exchange ability and adsorption properties. Film preparation and characterization have been investigated. The obtained enhancements regard generally higher gas barriers, elastic moduli, and strengths, along with thermal stability. Elongation at break decreased for all PE composites and tended to increase for other matrices. The use of zeolites as additives for polymer films is promising (mainly for biodegradable polymers); still, it requires overcoming some limiting drawbacks associated with the additive concentration and dispersion mainly due to matrix-additive incompatibility.
Collapse
Affiliation(s)
- Mattia Fornaro
- ACLabs-Applied Chemistry Labs, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Barbara Liguori
- ACLabs-Applied Chemistry Labs, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Veronica Ambrogi
- PolyFun, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Domenico Caputo
- ACLabs-Applied Chemistry Labs, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
3
|
Leite-Barbosa O, de Oliveira MFL, Braga FCF, Monteiro SN, de Oliveira MG, Veiga-Junior VF. Impact of Buriti Oil from Mauritia flexuosa Palm Tree on the Rheological, Thermal, and Mechanical Properties of Linear Low-Density Polyethylene for Improved Sustainability. Polymers (Basel) 2024; 16:3037. [PMID: 39518245 PMCID: PMC11548644 DOI: 10.3390/polym16213037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Recent advancements highlight the utilization of vegetable oils as additives in polymeric materials, particularly for replacing conventional plasticizers. Buriti oil (BO), extracted from the Amazon's Mauritia flexuosa palm tree fruit, boasts an impressive profile of vitamins, minerals, proteins, carotenoids, and tocopherol. This study investigates the impact of incorporating buriti oil as a plasticizer in linear low-density polyethylene (LLDPE) matrices. The aim of this research was to evaluate how buriti oil, a bioactive compound, influences the thermal and rheological properties of LLDPE. Buriti oil/LLDPE compositions were prepared via melt intercalation techniques, and the resulting materials were characterized through thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), mechanical property testing, and contact angle measurement. The addition of buriti oil was found to act as a processing aid and plasticizer, enhancing the fluidity of LLDPE polymer chains. TGA revealed distinct thermal stabilities for buriti oil/LLDPE under different degradation conditions. Notably, buriti oil exhibited an initial weight loss temperature of 402 °C, whereas that of LLDPE was 466.4 °C. This indicated a minor reduction in the thermal stability of buriti oil/LLDPE compositions. The thermal stability, as observed through DSC, displayed a nuanced response to the oil's incorporation, suggesting a complex interaction between the oil and polymer matrix. Detailed mechanical testing indicated a marked increase in tensile strength and elongation at break, especially at optimal concentrations of buriti oil. SEM analysis showcased a more uniform and less brittle microstructure, correlating with the enhanced mechanical properties. Contact angle measurements revealed a notable shift in surface hydrophobicity, indicating a change in the surface chemistry. This study demonstrates that buriti oil can positively influence the processability and thermal properties of LLDPE, thus expanding its potential applications as an effective plasticizer.
Collapse
Affiliation(s)
- Odilon Leite-Barbosa
- Materials Science Department, Military Institute of Engineering, Praça General Tibúrcio, Rio de Janeiro 22290-270, RJ, Brazil; (O.L.-B.); (S.N.M.)
| | - Marcelo Ferreira Leão de Oliveira
- Division of Materials, National Institute of Technology—INT, Avenida Venezuela 82, Saúde, Rio de Janeiro 20081-312, RJ, Brazil; (M.F.L.d.O.); (F.C.F.B.)
| | - Fernanda Cristina Fernandes Braga
- Division of Materials, National Institute of Technology—INT, Avenida Venezuela 82, Saúde, Rio de Janeiro 20081-312, RJ, Brazil; (M.F.L.d.O.); (F.C.F.B.)
| | - Sergio Neves Monteiro
- Materials Science Department, Military Institute of Engineering, Praça General Tibúrcio, Rio de Janeiro 22290-270, RJ, Brazil; (O.L.-B.); (S.N.M.)
| | - Marcia Gomes de Oliveira
- Division of Materials, National Institute of Technology—INT, Avenida Venezuela 82, Saúde, Rio de Janeiro 20081-312, RJ, Brazil; (M.F.L.d.O.); (F.C.F.B.)
| | - Valdir Florêncio Veiga-Junior
- Materials Science Department, Military Institute of Engineering, Praça General Tibúrcio, Rio de Janeiro 22290-270, RJ, Brazil; (O.L.-B.); (S.N.M.)
| |
Collapse
|
4
|
Raj A, Yousfi M, Prashantha K, Samuel C. Morphologies, Compatibilization and Properties of Immiscible PLA-Based Blends with Engineering Polymers: An Overview of Recent Works. Polymers (Basel) 2024; 16:1776. [PMID: 39000632 PMCID: PMC11244106 DOI: 10.3390/polym16131776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Poly(L-Lactide) (PLA), a fully biobased aliphatic polyester, has attracted significant attention in the last decade due to its exceptional set of properties, such as high tensile modulus/strength, biocompatibility, (bio)degradability in various media, easy recyclability and good melt-state processability by the conventional processes of the plastic/textile industry. Blending PLA with other polymers represents one of the most cost-effective and efficient approaches to develop a next-generation of PLA-based materials with superior properties. In particular, intensive research has been carried out on PLA-based blends with engineering polymers such as polycarbonate (PC), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT) and various polyamides (PA). This overview, consequently, aims to gather recent works over the last 10 years on these immiscible PLA-based blends processed by melt extrusion, such as twin screw compounding. Furthermore, for a better scientific understanding of various ultimate properties, processing by internal mixers has also been ventured. A specific emphasis on blend morphologies, compatibilization strategies and final (thermo)mechanical properties (tensile/impact strength, ductility and heat deflection temperature) for potential durable and high-performance applications, such as electronic parts (3C parts, electronic cases) to replace PC/ABS blends, has been made.
Collapse
Affiliation(s)
- Amulya Raj
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Materials and Processes, 59000 Lille, France
| | - Mohamed Yousfi
- Université de Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, 69621 Villeurbanne Cedex, France
| | - Kalappa Prashantha
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Materials and Processes, 59000 Lille, France
- ACU-Centre for Research and Innovation, Faculty of Natural Sciences, Adichunchanagiri University, B.G. Nagara, Mandya 571448, Karnataka, India
| | - Cédric Samuel
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Materials and Processes, 59000 Lille, France
| |
Collapse
|
5
|
Najafi M, Forestier E, Safarpour M, Ceseracciu L, Zych A, Bagheri A, Bertolacci L, Athanassiou A, Bayer I. Biodegradable polylactic acid emulsion ink based on carbon nanotubes and silver for printed pressure sensors. Sci Rep 2024; 14:10988. [PMID: 38744852 PMCID: PMC11094035 DOI: 10.1038/s41598-024-60315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Investigating biodegradable and biocompatible materials for electronic applications can lead to tangible outcomes such as developing green-electronic devices and reducing the amount of e-waste. The proposed emulsion-based conducting ink formulation takes into consideration circular economy and green principles throughout the entire process, from the selection of materials to the production process. The ink is formulated using the biopolymer polylactic acid dissolved in a sustainable solvent mixed with water, along with conductive carbon nanotubes (CNTs) and silver flakes as fillers. Hybrid conductive fillers can lower the percolation threshold of the ink and the production costs, while maintaining excellent electrical properties. The coating formed after the deposition of the ink, undergoes isothermal treatment at different temperatures and durations to improve its adhesion and electrical properties. The coating's performance was evaluated by creating an eight-finger interdigitated sensor using a Voltera PCB printer. The sensor demonstrates exceptional performance when exposed to various loading and unloading pressures within the 0.2-500.0 kPa range. The results show a consistent correlation between the change in electrical resistance and the stress caused by the applied load. The ink is biodegradable in marine environments, which helps avoiding its accumulation in the ecosystem over time.
Collapse
Affiliation(s)
- Maedeh Najafi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| | - Emilie Forestier
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
- iCub Tech, Istituto Italiano di Tecnologia, Via S. Quirico 9d, 16163, Genoa, Italy
| | - Milad Safarpour
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Luca Ceseracciu
- Materials Characterization, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Arkadiusz Zych
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Ahmad Bagheri
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Laura Bertolacci
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | | | - Ilker Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| |
Collapse
|
6
|
Gzyra-Jagieła K, Sulak K, Draczyński Z, Kęska S, Puchalski M, Madej-Kiełbik L. Influence of Low-Molecular-Weight Esters on Melt Spinning and Structure of Poly(lactic acid) Fibers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1268. [PMID: 38541423 PMCID: PMC10972031 DOI: 10.3390/ma17061268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 01/03/2025]
Abstract
Poly(lactic acid) has great potential in sectors where degradability is an important advantage due to its polymer nature. The medical, pharmaceutical, and packaging industries have shown interest in using PLA. To overcome the limitations of stiffness and brittleness in the polymer, researchers have conducted numerous modifications to develop fibers with improved properties. One such modification involves using plasticizing modifiers that can provide additional and desired properties. The scientific reports indicate that low-molecular-weight esters (LME) (triethyl citrate and bis (2-ethylhexyl) adipate) affect the plasticization of PLA. However, the research is limited to flat structures, such as films, casts, and extruded shapes. A study was conducted to investigate the impact of esters on the process of forming, the properties, and the morphology of fibers formed through the melt-spinning method. It was found that the modified PLA required different spinning and drawing conditions compared to the unmodified polymer. DSC, FTIR, WAXD, and GPC/SEC analyses were performed for the modified fibers. Mechanical tests and morphology evaluations using SEM microscopy were also conducted. The applied plasticizers lowered the temperature of the spinning process by 40 °C, and allowed us to obtain a higher degree of crystallinity and a better tenacity at a lower draw ratio. GPC/SEC analysis confirmed that the polymer-plasticizer interaction is physical because the booth plasticizer peaks were separated in the chromatographic columns. The use of LME in fibers significantly reduces the temperature of the spinning process, which reduces production costs. Additives significantly change the production process and the structure of the fiber depending on their rate, which may affect the properties, e.g., the rate of degradation. We can master the degree of crystallinity through the variable amount of LME. The degree of crystallization of the polymers has a significant influence on polymer application.
Collapse
Affiliation(s)
- Karolina Gzyra-Jagieła
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (K.S.); (S.K.); (L.M.-K.)
- Textile Institute, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland; (Z.D.); (M.P.)
| | - Konrad Sulak
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (K.S.); (S.K.); (L.M.-K.)
| | - Zbigniew Draczyński
- Textile Institute, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland; (Z.D.); (M.P.)
| | - Sławomir Kęska
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (K.S.); (S.K.); (L.M.-K.)
| | - Michał Puchalski
- Textile Institute, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland; (Z.D.); (M.P.)
| | - Longina Madej-Kiełbik
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (K.S.); (S.K.); (L.M.-K.)
| |
Collapse
|
7
|
Barandiaran A, Lascano D, Montanes N, Balart R, Selles MA, Moreno V. Improvement of the Ductility of Environmentally Friendly Poly(lactide) Composites with Posidonia oceanica Wastes Plasticized with an Ester of Cinnamic Acid. Polymers (Basel) 2023; 15:4534. [PMID: 38231960 PMCID: PMC10708467 DOI: 10.3390/polym15234534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
New composite materials were developed with poly(lactide) (PLA) and Posidonia oceanica fibers through reactive extrusion in the presence of dicumyl peroxide (DCP) and subsequent injection molding. The effect of different amounts of methyl trans-cinnamate (MTC) on the mechanical, thermal, thermomechanical, and wettability properties was studied. The results showed that the presence of Posidonia oceanica fibers generated disruptions in the PLA matrix, causing a decrease in the tensile mechanical properties and causing an impact on the strength due to the stress concentration phenomenon. Reactive extrusion with DCP improved the PO/PLA interaction, diminishing the gap between the fibers and the surrounding matrix, as corroborated by field emission scanning electron microscopy (FESEM). It was observed that 20 phr (parts by weight of the MTC, per one hundred parts by weight of the PO/PLA composite) led to a noticeable plasticizing effect, significantly increasing the elongation at break from 7.1% of neat PLA to 31.1%, which means an improvement of 338%. A considerable decrease in the glass transition temperature, from 61.1 °C of neat PLA to 41.6 °C, was also observed. Thermogravimetric analysis (TGA) showed a loss of thermal stability of the plasticized composites, mainly due to the volatility of the cinnamate ester, leading to a decrease in the onset degradation temperature above 10 phr MTC.
Collapse
Affiliation(s)
| | - Diego Lascano
- Institute of Materials Technology (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (A.B.); (N.M.); (R.B.); (M.A.S.)
| | | | | | | | - Virginia Moreno
- Institute of Materials Technology (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (A.B.); (N.M.); (R.B.); (M.A.S.)
| |
Collapse
|
8
|
Xu X, Yu J, Yang F, Li Y, Ou R, Liu Z, Liu T, Wang Q. Preparation of degradable chemically cross-linked polylactic acid films and its application on disposable straws. Int J Biol Macromol 2023; 251:126394. [PMID: 37595700 DOI: 10.1016/j.ijbiomac.2023.126394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The semi-rigidity of the polylactic acid (PLA) molecular chain makes it brittle, poor impact resistance and barrier properties, which severely limits its practical applications. In this paper, a bio-based reactive plasticizer epoxy soybean oil (ESO) was used to improve the mechanical and barrier properties of maleic anhydride grafted polylactic acid (MAPLA) by the chemical reaction between the epoxy and anhydride group. Firstly, the optimum curing conditions were 93.5 °C, 100 °C, and 110.8 °C for 2 h. The effects of different mass fractions of ESO on the properties of MAPLA-ESO (ME) films were systematically investigated. It was found that when the content of ESO was 10 wt%, the tensile properties of the resulting ME films were the best, with a tensile strength of 35.2 MPa. And it had an elongation at break of 20.0 % and toughness of 5.4 MJ/m3, which increased to 690 % and 675 %, respectively, compared with pure MAPLA films. The chemically crosslinked ME films also displayed excellent water resistance, well degradation, low migration properties, and better performance than that of commercial paper straws and PLA straws, exhibiting great application potential as degradable disposable straws. Therefore, this work provides an effective way to develop high-performance, green, and degradable PLA films and products.
Collapse
Affiliation(s)
- Xiaobing Xu
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jing Yu
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Fangfei Yang
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yilu Li
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Rongxian Ou
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhenzhen Liu
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Tao Liu
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qingwen Wang
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Zhang X, Ji G, Gao M, Huang J, Li T, Wang Y, Wang S, Dong W. Designing Strong, Tough, Fluorescent, and UV-Shielding PLA Materials by Incorporating a Phenolic Compound-Based Multifunctional Modifier. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17268-17278. [PMID: 36961886 DOI: 10.1021/acsami.3c01293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The realization of high stiffness, high extensibility, and multi-functions for polylactic acid (PLA) is a vital issue for its practical applications. Herein, hydroxyalkylated tannin acid (mTA), a phenolic compound-based modifier with plentiful flat aromatic structures and flexible isopropanol oligomers, is designed and fabricated to act as the multifunctional modifier for PLA. The mTA exhibits the capability of emitting fluorescence and blocking UV light due to the combination of flat aromatic structures and plentiful flexible chains. Besides, mTA with high grafting degree (h-mTA) shows an excellent compatibility to PLA due to the hydrogen bonding interface and the high affinity of grafted isopropanol oligomers to PLA. As a result, the as-prepared PLA/h-mTA20 composite exhibits a strikingly improved extensibility by 61.2 times while maintaining the high yield strength of PLA. Moreover, PLA/h-mTA can serve as a fluorescent material with multi-mode responsiveness as well as a UV-shielding material with high transparency. We envision that this work opens a novel yet facile way to prepare a strong, tough, and multifunctional PLA material with expanded application scopes and will promote the practical applications of phenolic compounds in polymers.
Collapse
Affiliation(s)
- Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guangyao Ji
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mengying Gao
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
10
|
Vo HGD, Kida T, Yamaguchi M. Role of Shear Flow on Structure Development during Post-Processing Annealing for Poly(lactic acid). Polymers (Basel) 2023; 15:polym15030693. [PMID: 36771994 PMCID: PMC9921994 DOI: 10.3390/polym15030693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
The effect of shear history on structure development during post-processing annealing was studied using poly(lactic acid) PLA. Since PLA shows a low crystallization rate, quenched films had no crystallinity. Moreover, molecular orientation was not detected in the films. During the annealing procedure beyond its glass transition temperature, however, molecular orientation to the flow direction occurred with the crystallization growth in the films having an appropriate shear history. This peculiar crystal growth during the annealing was most probably attributed to the crystallization from extended chain crystals generated during the applied shear history, although the amount of extended chain crystals was low. The results obtained in this study should be noted because the molecular orientation proceeded due to the annealing history applied. Furthermore, this phenomenon will be used to suppress dimensional change and increase product rigidity.
Collapse
Affiliation(s)
- Hoang-Giang Dai Vo
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| | - Takumitsu Kida
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
- Research Center for Carbon Neutral, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| | - Masayuki Yamaguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
- Research Center for Carbon Neutral, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
- Correspondence:
| |
Collapse
|
11
|
Mendoza-Duarte ME, Estrada-Moreno IA, López-Martínez EI, Vega-Rios A. Effect of the Addition of Different Natural Waxes on the Mechanical and Rheological Behavior of PLA-A Comparative Study. Polymers (Basel) 2023; 15:polym15020305. [PMID: 36679186 PMCID: PMC9866918 DOI: 10.3390/polym15020305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
In this study, poly(lactic acid) (PLA) blended with different natural waxes (beeswax, candelilla, carnauba, and cocoa) was investigated. Different wax amounts, 3, 5, 10, and 15 wt%, were incorporated into the PLA using a Brabender internal mixer. The blends were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), rotational rheometer (RR), dynamic mechanical analysis (DMA), and contact angle to observe the effect of the different waxes on the PLA physicochemical, rheological, mechanical behavior, and wetting properties. The complex viscosity of the blends was studied by employing a RR. The effect of the addition of the waxes on the mechanical properties of PLA was evaluated by DMA in the tension modality. A slight decrease in the thermal stability of PLA was observed with the addition of the waxes. However, in the case of the mechanical properties, the cocoa wax showed a considerable effect, especially in the elongation at break of PLA. Likewise, waxes had an essential impact on the water affinity of PLA. Specifically, with the addition of cocoa, the PLA became more hydrophilic, while the rest of the waxes increased the hydrophobic character.
Collapse
Affiliation(s)
- Mónica Elvira Mendoza-Duarte
- Centro de Investigación en Materiales Avanzados, SC, Av. Miguel de Cervantes #120, Chihuahua 31136, Mexico
- Correspondence: (M.E.M.-D.); (A.V.-R.)
| | | | | | - Alejandro Vega-Rios
- Centro de Investigación en Materiales Avanzados, SC, Av. Miguel de Cervantes #120, Chihuahua 31136, Mexico
- Correspondence: (M.E.M.-D.); (A.V.-R.)
| |
Collapse
|
12
|
Wei Y, Wang Z, Zhou S, Li Z. Toughened transparent poly(L-lactic acid)/poly(D-lactide)-b-poly(butadiene)-b-poly(D-lactide) blended film with balanced strength. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Biosourced epoxidized neem oil toughened poly(lactic acid) for agricultural applications: mechanical, thermal and compostability properties. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-022-01126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Murariu M, Paint Y, Murariu O, Laoutid F, Dubois P. Tailoring and Long-Term Preservation of the Properties of PLA Composites with "Green" Plasticizers. Polymers (Basel) 2022; 14:4836. [PMID: 36432967 PMCID: PMC9696962 DOI: 10.3390/polym14224836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Concerning new polylactide (PLA) applications, the study investigates the toughening of PLA-CaSO4 β-anhydrite II (AII) composites with bio-sourced tributyl citrate (TBC). The effects of 5-20 wt.% TBC were evaluated in terms of morphology, mechanical and thermal properties, focusing on the enhancement of PLA crystallization and modification of glass transition temperature (Tg). Due to the strong plasticizing effects of TBC (even at 10%), the plasticized composites are characterized by significant decrease of Tg and rigidity, increase of ductility and impact resistance. Correlated with the amounts of plasticizer, a dramatic drop in melt viscosity is also revealed. Therefore, for applications requiring increased viscosity and enhanced melt strength (extrusion, thermoforming), the reactive modification, with up to 1% epoxy functional styrene-acrylic oligomers, was explored to enhance their rheology. Moreover, larger quantities of products were obtained by reactive extrusion (REX) and characterized to evidence their lower stiffness, enhanced ductility, and toughness. In current prospects, selected samples were tested for the extrusion of tubes (straws) and films. The migration of plasticizer was not noted (at 10% TBC), whereas the mechanical and thermal characterizations of films after two years of aging evidenced a surprising preservation of properties.
Collapse
Affiliation(s)
- Marius Murariu
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium
| | - Yoann Paint
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium
| | - Oltea Murariu
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium
| | - Fouad Laoutid
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium
| | - Philippe Dubois
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium
- Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMons), Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
15
|
Zhang Z, Jiang P, Wai PT, Feng S, Lu M, Zhang P, Leng Y, Pan L, Pan J. Construction and Synthesis of High-Stability Biobased Oligomeric Lactate Plasticizer: Applicable to PVC and PLA Polymers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zheming Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Pingping Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Phyu Thin Wai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shan Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Minjia Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Pingbo Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Leng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Lingen Pan
- Wuxi Jiasheng High-Tech Modified Material Co., Ltd., Wuxi 214116, P. R. China
| | - Jie Pan
- Wuxi Jiasheng High-Tech Modified Material Co., Ltd., Wuxi 214116, P. R. China
| |
Collapse
|
16
|
Iglesias-Montes ML, Soccio M, Siracusa V, Gazzano M, Lotti N, Cyras VP, Manfredi LB. Chitin Nanocomposite Based on Plasticized Poly(lactic acid)/Poly(3-hydroxybutyrate) (PLA/PHB) Blends as Fully Biodegradable Packaging Materials. Polymers (Basel) 2022; 14:polym14153177. [PMID: 35956691 PMCID: PMC9370966 DOI: 10.3390/polym14153177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Fully bio-based poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) blends plasticized with tributyrin (TB), and their nanocomposite based on chitin nanoparticles (ChNPs) was developed using melt mixing followed by a compression molding process. The combination of PHB and ChNPs had an impact on the crystallinity of the plasticized PLA matrix, thus improving its oxygen and carbon dioxide barrier properties as well as displaying a UV light-blocking effect. The addition of 2 wt% of ChNP induced an improvement on the initial thermal degradation temperature and the overall migration behavior of blends, which had been compromised by the presence of TB. All processed materials were fully disintegrated under composting conditions, suggesting their potential application as fully biodegradable packaging materials.
Collapse
Affiliation(s)
- Magdalena L. Iglesias-Montes
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Facultad de Ingeniería, Universidad Nacional de Mar del Plata—Consejo de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina; (M.L.I.-M.); (V.P.C.)
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy;
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40126 Bologna, Italy
- Correspondence: (M.S.); (L.B.M.); Tel.: +39-0512090360 (M.S.); +54-2236260600 (L.B.M.)
| | - Valentina Siracusa
- Chemical Science Department, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Massimo Gazzano
- Institute of Organic Synthesis and Photoreactivity, National Research Council, 40129 Bologna, Italy;
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy;
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, 40126 Bologna, Italy
| | - Viviana P. Cyras
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Facultad de Ingeniería, Universidad Nacional de Mar del Plata—Consejo de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina; (M.L.I.-M.); (V.P.C.)
| | - Liliana B. Manfredi
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Facultad de Ingeniería, Universidad Nacional de Mar del Plata—Consejo de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina; (M.L.I.-M.); (V.P.C.)
- Correspondence: (M.S.); (L.B.M.); Tel.: +39-0512090360 (M.S.); +54-2236260600 (L.B.M.)
| |
Collapse
|
17
|
Blanco I, Cicala G, Recca G, Tosto C. Specific Heat Capacity and Thermal Conductivity Measurements of PLA-Based 3D-Printed Parts with Milled Carbon Fiber Reinforcement. ENTROPY (BASEL, SWITZERLAND) 2022; 24:654. [PMID: 35626538 PMCID: PMC9141791 DOI: 10.3390/e24050654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
This research focuses on the thermal characterization of 3D-printed parts obtained via fused filament fabrication (FFF) technology, which uses a poly(lactic acid) (PLA)-based filament filled with milled carbon fibers (MCF) from pyrolysis at different percentages by weight (10, 20, 30 wt%). Differential scanning calorimetry (DSC) and thermal conductivity measurements were used to evaluate the thermal characteristics, morphological features, and heat transport behavior of the printed specimens. The experimental results showed that the addition of MCF to the PLA matrix improved the conductive properties. Scanning electron microscopy (SEM) micrographs were used to obtain further information about the porosity of the systems.
Collapse
Affiliation(s)
- Ignazio Blanco
- Department of Civil Engineering and Architecture and UdR-Catania Consorzio INSTM, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (I.B.); (G.C.)
| | - Gianluca Cicala
- Department of Civil Engineering and Architecture and UdR-Catania Consorzio INSTM, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (I.B.); (G.C.)
| | - Giuseppe Recca
- Institute for Polymers, Composites and Biomaterials, IPCB-CNR, Via Gaifami 18, 95126 Catania, Italy;
| | - Claudio Tosto
- Department of Civil Engineering and Architecture and UdR-Catania Consorzio INSTM, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (I.B.); (G.C.)
| |
Collapse
|
18
|
Sepúlveda FA, Rivera F, Loyo C, Canales D, Moreno‐Serna V, Benavente R, Rivas LM, Ulloa MT, Gil‐Castell O, Ribes‐Greus A, Ortiz JA, Zapata PA. Poly (lactic acid)/D‐limonene/
ZnO bio‐nanocomposites
with antimicrobial properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.51542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Francesca Antonella Sepúlveda
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Francisca Rivera
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Carlos Loyo
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Daniel Canales
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Viviana Moreno‐Serna
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | | | - Lina María Rivas
- Programa de Microbiología y Micología ICBM‐Facultad de Medicina Universidad de Chile Chile
| | - María Teresa Ulloa
- Programa de Microbiología y Micología ICBM‐Facultad de Medicina Universidad de Chile Chile
| | - Oscar Gil‐Castell
- Instituto de Tecnología de Materiales (ITM) Universitat Politècnica de València (UPV) Spain
| | - Amparo Ribes‐Greus
- Instituto de Tecnología de Materiales (ITM) Universitat Politècnica de València (UPV) Spain
| | - J. Andrés Ortiz
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
- Departamento de Ingeniería Química, Biotecnología y Materiales Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile Chile
| | - Paula A. Zapata
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| |
Collapse
|
19
|
YousefniaPasha H, Mohtasebi SS, Tabatabaeekoloor R, Taherimehr M, Javadi A, Soltani Firouz M. Preparation and characterization of the plasticized polylactic acid films produced by the solvent‐casting method for food packaging applications. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hassan YousefniaPasha
- Department of Agricultural Machinery Engineering Faculty of Agricultural Engineering and Technology University of Tehran Karaj Iran
| | - Seyed Saeid Mohtasebi
- Department of Agricultural Machinery Engineering Faculty of Agricultural Engineering and Technology University of Tehran Karaj Iran
| | - Reza Tabatabaeekoloor
- Department of Biosystem Engineering Faculty of Agricultural Engineering Sari Agricultural Sciences and Natural Resources University Sari Iran
| | - Masoumeh Taherimehr
- Department of Chemistry Faculty of Basic Sciences Noshirvani University of Technology Babol Iran
| | - Azizeh Javadi
- Department of Polymer Engineering Faculty of Polymer and Color Engineering Amirkabir University of Technology Tehran Iran
| | - Mahmoud Soltani Firouz
- Department of Agricultural Machinery Engineering Faculty of Agricultural Engineering and Technology University of Tehran Karaj Iran
| |
Collapse
|
20
|
Chen Y, Han L, Zhang H, Dong L. Improvement of the strength and toughness of biodegradable polylactide/silica nanocomposites by uniaxial pre-stretching. Int J Biol Macromol 2021; 190:198-205. [PMID: 34492242 DOI: 10.1016/j.ijbiomac.2021.08.218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Highly toughened polylactide (PLA) nanocomposites with balanced stiffness and strength were successfully prepared by combining the modification of 5 wt% silica (SiO2) nanoparticles and uniaxial pre-stretching. The PLA/5 wt% SiO2 nanocomposites fractured in a brittle way due to the network structure composed of cohesional entanglements. After pre-stretching, the elongation at break was increased to 168% at pre-stretching ratio (PSR) of only 0.5, which should be attributed to the destruction of the network structure of cohesional entanglements. With the increment of PSR, the modulus and tensile strength were improved obviously (2725 MPa, 101.6 MPa at PSR = 2.0) while the elongation at break (56% at PSR = 2.0) reduced gradually because of the formation of orientation and mesophase. However, the elongation at break was still larger than that of undrawn PLA (5.4%) and undrawn PLA nanocomposites (7.2%), indicating that the uniaxial pre-stretching was an effect way to strengthen and toughen PLA nanocomposites.
Collapse
Affiliation(s)
- Yunjing Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Sinopec-SK (Wuhan) Petrochemical Company Limited, Wuhan 430000, PR China
| | - Lijing Han
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Huiliang Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Lisong Dong
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|
21
|
Xuan W, Odelius K, Hakkarainen M. Tunable polylactide plasticizer design: Rigid stereoisomers. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Yuntawattana N, Gregory GL, Carrodeguas LP, Williams CK. Switchable Polymerization Catalysis Using a Tin(II) Catalyst and Commercial Monomers to Toughen Poly(l-lactide). ACS Macro Lett 2021; 10:774-779. [PMID: 34306820 PMCID: PMC8296665 DOI: 10.1021/acsmacrolett.1c00216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Sustainable plastics sourced without virgin petrochemicals, that are easily recyclable and with potential for degradation at end of life, are urgently needed. Here, copolymersand blends meeting these criteria are efficiently prepared using a single catalyst and existing commercial monomers l-lactide, propylene oxide, and maleic anhydride. The selective, one-reactor polymerization applies an industry-relevant tin(II) catalyst. Tapered, miscible block polyesters are formed with alkene groups which are postfunctionalized to modulate the polymer glass transition temperature. The polymers are blended at desirable low weight fractions (2 wt %) with commercial poly(l-lactide) (PLLA), increasing toughness, and elongation at break without compromising the elastic modulus, tensile strength, or thermal properties. The selective polymerization catalysis, using commercial monomers and catalyst, provides a straightforward means to improve bioplastics performances.
Collapse
Affiliation(s)
- Nattawut Yuntawattana
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Georgina L. Gregory
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Leticia Peña Carrodeguas
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Charlotte K. Williams
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
23
|
Effect of triglyceride on the microstructure and gas permeation performance of Pebax-based blend membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Trindade Coutinho I, Champeau M. Synergistic effects in the simultaneous supercritical CO2 impregnation of two compounds into poly(L- lactic acid) and polyethylene. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.105019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
McCutcheon CJ, Zhao B, Jin K, Bates FS, Ellison CJ. Crazing Mechanism and Physical Aging of Poly(lactide) Toughened with Poly(ethylene oxide)-block-poly(butylene oxide) Diblock Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Charles J. McCutcheon
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Boran Zhao
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kailong Jin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
26
|
Gálvez J, Correa Aguirre JP, Hidalgo Salazar MA, Vera Mondragón B, Wagner E, Caicedo C. Effect of Extrusion Screw Speed and Plasticizer Proportions on the Rheological, Thermal, Mechanical, Morphological and Superficial Properties of PLA. Polymers (Basel) 2020; 12:E2111. [PMID: 32948042 PMCID: PMC7570249 DOI: 10.3390/polym12092111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 11/17/2022] Open
Abstract
One of the critical processing parameters-the speed of the extrusion process for plasticized poly (lactic acid) (PLA)-was investigated in the presence of acetyl tributyl citrate (ATBC) as plasticizer. The mixtures were obtained by varying the content of plasticizer (ATBC, 10-30% by weight), using a twin screw extruder as a processing medium for which a temperature profile with peak was established that ended at 160 °C, two mixing zones and different screw rotation speeds (60 and 150 rpm). To evaluate the thermo-mechanical properties of the blend and hydrophilicity, the miscibility of the plasticizing and PLA matrix, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), oscillatory rheological analysis, Dynamic Mechanical Analysis (DMA), mechanical analysis, as well as the contact angle were tested. The results derived from the oscillatory rheological analysis had a viscous behavior in the PLA samples with the presence of ATBC; the lower process speed promotes the transitions from viscous to elastic as well as higher values of loss modulus, storage modulus and complex viscosity, which means less loss of molecular weight and lower residual energy in the transition from the viscous state to the elastic state. The mechanical and thermal performance was optimized considering a greater capacity in the energy absorption and integration of the components.
Collapse
Affiliation(s)
- Jaime Gálvez
- Grupo de Investigación en Desarrollo de Materiales y Productos—GIDEMP, Centro Nacional de Asistencia Técnica a la Industria—ASTIN, SENA, Calle 52 No 2bis 15, Cali 760035, Colombia; (J.G.); (B.V.M.); (E.W.)
| | - Juan P. Correa Aguirre
- Research Group for Manufacturing Technologies (GITEM), Universidad Autónoma de Occidente, Cali 760035, Colombia; (J.P.C.A.); (M.A.H.S.)
| | - Miguel A. Hidalgo Salazar
- Research Group for Manufacturing Technologies (GITEM), Universidad Autónoma de Occidente, Cali 760035, Colombia; (J.P.C.A.); (M.A.H.S.)
| | - Bairo Vera Mondragón
- Grupo de Investigación en Desarrollo de Materiales y Productos—GIDEMP, Centro Nacional de Asistencia Técnica a la Industria—ASTIN, SENA, Calle 52 No 2bis 15, Cali 760035, Colombia; (J.G.); (B.V.M.); (E.W.)
| | - Elizabeth Wagner
- Grupo de Investigación en Desarrollo de Materiales y Productos—GIDEMP, Centro Nacional de Asistencia Técnica a la Industria—ASTIN, SENA, Calle 52 No 2bis 15, Cali 760035, Colombia; (J.G.); (B.V.M.); (E.W.)
| | - Carolina Caicedo
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 No. 62-00, Cali 760035, Colombia
| |
Collapse
|
27
|
Kolbuk D, Jeznach O, Wrzecionek M, Gadomska-Gajadhur A. Poly(Glycerol Succinate) as an Eco-Friendly Component of PLLA and PLCL Fibres towards Medical Applications. Polymers (Basel) 2020; 12:E1731. [PMID: 32756398 PMCID: PMC7464260 DOI: 10.3390/polym12081731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
This study was conducted as a first step in obtaining eco-friendly fibres for medical applications using a synthesised oligomer poly(glycerol succinate) (PGSu) as an additive for synthetic poly(L-lactic acid) (PLLA) and poly (L-lactide-co-caprolactone) (PLCL). The effects of the oligomer on the structure formation, morphology, crystallisation behaviour, and mechanical properties of electrospun bicomponent fibres were investigated. Nonwovens were investigated by means of scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and mechanical testing. The molecular structure of PLLA fibres is influenced by the presence of PGSu mainly acting as an enhancer of molecular orientation. In the case of semicrystalline PLCL, chain mobility was enhanced by the presence of PGSu molecules, and the crystallinity of bicomponent fibres increased in relation to that of pure PLCL. The mechanical properties of bicomponent fibres were influenced by the level of PGSu present and the extent of crystal formation of the main component. An in vitro study conducted using L929 cells confirmed the biocompatible character of all bicomponent fibres.
Collapse
Affiliation(s)
- Dorota Kolbuk
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Street, 02-106 Warsaw, Poland;
| | - Oliwia Jeznach
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Street, 02-106 Warsaw, Poland;
| | - Michał Wrzecionek
- Faculty of Chemistry of Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland;
| | | |
Collapse
|
28
|
Hu T, Hua WQ, Zhong GJ, Wang YD, Gao YT, Hong CX, Li ZM, Bian FG, Xiao TQ. Nondestructive and Quantitative Characterization of Bulk Injection-Molded Polylactide Using SAXS Microtomography. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- Research Center for Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- University of Chinese Academy of Sciences, Beijing 10084, China
| | - Wen-Qiang Hua
- Research Center for Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Yu-Dan Wang
- Research Center for Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yan-Tao Gao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Chun-Xia Hong
- Research Center for Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Feng-Gang Bian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- Research Center for Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of Chinese Academy of Sciences, Beijing 10084, China
| | - Ti-Qiao Xiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- Research Center for Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- University of Chinese Academy of Sciences, Beijing 10084, China
| |
Collapse
|
29
|
Chaos A, Sangroniz A, Fernández J, Río J, Iriarte M, Sarasua JR, Etxeberria A. Plasticization of poly(lactide) with poly(ethylene glycol): Low weight plasticizer vs triblock copolymers. Effect on free volume and barrier properties. J Appl Polym Sci 2019. [DOI: 10.1002/app.48868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Chaos
- POLYMAT, Department of Polymer Science and TechnologyUniversity of the Basque Country UPV/EHU Manuel de Lardizabal, 3, Donostia 20018 Spain
| | - Ainara Sangroniz
- POLYMAT, Department of Polymer Science and TechnologyUniversity of the Basque Country UPV/EHU Manuel de Lardizabal, 3, Donostia 20018 Spain
| | - Jorge Fernández
- POLYMAT, Department of Mining‐Metallurgy Engineering and Materials ScienceUniversity of the Basque Country UPV/EHU Alameda de Urquijo s/n, Bilbao 48013 Spain
| | - Javier Río
- Department of Material PhysicsComplutense University of Madrid Ciudad Universitaria s/n, Madrid 28040 Spain
| | - Marian Iriarte
- POLYMAT, Department of Polymer Science and TechnologyUniversity of the Basque Country UPV/EHU Manuel de Lardizabal, 3, Donostia 20018 Spain
| | - Jose Ramon Sarasua
- POLYMAT, Department of Mining‐Metallurgy Engineering and Materials ScienceUniversity of the Basque Country UPV/EHU Alameda de Urquijo s/n, Bilbao 48013 Spain
| | - Agustin Etxeberria
- POLYMAT, Department of Polymer Science and TechnologyUniversity of the Basque Country UPV/EHU Manuel de Lardizabal, 3, Donostia 20018 Spain
| |
Collapse
|
30
|
Mahn S, Kemnitz E. Modification of low‐molecular polylactic acid by CaF
2
nanoparticles: A new approach to change its material properties. J Appl Polym Sci 2019. [DOI: 10.1002/app.47875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- S. Mahn
- Department of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2, 12489 Berlin Germany
| | - E. Kemnitz
- Department of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2, 12489 Berlin Germany
| |
Collapse
|
31
|
Processing of Super Tough Plasticized PLA by Rotational Molding. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/3835829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This work is aimed at studying the suitability of polylactic acid (PLA) plasticized by two cardanol derivatives, i.e., cardanol and epoxidized cardanol acetate, in rotational molding, for the production of hollow items. For this purpose, plasticized PLA samples were obtained by melt mixing and then processed by a lab-scale rotational molding equipment. For comparison, poly(ethylene glycole), PEG, and plasticized PLA samples were also produced. Despite the very low cooling rates attained in rotational molding, completely amorphous samples were obtained with neat PLA and PLA plasticized by cardanol derivatives. In contrast, PEG plasticized PLA showed a very high degree of crystallinity, as highlighted by DSC and XRD analysis, which made the extraction of the rotomolded box-shaped specimens impossible. The plasticizing effectiveness of cardanol derivatives was proven by tensile testing of rotational molded prototypes, which highlighted the reduced modulus and strength and improved strain to break, compared to neat PLA. Therefore, efficient toughening of PLA can be attained by the use of the two cardanol derived plasticizers, which involves a significant reduction of the polymer glass transition, as well as a reduced increase of the crystallization kinetic. On the other hand, the reduction of the glass transition temperature due to the addition of plasticizer is responsible for significant crystallization effects even during ageing at room temperature, which involves significant embrittlement of the material.
Collapse
|
32
|
Keshavarzi S, Babaei A, Goudarzi A, Shakeri A. ZnO nanoparticles as chain elasticity reducer and structural elasticity enhancer: Correlating the degradating role and localization of ZnO with the morphological and mechanical properties of PLA/PP/ZnO nanocomposite. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sahar Keshavarzi
- Department of Polymer Engineering, Faculty of Engineering; Golestan University; PO Box 4913815759 Gorgan Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering; Golestan University; PO Box 4913815759 Gorgan Iran
| | - Alireza Goudarzi
- Department of Polymer Engineering, Faculty of Engineering; Golestan University; PO Box 4913815759 Gorgan Iran
| | - Alireza Shakeri
- Department of chemistry, Faculty of Chemistry; University of Tehran; Tehran Iran
| |
Collapse
|
33
|
Kasmi S, Gallos A, Beaugrand J, Paës G, Allais F. Ferulic acid derivatives used as biobased powders for a convenient plasticization of polylactic acid in continuous hot-melt process. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Towards polylactide/core-shell rubber blends with balanced stiffness and toughness via the formation of rubber particle network with the aid of stereocomplex crystallites. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
da Silva JA, Dalmolin C, Pachekoski WM, Becker D. The combined effect of plasticizers and graphene on properties of poly(lactic acid). J Appl Polym Sci 2018. [DOI: 10.1002/app.46745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Josiani Aparecida da Silva
- Centro de Ciências Tecnológicas; Universidade do Estado de Santa Catariana, UDESC; Joinville Santa Catarina Brazil
| | - Carla Dalmolin
- Centro de Ciências Tecnológicas; Universidade do Estado de Santa Catariana, UDESC; Joinville Santa Catarina Brazil
| | - Wagner M. Pachekoski
- Departamento de Engenharias da Mobilidade; Universidade Federal de Santa Catarina; Joinville Santa Catarina Brazil
| | - Daniela Becker
- Centro de Ciências Tecnológicas; Universidade do Estado de Santa Catariana, UDESC; Joinville Santa Catarina Brazil
| |
Collapse
|
36
|
Shyr TW, Ko HC, Wu TM, Wu TM. Crystallisation and spherulite morphology of polylactide stereocomplex. POLYM INT 2018. [DOI: 10.1002/pi.5708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tien-Wei Shyr
- Department of Fiber and Composite Materials; Feng Chia University; Taichung Taiwan, R.O.C
| | - Huan-Chieh Ko
- Department of Fiber and Composite Materials; Feng Chia University; Taichung Taiwan, R.O.C
| | - Tzu-Ming Wu
- Department of Fiber and Composite Materials; Feng Chia University; Taichung Taiwan, R.O.C
| | - Tzong-Ming Wu
- Department of Materials Engineering; National Chung Hsing University; Taichung Taiwan, R.O.C
| |
Collapse
|
37
|
Chaos A, Sangroniz A, Gonzalez A, Iriarte M, Sarasua JR, del Río J, Etxeberria A. Tributyl citrate as an effective plasticizer for biodegradable polymers: effect of plasticizer on free volume and transport and mechanical properties. POLYM INT 2018. [DOI: 10.1002/pi.5705] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ana Chaos
- POLYMAT, Department of Polymer Science and Technology; Faculty of Chemistry, University of the Basque Country UPV/EHU; Donostia Spain
| | - Ainara Sangroniz
- POLYMAT, Department of Polymer Science and Technology; Faculty of Chemistry, University of the Basque Country UPV/EHU; Donostia Spain
| | - Alba Gonzalez
- POLYMAT, Department of Polymer Science and Technology; Faculty of Chemistry, University of the Basque Country UPV/EHU; Donostia Spain
| | - Marian Iriarte
- POLYMAT, Department of Polymer Science and Technology; Faculty of Chemistry, University of the Basque Country UPV/EHU; Donostia Spain
| | - Jose-Ramon Sarasua
- POLYMAT, Department of Mining-Metallurgy Engineering and Materials Science; University of the Basque Country UPV/EHU; Bilbao Spain
| | - Javier del Río
- Departamento de Física de Materiales; Universidad Complutense de Madrid; Madrid Spain
| | - Agustin Etxeberria
- POLYMAT, Department of Polymer Science and Technology; Faculty of Chemistry, University of the Basque Country UPV/EHU; Donostia Spain
| |
Collapse
|
38
|
Farid T, Herrera VN, Kristiina O. Investigation of crystalline structure of plasticized poly (lactic acid)/Banana nanofibers composites. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/369/1/012031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Anakabe J, Santamaria-Echart A, Eceiza A, Arbelaiz A, Zaldua Huici AM. Evolution of the mechanical properties and estimation of the useful lifespan of poly(lactic acid) based compounds. POLYM INT 2018. [DOI: 10.1002/pi.5568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Arantzazu Santamaria-Echart
- Materials + Technologies Group, Chemical and Environmental Engineering Department, Faculty of Engineering, Gipuzkoa; University of the Basque Country UPV/EHU; Donostia-San Sebastián Spain
| | - Arantxa Eceiza
- Materials + Technologies Group, Chemical and Environmental Engineering Department, Faculty of Engineering, Gipuzkoa; University of the Basque Country UPV/EHU; Donostia-San Sebastián Spain
| | - Aitor Arbelaiz
- Materials + Technologies Group, Chemical and Environmental Engineering Department, Faculty of Engineering, Gipuzkoa; University of the Basque Country UPV/EHU; Donostia-San Sebastián Spain
| | | |
Collapse
|
40
|
Chen X, Wu X, Fan Z, Zhao Q, Liu Q. Biodegradable poly(trimethylene carbonate-b
-(L
-lactide-ran
-glycolide)) terpolymers with tailored molecular structure and advanced performance. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoyu Chen
- Department of Materials Science; Fudan University; Shanghai 200433 China
| | - Xiaomeng Wu
- Department of Materials Science; Fudan University; Shanghai 200433 China
| | - Zhongyong Fan
- Department of Materials Science; Fudan University; Shanghai 200433 China
| | - Qinghua Zhao
- Beijing Advanced Medical Technologies, Ltd. Inc.; Beijing 100085 China
| | - Qing Liu
- The Institute for Biomedical Engineering & Nano Science; School of Medicine Tongji University; Shanghai 200092 China
- The Institute for Translational Nanomedicine, Shanghai East Hospital; Shanghai 200092 China
- Beijing Advanced Medical Technologies, Ltd. Inc.; Beijing 100085 China
| |
Collapse
|
41
|
Kang H, Li Y, Gong M, Guo Y, Guo Z, Fang Q, Li X. An environmentally sustainable plasticizer toughened polylactide. RSC Adv 2018; 8:11643-11651. [PMID: 35542805 PMCID: PMC9079310 DOI: 10.1039/c7ra13448g] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/22/2018] [Indexed: 11/21/2022] Open
Abstract
Cardanol (CD), derived from renewable natural cashew nutshell liquid, has been used as a new plasticizer for polylactide (PLA), to create blends which retain the environmentally friendly features of PLA. The differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM) results all reveal that PLA and CD show good miscibility at low CD content. CD significantly decreased the glass transition temperature and enhanced the crystallization ability of PLA, demonstrating good plasticizing efficiency with PLA. At 10 wt% CD, ultimate elongation and impact toughness increased to 472% and 9.4 kJ m-2, respectively, which represented improvements of 31-fold and 2.6-fold over the corresponding measurements for neat PLA. The plasticization effect of CD was also demonstrated by the decreased melt complex viscosity and shear storage modulus at lower CD content for the blends when compared with neat PLA. Thus, the investigated CD presents an interesting candidate for a PLA plasticizer, meeting "double green" criteria. No cytotoxicity was found for the blends and hence they may be suitable for biomedical applications.
Collapse
Affiliation(s)
- Hailan Kang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Yushi Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Ming Gong
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Yilin Guo
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Zhuo Guo
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Qinghong Fang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Xue Li
- Department of Chemistry and Textile Engineering, Jiaxing University Nanhu College Jiaxing 314001 China
| |
Collapse
|
42
|
|
43
|
Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials. PLoS One 2018; 13:e0193520. [PMID: 29494654 PMCID: PMC5832258 DOI: 10.1371/journal.pone.0193520] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/13/2018] [Indexed: 12/02/2022] Open
Abstract
Plasticized poly (lactic acid) (PPLA) was prepared by melt blending poly (lactic acid) (PLA) with 10 wt% of poly (ethylene glycol) (PEG), with varied molecular weights range from 400 to 4000. The structure, thermal property, morphology, and surface free energy of the PPLA were investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and contact angles (CA). The resulting PPLA results indicated that the introduction of PEG to the blend systems resulted in a ductile fracture, a decrease in the melt temperature (Tm) and glass transfer temperature (Tg), and an increase in the degree of crystallization (χc), which indicated an improved flexibility. In addition, the polarity of the PPLA increased and the surface free energy decreased. The resulting PPLA was subsequently used as matrix to blend with wood flour to prepare composites. The mechanical strength, melting behavior, thermal stability, and microscopy of the PPLA/wood flour composites were also evaluated. These results illustrated that the plasticized PPLA matrix was beneficial to the interfacial compatibility between the polar filler and the substrate.
Collapse
|
44
|
Koh JJ, Zhang X, He C. Fully biodegradable Poly(lactic acid)/Starch blends: A review of toughening strategies. Int J Biol Macromol 2017; 109:99-113. [PMID: 29248552 DOI: 10.1016/j.ijbiomac.2017.12.048] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 01/24/2023]
Abstract
Polylactic acid (PLA) and Starch are both bio-based biodegradable polymers that have properties that are complementary to each other. PLA/starch blend exploits the good mechanical property of PLA and the low cost of Starch. However, PLA/Starch blend is intrinsically brittle. This paper reviews the current state of arts in toughening of PLA/Starch blend, which are categorized as: Additive Plasticization, Mixture Softening, Elastomer Toughening and Interphase Compatibilization. These strategies are not mutually exclusive and can be applied jointly in a single blend, opening up a wide range of toughening techniques that can be employed in PLA/Starch blend. Even though significant progress has been made in this area, there is still much room for research, in order to achieve easy to process, fully bio-based and completely biodegradable PLA/Starch blends that have mechanical properties suitable for a wide range of applications.
Collapse
Affiliation(s)
- J Justin Koh
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore; Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 73 Nanyang Drive, 637662, Singapore
| | - Xiwen Zhang
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 73 Nanyang Drive, 637662, Singapore
| | - Chaobin He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore; Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| |
Collapse
|
45
|
Duval C, Rahouadj R, Nouvel C, Six JL. PLGA with less than 1 month of half-life time: Tensile properties in dry and wet states and hydrolytic degradation. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1354197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Charlotte Duval
- Laboratoire de Chimie Physique Macromoléculaire, Université de Lorraine, Nancy, France
- Laboratoire de Chimie Physique Macromoléculaire, CNRS, Nancy, France
| | - Rachid Rahouadj
- Laboratoire d’Energétique et de Mécanique Théorique Appliquée, CNRS-Lorraine University, ENSEM, Vandœuvre-lès-Nancy, France
| | - Cécile Nouvel
- Laboratoire de Chimie Physique Macromoléculaire, Université de Lorraine, Nancy, France
- Laboratoire de Chimie Physique Macromoléculaire, CNRS, Nancy, France
| | - Jean-Luc Six
- Laboratoire de Chimie Physique Macromoléculaire, Université de Lorraine, Nancy, France
- Laboratoire de Chimie Physique Macromoléculaire, CNRS, Nancy, France
| |
Collapse
|
46
|
Arrieta MP, Samper MD, Aldas M, López J. On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1008. [PMID: 28850102 PMCID: PMC5615663 DOI: 10.3390/ma10091008] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 02/03/2023]
Abstract
Poly(lactic acid) (PLA) is the most used biopolymer for food packaging applications. Several strategies have been made to improve PLA properties for extending its applications in the packaging field. Melt blending approaches are gaining considerable interest since they are easy, cost-effective and readily available processing technologies at the industrial level. With a similar melting temperature and high crystallinity, poly(hydroxybutyrate) (PHB) represents a good candidate to blend with PLA. The ability of PHB to act as a nucleating agent for PLA improves its mechanical resistance and barrier performance. With the dual objective to improve PLAPHB processing performance and to obtain stretchable materials, plasticizers are frequently added. Current trends to enhance PLA-PHB miscibility are focused on the development of composite and nanocomposites. PLA-PHB blends are also interesting for the controlled release of active compounds in the development of active packaging systems. This review explains the most relevant processing aspects of PLA-PHB based blends such as the influence of polymers molecular weight, the PLA-PHB composition as well as the thermal stability. It also summarizes the recent developments in PLA-PHB formulations with an emphasis on their performance with interest in the sustainable food packaging field. PLA-PHB blends shows highly promising perspectives for the replacement of traditional petrochemical based polymers currently used for food packaging.
Collapse
Affiliation(s)
- Marina Patricia Arrieta
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - María Dolores Samper
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, 03801 Alcoy-Alicante, Spain.
| | - Miguel Aldas
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, 03801 Alcoy-Alicante, Spain.
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Quito 170517, Ecuador.
| | - Juan López
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, 03801 Alcoy-Alicante, Spain.
| |
Collapse
|
47
|
Yin X, Wang L, Li S, He G, Yang Z, Feng Y, Qu J. Preparation and characterization of carbon fiber/polylactic acid/thermoplastic polyurethane (CF/PLA/TPU) composites prepared by a vane mixer. JOURNAL OF POLYMER ENGINEERING 2017. [DOI: 10.1515/polyeng-2016-0144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Various quantities of carbon fibers (CFs) (from 5% to 20% in weight) were added to matrix by melt blending to produce polylactic acid (PLA)/thermoplastic polyurethane (TPU)/CF composites. Differential scanning calorimetry measurements revealed that the CF content and mixing time had little influence on the crystallization and melting behavior of PLA. Thermogravimetric analysis showed that the introduction of CFs tended to decrease the thermal stability of PLA/TPU/CF composites, and the increase of mixing time tended to increase the thermal stability of PLA/TPU/CF composites when the mixing time is <5 min. Rheological results showed that all the samples exhibited non-Newtonian and shear thinning characteristics. The storage modulus and complex viscosity both increased with the increase of the CF content. It also showed that the increase of mixing time tended to increase the storage modulus and complex viscosity of PLA/TPU/CF composites when the mixing time is <5 min. Scanning electron microscopy images showed that the TPU/PLA blends contain a continuous PLA phase with evenly distributed TPU particles in the size range of 0.25–3 μm, and the blends are immiscible at the micron scale. Mechanical properties showed that the addition of proper CF content could lead to an obvious increase (about 11.43%) in tensile strength.
Collapse
|
48
|
Cicogna F, Coiai S, De Monte C, Spiniello R, Fiori S, Franceschi M, Braca F, Cinelli P, Fehri SMK, Lazzeri A, Oberhauser W, Passaglia E. Poly(lactic acid) plasticized with low-molecular-weight polyesters: structural, thermal and biodegradability features. POLYM INT 2017. [DOI: 10.1002/pi.5356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Serena Coiai
- Istituto di Chimica dei Composti OrganoMetallici; Pisa Italy
| | | | | | - Stefano Fiori
- R&D Department; Condensia Química SA; Barcelona Spain
| | | | | | - Patrizia Cinelli
- Dipartimento di Ingegneria Civile e Industriale; Università di Pisa; Pisa Italy
| | | | - Andrea Lazzeri
- Dipartimento di Ingegneria Civile e Industriale; Università di Pisa; Pisa Italy
| | - Werner Oberhauser
- Istituto di Chimica dei Composti OrganoMetallici; Sesto Fiorentino Italy
| | - Elisa Passaglia
- Istituto di Chimica dei Composti OrganoMetallici; Pisa Italy
| |
Collapse
|
49
|
Oyama HT, Tanishima D, Ogawa R. Biologically Safe Poly(l-lactic acid) Blends with Tunable Degradation Rate: Microstructure, Degradation Mechanism, and Mechanical Properties. Biomacromolecules 2017; 18:1281-1292. [DOI: 10.1021/acs.biomac.7b00016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hideko T. Oyama
- Department
of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Rd, Minhou Country, Fuzhou 350116, People’s Republic of China
| | - Daisuke Tanishima
- Department
of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Ryohei Ogawa
- Functional
Materials Laboratory, Mitsui Chemicals Inc., 580-32 Nagaura,
Sodegaura, Chiba 299-0265, Japan
| |
Collapse
|
50
|
Combined effect of nucleating agent and plasticizer on the crystallization behaviour of polylactide. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-1989-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|