1
|
Lemloh L, de Vadder A, Melaku T, Bo B, Patel N, Holdenrieder S, Mueller A, Kipfmueller F. Increased circulating Endothelin-1 is a risk factor for ECMO use and mortality in neonates with congenital diaphragmatic hernia: a prospective observational study. Respir Res 2025; 26:110. [PMID: 40119427 PMCID: PMC11929193 DOI: 10.1186/s12931-025-03188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/10/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Elevated levels of Endothelin-1 (ET-1), a vasoactive peptide, have been associated with adverse outcomes in neonates with congenital diaphragmatic hernia (CDH). However, the relationship between ET-1 levels and clinical outcomes remains poorly understood. This study aimed to investigate the kinetics of ET-1 levels in CDH neonates from birth to 48 h postnatally and assess its association with clinical comorbidities, the need for extracorporeal membrane oxygenation (ECMO), and mortality. METHODS A prospective single-center study was conducted, including 107 newborns with CDH from 2014 to 2022. Blood samples for ET-1 measurement were collected at birth, 6 h, and 48 h postnatally. The need for ECMO and mortality served as primary and secondary clinical endpoints. Based on the ET-1 values patients were assigned to ET-1 high, intermediate, and low groups. Statistical analyses, including ROC curve analysis and multivariate logistic regression, were performed to determine the predictive value of ET-1 levels. RESULTS Among the 107 CDH neonates 41 (38.3%) required ECMO and the overall mortality rate was 19.6%. Higher ET-1 levels at 0 and 48 h correlated significantly with the need for ECMO (p = 0.028 and p < 0.001) and mortality (p = 0.016 and p < 0.001). The high ET-1 group had a significantly higher rate of ECMO use (63.2%) and higher mortality (42.1%) compared to the ET-1 low group (15.4% and 0%). Furthermore, elevated ET-1 levels were associated with more severe disease characteristics including severe PH and biventricular dysfunction. CONCLUSIONS Elevated ET-1 levels during the first 48 h of life in CDH neonates are significantly associated with increased rates of ECMO and mortality. These findings underline the potential of ET-1 as a predictive biomarker for poor outcomes in CDH and highlight its relevance in guiding therapeutic interventions. TRIAL REGISTRATION DKRS00034329.
Collapse
Affiliation(s)
- Lotte Lemloh
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Aster de Vadder
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Tamene Melaku
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Bartolomeo Bo
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Neil Patel
- Department of Neonatology, The Royal Hospital for Children, Glasgow, UK
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University of Munich, Munich, Germany
| | - Andreas Mueller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Florian Kipfmueller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Department of Neonatology and Pediatric Intensive Care, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
2
|
De Vadder A, Lemloh L, Bo B, Hale L, Patel N, Mueller A, Kipfmueller F. Bosentan as adjunctive therapy in neonates with congenital diaphragmatic hernia-associated pulmonary hypertension: a case series. Eur J Pediatr 2025; 184:198. [PMID: 39945931 PMCID: PMC11825598 DOI: 10.1007/s00431-025-06019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025]
Abstract
Congenital diaphragmatic hernia (CDH)-associated pulmonary hypertension (PH) is associated with high morbidity and mortality. Pulmonary vasodilative management is challenging and some patients with CDH are unresponsive to inhaled nitric oxide or sildenafil. Bosentan, an enterally-administered endothelin-1 receptor antagonist, reducing pulmonary vascular resistance may play a role in the treatment of CDH-PH. The aim is to evaluate the efficacy and safety of bosentan as an adjunctive therapy for CDH-PH. We report a case series of all CDH neonates who received oral bosentan as an adjunctive therapy for treatment of PH between 2013 and 2021 at our institution. Bosentan was administered at a median enteral dose of 2 mg/kg/day. Main outcomes were improved PH severity on echocardiography, oxygenation, and respiratory support after starting bosentan. Patients were compared according to improvement in PH after 1 week of treatment (responder vs. non-responder). Fifty CDH neonates received oral adjunctive bosentan therapy. Survival to discharge was 58%. Improved PH was observed in 54 and 72% of patients after 1 and 2 weeks respectively (p < 0.001). Respiratory status ameliorated significantly after 2 weeks compared to baseline, with a reduction of ECMO treatment from 30 to 0% and an increase in patients receiving non-invasive or no respiratory support from 18 to 40%. Oxygenation did not improve over 2 weeks, possibly biased by the changes in the respiratory status and other contributing factors to the pathophysiology of CDH. CONCLUSION Bosentan is effective in the treatment of neonates with CDH-PH and was associated with improved PH severity and respiratory status. Adverse effects were minimal and consistent with previous studies. WHAT IS KNOWN • CDH neonates frequently suffer from pulmonary hypertension with inconclusive evidence regarding the benefit of pulmonary vasodilator treatment. • Increased endothelin-1 plasma levels have been associated with poor outcome in CDH neonates, however, there is minimal data on the use of endothelin receptor blockers, such as bosnetan, in this population. WHAT IS NEW • This case series of 50 CDH neonates receiving bosentan demonstrates an improvement in PH severity based on echocardiographic assessment in 54% within one week of treatment. • Respiratory support modus (i.e. ECMO, mechanical ventilation, CPAP) improved significantly within two weeks of bosentan treatment in responders and non-responders.
Collapse
Affiliation(s)
- Aster De Vadder
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Lotte Lemloh
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Bartolomeo Bo
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Lennart Hale
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Neil Patel
- Department of Neonatology, The Royal Hospital for Children, Glasgow, UK
| | - Andreas Mueller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Florian Kipfmueller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
3
|
Johng S, Fraga MV, Patel N, Kipfmueller F, Bhattacharya A, Bhombal S. Unique Cardiopulmonary Interactions in Congenital Diaphragmatic Hernia: Physiology and Therapeutic Implications. Neoreviews 2023; 24:e720-e732. [PMID: 37907403 DOI: 10.1542/neo.24-11-e720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Congenital diaphragmatic hernia (CDH) results in abdominal contents entering the thoracic cavity, affecting both cardiac and pulmonary development. Maldevelopment of the pulmonary vasculature occurs within both the ipsilateral lung and the contralateral lung. The resultant bilateral pulmonary hypoplasia and associated pulmonary hypertension are important components of the pathophysiology of this disease that affect outcomes. Despite prenatal referral to specialized high-volume centers, advanced ventilation strategies, pulmonary hypertension management, and the option of extracorporeal membrane oxygenation, overall CDH mortality remains between 25% and 30%. With increasing recognition that cardiac dysfunction plays a large role in morbidity and mortality in patients with CDH, it becomes imperative to understand the different clinical phenotypes, thus allowing for individual patient-directed therapies. Further research into therapeutic interventions that address the cardiopulmonary interactions in patients with CDH may lead to improved morbidity and mortality outcomes.
Collapse
Affiliation(s)
- Sandy Johng
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA
| | - Maria V Fraga
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA
| | - Neil Patel
- Department of Neonatology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Florian Kipfmueller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | | | - Shazia Bhombal
- Department of Pediatrics, Emory University/Children's Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
4
|
Pizzuto MF, Laughon MM, Jackson WM. Current and emerging pharmacotherapies for the treatment of pulmonary arterial hypertension in infants. Expert Opin Pharmacother 2023; 24:1875-1886. [PMID: 37707346 PMCID: PMC10843401 DOI: 10.1080/14656566.2023.2257598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION Pulmonary hypertension (PH) is a complex condition that encompasses an array of underlying disease processes and affects a diverse population of infants, including those with congenital heart disease, congenital diaphragmatic hernia, persistent PH of the newborn, and those with lung disease such as bronchopulmonary dysplasia. While there are treatments available to adults with PH, limited data exists for infants, especially for the newer medications. Therapies that target the three main pathophysiologic pathways of pulmonary hypertension appear to benefit infants, but which are best for each individual disease process is unclear. AREAS COVERED A review of the therapies to treat pulmonary hypertension is covered in this article including the prostacyclin pathway, endothelin pathway, and the nitric oxide pathway. Other adjunctive treatments are also discussed. Findings are based on a PubMed literature search of research papers spanning 1990-2023 and a search of ongoing trials registered with clinicaltrials.gov. EXPERT OPINION Overall therapies seem to improve outcomes with most infants with PH. However, given the diverse population of infants with PH, it is imperative to understand the basis for the PH in individual patients and understand which therapies can be applicable. Further research into tailored therapy for the specific populations is warranted.
Collapse
Affiliation(s)
- Matthew F. Pizzuto
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Matthew M. Laughon
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Wesley M. Jackson
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
5
|
Systemic Inflammation Is Associated with Pulmonary Hypertension in Isolated Giant Omphalocele: A Population-Based Study. Healthcare (Basel) 2022; 10:healthcare10101998. [PMID: 36292445 PMCID: PMC9601560 DOI: 10.3390/healthcare10101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022] Open
Abstract
Our objective is to determine perinatal factors contributing to the development of pulmonary hypertension (PH) in patients with isolated giant omphaloceles (GO). All cases of omphaloceles that underwent prenatal and postnatal care at the University Hospital of Lille between 1996 and 2021 were reviewed. We included all infants with isolated GO, including at least a part of the liver, who were treated by delayed surgical closure. Prenatal and postnatal data were recorded and correlated with postnatal morbidities. We compared outcomes between a group of infants with GO who developed PH and infants with GO with no PH. We identified 120 infants with omphalocele. Fifty isolated GO cases fulfilled the inclusion criteria of our study. The incidence of PH was 30%. We highlighted a prolonged inflammatory state, defined as a CRP superior to 15 mg/L, platelets higher than 500 G/L, and white blood cells higher than 15 G/l for more than 14 days in patients who developed PH. This event occurred in 73% of patients with PH versus 21% of patients without PH (p < 0.05). Late-onset infection was not different between the two groups. We speculate that prolonged inflammatory syndrome promotes PH in infants with GO treated with delayed surgical closure.
Collapse
|
6
|
Jain A, Giesinger RE, Dakshinamurti S, ElSayed Y, Jankov RP, Weisz DE, Lakshminrusimha S, Mitra S, Mazwi ML, Ting J, Narvey M, McNamara PJ. Care of the critically ill neonate with hypoxemic respiratory failure and acute pulmonary hypertension: framework for practice based on consensus opinion of neonatal hemodynamics working group. J Perinatol 2022; 42:3-13. [PMID: 35013586 DOI: 10.1038/s41372-021-01296-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Circulatory transition after birth presents a critical period whereby the pulmonary vascular bed and right ventricle must adapt to rapidly changing loading conditions. Failure of postnatal transition may present as hypoxemic respiratory failure, with disordered pulmonary and systemic blood flow. In this review, we present the biological and clinical contributors to pathophysiology and present a management framework.
Collapse
Affiliation(s)
- Amish Jain
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | | | - Yasser ElSayed
- Department of Pediatrics, University of Manitoba, Winnipeg, MB, Canada
| | - Robert P Jankov
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - Dany E Weisz
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | - Souvik Mitra
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Mjaye L Mazwi
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Joseph Ting
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Michael Narvey
- Department of Pediatrics, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Congenital diaphragmatic hernia (CDH) is a structural birth defect that results in significant neonatal morbidity and mortality. CDH occurs in 2-4 per 10 000 pregnancies, and despite meaningful advances in neonatal intensive care, the mortality rate in infants with isolated CDH is still 25-30%. In this review, we will present data on the molecular underpinnings of pathological lung development in CDH, prenatal diagnosis, and prognostication in CDH cases, existing fetal therapy modalities, and future directions. RECENT FINDINGS Developments in the prenatal assessment and in-utero therapy of pregnancies complicated by congenital diaphragmatic hernia are rapidly evolving. Although ultrasound has been the mainstay of prenatal diagnosis, fetal MRI appears to be an increasingly important modality for severity classification. While fetal endoscopic tracheal occlusion (FETO) may have a role in the prenatal management of severe CDH cases, it is possible that future therapeutic paradigms will incorporate adjunct medical interventions with either stem cells or sildenafil in order to address the vascular effects of CDH on the developing lung. SUMMARY Both animal and human data have shown that the pathophysiological underpinnings of CDH are multifactorial, and it appears that future prenatal assessments and therapies will likely be as well.
Collapse
|
8
|
Yang MJ, Russell KW, Yoder BA, Fenton SJ. Congenital diaphragmatic hernia: a narrative review of controversies in neonatal management. Transl Pediatr 2021; 10:1432-1447. [PMID: 34189103 PMCID: PMC8192986 DOI: 10.21037/tp-20-142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The consequences of most hernias can be immediately corrected by surgical repair. However, this isn't always the case for children born with a congenital diaphragmatic hernia. The derangements in physiology encountered immediately after birth result from pulmonary hypoplasia and hypertension caused by herniation of abdominal contents into the chest early in lung development. This degree of physiologic compromise can vary from mild to severe. Postnatal management of these children remains controversial. Although heavily studied, multi-institutional randomized controlled trials are lacking to help determine what constitutes best practice. Additionally, the results of the many studies currently within the literature that have investigated differing aspect of care (i.e., inhaled nitric oxide, ventilator type, timing of repair, role of extracorporeal membrane oxygenation, etc.) are difficult to interpret due to the small numbers investigated, the varying degree of physiologic compromise, and the contrasting care that exists between institutions. The aim of this paper is to review areas of controversy in the care of these complex kids, mainly: the use of fraction of inspired oxygen, surfactant therapy, gentle ventilation, mode of ventilation, medical management of pulmonary hypertension (inhaled nitric oxide, sildenafil, milrinone, bosentan, prostaglandins), the utilization of extracorporeal membrane oxygenation, and the timing of surgical repair.
Collapse
Affiliation(s)
- Michelle J Yang
- Division of Neonatology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Katie W Russell
- Division of Pediatric Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bradley A Yoder
- Division of Neonatology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Stephen J Fenton
- Division of Pediatric Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
9
|
Romero-Lopez MDM, Oria M, Watanabe-Chailland M, Varela MF, Romick-Rosendale L, Peiro JL. Lung Metabolomics Profiling of Congenital Diaphragmatic Hernia in Fetal Rats. Metabolites 2021; 11:177. [PMID: 33803572 PMCID: PMC8003001 DOI: 10.3390/metabo11030177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is characterized by the herniation of abdominal contents into the thoracic cavity during the fetal period. This competition for fetal thoracic space results in lung hypoplasia and vascular maldevelopment that can generate severe pulmonary hypertension (PH). The detailed mechanisms of CDH pathogenesis are yet to be understood. Acknowledgment of the lung metabolism during the in-utero CDH development can help to discern the CDH pathophysiology changes. Timed-pregnant dams received nitrofen or vehicle (olive oil) on E9.5 day of gestation. All fetal lungs exposed to nitrofen or vehicle control were harvested at day E21.5 by C-section and processed for metabolomics analysis using nuclear magnetic resonance (NMR) spectroscopy. The three groups analyzed were nitrofen-CDH (NCDH), nitrofen-control (NC), and vehicle control (VC). A total of 64 metabolites were quantified and subjected to statistical analysis. The multivariate analysis identified forty-four metabolites that were statistically different between the three groups. The highest Variable importance in projection (VIP) score (>2) metabolites were lactate, glutamate, and adenosine 5'-triphosphate (ATP). Fetal CDH lungs have changes related to oxidative stress, nucleotide synthesis, amino acid metabolism, glycerophospholipid metabolism, and glucose metabolism. This work provides new insights into the molecular mechanisms behind the CDH pathophysiology and can explore potential novel treatment targets for CDH patients.
Collapse
Affiliation(s)
- Maria del Mar Romero-Lopez
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (M.d.M.R.-L.); (M.O.); (M.F.V.)
- Perinatal Institute, Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marc Oria
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (M.d.M.R.-L.); (M.O.); (M.F.V.)
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Miki Watanabe-Chailland
- NMR-based Metabolomics Core, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.W.-C.); (L.R.-R.)
| | - Maria Florencia Varela
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (M.d.M.R.-L.); (M.O.); (M.F.V.)
| | - Lindsey Romick-Rosendale
- NMR-based Metabolomics Core, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.W.-C.); (L.R.-R.)
| | - Jose L. Peiro
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (M.d.M.R.-L.); (M.O.); (M.F.V.)
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
10
|
Le Duc K, Mur S, Sharma D, Aubry E, Recher M, Rakza T, Storme L. Prostaglandin E1 in infants with congenital diaphragmatic hernia (CDH) and life-threatening pulmonary hypertension. J Pediatr Surg 2020; 55:1872-1878. [PMID: 32061366 DOI: 10.1016/j.jpedsurg.2020.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Suprasystemic pulmonary hypertension (PH) is highly predictive of pulmonary morbidity and death in infants with congenital diaphragmatic hernia (CDH). OBJECTIVES To report the effects and tolerability of Prostaglandin E1 (PGE1) in newborns with severe CDH and life-threatening PH. METHODS Newborn infants with isolated CDH and life-threatening PH defined by an acute worsening of the cardiorespiratory function, and bidirectional or exclusive right-to-left shunting across the ductus arteriosus (DA) with an acceleration of the blood flow >1.5 m.s-1 assessed by Doppler echocardiography. Serial measurements of cardiorespiratory variables have been recorded before and after PGE1. RESULTS 18 infants (out of 102 in the cohort) were included in the study (gestational age: 39 ± 2 weeks). The median FiO2, and preductal and postductal SpO2 were 80% [50; 100], 91% [88; 95] and 86% [82; 91], respectively, before treatment. FiO2 decreased to 35% [30-40] (p = 0.001) at H6. Maximal blood flow velocities in the DA decreased after starting PGE1 from 2.2 m.s-1 [1.5-2.5] to 1 m.s-1 [0.55-1.2] (p < 0.001). CONCLUSIONS PGE1 treatment improved oxygenation and circulatory function in newborn infants with severe CDH and life-threatening PH. Our data provide evidence that restrictive DA may result in suprasystemic pulmonary hypertension in CDH infants, and that PGE1 may improve cardiorespiratory failure through reopening of the DA. TYPE OF STUDY Treatment study. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Kévin Le Duc
- Department of Neonatology, Jeanne de Flandre Hospital, University Hospital of Lille, F-59000, France.
| | - Sébastien Mur
- Department of Neonatology, Jeanne de Flandre Hospital, University Hospital of Lille, F-59000, France
| | - Dyuti Sharma
- Department of Pediatric Surgery, Jeanne de Flandre Hospital, University Hospital of Lille, F-59000, France
| | - Estelle Aubry
- Department of Pediatric Surgery, Jeanne de Flandre Hospital, University Hospital of Lille, F-59000, France
| | - Morgan Recher
- Paediatric Intensive Care Unit, Jeanne de Flandre Hospital, University Hospital of Lille, F-59000, France
| | - Thameur Rakza
- Department of Neonatology, Jeanne de Flandre Hospital, University Hospital of Lille, F-59000, France
| | - Laurent Storme
- Department of Neonatology, Jeanne de Flandre Hospital, University Hospital of Lille, F-59000, France
| | | |
Collapse
|
11
|
Abstract
Congenital diaphragmatic hernia (CDH) is a neonatal pathology in which intrathoracic herniation of abdominal viscera via diaphragmatic defect results in aberrant pulmonary and cardiovascular development. Despite decades of study and many advances in the diagnosis and treatment of CDH, morbidity and mortality remain high, largely due to pulmonary hypertension (PH), along with pulmonary hypoplasia and cardiac dysfunction. In patients with CDH, hypoplastic pulmonary vasculature and alterations in multiple molecular pathways lead to pathophysiologic pulmonary vasculopathy and, for severe CDH, sustained, elevated pulmonary arterial pressures. This review addresses the multiple anatomic and physiologic changes that underlie CDH-associated PH (CDH-PH), along with the multimodal treatment strategies that exist currently and future therapies currently under investigation.
Collapse
Affiliation(s)
- Vikas S Gupta
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, 6431 Fannin St, MSB 5.233, Houston, TX 77030, USA
| | - Matthew T Harting
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, 6431 Fannin St, MSB 5.233, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Kashyap AJ, Hodges RJ, Thio M, Rodgers KA, Amberg BJ, McGillick EV, Hooper SB, Crossley KJ, DeKoninck PLJ. Physiologically based cord clamping improves cardiopulmonary haemodynamics in lambs with a diaphragmatic hernia. Arch Dis Child Fetal Neonatal Ed 2020; 105:18-25. [PMID: 31123056 DOI: 10.1136/archdischild-2019-316906] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Lung hypoplasia associated with congenital diaphragmatic hernia (CDH) results in respiratory insufficiency and pulmonary hypertension after birth. We have investigated whether aerating the lung before removing placental support (physiologically based cord clamping (PBCC)), improves the cardiopulmonary transition in lambs with a CDH. METHODS At ≈138 days of gestational age, 17 lambs with surgically induced left-sided diaphragmatic hernia (≈d80) were delivered via caesarean section. The umbilical cord was clamped either immediately prior to ventilation onset (immediate cord clamping (ICC); n=6) or after achieving a target tidal volume of 4 mL/kg, with a maximum delay of 10 min (PBCC; n=11). Lambs were ventilated for 120 min and physiological changes recorded. RESULTS Pulmonary blood flow (PBF) increased following ventilation onset in both groups, but was 19-fold greater in PBCC compared with ICC lambs at cord clamping (19±6.3 vs 1.0±0.5 mL/min/kg, p<0.001). Cerebral tissue oxygenation was higher in PBCC than ICC lambs during the first 10 min after cord clamping (59%±4% vs 30%±5%, p<0.001). PBF was threefold higher (23±4 vs 8±2 mL/min/kg, p=0.01) and pulmonary vascular resistance (PVR) was threefold lower (0.6±0.1 vs 2.2±0.6 mm Hg/(mL/min), p<0.001) in PBCC lambs compared with ICC lambs at 120 min after ventilation onset. CONCLUSIONS Compared with ICC, PBCC prevented the severe asphyxia immediately after birth and resulted in a higher PBF due to a lower PVR, which persisted for at least 120 min after birth in CDH lambs.
Collapse
Affiliation(s)
- Aidan J Kashyap
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Ryan J Hodges
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Monash Women's Service, Monash Health, Melbourne, Victoria, Australia
| | - Marta Thio
- Newborn Research, Neonatal Services, The Royal Women's Hospital, Melbourne, Victoria, Australia.,Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Karyn A Rodgers
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Ben J Amberg
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Erin V McGillick
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Stuart B Hooper
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia.,The Ritchie Centre, The Hudson Institute for Medical Research, Clayton, Victoria, Australia
| | - Kelly J Crossley
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Philip L J DeKoninck
- The Ritchie Centre, The Hudson Institute for Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| |
Collapse
|
13
|
Kashyap AJ, Dekoninck PLJ, Rodgers KA, Thio M, Mcgillick EV, Amberg BJ, Skinner SM, Moxham AM, Russo FM, Deprest JA, Hooper SB, Crossley KJ, Hodges RJ. Antenatal sildenafil treatment improves neonatal pulmonary hemodynamics and gas exchange in lambs with diaphragmatic hernia. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2019; 54:506-516. [PMID: 31364206 DOI: 10.1002/uog.20415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES Infants with congenital diaphragmatic hernia (CDH) are predisposed to pulmonary hypertension after birth, owing to lung hypoplasia that impairs fetal pulmonary vascular development. Antenatal sildenafil treatment attenuates abnormal pulmonary vascular and alveolar development in rabbit and rodent CDH models, but whether this translates to functional improvements after birth remains unknown. We aimed to evaluate the effect of antenatal sildenafil on neonatal pulmonary hemodynamics and lung function in lambs with diaphragmatic hernia (DH). METHODS DH was surgically induced at approximately 80 days' gestation in 16 lamb fetuses (term in lambs is approximately 147 days). From 105 days' gestation, ewes received either sildenafil (0.21 mg/kg/h intravenously) or saline infusion until delivery (n = 8 fetuses in each group). At approximately 138 days' gestation, all lambs were instrumented and then delivered via Cesarean section. The lambs were ventilated for 120 min with continuous recording of physiological (pulmonary and carotid artery blood flow and pressure; cerebral oxygenation) and ventilatory parameters, and regular assessment of arterial blood gas tensions. Only lambs that survived until delivery and with a confirmed diaphragmatic defect at postmortem examination were included in the analysis; these comprised six DH-sildenafil lambs and six DH-saline control lambs. RESULTS Lung-to-body-weight ratio (0.016 ± 0.001 vs 0.013 ± 0.001; P = 0.06) and dynamic lung compliance (0.8 ± 0.2 vs 0.7 ± 0.2 mL/cmH2 O; P = 0.72) were similar in DH-sildenafil lambs and controls. Pulmonary vascular resistance decreased following lung aeration to a greater degree in DH-sildenafil lambs, and was 4-fold lower by 120 min after cord clamping than in controls (0.6 ± 0.1 vs 2.2 ± 0.6 mmHg/(mL/min); P = 0.002). Pulmonary arterial pressure was also lower (46 ± 2 vs 59 ± 2 mmHg; P = 0.048) and pulmonary blood flow higher (25 ± 3 vs 8 ± 2 mL/min/kg; P = 0.02) in DH-sildenafil than in DH-saline lambs at 120 min. Throughout the 120-min ventilation period, the partial pressure of arterial carbon dioxide tended to be lower in DH-sildenafil lambs than in controls (63 ± 8 vs 87 ± 8 mmHg; P = 0.057), and there was no significant difference in partial pressure of arterial oxygen between the two groups. CONCLUSIONS Sustained maternal antenatal sildenafil infusion reduced pulmonary arterial pressure and increased pulmonary blood flow in DH lambs for the first 120 min after birth. These findings of improved pulmonary vascular function are consistent with improved pulmonary vascular structure seen in two previous animal models. The data support the rationale for a clinical trial investigating the effect of antenatal sildenafil in reducing the risk of neonatal pulmonary hypertension in infants with CDH. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- A J Kashyap
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - P L J Dekoninck
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Erasmus MC, Rotterdam, The Netherlands
| | - K A Rodgers
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - M Thio
- Newborn Research Centre, The Royal Women's Hospital, Melbourne, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Australia
| | - E V Mcgillick
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - B J Amberg
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - S M Skinner
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - A M Moxham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - F M Russo
- Department of Obstetrics and Gynaecology, Division of Woman and Child, University Hospitals Leuven, Leuven, Belgium
| | - J A Deprest
- Department of Obstetrics and Gynaecology, Division of Woman and Child, University Hospitals Leuven, Leuven, Belgium
- Institute for Women's Health, University College London Hospital, London, UK
| | - S B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - K J Crossley
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - R J Hodges
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
- Monash Women's and Newborn Program, Monash Health, Melbourne, Australia
| |
Collapse
|
14
|
Montalva L, Antounians L, Zani A. Pulmonary hypertension secondary to congenital diaphragmatic hernia: factors and pathways involved in pulmonary vascular remodeling. Pediatr Res 2019; 85:754-768. [PMID: 30780153 DOI: 10.1038/s41390-019-0345-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/10/2019] [Indexed: 02/06/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect that is characterized by pulmonary hypoplasia and pulmonary hypertension (PHTN). PHTN secondary to CDH is a result of vascular remodeling, a structural alteration in the pulmonary vessel wall that occurs in the fetus. Factors involved in vascular remodeling have been reported in several studies, but their interactions remain unclear. To help understand PHTN pathophysiology and design novel preventative and treatment strategies, we have conducted a systematic review of the literature and comprehensively analyzed all factors and pathways involved in the pathogenesis of pulmonary vascular remodeling secondary to CDH in the nitrofen model. Moreover, we have linked the dysregulated factors with pathways involved in human CDH. Of the 358 full-text articles screened, 75 studies reported factors that play a critical role in vascular remodeling secondary to CDH. Overall, the impairment of epithelial homeostasis present in pulmonary hypoplasia results in altered signaling to endothelial cells, leading to endothelial dysfunction. This causes an impairment of the crosstalk between endothelial cells and pulmonary artery smooth muscle cells, resulting in increased smooth muscle cell proliferation, resistance to apoptosis, and vasoconstriction, which clinically translate into PHTN.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/pathology
- Endothelial Cells/physiology
- Female
- Hernias, Diaphragmatic, Congenital/complications
- Hernias, Diaphragmatic, Congenital/pathology
- Hernias, Diaphragmatic, Congenital/physiopathology
- Humans
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Infant, Newborn
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/physiology
- Phenyl Ethers/toxicity
- Pregnancy
- Pulmonary Artery/drug effects
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Rats
- Risk Factors
- Vascular Remodeling/drug effects
- Vascular Remodeling/physiology
Collapse
Affiliation(s)
- Louise Montalva
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Lina Antounians
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Augusto Zani
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada.
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
15
|
Burgos CM, Davey MG, Riley JS, Jia H, Flake AW, Peranteau WH. Lung function and pulmonary artery blood flow following prenatal maternal retinoic acid and imatinib in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 2018; 53:1681-1687. [PMID: 29409619 DOI: 10.1016/j.jpedsurg.2017.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/08/2017] [Accepted: 12/03/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung and pulmonary vascular maldevelopment in congenital diaphragmatic hernia (CDH) results in significant morbidity and mortality. Retinoic acid (RA) and imatinib have been shown to improve pulmonary morphology following prenatal administration in the rat nitrofen-induced CDH model. It remains unclear if these changes translate into improved function. We evaluated the effect of prenatal RA and imatinib on postnatal lung function, structure, and pulmonary artery (PA) blood flow in the rat CDH model. METHODS Olive oil or nitrofen was administered alone or in combination with RA or imatinib to pregnant rats. Pups were assessed for PA blood flow by ultrasound and pulmonary function/morphology following delivery, intubation, and short-term ventilation. RESULTS Neither RA nor imatinib had a negative effect on lung and body growth. RA accelerated lung maturation indicated by increased alveoli number and thinner interalveolar septa and was associated with decreased PA resistance and improved oxygenation. With the exception of a decreased PA pulsatility index, no significant changes in morphology and pulmonary function were noted following imatinib. CONCLUSION Prenatal treatment with RA but not imatinib was associated with improved pulmonary morphology and function, and decreased pulmonary vascular resistance. This study highlights the potential of prenatal pharmacologic therapies, such as RA, for management of CDH.
Collapse
Affiliation(s)
- Carmen Mesas Burgos
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia; Karolinska Institutet, Stockholm, Sweden
| | - Marcus G Davey
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia
| | - John S Riley
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia
| | - Huimin Jia
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia
| | - Alan W Flake
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia
| | - William H Peranteau
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia.
| |
Collapse
|
16
|
Delabaere A, Blanchon L, Coste K, Clairefond G, Belville C, Blanc P, Marceau G, Sapin V, Gallot D. Retinoic acid and tracheal occlusion for diaphragmatic hernia treatment in rabbit fetuses. Prenat Diagn 2018; 38:482-492. [DOI: 10.1002/pd.5256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 02/06/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Amélie Delabaere
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
- Fetal Maternal Medicine Unit, Obstetrics and Gynecology Department; Clermont-Ferrand University Hospital; 63000 Clermont-Ferrand France
| | - Loïc Blanchon
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
| | - Karen Coste
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
- Department of Pediatrics; Clermont-Ferrand University Hospital; 63000 Clermont-Ferrand France
| | - Gael Clairefond
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
| | - Corinne Belville
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
| | - Pierre Blanc
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
- EA7281-“Translational approach to epithelial injury and repair”; Auvergne University; 63000 Clermont-Ferrand France
| | - Geoffroy Marceau
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
- Department of Biochemistry and Molecular Biology; Clermont-Ferrand University Hospital; 63000 Clermont-Ferrand France
| | - Vincent Sapin
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
- Department of Biochemistry and Molecular Biology; Clermont-Ferrand University Hospital; 63000 Clermont-Ferrand France
| | - Denis Gallot
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
- Fetal Maternal Medicine Unit, Obstetrics and Gynecology Department; Clermont-Ferrand University Hospital; 63000 Clermont-Ferrand France
| |
Collapse
|
17
|
Mous DS, Kool HM, Burgisser PE, Buscop-van Kempen MJ, Nagata K, Boerema-de Munck A, van Rosmalen J, Dzyubachyk O, Wijnen RMH, Tibboel D, Rottier RJ. Treatment of rat congenital diaphragmatic hernia with sildenafil and NS-304, selexipag's active compound, at the pseudoglandular stage improves lung vasculature. Am J Physiol Lung Cell Mol Physiol 2018; 315:L276-L285. [PMID: 29745254 DOI: 10.1152/ajplung.00392.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Patients with congenital diaphragmatic hernia (CDH) often suffer from severe pulmonary hypertension, and the choice of current vasodilator therapy is mostly based on trial and error. Because pulmonary vascular abnormalities are already present early during development, we performed a study to modulate these pulmonary vascular changes at an early stage during gestation. Pregnant Sprague-Dawley rats were treated with nitrofen at day 9.5 of gestation (E9.5) to induce CDH in the offspring, and subsequently, the phosphodiesterase-5 inhibitor sildenafil and/or the novel prostaglandin-I receptor agonist selexipag (active compound NS-304) were administered from E17.5 until E20.5. The clinical relevant start of the treatment corresponds to week 20 of gestation in humans, when CDH is usually detected by ultrasound. CDH pups showed increased density of air saccules that was reverted after the use of only sildenafil. The pulmonary vascular wall was thickened, and right ventricular hypertrophy was present in the CDH group and improved both after single treatment with sildenafil or selexipag, whereas the combination therapy with both compounds did not have additive value. In conclusion, antenatal treatment with sildenafil improved airway morphogenesis and pulmonary vascular development, whereas selexipag only acted positively on pulmonary vascular development. The combination of both compounds did not act synergistically, probably because of a decreased efficiency of both compounds caused by cytochrome- P450 3A4 interaction and induction. These new insights create important possibilities for future treatment of pulmonary vascular abnormalities in CDH patients already in the antenatal period of life.
Collapse
Affiliation(s)
- Daphne S Mous
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Heleen M Kool
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Petra E Burgisser
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Marjon J Buscop-van Kempen
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Koji Nagata
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands.,Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Anne Boerema-de Munck
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Joost van Rosmalen
- Department of Biostatistics, Erasmus Medical Center , Rotterdam , The Netherlands
| | - Oleh Dzyubachyk
- Department of Radiology, Leiden University Medical Center , Leiden , The Netherlands
| | - Rene M H Wijnen
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , The Netherlands.,Department of Cell Biology, Erasmus Medical Center , Rotterdam , The Netherlands
| |
Collapse
|
18
|
Mous DS, Kool HM, Wijnen R, Tibboel D, Rottier RJ. Pulmonary vascular development in congenital diaphragmatic hernia. Eur Respir Rev 2018; 27:27/147/170104. [DOI: 10.1183/16000617.0104-2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/09/2017] [Indexed: 02/03/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a rare congenital anomaly characterised by a diaphragmatic defect, persistent pulmonary hypertension (PH) and lung hypoplasia. The relative contribution of these three elements can vary considerably in individual patients. Most affected children suffer primarily from the associated PH, for which the therapeutic modalities are limited and frequently not evidence based. The vascular defects associated with PH, which is characterised by increased muscularisation of arterioles and capillaries, start to develop early in gestation. Pulmonary vascular development is integrated with the development of the airway epithelium. Although our knowledge is still incomplete, the processes involved in the growth and expansion of the vasculature are beginning to be unravelled. It is clear that early disturbances of this process lead to major pulmonary growth abnormalities, resulting in serious clinical challenges and in many cases death in the newborn. Here we provide an overview of the current molecular pathways involved in pulmonary vascular development. Moreover, we describe the abnormalities associated with CDH and the potential therapeutic approaches for this severe abnormality.
Collapse
|
19
|
Zhaorigetu S, Bair H, Lu J, Jin D, Olson SD, Harting MT. Perturbations in Endothelial Dysfunction-Associated Pathways in the Nitrofen-Induced Congenital Diaphragmatic Hernia Model. J Vasc Res 2017; 55:26-34. [DOI: 10.1159/000484087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/07/2017] [Indexed: 01/26/2023] Open
|
20
|
Mous DS, Buscop-van Kempen MJ, Wijnen RMH, Tibboel D, Rottier RJ. Changes in vasoactive pathways in congenital diaphragmatic hernia associated pulmonary hypertension explain unresponsiveness to pharmacotherapy. Respir Res 2017; 18:187. [PMID: 29115963 PMCID: PMC5688796 DOI: 10.1186/s12931-017-0670-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients with congenital diaphragmatic hernia (CDH) have structural and functional different pulmonary vessels, leading to pulmonary hypertension. They often fail to respond to standard vasodilator therapy targeting the major vasoactive pathways, causing a high morbidity and mortality. We analyzed whether the expression of crucial members of these vasoactive pathways could explain the lack of responsiveness to therapy in CDH patients. METHODS The expression of direct targets of current vasodilator therapy in the endothelin and prostacyclin pathway was analyzed in human lung specimens of control and CDH patients. RESULTS CDH lungs showed increased expression of both ETA and ETB endothelin receptors and the rate-limiting Endothelin Converting Enzyme (ECE-1), and a decreased expression of the prostaglandin-I2 receptor (PTGIR). These data were supported by increased expression of both endothelin receptors and ECE-1, endothelial nitric oxide synthase and PTGIR in the well-established nitrofen-CDH rodent model. CONCLUSIONS Together, these data demonstrate aberrant expression of targeted receptors in the endothelin and prostacyclin pathway in CDH already early during development. The analysis of this unique patient material may explain why a significant number of patients do not respond to vasodilator therapy. This knowledge could have important implications for the choice of drugs and the design of future clinical trials internationally.
Collapse
Affiliation(s)
- Daphne S Mous
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Wytemaweg 80, 3015 CN, PO Box 2040, Rotterdam, The Netherlands
| | - Marjon J Buscop-van Kempen
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Wytemaweg 80, 3015 CN, PO Box 2040, Rotterdam, The Netherlands
| | - Rene M H Wijnen
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Wytemaweg 80, 3015 CN, PO Box 2040, Rotterdam, The Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Wytemaweg 80, 3015 CN, PO Box 2040, Rotterdam, The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Wytemaweg 80, 3015 CN, PO Box 2040, Rotterdam, The Netherlands. .,Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
21
|
Abstract
Congenital diaphragmatic hernia (CDH) is a complex entity wherein a diaphragmatic defect allows intrathoracic herniation of intra-abdominal contents and both pulmonary parenchymal and vascular development are stifled. Pulmonary pathology and pathophysiology, including pulmonary hypoplasia and pulmonary hypertension, are hallmarks of CDH and are associated with disease severity. Pulmonary hypertension (PH) is sustained, supranormal pulmonary arterial pressure, and among patients with CDH (CDH-PH), is driven by hypoplastic pulmonary vasculature, including alterations at the molecular, cellular, and tissue levels, along with pathophysiologic pulmonary vasoreactivity. This review addresses the basic mechanisms, altered anatomy, definition, diagnosis, and management of CDH-PH. Further, emerging therapies targeting CDH-PH and PH are explored.
Collapse
Affiliation(s)
- Matthew T Harting
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, 6431 Fannin St, MSB 5.233, Houston, Texas 77030.
| |
Collapse
|
22
|
Improved pulmonary function in the nitrofen model of congenital diaphragmatic hernia following prenatal maternal dexamethasone and/or sildenafil. Pediatr Res 2016; 80:577-85. [PMID: 27376883 DOI: 10.1038/pr.2016.127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/12/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Pulmonary hypoplasia and hypertension is a leading cause of morbidity and mortality in congenital diaphragmatic hernia (CDH). The etiologic insult occurs early in gestation highlighting the potential of prenatal interventions. We evaluated prenatal pharmacologic therapies in the nitrofen CDH model. METHODS Olive oil or nitrofen were administered alone or with dexamethasone (DM), sildenafil, or DM+sildenafil to pregnant rats. Newborn pups were assessed for lung function, structure and pulmonary artery (PA) flow and resistance. RESULTS Prenatal DM treatment of CDH pups increased alveolar volume density (Vva), decreased interalveloar septal thickness, increased tidal volumes and improved ventilation without improving oxygenation or PA resistance. Sildenafil decreased PA resistance and improved oxygenation without improving ventilation or resulting in significant histologic changes. DM+sildenafil decreased PA resistance, improved oxygenation and ventilation while increasing Vva and decreasing interalveolar septal and pulmonary arteriole medial wall thickness. Lung and body weights were decreased in pups treated with DM and/or sildenafil. CONCLUSION Prenatal DM or sildenafil treatment increased pulmonary compliance and decreased pulmonary vascular resistance respectively, and was associated with improved neonatal gas exchange but had a detrimental effect on lung and fetal growth. This study highlights the potential of individual and combined prenatal pharmacologic therapies for CDH management.
Collapse
|
23
|
More K, Athalye‐Jape GK, Rao SC, Patole SK, Cochrane Neonatal Group. Endothelin receptor antagonists for persistent pulmonary hypertension in term and late preterm infants. Cochrane Database Syst Rev 2016; 2016:CD010531. [PMID: 27535894 PMCID: PMC8588275 DOI: 10.1002/14651858.cd010531.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Endothelin, a powerful vasoconstrictor, is one of the mediators in the causation of persistent pulmonary hypertension of the newborn (PPHN). Theoretically, endothelin receptor antagonists (ETRA) have the potential to improve the outcomes of infants with PPHN. OBJECTIVES To assess the efficacy and safety of ETRA in the treatment of PPHN in full-term, post-term and late preterm infants.To assess the efficacy and safety of selective ETRAs (which block only the ETA receptors) and non-selective ETRAs (which block both ETA and ETB receptors) separately. SEARCH METHODS CENTRAL (Cochrane Central Register of Controlled Trials), MEDLINE, EMBASE and CINAHL databases were searched until December 2015. SELECTION CRITERIA Randomised, cluster-randomised or quasi-randomised controlled trials were eligible. DATA COLLECTION AND ANALYSIS Two review authors independently searched the literature, selected the studies, assessed the risk of bias and extracted the data. A fixed-effect model was used for meta-analysis. We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess the quality of evidence. MAIN RESULTS Two randomised controlled trials of ETRA met the inclusion criteria. Both studies utilized oral Bosentan. The first study was done in a setting where inhaled nitric oxide (iNO) therapy was not available. Forty-seven infants (≥ 34 weeks' gestation) were randomised to receive either Bosentan or placebo. The second study was a multicentre study where iNO therapy was the standard of care for PPHN. Twenty-one infants were randomised to receive either 'iNO plus Bosentan' or 'iNO plus placebo'.In the first study, there was no significant difference in the incidence of death before hospital discharge between the Bosentan and placebo groups (1/23 vs 3/14; RR 0.20, 95% CI 0.02 to 1.77; RD -0.17, 95% CI -0.40 to 0.06). A higher proportion of infants in the Bosentan group showed improvement in oxygenation index (OI) at the end of therapy (21/24 vs 3/15; RR 4.38, 95% CI 1.57 to 12.17; RD 0.68, 95% CI 0.43 to 0.92; number needed to treat for a beneficial outcome (NNTB) 1.5). The duration of mechanical ventilation was lower in the Bosentan group (4.3 ± 0.9 vs 11.5 ± 0.6 days; MD -7.20, 95% CI -7.64 to -6.76). There was no significant difference in adverse neurological outcomes at six months (0/23 vs 4/14; RR 0.07, 95% CI 0.00 to 1.20; RD -0.29, 95% CI -0.52 to -0.05). The study suffered from a high risk of attrition bias since 8/23 infants in the placebo group were excluded from various analyses. Since the protocol for the study could not be accessed, the study suffered from unclear risk of reporting bias.In the second study, there was no significant difference in the incidence of treatment failure needing extracorporeal membrane oxygenation (ECMO) between the 'iNO plus Bosentan' vs 'iNO plus placebo' groups (1/13 vs 0/8; RR 1.93, 95% CI 0.09 to 42.35; RD 0.08, 95% CI -0.14 to 0.30). There was no significant difference in the median time to wean from iNO ('iNO plus Bosentan': 3.7 days (95% CI 1.17 to 6.95); 'iNO plus placebo': 2.9 days (95% CI 1.26 to 4.23); P = 0.34). There were no significant differences in the OI 0, 3, 5, 12, 24, 48 and 72 hours of treatment between the groups. There were no significant differences in the time to complete weaning from mechanical ventilation (median 10.8 days (CI 3.21 to 12.21) versus 8.6 days (CI 3.71 to 9.66); P = 0.24). The study had unequal distribution to the Bosentan group (N = 13) and the placebo group (N = 8). The methods used for generating random sequence numbers and allocation concealment were unclear, resulting in unclear risk of selection bias.Both studies reported that Bosentan was well tolerated and no major adverse effects were noted. Data from the two studies was not pooled given the heterogenous nature of the clinical settings and the modalities used for the treatment of PPHN.Overall, the quality of evidence was considered low, given the small sample size of the included studies, the numerical imbalance between the groups due to randomisation and attrition, and unclear risk of bias on some of the important domains. AUTHORS' CONCLUSIONS There is inadequate evidence to support the use of ETRAs either as stand-alone therapy or as adjuvant to inhaled nitric oxide in PPHN. Adequately powered RCTs are needed.
Collapse
Affiliation(s)
- Kiran More
- Christchurch Women's HospitalDepartment of NeonatologyCanterburyNew Zealand
- University of OtagoDunedinNew Zealand
| | - Gayatri K Athalye‐Jape
- Princess Margaret Hospital and King Edward HospitalDepartment of NeonatologyRoberts RoadSubiacoWestern AustraliaAustralia6008
| | - Shripada C Rao
- King Edward Memorial Hospital for Women and Princess Margaret Hospital for ChildrenCentre for Neonatal Research and EducationPerth, Western AustraliaAustralia6008
| | - Sanjay K Patole
- King Edward Memorial HospitalSchool of Paediatrics and Child Health, School of Women's and Infant's Health, University of Western Australia374 Bagot RdSubiacoPerthWestern AustraliaAustralia6008
| | | |
Collapse
|
24
|
Engels AC, Brady PD, Kammoun M, Finalet Ferreiro J, DeKoninck P, Endo M, Toelen J, Vermeesch JR, Deprest J. Pulmonary transcriptome analysis in the surgically induced rabbit model of diaphragmatic hernia treated with fetal tracheal occlusion. Dis Model Mech 2016; 9:221-8. [PMID: 26744354 PMCID: PMC4770142 DOI: 10.1242/dmm.021626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/29/2015] [Indexed: 01/25/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a malformation leading to pulmonary hypoplasia, which can be treated in utero by fetal tracheal occlusion (TO). However, the changes of gene expression induced by TO remain largely unknown but could be used to further improve the clinically used prenatal treatment of this devastating malformation. Therefore, we aimed to investigate the pulmonary transcriptome changes caused by surgical induction of diaphragmatic hernia (DH) and additional TO in the fetal rabbit model. Induction of DH was associated with 378 upregulated genes compared to controls when allowing a false-discovery rate (FDR) of 0.1 and a fold change (FC) of 2. Those genes were again downregulated by consecutive TO. But DH+TO was associated with an upregulation of 157 genes compared to DH and controls. When being compared to control lungs, 106 genes were downregulated in the DH group and were not changed by TO. Therefore, the overall pattern of gene expression in DH+TO is more similar to the control group than to the DH group. In this study, we further provide a database of gene expression changes induced by surgical creation of DH and consecutive TO in the rabbit model. Future treatment strategies could be developed using this dataset. We also discuss the most relevant genes that are involved in CDH. Summary: Rabbit fetuses with induced diaphragmatic hernia and treated with prenatal tracheal occlusion have a similar pulmonary transcriptome as unaffected controls. This study describes a valuable database of gene expressions in this model.
Collapse
Affiliation(s)
- Alexander C Engels
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium Clinical Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Paul D Brady
- Department of Human Genetics, Centre for Human Genetics, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Molka Kammoun
- Department of Human Genetics, Centre for Human Genetics, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Julio Finalet Ferreiro
- Department of Human Genetics, Centre for Human Genetics, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Philip DeKoninck
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium Clinical Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Masayuki Endo
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Jaan Toelen
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium Clinical Department of Pediatrics, Division Woman and Child, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Joris R Vermeesch
- Department of Human Genetics, Centre for Human Genetics, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium Clinical Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
25
|
Makanga M, Maruyama H, Dewachter C, Da Costa AM, Hupkens E, de Medina G, Naeije R, Dewachter L. Prevention of pulmonary hypoplasia and pulmonary vascular remodeling by antenatal simvastatin treatment in nitrofen-induced congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2015; 308:L672-82. [PMID: 25617377 DOI: 10.1152/ajplung.00345.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/15/2015] [Indexed: 01/20/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) has a high mortality rate mainly due to lung hypoplasia and persistent pulmonary hypertension of the newborn (PPHN). Simvastatin has been shown to prevent the development of pulmonary hypertension (PH) in experimental models of PH. We, therefore, hypothesized that antenatal simvastatin would attenuate PPHN in nitrofen-induced CDH in rats. The efficacy of antenatal simvastatin was compared with antenatal sildenafil, which has already been shown to improve pathological features of PPHN in nitrofen-induced CDH. On embryonic day (E) 9.5, nitrofen or vehicle was administered to pregnant Sprague-Dawley rats. On E11, nitrofen-treated rats were randomly assigned to antenatal simvastatin (20 mg·kg(-1)·day(-1) orally), antenatal sildenafil (100 mg·kg(-1)·day(-1) orally), or placebo administration from E11 to E21. On E21, fetuses were delivered by cesarean section, killed, and checked for left-sided CDH. Lung tissue was then harvested for further pathobiological evaluation. In nitrofen-induced CDH, simvastatin failed to reduce the incidence of nitrofen-induced CDH in the offspring and to increase the body weight, but improved the lung-to-body weight ratio and lung parenchyma structure. Antenatal simvastatin restored the pulmonary vessel density and external diameter, and reduced the pulmonary arteriolar remodeling compared with nitrofen-induced CDH. This was associated with decreased lung expression of endothelin precursor, endothelin type A and B receptors, endothelial and inducible nitric oxide synthase, together with restored lung activation of apoptotic processes mainly in the epithelium. Antenatal simvastatin presented similar effects as antenatal therapy with sildenafil on nitrofen-induced CDH. Antenatal simvastatin improves pathological features of lung hypoplasia and PPHN in experimental nitrofen-induced CDH.
Collapse
Affiliation(s)
- Martine Makanga
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Hidekazu Maruyama
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Celine Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Agnès Mendes Da Costa
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Emeline Hupkens
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Geoffrey de Medina
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Robert Naeije
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Bruxelles, Belgium
| |
Collapse
|
26
|
Pierro M, Thébaud B. Understanding and treating pulmonary hypertension in congenital diaphragmatic hernia. Semin Fetal Neonatal Med 2014; 19:357-63. [PMID: 25456753 DOI: 10.1016/j.siny.2014.09.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung hypoplasia and pulmonary hypertension are classical features of congenital diaphragmatic hernia (CDH) and represent the main determinants of survival. The mechanisms leading to pulmonary hypertension in this malformation are still poorly understood, but may combine altered vasoreactivity, pulmonary artery remodeling, and a hypoplastic pulmonary vascular bed. Efforts have been directed at correcting the "reversible" component of pulmonary hypertension of CDH. However, pulmonary hypertension in CDH is often refractory to pulmonary vasodilators. A new emerging pattern of late (months after birth) and chronic (months to years after birth) pulmonary hypertension are described in CDH survivors. The true incidence and implications for outcome and management need to be confirmed by follow-up studies from referral centers with high patient output. In order to develop more efficient strategies to treat pulmonary hypertension and improve survival in most severe cases, the ultimate therapeutic goal would be to promote lung and vascular growth.
Collapse
Affiliation(s)
- M Pierro
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Division of Neonatology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada.
| | - B Thébaud
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Division of Neonatology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
27
|
Hsieh WT, Yeh WL, Cheng RY, Lin C, Tsai CF, Huang BR, Wu CYJ, Lin HY, Huang SS, Lu DY. Exogenous endothelin-1 induces cell migration and matrix metalloproteinase expression in U251 human glioblastoma multiforme. J Neurooncol 2014; 118:257-269. [PMID: 24756349 DOI: 10.1007/s11060-014-1442-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal type of primary brain tumor characterized by its rapid infiltration to surrounding tissues during the early stages. The fast spreading of GBM obscures the initiation of the tumor mass making the treatment outcome undesirable. Endothelin-1 is known as a secretory protein presented in various types of brain cells, which has been indicated as a factor for cancer pathology. The aim of the present study was to investigate the molecular mechanism of cell migration in GBM. We found that various malignant glioma cells expressed higher amounts of endothelin-1, ETA, and ETB receptors than nonmalignant human astrocytes. The application of endothelin-1 enhanced the migratory activity in human U251 glioma cells corresponding to increased expression of matrix metalloproteinase (MMP)-9 and MMP-13. The endothelin-1-induced cell migration was attenuated by MMP-9 and MMP-13 inhibitors and inhibitors of mitogen-activated protein (MAP) kinase and PI3 kinase/Akt. Furthermore, the elevated levels of phosphate c-Jun accumulation in the nucleus and activator protein-1 (AP-1)-DNA binding activity were also found in endothelin-1 treated glioma cells. In migration-prone sublines, cells with greater migration ability showed higher endothelin-1, ETB receptor, and MMP expressions. These results indicate that endothelin-1 activates MAP kinase and AP-1 signaling, resulting in enhanced MMP-9 and MMP-13 expressions and cell migration in GBM.
Collapse
Affiliation(s)
- Wen-Tsong Hsieh
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Department of Cell and Tissue Engineering and Department of Medical Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Ruo-Yuo Cheng
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Caren Yu-Ju Wu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Hsiao-Yun Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology and Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan.
| |
Collapse
|
28
|
Shue EH, Schecter SC, Gong W, Etemadi M, Johengen M, Iqbal C, Derderian SC, Oishi P, Fineman JR, Miniati D. Antenatal maternally-administered phosphodiesterase type 5 inhibitors normalize eNOS expression in the fetal lamb model of congenital diaphragmatic hernia. J Pediatr Surg 2014; 49:39-45; discussion 45. [PMID: 24439578 PMCID: PMC3896891 DOI: 10.1016/j.jpedsurg.2013.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/30/2013] [Indexed: 11/27/2022]
Abstract
PURPOSE Pulmonary hypertension (pHTN), a main determinant of survival in congenital diaphragmatic hernia (CDH), results from in utero vascular remodeling. Phosphodiesterase type 5 (PDE5) inhibitors have never been used antenatally to treat pHTN. The purpose of this study is to determine if antenatal PDE5 inhibitors can prevent pHTN in the fetal lamb model of CDH. METHODS CDH was created in pregnant ewes. Postoperatively, pregnant ewes received oral placebo or tadalafil, a PDE5 inhibitor, until delivery. Near term gestation, lambs underwent resuscitations, and lung tissue was snap frozen for protein analysis. RESULTS Mean cGMP levels were 0.53±0.11 in placebo-treated fetal lambs and 1.73±0.21 in tadalafil-treated fetal lambs (p=0.002). Normalized expression of eNOS was 82%±12% in Normal-Placebo, 61%±5% in CDH-Placebo, 116%±6% in Normal-Tadalafil, and 86%±8% in CDH-Tadalafil lambs. Normalized expression of β-sGC was 105%±15% in Normal-Placebo, 82%±3% in CDH-Placebo, 158%±16% in Normal-Tadalafil, and 86%±8% in CDH-Tadalafil lambs. Endothelial NOS and β-sGC were significantly decreased in CDH (p=0.0007 and 0.01 for eNOS and β-sGC, respectively), and tadalafil significantly increased eNOS expression (p=0.0002). CONCLUSIONS PDE5 inhibitors can cross the placental barrier. β-sGC and eNOS are downregulated in fetal lambs with CDH. Antenatal PDE5 inhibitors normalize eNOS and may prevent in utero vascular remodeling in CDH.
Collapse
Affiliation(s)
- Eveline H Shue
- Department of Surgery, Division of Pediatric Surgery and Fetal Treatment Center, University of California, San Francisco, San Francisco, CA
| | - Samuel C. Schecter
- Department of Surgery, Division of Pediatric Surgery and Fetal Treatment Center, University of California, San Francisco, San Francisco, CA
| | - Wenhui Gong
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA
| | - Mozziyar Etemadi
- Department of Surgery, Division of Pediatric Surgery and Fetal Treatment Center, University of California, San Francisco, San Francisco, CA
| | - Michael Johengen
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA
| | - Corey Iqbal
- Department of Surgery, Division of Pediatric Surgery and Fetal Treatment Center, University of California, San Francisco, San Francisco, CA
| | - S. Christopher Derderian
- Department of Surgery, Division of Pediatric Surgery and Fetal Treatment Center, University of California, San Francisco, San Francisco, CA
| | - Peter Oishi
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA
| | - Doug Miniati
- Department of Surgery, Division of Pediatric Surgery and Fetal Treatment Center, University of California, San Francisco, San Francisco, CA.
| |
Collapse
|
29
|
Mesdag V, Andrieux J, Coulon C, Pennaforte T, Storme L, Manouvrier-Hanu S, Petit F. Pathogenesis of congenital diaphragmatic hernia: Additional clues regarding the involvement of the endothelin system. Am J Med Genet A 2013; 164A:208-12. [DOI: 10.1002/ajmg.a.36216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 08/08/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Violette Mesdag
- Université Lille Nord de France; CHRU Lille France
- Service de Gynécologie-Obstétrique; Hôpital Jeanne de Flandre; CHRU Lille France
| | - Joris Andrieux
- Laboratoire de Génétique Médicale; Hôpital Jeanne de Flandre; CHRU Lille France
| | - Capucine Coulon
- Service de Gynécologie-Obstétrique; Hôpital Jeanne de Flandre; CHRU Lille France
| | - Thomas Pennaforte
- Service de Réanimation Néonatale; Centre de Référence National Hernie Diaphragmatique; Hôpital Jeanne de Flandre; CHRU Lille France
| | - Laurent Storme
- Université Lille Nord de France; CHRU Lille France
- Service de Réanimation Néonatale; Centre de Référence National Hernie Diaphragmatique; Hôpital Jeanne de Flandre; CHRU Lille France
| | - Sylvie Manouvrier-Hanu
- Université Lille Nord de France; CHRU Lille France
- Service de Génétique Clinique; Hôpital Jeanne de Flandre; CHRU Lille France
| | - Florence Petit
- Université Lille Nord de France; CHRU Lille France
- Service de Génétique Clinique; Hôpital Jeanne de Flandre; CHRU Lille France
| |
Collapse
|
30
|
Fike CD, Aschner JL. Looking beyond PPHN: the unmet challenge of chronic progressive pulmonary hypertension in the newborn. Pulm Circ 2013; 3:454-66. [PMID: 24618533 DOI: 10.1086/674438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abstract Infants with forms of pulmonary hypertension (PH) that persist or develop beyond the first week of life are an understudied group of patients with up to 40%-60% mortality. The clinical management of the progressive PH that develops in these infants is challenging because of the nonspecific signs and symptoms of clinical presentation, the limited diagnostic sensitivity of standard echocardiographic techniques, and the lack of proven therapies. The signaling mechanisms that underlie the structural and functional abnormalities in the pulmonary circulation of these infants are not yet clear. The ability to improve outcomes for these patients awaits technological advances to improve diagnostic capabilities and therapeutic discoveries made in basic science laboratories that can be tested in randomized clinical trials.
Collapse
Affiliation(s)
- Candice D Fike
- 1 Department of Pediatrics, Vanderbilt University School of Medicine, and Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| | | |
Collapse
|
31
|
Coleman AJ, Brozanski B, Mahmood B, Wearden PD, Potoka D, Kuch BA. First 24-h SNAP-II score and highest PaCO2 predict the need for ECMO in congenital diaphragmatic hernia. J Pediatr Surg 2013; 48:2214-8. [PMID: 24210188 DOI: 10.1016/j.jpedsurg.2013.03.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND/PURPOSE Early clinical predictors for the use of ECMO in patients with congenital diaphragmatic hernia (CDH) are lacking. We sought to evaluate the first 24-h SNAP-II score and highest PaCO2 as predictors of ECMO support and in-hospital mortality in neonates with CDH. METHODS Retrospective review of 47 consecutive neonates with CDH admitted to our institution from January 2007 to December 2010 was performed. Covariates of ECMO use including SNAP-II score and highest PaCO2 within the first 24 h of NICU admission were evaluated. RESULTS Of the 47 infants in this study, 24 patients were supported with ECMO. The ECMO group had a higher incidence of pulmonary hypertension, higher PaCO2, and higher 24-h SNAP-II scores. Only the SNAP-II score and not highest PaCO2 predicted mortality following multivariate adjustment. CONCLUSIONS The first 24-h SNAP-II score and highest PaCO2 may provide some prognostic value in identifying neonates who undergo ECMO support; however neither measure was independently associated with the use of therapy. Only the SNAP-II score was associated with in-hospital mortality following multivariate adjustment. Additional study is needed to validate these results in a larger data set.
Collapse
Affiliation(s)
- Alana J Coleman
- Department of Neonatology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
32
|
Rafikova O, Rafikov R, Kumar S, Sharma S, Aggarwal S, Schneider F, Jonigk D, Black SM, Tofovic SP. Bosentan inhibits oxidative and nitrosative stress and rescues occlusive pulmonary hypertension. Free Radic Biol Med 2013; 56:28-43. [PMID: 23200808 PMCID: PMC3749888 DOI: 10.1016/j.freeradbiomed.2012.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/17/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023]
Abstract
Pulmonary arterial hypertension (PH) is a fatal disease marked by excessive pulmonary vascular cell proliferation. Patients with idiopathic PH express endothelin-1 (ET-1) at high levels in their lungs. As the activation of both types of ET-1 receptor (ETA and ETB) leads to increased generation of superoxide and hydrogen peroxide, this may contribute to the severe oxidative stress found in PH patients. As a number of pathways may induce oxidative stress, the particular role of ET-1 remains unclear. The aim of this study was to determine whether inhibition of ET-1 signaling could reduce pulmonary oxidative stress and attenuate the progression of disease in rats with occlusive-angioproliferative PH induced by a single dose of SU5416 (200 mg/kg) and subsequent exposure to hypoxia for 21 days. Using this regimen, animals developed severe PH as evidenced by a progressive increase in right-ventricle (RV) peak systolic pressure (RVPSP), severe RV hypertrophy, and pulmonary endothelial and smooth muscle cell proliferation, resulting in plexiform vasculopathy. PH rats also had increased oxidative stress, correlating with endothelial nitric oxide synthase uncoupling and NADPH oxidase activation, leading to enhanced protein nitration and increases in markers of vascular remodeling. Treatment with the combined ET receptor antagonist bosentan (250 mg/kg/day; day 10 to 21) prevented further increase in RVPSP and RV hypertrophy, decreased ETA/ETB protein levels, reduced oxidative stress and protein nitration, and resulted in marked attenuation of pulmonary vascular cell proliferation. We conclude that inhibition of ET-1 signaling significantly attenuates the oxidative and nitrosative stress associated with PH and prevents its progression.
Collapse
Affiliation(s)
- Olga Rafikova
- Center for Clinical Pharmacology and Vascular Medicine Institute, Department of Medicine, Pittsburgh, PA 15260, USA
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Ruslan Rafikov
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Sanjiv Kumar
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Shruti Sharma
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Saurabh Aggarwal
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Frank Schneider
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Stephen M. Black
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Stevan P. Tofovic
- Center for Clinical Pharmacology and Vascular Medicine Institute, Department of Medicine, Pittsburgh, PA 15260, USA
| |
Collapse
|
33
|
Yu J, Taylor L, Wilson J, Comhair S, Erzurum S, Polgar P. Altered expression and signal transduction of endothelin-1 receptors in heritable and idiopathic pulmonary arterial hypertension. J Cell Physiol 2013; 228:322-9. [PMID: 22688668 PMCID: PMC3496420 DOI: 10.1002/jcp.24132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human pulmonary arterial smooth muscle cells (PASMC) were isolated from elastic pulmonary arteries dissected from lungs of individuals with and without pulmonary arterial hypertension (PAH). Reflecting increased smooth muscle constriction in cells from PAH subject, Ca(2+) influx in response to endothelin-1 (ET-1) increased in all the PAH PASMC populations relative to the normal donor control cells. The ETA receptor mRNA levels remained unchanged, whereas the ETB receptor mRNA levels decreased in both heritable and idiopathic PAH-derived PASMC. All the PASMC populations expressed considerably higher ETA compared to ETB receptor number. Both ETA and ETB receptor numbers were reduced in bone morphogenetic protein receptor type II (BMPR2) mutation PAH. ETB receptors showed a particular reduction in number. Phospho-antibody array analysis of normal and BMPR2 deletion PASMC illustrated ERK and Akt activation to be the most prominent and to be taking place principally through ETB receptors in normal PASMC, but primarily through ETA receptors in PASMC from BMPR2 PAH subjects. Additionally in the PAH cells the total relative ET-1 signal response was markedly reduced. Western analysis from the BMPR2 PASMC duplicated the array results, whereas PASMC from iPAH subjects showed variability with most samples continuing to signal through ETB. In sum, these results indicate that generally both receptors are reduced in PAH particularly ETB, and that ETB signaling through protein kinases becomes markedly reduced in BMPR2 PASMC, while it continues in IPAH. Importantly, the data suggest that caution must be taken when applying ET-1 receptor antagonist therapy to PAH patients.
Collapse
MESH Headings
- Adult
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/physiology
- Calcium/metabolism
- Cells, Cultured
- Familial Primary Pulmonary Hypertension
- Female
- Humans
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/physiopathology
- Male
- Middle Aged
- Muscle, Smooth, Vascular/physiology
- Mutation
- Pulmonary Artery/physiopathology
- Receptor, Endothelin A/biosynthesis
- Receptor, Endothelin A/physiology
- Receptor, Endothelin B/biosynthesis
- Receptor, Endothelin B/physiology
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Jun Yu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Linda Taylor
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Jamie Wilson
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Suzy Comhair
- Department of Pathobiology, Department Pulmonary, Allergy and Critical Care Medicine, The Cleveland Clinic, Cleveland, OH 44195
| | - Serpil Erzurum
- Department of Pathobiology, Department Pulmonary, Allergy and Critical Care Medicine, The Cleveland Clinic, Cleveland, OH 44195
| | - Peter Polgar
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
34
|
Lin CC, Hsieh HL, Shih RH, Chi PL, Cheng SE, Yang CM. Up-regulation of COX-2/PGE2 by endothelin-1 via MAPK-dependent NF-κB pathway in mouse brain microvascular endothelial cells. Cell Commun Signal 2013; 11:8. [PMID: 23343326 PMCID: PMC3560266 DOI: 10.1186/1478-811x-11-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/18/2013] [Indexed: 12/17/2022] Open
Abstract
Background Endothelin-1 (ET-1) is a proinflammatory mediator and elevated in the regions of several brain injury and inflammatory diseases. The deleterious effects of ET-1 on endothelial cells may aggravate brain inflammation mediated through the regulation of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) system in various cell types. However, the signaling mechanisms underlying ET-1-induced COX-2 expression in brain microvascular endothelial cells remain unclear. Herein we investigated the effects of ET-1 in COX-2 regulation in mouse brain microvascular endothelial (bEnd.3) cells. Results The data obtained with Western blotting, RT-PCR, and immunofluorescent staining analyses showed that ET-1-induced COX-2 expression was mediated through an ETB-dependent transcriptional activation. Engagement of Gi- and Gq-protein-coupled ETB receptors by ET-1 led to phosphorylation of ERK1/2, p38 MAPK, and JNK1/2 and then activated transcription factor NF-κB. Moreover, the data of chromatin immunoprecipitation (ChIP) and promoter reporter assay demonstrated that the activated NF-κB was translocated into nucleus and bound to its corresponding binding sites in COX-2 promoter, thereby turning on COX-2 gene transcription. Finally, up-regulation of COX-2 by ET-1 promoted PGE2 release in these cells. Conclusions These results suggested that in mouse bEnd.3 cells, activation of NF-κB by ETB-dependent MAPK cascades is essential for ET-1-induced up-regulation of COX-2/PGE2 system. Understanding the mechanisms of COX-2 expression and PGE2 release regulated by ET-1/ETB system on brain microvascular endothelial cells may provide rationally therapeutic interventions for brain injury or inflammatory diseases.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road Kwei-San, Tao-Yuan, Taiwan.
| | | | | | | | | | | |
Collapse
|
35
|
Hsieh HL, Lin CC, Chan HJ, Yang CM, Yang CM. c-Src-dependent EGF receptor transactivation contributes to ET-1-induced COX-2 expression in brain microvascular endothelial cells. J Neuroinflammation 2012; 9:152. [PMID: 22747786 PMCID: PMC3410791 DOI: 10.1186/1742-2094-9-152] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 07/02/2012] [Indexed: 02/02/2023] Open
Abstract
Background Endothelin-1 (ET-1) is elevated and participates in the regulation of several brain inflammatory disorders. The deleterious effects of ET-1 on endothelial cells may aggravate brain inflammation mediated through the upregulation of cyclooxygenase-2 (COX-2) gene expression. However, the signaling mechanisms underlying ET-1-induced COX-2 expression in brain microvascular endothelial cells remain unclear. Objective The goal of this study was to examine whether ET-1-induced COX-2 expression and prostaglandin E2 (PGE2) release were mediated through a c-Src-dependent transactivation of epidermal growth factor receptor (EGFR) pathway in brain microvascular endothelial cells (bEnd.3 cells). Methods The expression of COX-2 induced by ET-1 was evaluated by Western blotting and RT-PCR analysis. The COX-2 regulatory signaling pathways were investigated by pretreatment with pharmacological inhibitors, short hairpin RNA (shRNA) or small interfering RNA (siRNA) transfection, chromatin immunoprecipitation (ChIP), and promoter activity reporter assays. Finally, we determined the PGE2 level as a marker of functional activity of COX-2 expression. Results First, the data showed that ET-1-induced COX-2 expression was mediated through a c-Src-dependent transactivation of EGFR/PI3K/Akt cascade. Next, we demonstrated that ET-1 stimulated activation (phosphorylation) of c-Src/EGFR/Akt/MAPKs (ERK1/2, p38 MAPK, and JNK1/2) and then activated the c-Jun/activator protein 1 (AP-1) via Gq/i protein-coupled ETB receptors. The activated c-Jun/AP-1 bound to its corresponding binding sites within COX-2 promoter, thereby turning on COX-2 gene transcription. Ultimately, upregulation of COX-2 by ET-1 promoted PGE2 biosynthesis and release in bEnd.3 cells. Conclusions These results demonstrate that in bEnd.3 cells, c-Src-dependent transactivation of EGFR/PI3K/Akt and MAPKs linking to c-Jun/AP-1 cascade is essential for ET-1-induced COX-2 upregulation. Understanding the mechanisms of COX-2 expression and PGE2 release regulated by ET-1/ETB system on brain microvascular endothelial cells may provide rational therapeutic interventions for brain injury and inflammatory diseases.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
36
|
Wang HH, Hsieh HL, Yang CM. Nitric oxide production by endothelin-1 enhances astrocytic migration via the tyrosine nitration of matrix metalloproteinase-9. J Cell Physiol 2011; 226:2244-56. [PMID: 21660948 DOI: 10.1002/jcp.22560] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The deleterious effects of endothelin-1 (ET-1) in the central nervous system (CNS) include disturbance of water homeostasis and blood-brain barrier (BBB) integrity. In the CNS, ischemic injury elicits ET-1 release from astrocytes, behaving through G-protein coupled ET receptors. These considerations raise the question of whether ET-1 influences cellular functions of astrocytes, the major cell type that provides structural and functional support for neurons. Uncontrolled nitric oxide (NO) production has been implicated in sterile brain insults, neuroinflammation, and neurodegenerative diseases, which involve astrocyte activation and neuronal death. However, the detailed mechanisms of ET-1 action related to NO release on rat brain astrocytes (RBA-1) remain unknown. In this study, we demonstrate that exposure of astrocytes to ET-1 results in the inducible nitric oxide synthase (iNOS) up-regulation, NO production, and matrix metalloproteinase-9 (MMP-9) activation in astrocytes. The data obtained with Western blot, reverse transcription-PCR (RT-PCR), and immunofluorescent staining analyses showed that ET-1-induced iNOS expression and NO production were mediated through an ET(B)-dependent transcriptional activation. Engagement of G(i/o)--and G(q) -coupled ET(B) receptors by ET-1 led to activation of c-Src-dependent phosphoinositide 3-kinase (PI3K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK) and then activated transcription factor nuclear factor-κB (NF-κB). The activated NF-κB was translocated into nucleus and thereby promoted iNOS gene transcription. Ultimately, NO production stimulated by ET-1 enhanced the migration of astrocytes through the tyrosine nitration of MMP-9. Taken together, these results suggested that in astrocytes, activation of NF-κB by ET(B)-dependent c-Src, PI3K/Akt, and p42/p44 MAPK signalings is necessary for ET-1-induced iNOS gene up-regulation.
Collapse
Affiliation(s)
- Hui-Hsin Wang
- Department of Pharmacology, Chang Gung University, Tao-Yuan, Taiwan
| | | | | |
Collapse
|
37
|
Sluiter I, Reiss I, Kraemer U, Krijger RD, Tibboel D, Rottier RJ. Vascular abnormalities in human newborns with pulmonary hypertension. Expert Rev Respir Med 2011; 5:245-56. [PMID: 21510734 DOI: 10.1586/ers.11.8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pulmonary vascular disease embodies all congenital or acquired pathologies that affect the pulmonary vasculature. One of them is pulmonary hypertension of the newborn (PHN), which is clinically characterized by a persistent high pulmonary vascular resistance postnatally and an abnormal vascular response. Morphologically, the vascular walls of the small pulmonary arteries become thickened, leading to increased resistance of these vessels and thus a worsening of gas exchange. PHN occurs as a primary disease or in association with abnormal lung development, for example as in congenital diaphragmatic hernia, and is a critical determinant of morbidity and mortality. Here we review the current knowledge about vascular abnormalities in PHN and discuss the vascular abnormalities in different conditions associated with pulmonary hypertension in human newborns in relation to recent findings from molecular biology.
Collapse
Affiliation(s)
- Ilona Sluiter
- Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center-Sophia, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Labbé A, Coste K, Déchelotte PJ. [Congenital diaphragmatic hernia - mechanisms of pulmonary hypoplasia]. Rev Mal Respir 2011; 28:463-74. [PMID: 21549902 DOI: 10.1016/j.rmr.2010.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 10/04/2010] [Indexed: 11/26/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a common cause of severe neonatal respiratory distress. Mortality and morbidity are determined by the amount of pulmonary hypoplasia (PH) that occurs and by the development of therapy-resistant pulmonary hypertension. The pathogenesis and aetiology of CDH and its associated anomalies are still largely unknown despite all research efforts. The pathogenesis of CDH is based on an assumption linking herniation of abdominal viscera into the thorax with compression of the developing lung. PH, however, can also result from reduced distension of the developing lung secondary to impaired fetal breathing movements. Our understanding of CDH has also been aided by basic research with the use of dietary, teratogen-induced, and knockout models of CDH. These studies indicate that lung hypoplasia may involve disturbances of mitogenic signalling pathways fundamental to embryonic lung development. Recent data reveal the role of disruption of a retinoid-signalling pathway in the pathogenesis of CDH. Although multifactorial inheritance may best explain most cases of CDH in humans, much has been learned about the genetic factors that play a role in the development of CDH by studies of patients with CDH caused by specific genetic syndromes and chromosome anomalies. More research is warranted to improve our understanding of normal and abnormal lung development in relation to CDH. Such investigations will help in the design of new treatment strategies to improve the natural course or even to prevent this anomaly.
Collapse
Affiliation(s)
- A Labbé
- Unité de réanimation néonatale et pédiatrique, CHU d'Estaing, 1, place Lucie-Aubrac, 63003 Clermont-Ferrand, France.
| | | | | |
Collapse
|
39
|
Acute effect of a dual ETA-ETB receptor antagonist on pulmonary arterial vasculature in preterm lamb fetuses with surgically induced diaphragmatic hernia. Pediatr Surg Int 2011; 27:295-301. [PMID: 20697899 DOI: 10.1007/s00383-010-2668-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2010] [Indexed: 01/09/2023]
Abstract
PURPOSE To study the effects of tezosentan, a dual ETA and ETB receptor antagonist on the cardiopulmonary profile in a fetal lamb model of CDH in utero. METHODS A diaphragmatic hernia was surgically created at day 75 of gestation. During 45 min of tezosentan perfusion (1 mg/kg), hemodynamic parameters (pulmonary and aortic pressures, left pulmonary and aortic flows, left auricle pressure, heart rate) were measured at day 135 of gestation. Age-matched fetal lambs served as control animals. Secondarily, parietal tension of vessels rings of pulmonary arteries was assessed in organ baths under increasing concentration of tezosentan. RESULTS In CDH group, under perfusion of tezosentan, pulmonary artery pressure decreased from 45.8 ± 4.1 to 37.6 ± 5.9 mmHg (P < 0.05). Pulmonary artery flow and pulmonary vascular resistance remained constant. In control group, pulmonary artery flow increased from 153.9 ± 15.8 to 233.4 ± 26 ml/min (P < 0.05). Pulmonary artery pressure did not vary. Subsequently calculated pulmonary vascular resistance decreased. In organ bath, no significant relaxation was observed. CONCLUSION In this fetal lamb model of CDH, tezosentan decreased pulmonary artery pressure but did not modify pulmonary blood flow. Endothelin may play a role in the regulation of pulmonary vascular tone in utero.
Collapse
|
40
|
Done E, Allegaert K, Lewi P, Jani J, Gucciardo L, Van Mieghem T, Gratacos E, Devlieger R, Van Schoubroeck D, Deprest J. Maternal hyperoxygenation test in fetuses undergoing FETO for severe isolated congenital diaphragmatic hernia. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2011; 37:264-271. [PMID: 20652932 DOI: 10.1002/uog.7753] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
OBJECTIVES To predict neonatal survival and pulmonary hypertension by measurement of fetal pulmonary artery reactivity to maternal hyperoxygenation in fetuses with severe congenital diaphragmatic hernia treated by fetoscopic endoluminal tracheal occlusion (FETO). METHODS Thirty-eight fetuses underwent FETO at around 28 weeks' gestation and the balloon was removed at 34 weeks in most cases. We performed a hyperoxygenation test and measured the lung-to-head ratio of each fetus before and after each procedure. Outcome measures were neonatal survival, occurrence of pulmonary hypertension and its response to inhaled nitric oxide (iNO). RESULTS Fetuses that survived had a larger increase in lung size and decrease of resistance in the first branch of the main pulmonary artery than did those that died. Both measures were also predictive of pulmonary hypertension unresponsive to iNO. The hyperoxygenation test and lung-to-head ratio were both best predictive for neonatal survival when measured following removal of the balloon (P < 0.002). Discriminant analysis confirmed that these two parameters are independent predictors of outcome. CONCLUSIONS In fetuses undergoing FETO, pulmonary vascular reactivity in relation to oxygen and lung size are independent predictors of neonatal survival and pulmonary hypertension. The hyperoxygenation test merits further study in expectantly managed cases.
Collapse
Affiliation(s)
- E Done
- Department of Obstetrics and Gynaecology, Division of Woman and Child, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Xu EZ, Kantores C, Ivanovska J, Engelberts D, Kavanagh BP, McNamara PJ, Jankov RP. Rescue treatment with a Rho-kinase inhibitor normalizes right ventricular function and reverses remodeling in juvenile rats with chronic pulmonary hypertension. Am J Physiol Heart Circ Physiol 2010; 299:H1854-64. [PMID: 20889845 PMCID: PMC5145304 DOI: 10.1152/ajpheart.00595.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic pulmonary hypertension in infancy and childhood is characterized by a fixed and progressive increase in pulmonary arterial pressure and resistance, pulmonary arterial remodeling, and right ventricular hypertrophy and systolic dysfunction. These abnormalities are replicated in neonatal rats chronically exposed to hypoxia from birth in which increased activity of Rho-kinase (ROCK) is critical to injury, as evidenced by preventive effects of ROCK inhibitors. Our objective in the present study was to examine the reversing effects of a late or rescue approach to treatment with a ROCK inhibitor on the pulmonary and cardiac manifestations of established chronic hypoxic pulmonary hypertension. Rat pups were exposed to air or hypoxia (13% O(2)) from postnatal day 1 and were treated with Y-27632 (15 mg/kg) or saline vehicle by twice daily subcutaneous injection commencing on day 14, for up to 7 days. Treatment with Y-27632 significantly attenuated right ventricular hypertrophy, reversed arterial wall remodeling, and completely normalized right ventricular systolic function in hypoxia-exposed animals. Reversal of arterial wall remodeling was accompanied by increased apoptosis and attenuated content of endothelin (ET)-1 and ET(A) receptors. Treatment of primary cultured juvenile rat pulmonary artery smooth muscle cells with Y-27632 attenuated serum-stimulated ROCK activity and proliferation and increased apoptosis. Smooth muscle apoptosis was also induced by short interfering RNA-mediated knockdown of ROCK-II, but not of ROCK-I. We conclude that sustained rescue treatment with a ROCK inhibitor reversed both the hemodynamic and structural abnormalities of chronic hypoxic pulmonary hypertension in juvenile rats and normalized right ventricular systolic function. Attenuated expression and activity of ET-1 and its A-type receptor on pulmonary arterial smooth muscle was a likely contributor to the stimulatory effects of ROCK inhibition on apoptosis. In addition, our data suggest that ROCK-II may be dominant in enhancing survival of pulmonary arterial smooth muscle.
Collapse
MESH Headings
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology
- Age Factors
- Aging
- Amides/administration & dosage
- Amides/pharmacology
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chronic Disease
- Disease Models, Animal
- Endothelin-1/metabolism
- Hemodynamics
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/enzymology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Hypoxia/complications
- Hypoxia/enzymology
- Hypoxia/physiopathology
- Injections, Subcutaneous
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocardium/enzymology
- Myocardium/pathology
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacology
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Pulmonary Artery/pathology
- Pyridines/administration & dosage
- Pyridines/pharmacology
- RNA Interference
- Rats
- Receptor, Endothelin A/metabolism
- Ventricular Dysfunction, Right/drug therapy
- Ventricular Dysfunction, Right/enzymology
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Right
- Ventricular Remodeling/drug effects
- rho-Associated Kinases/antagonists & inhibitors
- rho-Associated Kinases/genetics
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Emily Z Xu
- Clinical Integrative Biology, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Burgos CM, Nord M, Roos A, Didon L, Eklöf AC, Frenckner B. Connective tissue growth factor expression pattern in lung development. Exp Lung Res 2010; 36:441-50. [DOI: 10.3109/01902141003714056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Keller RL, Tacy TA, Hendricks-Munoz K, Xu J, Moon-Grady AJ, Neuhaus J, Moore P, Nobuhara KK, Hawgood S, Fineman JR. Congenital diaphragmatic hernia: endothelin-1, pulmonary hypertension, and disease severity. Am J Respir Crit Care Med 2010; 182:555-61. [PMID: 20413632 DOI: 10.1164/rccm.200907-1126oc] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Endothelin-1 (ET1) is dysregulated in pulmonary hypertension (PH). It may be important in the pathobiology of congenital diaphragmatic hernia (CDH). OBJECTIVES We hypothesized that ET1 levels in the first month would be higher in infants with CDH who subsequently expired or were discharged on oxygen (poor outcome). We further hypothesized that ET1 levels would be associated with concurrent severity of PH. METHODS We sampled plasma at 24 to 48 hours, and 1, 2, and 4 weeks of age in 40 prospectively enrolled newborns with CDH. We performed echocardiograms to estimate pulmonary artery pressure at less than 48 hours of age and weekly to 4 weeks. PH was classified in relationship to systemic blood pressure (SBP): less than 2/3 SBP, 2/3 SBP-systemic is related to pressure, or systemic-to-suprasystemic pressure. MEASUREMENTS AND MAIN RESULTS ET1 levels at 1 and 2 weeks were higher in infants with poor outcome compared with infants discharged on room air (median and interquartile range: 27.2 [22.6, 33.7] vs. 19.1 [16.1, 29.5] pg/ml, P = 0.03; and 24.9 [17.6, 39.5] vs. 17.4 [13.7, 21.8] pg/ml, P = 0.01 at 1 and 2 weeks, respectively). Severity of PH was significantly associated with increasing ET1 levels at 2 weeks (16.1 [13.7, 21.8], 21.0 [17.4, 31.1], and 23.6 [21.9, 39.5] pg/ml for increasing PH class, P = 0.03). Increasing severity of PH was also associated with poor outcome at that time (P = 0.001). CONCLUSIONS Infants with CDH and poor outcome have higher plasma ET1 levels and severity of PH than infants discharged on room air. Severity of PH is associated with ET1 levels.
Collapse
Affiliation(s)
- Roberta L Keller
- Department of Pediatrics, University of California San Francisco, 94143, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Perry SF, Similowski T, Klein W, Codd JR. The evolutionary origin of the mammalian diaphragm. Respir Physiol Neurobiol 2010; 171:1-16. [PMID: 20080210 DOI: 10.1016/j.resp.2010.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 11/18/2022]
Abstract
The comparatively low compliance of the mammalian lung results in an evolutionary dilemma: the origin and evolution of this bronchoalveolar lung into a high-performance gas-exchange organ results in a high work of breathing that cannot be achieved without the coupled evolution of a muscular diaphragm. However, despite over 400 years of research into respiratory biology, the origin of this exclusively mammalian structure remains elusive. Here we examine the basic structure of the body wall muscles in vertebrates and discuss the mechanics of costal breathing and functional significance of accessory breathing muscles in non-mammalian amniotes. We then critically examine the mammalian diaphragm and compare hypotheses on its ontogenetic and phylogenetic origin. A closer look at the structure and function across various mammalian groups reveals the evolutionary significance of collateral functions of the diaphragm as a visceral organizer and its role in producing high intra-abdominal pressure.
Collapse
|
45
|
Boucherat O, Franco-Montoya ML, Delacourt C, Martinovic J, Masse V, Elie C, Thébaud B, Benachi A, Bourbon JR. Defective angiogenesis in hypoplastic human fetal lungs correlates with nitric oxide synthase deficiency that occurs despite enhanced angiopoietin-2 and VEGF. Am J Physiol Lung Cell Mol Physiol 2010; 298:L849-56. [PMID: 20348277 DOI: 10.1152/ajplung.00333.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Lung hypoplasia (LH) is a life-threatening congenital abnormality with various causes. It involves vascular bed underdevelopment with abnormal arterial muscularization leading to pulmonary hypertension. Because underlying molecular changes are imperfectly known and sometimes controversial, we determined key factors of angiogenesis along intrauterine development, focusing at the angiopoietin (ANG)/Tie-2 system. Lung specimens from medical terminations of pregnancy (9-37 wk) were used, including LH due to congenital diaphragmatic hernia (CDH) or other causes, and nonpulmonary disease samples were used as controls. ELISA determination indicated little ANG-1 change during pregnancy and no effect of LH, whereas Tie-2 declined similarly between 9 and 37 wk in LH and controls. By contrast, ANG-2 markedly increased in LH from 24 wk, whereas it remained stable in controls. Because VEGF increased also, this was interpreted as an attempt to overcome vascular underdevelopment. Hypothesizing that its inefficiency might be due to impaired downstream mechanism, endothelial nitric oxide synthase (eNOS) was determined by semiquantitative Western blot and found to be reduced by approximately 75%, mostly in the instance of CDH. In conclusion, angiogenesis remains defective in hypoplastic lungs despite reactive enhancement of VEGF and ANG-2 production, which could be due, at least in part, to insufficient eNOS expression.
Collapse
Affiliation(s)
- Olivier Boucherat
- Institut Mondor de Recherche Biomédicale, Institut National de Santé et de Recherche Médicale Unité 955, Créteil, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang HH, Hsieh HL, Wu CY, Yang CM. Endothelin-1 enhances cell migration via matrix metalloproteinase-9 up-regulation in brain astrocytes. J Neurochem 2010; 113:1133-49. [PMID: 20345768 DOI: 10.1111/j.1471-4159.2010.06680.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The bioactivity of endothelin-1 (ET-1) has been suggested in the development of CNS diseases, including disturbance of water homeostasis and blood-brain barrier integrity. Recent studies suggest that hypoxic/ischemic injury of the brain induces release of ET-1, behaving through a G-protein coupled ET receptor family. The deleterious effects of ET-1 on astrocytes may aggravate brain inflammation. Increased plasma levels of matrix metalloproteinases (MMPs), in particular MMP-9, have been observed in patients with neuroinflammatory disorders. However, the detailed mechanisms underlying ET-1-induced MMP-9 expression remain unknown. In this study, the data obtained with zymographic, western blotting, real-time PCR, and immunofluorescent staining analyses showed that ET-1-induced MMP-9 expression was mediated through an ET(B)-dependent transcriptional activation. Engagement of G(i/o)- and G(q)-coupled ET(B) receptor by ET-1 led to activation of p42/p44 MAPK and then activated transcription factors including Ets-like kinase, nuclear factor-kappa B, and activator protein-1 (c-Jun/c-Fos). These activated transcription factors translocated into nucleus and bound to their corresponding binding sites in MMP-9 promoter, thereby turning on MMP-9 gene transcription. Eventually, up-regulation of MMP-9 by ET-1 enhanced the migration of astrocytes. Taken together, these results suggested that in astrocytes, activation of Ets-like kinase, nuclear factor-kappa B, and activator protein-1 by ET(B)-dependent p42/p44 MAPK signaling is necessary for ET-1-induced MMP-9 gene up-regulation. Understanding the mechanisms of MMP-9 expression and functional changes regulated by ET-1/ET(B) system on astrocytes may provide rational therapeutic interventions for brain injury associated with increased MMP-9 expression.
Collapse
Affiliation(s)
- Hui-Hsin Wang
- Department of Pharmacology, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | |
Collapse
|
47
|
Upregulation of endothelin receptors A and B in the nitrofen induced hypoplastic lung occurs early in gestation. Pediatr Surg Int 2010; 26:65-9. [PMID: 19851775 DOI: 10.1007/s00383-009-2514-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE Pulmonary hypoplasia and persistent pulmonary hypertension (PPH) aggravate clinical courses in congenital diaphragmatic hernia (CDH). Endothelin 1 enhances PPH by vasoconstriction and proliferation of vessel walls. Up-regulation of pulmonary Endothelin Receptors A and B (EDNRA, EDNRB) has been reported in human CDH and animal models, but the onset of those alterations during lung development remains unclear. We hypothesized that pulmonary expression of EDNRA and EDNRB is up-regulated at early gestational stages in the nitrofen model. METHODS Pregnant rats were exposed to nitrofen or vehicle on gestational day 9 (D9). Embryos were sacrificed on D15, D18 and D21 and divided into nitrofen- and control group. Pulmonary RNA was extracted and mRNA levels of EDNRA and EDNRB were determined by real-time PCR. Immunohistochemistry for protein expression of both receptors was performed. RESULTS mRNA levels of EDNRA and EDNRB were significantly increased in the nitrofen group on D15, D18 and D21. Immunohistochemistry revealed increased pulmonary vascular expression of EDNRA and EDNRB compared to controls. CONCLUSION Altered expression of EDNRA and EDNRB is an early event in lung morphogenesis in the nitrofen model. We speculate that pulmonary arteries in CDH become excessively muscularised in early fetal life, becoming unable to adapt normally at birth.
Collapse
|
48
|
de Buys Roessingh AS, de Lagausie P, Mercier JC, Aigrain Y, Dinh-Xuan AT. VENTILATION-INDUCED PULMONARY VASODILATATION IN LAMBS WITH CONGENITAL DIAPHRAGMATIC HERNIA IS MODULATED BY NITRIC OXIDE. Exp Lung Res 2009; 34:355-71. [DOI: 10.1080/01902140802221896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Rolland PH, de Lagausie P, Stathopoulos E, Leprètre O, Viudes G, Gorincour G, Hery G, de Magnée C, Paut O, Guys JM. Phasic hemodynamics and reverse blood flows in the aortic isthmus and pulmonary arteries of preterm lambs with pulmonary vascular dysfunction. Am J Physiol Heart Circ Physiol 2008; 295:H2231-41. [PMID: 18820030 DOI: 10.1152/ajpheart.00410.2008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Time-domain representations of the fetal aortopulmonary circulation were carried out in lamb fetuses to study hemodynamic consequences of congenital diaphragmatic hernia (CDH) and the effects of endothelin-receptor antagonist tezosentan (3 mg/45 min). From the isthmic aortic and left pulmonary artery (PA) flows (Q) and isthmic aortic, PA, and left auricle pressures (P) on day 135 in 10 controls and 7 CDH fetuses (28 ewes), discrete-triggered P and Q waveforms were modelized as Pt and Qt functions to obtain basic hemodynamic profiles, pulsatile waves [P, Q, and entry impedance (Ze)], and P and Q hysteresis loops. In the controls, blood propelling energy was accounted for by biventricular ejection flow waves (kinetic energy) with low Ze and by flow-driven pressure waves (potential energy) with low Ze. Weak fetal pulmonary perfusion was ensured by reflux (reverse flows) from PA branches to the ductus anteriosus and aortic isthmus as reverse flows. Endothelin-receptor antagonist blockade using tezosentan slightly increased the forward flow but largely increased diastolic backward flow with a diminished left auricle pre- and postloading. In CHD fetuses, the static component overrode phasic flows that were detrimental to reverse flows and the direction of the diastolic isthmic flow changed to forward during the diastole period. Decreased cardiac output, flattened pressure waves, and increased forward Ze promoted backward flow to the detriment of forward flow (especially during diastole). Additionally, the intrapulmonary arteriovenous shunting was ineffective. The slowing of cardiac output, the dampening of energetic pressure waves and pulsatility, and the heightening of phasic impedances contributed to the lowering of aortopulmonary blood flows. We speculate that reverse pulmonary flow is a physiological requirement to protect the fetal pulmonary circulation from the prominent right ventricular stream and to enhance blood flow to the fetal heart and brain.
Collapse
Affiliation(s)
- Pierre-Henri Rolland
- Physiopathology and Vascular Therapeutics, School of Medicine, University of the Mediterranean Sea, 27 Blvd. Jean-Moulin, and Department of Pediatric Surgery, LaTimone-Hospital, Marseilles, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Baptista MJ, Nogueira-Silva C, Areias JC, Correia-Pinto J. Perinatal profile of ventricular overload markers in congenital diaphragmatic hernia. J Pediatr Surg 2008; 43:627-33. [PMID: 18405707 DOI: 10.1016/j.jpedsurg.2007.08.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/03/2007] [Accepted: 08/11/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND In congenital diaphragmatic hernia (CDH), pulmonary hypertension increases right ventricle (RV) afterload, which could impair heart function and contribute to poor outcome for most affected infants. Nevertheless, the real significance of vascular pulmonary alterations in perinatal hemodynamics is largely unknown. It is defined that ventricular pressure overload induces increased myocardium gene expression of B-type natriuretic peptide (BNP) and components of the renin-angiotensinogen and endothelin (ET)-1 systems. Our aim was to evaluate perinatal myocardium expression of these genes associated with ventricular pressure overload in a nitrofen-induced CDH rat model. METHODS In the nitrofen-induced CDH rat model, fetuses from dated pregnant Sprague-Dawley rats at 15.5, 17.5, 19.5 and 21.5 days postcoitum as well as newborn pups were assigned to 3 experimental groups: control, nitrofen (exposed to nitrofen, without CDH), and CDH (exposed to nitrofen, with CDH). Myocardial samples collected from the RV and left ventricle (LV) were processed for quantification of messenger RNA (mRNA) of BNP, angiotensinogen, and ET-1. RESULTS The perinatal expression of BNP, angiotensinogen, and ET-1 mRNA in the RV and LV of the control group revealed daily changes. During gestation, the expression of BNP and angiotensinogen mRNA underwent significant oscillation compared with control in both nitrofen-exposed fetuses, although we cannot identify significant differences between the nitrofen and CDH groups. After birth, we found a significant increasing expression of all studied genes only in the RV of CDH pups. CONCLUSIONS Perinatal myocardial quantification of BNP, angiotensinogen, and ET-1 mRNA levels suggests that both nitrofen-exposed and control pups revealed prenatal variations of expression of the studied genes. Moreover, CDH is associated with significant molecular alterations only in the RV after birth.
Collapse
Affiliation(s)
- Maria João Baptista
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | |
Collapse
|