1
|
Rajabifar N, Rostami A, Afshar S, Mosallanezhad P, Zarrintaj P, Shahrousvand M, Nazockdast H. Wound Dressing with Electrospun Core-Shell Nanofibers: From Material Selection to Synthesis. Polymers (Basel) 2024; 16:2526. [PMID: 39274158 PMCID: PMC11398146 DOI: 10.3390/polym16172526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Skin, the largest organ of the human body, accounts for protecting against external injuries and pathogens. Despite possessing inherent self-regeneration capabilities, the repair of skin lesions is a complex and time-consuming process yet vital to preserving its critical physiological functions. The dominant treatment involves the application of a dressing to protect the wound, mitigate the risk of infection, and decrease the likelihood of secondary injuries. Pursuing solutions for accelerating wound healing has resulted in groundbreaking advancements in materials science, from hydrogels and hydrocolloids to foams and micro-/nanofibers. Noting the convenience and flexibility in design, nanofibers merit a high surface-area-to-volume ratio, controlled release of therapeutics, mimicking of the extracellular matrix, and excellent mechanical properties. Core-shell nanofibers bring even further prospects to the realm of wound dressings upon separate compartments with independent functionality, adapted release profiles of bioactive agents, and better moisture management. In this review, we highlight core-shell nanofibers for wound dressing applications featuring a survey on common materials and synthesis methods. Our discussion embodies the wound healing process, optimal wound dressing characteristics, the current organic and inorganic material repertoire for multifunctional core-shell nanofibers, and common techniques to fabricate proper coaxial structures. We also provide an overview of antibacterial nanomaterials with an emphasis on their crystalline structures, properties, and functions. We conclude with an outlook for the potential offered by core-shell nanofibers toward a more advanced design for effective wound healing.
Collapse
Affiliation(s)
- Nariman Rajabifar
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Amir Rostami
- Department of Chemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran
| | - Shahnoosh Afshar
- Department of Polymer Engineering, Islamic Azad University-Mahshahr Campus, Mahshahr P.O. Box 63511-41111, Iran
| | - Pezhman Mosallanezhad
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rasht P.O. Box 43841-119, Iran
| | - Hossein Nazockdast
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| |
Collapse
|
2
|
Zhang Z, Liu H, Yu DG, Bligh SWA. Alginate-Based Electrospun Nanofibers and the Enabled Drug Controlled Release Profiles: A Review. Biomolecules 2024; 14:789. [PMID: 39062503 PMCID: PMC11274620 DOI: 10.3390/biom14070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Alginate is a natural polymer with good biocompatible properties and is a potential polymeric material for the sustainable development and replacement of petroleum derivatives. However, the non-spinnability of pure alginate solutions has hindered the expansion of alginate applications. With the continuous development of electrospinning technology, synthetic polymers, such as PEO and PVA, are used as co-spinning agents to increase the spinnability of alginate. Moreover, the coaxial, parallel Janus, tertiary and other diverse and novel electrospun fiber structures prepared by multi-fluid electrospinning have found a new breakthrough for the problem of poor spinning of natural polymers. Meanwhile, the diverse electrospun fiber structures effectively achieve multiple release modes of drugs. The powerful combination of alginate and electrostatic spinning is widely used in many biomedical fields, such as tissue engineering, regenerative engineering, bioscaffolds, and drug delivery, and the research fever continues to climb. This is particularly true for the controlled delivery aspect of drugs. This review provides a brief overview of alginate, introduces new advances in electrostatic spinning, and highlights the research progress of alginate-based electrospun nanofibers in achieving various controlled release modes, such as pulsed release, sustained release, biphasic release, responsive release, and targeted release.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Sim-Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| |
Collapse
|
3
|
Xu L, He L, Li Y, Cai T, Zhang J, Chu Z, Shen X, Cai R, Shi H, Zhu C. Stimuli-triggered multilayer films in response to temperature and ionic strength changes for controlled favipiravir drug release. Biomed Mater 2024; 19:035004. [PMID: 38364282 DOI: 10.1088/1748-605x/ad2a3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
The block copolymer micelles and natural biopolymers were utilized to form layer-by-layer (LbL) films via electrostatic interaction, which were able to effectively load and controllably release favipiravir, a potential drug for the treatment of coronavirus epidemic. The LbL films demonstrated reversible swelling/shrinking behavior along with the manipulation of temperature, which could also maintain the integrity in the structure and the morphology. Due to dehydration of environmentally responsive building blocks, the drug release rate from the films was decelerated by elevating environmental temperature and ionic strength. In addition, the pulsed release of favipiravir was observed from the multilayer films under the trigger of temperature, which ensured the precise control in the content of the therapeutic reagents at a desired time point. The nanoparticle-based LbL films could be used for on-demandin vitrorelease of chemotherapeutic reagents.
Collapse
Affiliation(s)
- Li Xu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Lang He
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Yinzhao Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Tingwei Cai
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Jianhua Zhang
- N.O.D topia (GuangZhou) Biotechnology Co., Ltd, Guangzhou, Guangdong 510599, People's Republic of China
| | - Zihan Chu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Xiaochen Shen
- China Tobacco Jiangsu Industrial Co., Ltd, Nanjing, Jiangsu 210019, People's Republic of China
| | - Raymond Cai
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Chunyin Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| |
Collapse
|
4
|
Tomar Y, Pandit N, Priya S, Singhvi G. Evolving Trends in Nanofibers for Topical Delivery of Therapeutics in Skin Disorders. ACS OMEGA 2023; 8:18340-18357. [PMID: 37273582 PMCID: PMC10233693 DOI: 10.1021/acsomega.3c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
Nanotechnology has yielded nanostructure-based drug delivery approaches, among which nanofibers have been explored and researched for the potential topical delivery of therapeutics. Nanofibers are filaments or thread-like structures in the nanometer size range that are fabricated using various polymers, such as natural or synthetic polymers or their combination. The size or diameter of the nanofibers depends upon the polymers, the techniques of preparation, and the design specification. The four major processing techniques, phase separation, self-assembly, template synthesis, and electrospinning, are most commonly used for the fabrication of nanofibers. Nanofibers have a unique structure that needs a multimethod approach to study their morphology and characterization parameters. They are gaining attention as drug delivery carriers, and the substantially vast surface area of the skin makes it a potentially promising strategy for topical drug products for various skin disorders such as psoriasis, skin cancers, skin wounds, bacterial and fungal infections, etc. However, the large-scale production of nanofibers with desired properties remains challenging, as the widely used electrospinning processes have certain limitations, such as poor yield, use of high voltage, and difficulty in achieving in situ nanofiber deposition on various substrates. This review highlights the insights into fabrication strategies, applications, recent clinical trials, and patents of nanofibers for different skin disorders in detail. Additionally, it discusses case studies of its effective utilization in the treatment of various skin disorders for a better understanding for readers.
Collapse
Affiliation(s)
- Yashika Tomar
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Nisha Pandit
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sakshi Priya
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
5
|
Khan N, Singh AK, Saneja A. Preparation, Characterization, and Antioxidant Activity of L-Ascorbic Acid/HP- β-Cyclodextrin Inclusion Complex-Incorporated Electrospun Nanofibers. Foods 2023; 12:foods12071363. [PMID: 37048184 PMCID: PMC10093489 DOI: 10.3390/foods12071363] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
L-Ascorbic acid (LAA) is a key vitamin, implicated in a variety of physiological processes in humans. Due to its free radical scavenging activity, it is extensively employed as an excipient in pharmaceutical products and food supplements. However, its application is greatly impeded by poor thermal and aqueous stability. Herein, to improve the stability and inhibit oxidative degradation, we prepared LAA-cyclodextrin inclusion complex-incorporated nanofibers (NFs). The continuous variation method (Job plot) demonstrated that LAA forms inclusions with hydroxypropyl-β-cyclodextrin (HP-β-CD) at a 2:1 molar stoichiometric ratio. The NFs were prepared via the single step electrospinning technique, without using any polymer matrix. The solid-state characterizations of LAA/HP-β-CD-NF via powder x-ray diffractometry (PXRD), Fourier-transform infrared (FT-IR) analysis, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and nuclear magnetic resonance (1H NMR and 2D-NOESY) spectroscopy, reveal the effective encapsulation of the LAA (guest molecule) inside the HP-β-CD (host) cavity. The SEM micrograph reveals an average fiber diameter of ~339 nm. The outcomes of the thermal investigations demonstrated that encapsulation of LAA within HP-β-CD cavities provides improved thermal stability of LAA (by increasing the thermal degradation temperature). The radical scavenging assay demonstrated the enhanced antioxidant potential of LAA/HP-β-CD-NF, as compared to native LAA. Overall, the study shows that cyclodextrin inclusion complex-incorporated NFs, are an effective approach for improving the limitations associated with LAA, and provide promising avenues in its therapeutic and food applications.
Collapse
Affiliation(s)
- Nabab Khan
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar Singh
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Jamil M, Mustafa IS, Ahmed NM, Sahul Hamid SB. Cytotoxicity evaluation of poly(ethylene) oxide nanofibre in MCF-7 breast cancer cell line. BIOMATERIALS ADVANCES 2022; 143:213178. [PMID: 36368056 DOI: 10.1016/j.bioadv.2022.213178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Biocompatible polymers have received significant interest from researchers for their potential in diagnostic applications. This type of polymer can perform with an appropriate host response or carrier for a specific purpose. The current study aims to fabricate and characterise poly(ethylene) oxide (PEO) nanofibres with different concentrations for cytotoxicity evaluation in human breast cancer cell lines (MCF-7) and to get an optimal PEO nanofibre concentration (permissible limit) as a suitable polymer matrix or carrier with potential use in diagnostic applications. The fabrication of PEO nanofibres was done using electrospinning and was characterised by structure and morphology, surface roughness, chemical bonding and release profiles. The functional effects of PEO nanofibres were evaluated with MTS assay and colony formation assay in MCF-7 cells. The results showed that viscosity plays a vital role in synthesising a polymer solution in electrospinning for producing beadless nanofibrous mats ranging from 4.7 Pa·s to 77.7 Pa·s. As the PEO concentration increases, the nanofibre diameter and thickness will increase, but the surface roughness will be decreased. The average fibre diameter for 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 129 ± 70 nm, 185 ± 55 nm and 192 ± 53 nm, respectively. In addition, the fibre thickness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 269 ± 3 μm, 664 ± 4 μm, 758 ± 7 μm and 1329 ± 44 μm, respectively. Contrarily, the surface roughness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 55.6 ± 9 nm, 42.8 ± 6 nm, 42.7 ± 7 nm and 36.6 ± 1 nm, respectively. PEO nanofibres showed the same burst release pattern and rate due to the same molecular weight of PEO with a stable release rate profile after 15 min. It also demonstrates that the percentage of PEO nanofibre release increased with the increasing PEO concentration due to the fibre diameter and thickness. The findings showed that all PEO nanofibres formulations were non-toxic to MCF-7 cells. It is suggested that 5 wt% PEO nanofibre exhibited non-cytotoxic characteristics by maintaining the cell viability from dose 0-1000 μg/ml and did not induce the number of colonies. Therefore, 5 wt% PEO nanofibre is the optimal nanofibre concentration and was suggested as a suitable base polymer matrix or carrier with potential use for diagnostic purposes. The findings in this study have demonstrated the influence of cell growth and viability, including the effects of PEO nanofibre formulations on cancer progress characteristics to achieve a permissible PEO nanofibre concentration limit that can be a benchmark in medical applications, particularly diagnostic applications.
Collapse
Affiliation(s)
- Munirah Jamil
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia.
| | | | - Naser Mahmoud Ahmed
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; Department of Medical Instrumentation Engineering, Dijlah University College, Baghdad, Iraq.
| | | |
Collapse
|
7
|
Patel PR, Gundloori RVN. A review on electrospun nanofibers for multiple biomedical applications. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pratikshkumar R. Patel
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Rathna Venkata Naga Gundloori
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
8
|
Priya S, Batra U, R N S, Sharma S, Chaurasiya A, Singhvi G. Polysaccharide-based nanofibers for pharmaceutical and biomedical applications: A review. Int J Biol Macromol 2022; 218:209-224. [PMID: 35872310 DOI: 10.1016/j.ijbiomac.2022.07.118] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 01/22/2023]
Abstract
Nanofibers are fibrous nanocarriers that can be synthesized from natural polymers, synthetic polymers, semiconducting materials, composite materials, and carbon-based materials. Recently, natural polysaccharides-based nanofibers are gaining attention in the field of pharmaceuticals and biomedical as these are biocompatible, biodegradable, non-toxic, and economic. Nanofibers can deliver a significant amount of drug to the targeted site and provide effective interaction of therapeutic agent at the site of action due to a larger surface area. Other important advantages of nanofibers are low density, high porosity, small pore size, high mechanical strength, and low cost. In this review, natural polysaccharides such as alginate, pullulan, hyaluronic acid, dextran, cellulose, chondroitin sulfate, chitosan, xanthan gum, and gellan gum are discussed for their characteristics, pharmaceutical utility, and biomedical applications. The authors have given particular emphasis to the several fabrication processes that utilize these polysaccharides to form nanofibers, and their recent updates in pharmaceutical applications such as drug delivery, tissue engineering, skin disorders, wound-healing dressings, cancer therapy, bioactive molecules delivery, anti-infectives, and solubility enhancement. Despite these many advantages, nanofibers have been explored less for their scale-up and applications in advanced therapeutic delivery.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Unnati Batra
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Samshritha R N
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sudhanshu Sharma
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Akash Chaurasiya
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Hyderabad Campus, Telangana 500078, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
9
|
Drobota M, Ursache S, Aflori M. Surface Functionalities of Polymers for Biomaterial Applications. Polymers (Basel) 2022; 14:polym14122307. [PMID: 35745883 PMCID: PMC9229900 DOI: 10.3390/polym14122307] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Changes of a material biointerface allow for specialized cell signaling and diverse biological responses. Biomaterials incorporating immobilized bioactive ligands have been widely introduced and used for tissue engineering and regenerative medicine applications in order to develop biomaterials with improved functionality. Furthermore, a variety of physical and chemical techniques have been utilized to improve biomaterial functionality, particularly at the material interface. At the interface level, the interactions between materials and cells are described. The importance of surface features in cell function is then examined, with new strategies for surface modification being highlighted in detail.
Collapse
Affiliation(s)
- Mioara Drobota
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
| | - Stefan Ursache
- Innovative Green Power, No. 5 Iancu Bacalu Street, 700029 Iasi, Romania;
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
- Correspondence:
| |
Collapse
|
10
|
AL-MOALEMI HAFEDHAHMED, IZWAN ABD RAZAK SAIFUL, BOHARI SITIPAULIENAMOHD. ELECTROSPUN SODIUM ALGINATE/POLY(ETHYLENE OXIDE) NANOFIBERS FOR WOUND HEALING APPLICATIONS: CHALLENGES AND FUTURE DIRECTIONS. CELLULOSE CHEMISTRY AND TECHNOLOGY 2022; 56:251-270. [DOI: 10.35812/cellulosechemtechnol.2022.56.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Alginate is an interesting natural biopolymer to be considered for biomedical applications due to its advantages and good biological properties. These biological properties make electrospun alginate nanofibers suitable for various uses in the biomedical field, such as wound healing dressings, drug delivery systems, or both. Unfortunately, the fabrication of alginate nanofibers by electrospinning is very challenging because of the high viscosity of the solution, high surface tension and rigidity in water due to hydrogen bonding, and also their diaxial linkages. This review presents an overview of the factors affecting the electrospinning process of sodium alginate/poly(ethylene oxide) (SA/PEO), the application of SA/PEO in drug delivery systems for wound healing applications, and the degradation and swelling properties of SA/PEO. The challenges and future directions of SA/PEO in the medical field are also discussed.
Collapse
|
11
|
Singh B, Kim K, Park MH. On-Demand Drug Delivery Systems Using Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3411. [PMID: 34947758 PMCID: PMC8707398 DOI: 10.3390/nano11123411] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022]
Abstract
On-demand drug-delivery systems using nanofibers are extensively applicable for customized drug release based on target location and timing to achieve the desired therapeutic effects. A nanofiber formulation is typically created for a certain medication and changing the drug may have a significant impact on the release kinetics from the same delivery system. Nanofibers have several distinguishing features and properties, including the ease with which they may be manufactured, the variety of materials appropriate for processing into fibers, a large surface area, and a complex pore structure. Nanofibers with effective drug-loading capabilities, controllable release, and high stability have gained the interest of researchers owing to their potential applications in on-demand drug delivery systems. Based on their composition and drug-release characteristics, we review the numerous types of nanofibers from the most recent accessible studies. Nanofibers are classified based on their mechanism of drug release, as well as their structure and content. To achieve controlled drug release, a suitable polymer, large surface-to-volume ratio, and high porosity of the nanofiber mesh are necessary. The properties of nanofibers for modified drug release are categorized here as protracted, stimulus-activated, and biphasic. Swellable or degradable polymers are commonly utilized to alter drug release. In addition to the polymer used, the process and ambient conditions can have considerable impacts on the release characteristics of the nanofibers. The formulation of nanofibers is highly complicated and depends on many variables; nevertheless, numerous options are available to accomplish the desired nanofiber drug-release characteristics.
Collapse
Affiliation(s)
- Baljinder Singh
- Department of Convergence Science, Sahmyook University, Seoul 01795, Korea;
| | - Kibeom Kim
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Korea;
| | - Myoung-Hwan Park
- Department of Convergence Science, Sahmyook University, Seoul 01795, Korea;
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Korea
- N to B Co., Ltd., Business Incubator Center, Hwarang-ro, Nowon-gu, Seoul 01795, Korea
| |
Collapse
|
12
|
Dodero A, Alberti S, Gaggero G, Ferretti M, Botter R, Vicini S, Castellano M. An Up‐to‐Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. ADVANCED MATERIALS INTERFACES 2021; 8. [DOI: 10.1002/admi.202100809] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 01/06/2025]
Abstract
AbstractAlginate is a naturally occurring polysaccharide commonly derived from brown algae cell walls which possesses unique features that make it extremely promising for several biomedical and pharmaceutical purposes. Alginate biomaterials are indeed nowadays gaining increasing interest in drug delivery and tissue engineering applications owing to their intrinsic biocompatibility, non‐toxicity, versatility, low cost, and ease of functionalization. Specifically, alginate‐based nanostructures show enhanced capabilities with respect to alginate bulk materials in the targeted delivery of drugs and chemotherapies, as well as in helping tissue reparation and regeneration. Hence, it is not surprising that the number of scientific reports related to this topic have rapidly grown in the last decade. With these premises, the present review aims to provide a comprehensive state‐of‐the‐art of the most recent advances in the preparation of alginate‐based nanoparticles and electrospun nanofibers for drug delivery, cancer therapy, and tissue engineering purposes. After a short introduction concerning the general properties and uses of alginate and the concept of nanotechnology, the recent literature is then critically presented to highlight the main advantages of alginate‐based nanostructures. Finally, the current limitations and the future perspectives and objectives are discussed in detail.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Stefano Alberti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Giulia Gaggero
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Maurizio Ferretti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Rodolfo Botter
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| |
Collapse
|
13
|
Liu L, Tao L, Chen J, Zhang T, Xu J, Ding M, Wang X, Zhong J. Fish oil-gelatin core-shell electrospun nanofibrous membranes as promising edible films for the encapsulation of hydrophobic and hydrophilic nutrients. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Hu C, Lu W, Mata A, Nishinari K, Fang Y. Ions-induced gelation of alginate: Mechanisms and applications. Int J Biol Macromol 2021; 177:578-588. [PMID: 33617905 DOI: 10.1016/j.ijbiomac.2021.02.086] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 01/16/2023]
Abstract
Alginate is an important natural biopolymer and has been widely used in the food, biomedical, and chemical industries. Ca2+-induced gelation is one of the most important functional properties of alginate. The gelation mechanism is well-known as egg-box model, which has been intensively studied in the last five decades. Alginate also forms gels with many other monovalent, divalent or trivalent cations, and their gelation can possess different mechanisms from that of Ca2+-induced gelation. The resulted gels also exhibit different properties that lead to various applications. This study is proposed to summarize the gelation mechanisms of alginate induced by different cations, mainly including H+, Ca2+, Ba2+, Cu2+, Sr2+, Zn2+, Fe2+, Mn2+, Al3+, and Fe3+. The mechanism of H+-induced gelation of alginate mainly depends on the protonation of carboxyl groups. Divalent ions-induced gelation of alginate show different selection towards G, M, and GM blocks. Trivalent ions can bind to carboxyl groups of uronates with no selection. The properties and applications of these ionotropic alginate gels are also discussed. The knowledge gained in this study would provide useful information for the practical applications of alginate.
Collapse
Affiliation(s)
- Chuhuan Hu
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Wei Lu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Analucia Mata
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Comunian T, Babazadeh A, Rehman A, Shaddel R, Akbari-Alavijeh S, Boostani S, Jafari S. Protection and controlled release of vitamin C by different micro/nanocarriers. Crit Rev Food Sci Nutr 2020; 62:3301-3322. [DOI: 10.1080/10408398.2020.1865258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- T. Comunian
- Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - A. Babazadeh
- Center for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - A. Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - R. Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S. Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S. Boostani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - S.M. Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
16
|
Kouhi M, Prabhakaran MP, Ramakrishna S. Edible polymers: An insight into its application in food, biomedicine and cosmetics. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Varshosaz J, Arabloo K, Sarrami N, Ghassami E, Yazdani Kachouei E, Kouhi M, Jahanian-Najafabadi A. RGD peptide grafted polybutylene adipate-co-terephthalate/gelatin electrospun nanofibers loaded with a matrix metalloproteinase inhibitor drug for alleviating of wounds: an in vitro/in vivo study. Drug Dev Ind Pharm 2020; 46:484-497. [DOI: 10.1080/03639045.2020.1730397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Khatereh Arabloo
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Sarrami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfaneh Ghassami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Monireh Kouhi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Jahanian-Najafabadi
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|