1
|
Zhang L, Li D, Du F, Huang H, Yuan C, Fu J, Sun S, Tian T, Liu X, Sun H, Zhu L, Xu J, Liu Y, Cui B, Zhao Y. A panel of differentially methylated regions enable prognosis prediction for colorectal cancer. Genomics 2021; 113:3285-3293. [PMID: 34302946 DOI: 10.1016/j.ygeno.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 01/22/2023]
Abstract
We aim to identify a panel of differentially methylated regions (DMRs) for predicting survival outcomes for patients with CRC from the TCGA (n = 393). Four DMRs (MUC12, TBX20, CHN2, and B3GNT7) were selected as candidate prognostic markers for CRC. The prediction potential of selected DMRs was validated by the targeted bisulfite sequencing method in an independent cohort with 251 Chinese CRC patients. DMR methylation scores (DMSs) were constructed to evaluate the prognosis of CRC. Results of the validation cohort confirmed that higher DMSs were associated with poor overall survival (OS) of CRC, with hazard ratio (HR) value ranged from 1.445 to 2.698 in multivariable Cox models. Patients in the high prognostic index (high-PI) group showed a markedly unfavorable prognosis compared to the low-PI group in both TCGA discovery cohort (HR = 3.508, 95%CI: 2.196-5.604, P < 0.001) and independent validation cohort (HR = 1.912, 95%CI: 1.258-2.907, P = 0.002).
Collapse
Affiliation(s)
- Lei Zhang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, PR China
| | - Dapeng Li
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, PR China
| | - Fenqi Du
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, PR China
| | - Hao Huang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, PR China
| | - Chao Yuan
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, PR China
| | - Jinming Fu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, PR China
| | - Simin Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, PR China
| | - Tian Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, PR China
| | - Xinyan Liu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, PR China
| | - Hongru Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, PR China
| | - Lin Zhu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, PR China
| | - Jing Xu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, PR China
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, PR China
| | - Binbin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, PR China.
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, PR China.
| |
Collapse
|
2
|
Han J, Chen M, Fang Q, Zhang Y, Wang Y, Esma J, Qiao H. Prediction of the Prognosis Based on Chromosomal Instability-Related DNA Methylation Patterns of ELOVL2 and UBAC2 in PTCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:650-660. [PMID: 31698312 PMCID: PMC6906861 DOI: 10.1016/j.omtn.2019.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/12/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
Papillary thyroid carcinoma (PTC) is the most common malignant tumor of endocrine systems. Chromosomal instability (CIN) is crucial to the clinical prognoses of tumor patients. DNA methylation plays an important role in the regulation of gene expression and CIN. Based on PTC samples from The Cancer Genome Atlas database, we used multiple regression analyses to identify methylation patterns of CpG sites with the strongest correlation with gene expression. A total of 4,997 genes were obtained through combining the CpG sites, which were represented as featured DNA methylation patterns. In order to identify CIN-related epigenetic markers of PTC survival, we developed a method to characterize CIN based on DNA methylation patterns of genes using the Student’s t statistics. We found that 1,239 genes were highly associated with CIN. With the use of the log-rank test, univariate Cox regression analyses, and the Kaplan-Meier method, DNA methylation patterns of UBAC2 and ELOVL2, highly correlated with CIN, provided potential prognostic values for PTC. The higher these two genes, risk scores were correlated with worse PTC patient prognoses. Moreover, the ELOVL2 risk score was significantly different in the four stages of PTC, suggesting that it was related to the progress of PTC. The DNA methylation pattern associated with CIN may therefore be a good predictor of PTC survival.
Collapse
Affiliation(s)
- Jun Han
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Meijun Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Qingxiao Fang
- Surgical Oncology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yanqing Zhang
- Hematological Department, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China
| | - Jamaspishvili Esma
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hong Qiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
3
|
Molnár B, Galamb O, Péterfia B, Wichmann B, Csabai I, Bodor A, Kalmár A, Szigeti KA, Barták BK, Nagy ZB, Valcz G, Patai ÁV, Igaz P, Tulassay Z. Gene promoter and exon DNA methylation changes in colon cancer development - mRNA expression and tumor mutation alterations. BMC Cancer 2018; 18:695. [PMID: 29945573 PMCID: PMC6020382 DOI: 10.1186/s12885-018-4609-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/18/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND DNA mutations occur randomly and sporadically in growth-related genes, mostly on cytosines. Demethylation of cytosines may lead to genetic instability through spontaneous deamination. Aims were whole genome methylation and targeted mutation analysis of colorectal cancer (CRC)-related genes and mRNA expression analysis of TP53 pathway genes. METHODS Long interspersed nuclear element-1 (LINE-1) BS-PCR followed by pyrosequencing was performed for the estimation of global DNA metlyation levels along the colorectal normal-adenoma-carcinoma sequence. Methyl capture sequencing was done on 6 normal adjacent (NAT), 15 adenomatous (AD) and 9 CRC tissues. Overall quantitative methylation analysis, selection of top hyper/hypomethylated genes, methylation analysis on mutation regions and TP53 pathway gene promoters were performed. Mutations of 12 CRC-related genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53) were evaluated. mRNA expression of TP53 pathway genes was also analyzed. RESULTS According to the LINE-1 methylation results, overall hypomethylation was observed along the normal-adenoma-carcinoma sequence. Within top50 differential methylated regions (DMRs), in AD-N comparison TP73, NGFR, PDGFRA genes were hypermethylated, FMN1, SLC16A7 genes were hypomethylated. In CRC-N comparison DKK2, SDC2, SOX1 genes showed hypermethylation, while ERBB4, CREB5, CNTN1 genes were hypomethylated. In certain mutation hot spot regions significant DNA methylation alterations were detected. The TP53 gene body was addressed by hypermethylation in adenomas. APC, TP53 and KRAS mutations were found in 30, 15, 21% of adenomas, and in 29, 53, 29% of CRCs, respectively. mRNA expression changes were observed in several TP53 pathway genes showing promoter methylation alterations. CONCLUSIONS DNA methylation with consecutive phenotypic effect can be observed in a high number of promoter and gene body regions through CRC development.
Collapse
Affiliation(s)
- Béla Molnár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Orsolya Galamb
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Bálint Péterfia
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Barnabás Wichmann
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - István Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117 Hungary
| | - András Bodor
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117 Hungary
- Institute of Mathematics and Informatics, Faculty of Sciences, University of Pécs, Ifjúság útja 6, Pécs, H-7624 Hungary
| | - Alexandra Kalmár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Krisztina Andrea Szigeti
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Barbara Kinga Barták
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Zsófia Brigitta Nagy
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Gábor Valcz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Árpád V. Patai
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Péter Igaz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| |
Collapse
|
4
|
McDonough EM, Barrett CW, Parang B, Mittal MK, Smith JJ, Bradley AM, Choksi YA, Coburn LA, Short SP, Thompson JJ, Zhang B, Poindexter SV, Fischer MA, Chen X, Li J, Revetta FL, Naik R, Washington MK, Rosen MJ, Hiebert SW, Wilson KT, Williams CS. MTG16 is a tumor suppressor in colitis-associated carcinoma. JCI Insight 2017; 2:78210. [PMID: 28814670 DOI: 10.1172/jci.insight.78210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/14/2017] [Indexed: 12/27/2022] Open
Abstract
MTG16 is a member of the myeloid translocation gene (MTG) family of transcriptional corepressors. While MTGs were originally identified in chromosomal translocations in acute myeloid leukemia, recent studies have uncovered a role in intestinal biology. For example, Mtg16-/- mice have increased intestinal proliferation and are more sensitive to intestinal injury in colitis models. MTG16 is also underexpressed in patients with moderate/severe ulcerative colitis. Based on these findings, we postulated that MTG16 might protect against colitis-associated carcinogenesis. MTG16 was downregulated at the protein and RNA levels in patients with inflammatory bowel disease and in those with colitis-associated carcinoma. Mtg16-/- mice subjected to inflammatory carcinogenesis modeling exhibited worse colitis and increased tumor multiplicity and size. Loss of MTG16 also increased severity of dysplasia, apoptosis, proliferation, DNA damage, and WNT signaling. Moreover, transplantation of WT marrow into Mtg16-/- mice failed to rescue the Mtg16-/- protumorigenic phenotypes, indicating an epithelium-specific role for MTG16. While MTG dysfunction is widely appreciated in hematopoietic malignancies, the role of this gene family in epithelial homeostasis, and in colon cancer, was unrealized. This report identifies MTG16 as an important modulator of colitis and tumor development in inflammatory carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yash A Choksi
- Department of Medicine, Division of Gastroenterology
| | - Lori A Coburn
- Department of Medicine, Division of Gastroenterology.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | | | | | | | | | - Melissa A Fischer
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xi Chen
- Department of Public Health Sciences and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jiang Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Frank L Revetta
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rishi Naik
- Department of Cancer Biology.,Department of Medicine, Division of Gastroenterology
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael J Rosen
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keith T Wilson
- Department of Cancer Biology.,Department of Medicine, Division of Gastroenterology.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Christopher S Williams
- Department of Cancer Biology.,Department of Medicine, Division of Gastroenterology.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Balaur I, Saqi M, Barat A, Lysenko A, Mazein A, Rawlings CJ, Ruskin HJ, Auffray C. EpiGeNet: A Graph Database of Interdependencies Between Genetic and Epigenetic Events in Colorectal Cancer. J Comput Biol 2016; 24:969-980. [PMID: 27627442 DOI: 10.1089/cmb.2016.0095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The development of colorectal cancer (CRC)-the third most common cancer type-has been associated with deregulations of cellular mechanisms stimulated by both genetic and epigenetic events. StatEpigen is a manually curated and annotated database, containing information on interdependencies between genetic and epigenetic signals, and specialized currently for CRC research. Although StatEpigen provides a well-developed graphical user interface for information retrieval, advanced queries involving associations between multiple concepts can benefit from more detailed graph representation of the integrated data. This can be achieved by using a graph database (NoSQL) approach. Data were extracted from StatEpigen and imported to our newly developed EpiGeNet, a graph database for storage and querying of conditional relationships between molecular (genetic and epigenetic) events observed at different stages of colorectal oncogenesis. We illustrate the enhanced capability of EpiGeNet for exploration of different queries related to colorectal tumor progression; specifically, we demonstrate the query process for (i) stage-specific molecular events, (ii) most frequently observed genetic and epigenetic interdependencies in colon adenoma, and (iii) paths connecting key genes reported in CRC and associated events. The EpiGeNet framework offers improved capability for management and visualization of data on molecular events specific to CRC initiation and progression.
Collapse
Affiliation(s)
- Irina Balaur
- 1 European Institute for Systems Biology and Medicine (EISBM) , CIRI UMR CNRS 5308, CNRS-ENS-UCBL-INSERM, Université Claude Bernard, Lyon, France
| | - Mansoor Saqi
- 1 European Institute for Systems Biology and Medicine (EISBM) , CIRI UMR CNRS 5308, CNRS-ENS-UCBL-INSERM, Université Claude Bernard, Lyon, France
| | - Ana Barat
- 2 Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Artem Lysenko
- 3 Rothamsted Research , Hertfordshire, United Kingdom
| | - Alexander Mazein
- 1 European Institute for Systems Biology and Medicine (EISBM) , CIRI UMR CNRS 5308, CNRS-ENS-UCBL-INSERM, Université Claude Bernard, Lyon, France
| | | | - Heather J Ruskin
- 4 Centre for Scientific Computing and Complex Systems Modelling, School of Computing, Dublin City University , Dublin, Ireland
| | - Charles Auffray
- 1 European Institute for Systems Biology and Medicine (EISBM) , CIRI UMR CNRS 5308, CNRS-ENS-UCBL-INSERM, Université Claude Bernard, Lyon, France
| |
Collapse
|
6
|
Galamb O, Kalmár A, Péterfia B, Csabai I, Bodor A, Ribli D, Krenács T, Patai ÁV, Wichmann B, Barták BK, Tóth K, Valcz G, Spisák S, Tulassay Z, Molnár B. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer. Epigenetics 2016; 11:588-602. [PMID: 27245242 PMCID: PMC4990228 DOI: 10.1080/15592294.2016.1190894] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 02/06/2023] Open
Abstract
The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Orsolya Galamb
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Alexandra Kalmár
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Bálint Péterfia
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - István Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - András Bodor
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Dezső Ribli
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Tumor Progression Research Group, Hungarian Academy of Sciences – Semmelweis University, Budapest, Hungary
| | - Árpád V. Patai
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Barnabás Wichmann
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Kinga Tóth
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Valcz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Sándor Spisák
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Béla Molnár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
7
|
Inactivation of promoter 1B of APC causes partial gene silencing: evidence for a significant role of the promoter in regulation and causative of familial adenomatous polyposis. Oncogene 2011; 30:4977-89. [PMID: 21643010 PMCID: PMC3240859 DOI: 10.1038/onc.2011.201] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Familial adenomatous polyposis (FAP) is caused by germline mutations in the adenomatous polyposis coli (APC) gene. Two promoters, 1A and 1B, have been recognized in APC, and 1B is thought to have a minor role in the regulation of the gene. We have identified a novel deletion encompassing half of this promoter in the largest family (Family 1) of the Swedish Polyposis Registry. The mutation leads to an imbalance in allele-specific expression of APC, and transcription from promoter 1B was highly impaired in both normal colorectal mucosa and blood from mutation carriers. To establish the significance of promoter 1B in normal colorectal mucosa (from controls), expression levels of specific transcripts from each of the promoters, 1A and 1B, were examined, and the expression from 1B was significantly higher compared with 1A. Significant amounts of transcripts generated from promoter 1B were also determined in a panel of 20 various normal tissues examined. In FAP-related tumors, the APC germline mutation is proposed to dictate the second hit. Mutations leaving two or three out of seven 20-amino-acid repeats in the central domain of APC intact seem to be required for tumorigenesis. We examined adenomas from mutation carriers in Family 1 for second hits in the entire gene without any findings, however, loss of the residual expression of the deleterious allele was observed. Three major conclusions of significant importance in relation to the function of APC can be drawn from this study; (i) germline inactivation of promoter 1B is disease causing in FAP; (ii) expression of transcripts from promoter 1B is generated at considerable higher levels compared with 1A, demonstrating a hitherto unknown importance of 1B; (iii) adenoma formation in FAP, caused by impaired function of promoter 1B, does not require homozygous inactivation of APC allowing for alternative genetic models as basis for adenoma formation.
Collapse
|
8
|
Leong KJ, Wei W, Tannahill LA, Caldwell GM, Jones CE, Morton DG, Matthews GM, Bach SP. Methylation profiling of rectal cancer identifies novel markers of early-stage disease. Br J Surg 2011; 98:724-34. [PMID: 21360524 DOI: 10.1002/bjs.7422] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND Radical surgery is the de facto treatment for early rectal cancer. Conservative surgery with transanal endoscopic microsurgery can achieve high rates of cure but the histopathological measures of outcome used to select local treatment lack precision. Biomarkers associated with disease progression, particularly mesorectal nodal metastasis, are urgently required. The aim was to compare patterns of gene-specific hypermethylation in radically excised rectal cancers with histopathological stage. METHODS Locus-specific hypermethylation of 24 tumour suppressor genes was measured in 105 rectal specimens (51 radically excised adenocarcinomas, 35 tissues adjacent to tumour and 19 normal controls) using the methylation-specific multiplex ligation-dependent probe assay (MS-MLPA). Methylation values were correlated with histopathological indices of disease progression and validated using bisulphite pyrosequencing. RESULTS Five sites (ESR1, CDH13, CHFR, APC and RARB) were significantly hypermethylated in cancer compared with adjacent tissue and normal controls (P < 0·050). Methylation at these sites was higher in Dukes' A than Dukes' 'D' cancers (P = 0·013). Methylation at two sites (GSTP1 and RARB) was individually associated with localized disease (N0 and M0 respectively; P = 0·006 and P = 0·008). Hypermethylation of at least two of APC, RARB, TIMP3, CASP8 and GSTP1 was associated with early (N0 M0) disease (N0, P = 0·002; M0, P = 0·044). Methylation levels detected by MS-MLPA and pyrosequencing were concordant. CONCLUSION Locus-specific hypermethylation was more prevalent in early- than late-stage disease. Hypermethylation of two or more of a panel of five tumour suppressor genes was associated with localized disease.
Collapse
Affiliation(s)
- K J Leong
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Neuville A, Nicolet C, Meyer N, Schneider A, Legrain M, Brigand C, Duclos B, Bachellier P, Oudet P, Bellocq JP, Kedinger M, Gaub MP, Guenot D. Histologic characteristics of non-microsatellite-instable colon adenomas correlate with distinct molecular patterns. Hum Pathol 2011; 42:244-53. [PMID: 21238786 DOI: 10.1016/j.humpath.2010.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 06/17/2010] [Accepted: 07/21/2010] [Indexed: 02/07/2023]
Abstract
Colon carcinogenesis encompasses the stepwise accumulation of genomic aberrations correlated with the transition of aberrant crypt-adenoma-carcinoma. Recent data have revealed that, in addition to the microsatellite-instable phenotype, the chromosome instability pathway, representing four fifth of the colon carcinoma, could be involved in heterogeneous molecular alterations. Our project was aimed at determining the existence of distinct molecular subtypes in 159 non-microsatellite-instable colon polyps and their correlation with histology and dysplasia, using allelotyping, MGMT promoter gene methylation status, and K-RAS mutation analyses. Allelic imbalance, MGMT methylation, and K-RAS mutations arise in 62%, 39%, and 32% of polyps, respectively. Only 14% of polyps had no alterations. A 2-way hierarchical clustering analysis of the allelic imbalances identified subgroups of polyps according to their allelic imbalance frequency and distribution. Not only tubulovillous adenoma but also high-grade adenomas were correlated with high global allelic imbalance frequency (P = .005 and P = .003), with allelic imbalance at microsatellites targeting chromosomes 1, 6, and 9. In conclusion, the data presented in this study show that a large heterogeneity exists in the molecular patterns of alterations in precancerous colon lesions, favoring different modes of tumor initiation. Therefore, molecular alterations correlated with tubulovillous-type and high-grade dysplasia could represent targets identifying predictive factors of progression.
Collapse
Affiliation(s)
- Agnès Neuville
- EA 4438, Université de Strasbourg, F-67200 Bâtiment Inserm, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Park YJ, Claus R, Weichenhan D, Plass C. Genome-wide epigenetic modifications in cancer. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2011; 67:25-49. [PMID: 21141723 PMCID: PMC3066002 DOI: 10.1007/978-3-7643-8989-5_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Epigenetic alterations in cancer include changes in DNA methylation and associated histone modifications that influence the chromatin states and impact gene expression patterns. Due to recent technological advantages, the scientific community is now obtaining a better picture of the genome-wide epigenetic changes that occur in a cancer genome. These epigenetic alterations are associated with chromosomal instability and changes in transcriptional control which influence the overall gene expression differences seen in many human malignancies. In this review, we will briefly summarize our current knowledge of the epigenetic patterns and mechanisms of gene regulation in healthy tissues and relate this to what is known for cancer genomes. Our focus will be on DNA methylation. We will review the current standing of technologies that have been developed over recent years. This field is experiencing a revolution in the strategies used to measure epigenetic alterations, which includes the incorporation of next generation sequencing tools. We also will review strategies that utilize epigenetic information for translational purposes, with a special emphasis on the potential use of DNA methylation marks for early disease detection and prognosis. The review will close with an outlook on challenges that this field is facing.
Collapse
Affiliation(s)
- Yoon Jung Park
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
11
|
Quyn AJ, Appleton PL, Carey FA, Steele RJC, Barker N, Clevers H, Ridgway RA, Sansom OJ, Näthke IS. Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue. Cell Stem Cell 2010; 6:175-81. [PMID: 20144789 DOI: 10.1016/j.stem.2009.12.007] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 10/26/2009] [Accepted: 12/15/2009] [Indexed: 10/19/2022]
Abstract
The importance of asymmetric divisions for stem cell function and maintenance is well established in the developing nervous system and the skin; however, its role in gut epithelium and its importance for tumorigenesis is still debated. We demonstrate alignment of mitotic spindles perpendicular to the apical surface specifically in the stem cell compartments of mouse and human intestine and colon. This orientation correlates with the asymmetric retention of label-retaining DNA. Both the preference for perpendicular spindle alignment and asymmetric label retention are lost in precancerous tissue heterozygous for the adenomatous polyposis coli tumor suppressor (Apc). This loss correlates with cell shape changes specifically in the stem cell compartment. Our data suggest that loss of asymmetric division in stem cells might contribute to the oncogenic effect of Apc mutations in gut epithelium.
Collapse
Affiliation(s)
- Aaron J Quyn
- Cell and Developmental Biology, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kim JC, Choi JS, Roh SA, Cho DH, Kim TW, Kim YS. Promoter Methylation of Specific Genes is Associated with the Phenotype and Progression of Colorectal Adenocarcinomas. Ann Surg Oncol 2010; 17:1767-76. [DOI: 10.1245/s10434-009-0901-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Indexed: 12/23/2022]
|
13
|
Lee BB, Lee EJ, Jung EH, Chun HK, Chang DK, Song SY, Park J, Kim DH. Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res 2009; 15:6185-91. [PMID: 19773381 DOI: 10.1158/1078-0432.ccr-09-0111] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE To identify epigenetic molecular makers in plasma for the early detection of colorectal cancer. EXPERIMENTAL DESIGN We retrospectively analyzed the methylation status of 10 genes in fresh-frozen tissues and corresponding plasma samples from 243 patients with stage I and II sporadic colorectal cancer, 276 healthy individuals, and plasma from 64 colorectal adenoma patients using methylation-specific PCR. The methylation score (Mscore) was used to find molecular markers with high sensitivity and specificity. RESULTS Of the 243 colorectal cancer tissues, methylation was detected in 18% for p14, 34% for p16, 27% for APC, 34% for DAPK, 32% for HLTF, 21% for hMLH1, 39% for MGMT, 24% for RARbeta2, 58% for RASSF2A, and 74% for Wif-1. Receiver operator characteristic curve analysis in plasma from 243 patients with cancer and 276 healthy individuals showed that the M score of any single gene had a sensitivity of <40% after controlling for age, sex, and tumor location. The specificity of the M score was not different between multigene and single gene analyses, but the sensitivity of the M score was significantly increased by multigene analysis. For all patients, the M score in a model including APC, MGMT, RASSF2A, and Wif-1 genes had a sensitivity of 86.5% and a specificity of 92.1% when 1.6 was used as a cutoff. In this model, the M score had a positive predictive value of 90.6% and a negative predictive value of 88.8%. CONCLUSION The present study suggests that tumor-specific methylation of APC, MGMT, RASSF2A, and Wif-1 genes might be a valuable biomarker in plasma for the early detection of colorectal cancer.
Collapse
Affiliation(s)
- Bo Bin Lee
- Molecular Cell Biology, Samsung Medical Center, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lopez J, Percharde M, Coley HM, Webb A, Crook T. The context and potential of epigenetics in oncology. Br J Cancer 2009; 100:571-7. [PMID: 19223907 PMCID: PMC2653733 DOI: 10.1038/sj.bjc.6604930] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cancer has long been known to be a disease caused by alterations in the genetic blueprint of cells. In the past decade it has become evident that epigenetic processes have a function, at least equally important, in neoplasia. Epigenetics describes the mechanisms that result in heritable alterations in gene expression profiles without an accompanying change in DNA sequence. Genetics and epigenetics intricately interact in the pathogenesis of cancer (Esteller, 2007). In this review, we paint a broad picture of current understanding of epigenetic changes in cancer cells and reflect on the immense clinical potential of emerging knowledge of epigenetics in the diagnosis, prognostic assessment, treatment, and screening of cancer.
Collapse
Affiliation(s)
- J Lopez
- The Breakthrough Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | |
Collapse
|
15
|
Choi JS, Kim KH, Jeon YK, Kim SH, Jang SG, Ku JL, Park JG. Promoter hypermethylation of the ADAM23 gene in colorectal cancer cell lines and cancer tissues. Int J Cancer 2009; 124:1258-62. [PMID: 19089928 DOI: 10.1002/ijc.24023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Promoter hypermethylation of the ADAM23 gene, which is normally involved in cell-to-cell and cell-to matrix adhesion, has been reported in pancreatic, breast and brain cancer, and recently the role of this gene was examined in gastric cancer. In this study, we analyzed ADAM23 expression in colorectal cancer cell lines and examined its methylation by methylation-specific PCR (MSP) and bisulfate-modified DNA sequencing analysis. Methylated cells were treated with 5-aza-2'-deoxycytidine to restore the ADAM23 expression. We then examined ADAM23 methylation status in colorectal cancer tissues and their corresponding normal tissues. We found that ADAM23 was aberrantly silenced or expressed at very low levels in 28 of the 32 (88%) colorectal cancer cell lines. MSP analysis showed that ADAM23 was methylated in 29 of 32 (91%) colorectal cancer cell lines and attenuated expression of ADAM23 was found to be related to hypermethylation in its promoter region. Moreover, the CpG dinucleotide methylation threshold of 70-90% was found to be required for complete silencing. In addition, when some cell lines without ADAM23 expression were treated with 5-aza-2'-deoxycytidine, ADAM23 was reexpressed. In colorectal cancer tissues, the promoter region of ADAM23 was hypermethylated in 36 of 76 (47%). These results demonstrated that ADAM23 may be down-regulated by aberrant promoter hypermethylation during the progression of colorectal cancer.
Collapse
Affiliation(s)
- Jin-Sung Choi
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Ramírez N, Bandrés E, Navarro A, Pons A, Jansa S, Moreno I, Martínez-Rodenas F, Zárate R, Bitarte N, Monzó M, García-Foncillas J. Epigenetic events in normal colonic mucosa surrounding colorectal cancer lesions. Eur J Cancer 2008; 44:2689-95. [PMID: 18938072 DOI: 10.1016/j.ejca.2008.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 08/14/2008] [Accepted: 09/05/2008] [Indexed: 12/16/2022]
Abstract
Gene inactivation by promoter hypermethylation has been demonstrated in the colonic mucosa of colorectal cancer (CRC) patients. However, current data do not prove direct involvement of this epigenetic modification in the early stages of CRC. Promoter methylation profiles of E-cadherin, hMLH1, MGMT, p16(INK4a), p15(INK4b) and p14(ARF); mutations of K-ras, B-raf and TP53 and microsatellite instability (MSI) were examined in normal and cancerous colonic mucosal tissue in 82 CRC patients using methylation-specific PCR assays. Methylation of hMLH1 and MGMT in normal mucosa correlated significantly with MSI and K-ras activation in neighbouring cancerous mucosal tissues. Similarly, poorly differentiated tumours were associated with methylated p16(INK4a) and E-cadherin in neighbouring normal colonic tissues (NCTs). Our results indicate that epigenetic changes in mucosa surrounding colorectal neoplastic lesions may describe a 'field cancerisation' phenomenon that may occur previous to genetic alterations in early stages of carcinogenesis.
Collapse
Affiliation(s)
- N Ramírez
- Laboratory of Pharmacogenomics, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Segditsas S, Sieber OM, Rowan A, Setien F, Neale K, Phillips RKS, Ward R, Esteller M, Tomlinson IPM. Promoter hypermethylation leads to decreased APC mRNA expression in familial polyposis and sporadic colorectal tumours, but does not substitute for truncating mutations. Exp Mol Pathol 2008; 85:201-6. [PMID: 18977219 DOI: 10.1016/j.yexmp.2008.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 09/19/2008] [Indexed: 01/13/2023]
Abstract
Germline mutations in the tumour suppressor APC cause familial adenomatous polyposis (FAP), and somatic mutations are common in sporadic colorectal cancers (CRCs). Hypermethylation of APC promoter 1A has been reported in a substantial proportion of sporadic CRCs and may cause transcriptional silencing. Methylation has been proposed as an alternative to mutation or loss of heterozygosity as a mechanism of gene inactivation. However, the significance of APC methylation has remained unclear, because it has not previously been related to the presence of mono- or bi-allelic mutations at APC. We examined 103 FAP adenomas, 11 attenuated FAP adenomas, 31 sporadic CRCs and 30 CRC cell lines, all with known germline and/or somatic APC mutations. Overall, APC promoter 1A methylation was detected in 27-45% of colorectal tumours and cell lines, but generally not in histologically normal colorectum. In contrast to previous reports, methylation was detected in similar proportions of FAP/AFAP and sporadic CRCs. Importantly, methylation was independent of the presence, number and positions of APC mutations and was not associated with the CpG island methylator phenotype. Methylation resulted in a decrease or loss of 1A isoform mRNA and reduced total APC transcript levels, although expression was retained from promoter 1B. However, neither APC protein levels, nor transcription of a panel of Wnt target genes was associated with methylation status. Our data suggest that APC promoter 1A hypermethylation may influence APC expression levels in a subtle fashion, but methylation does not result in complete gene inactivation or act as a 'second hit'.
Collapse
Affiliation(s)
- Stefania Segditsas
- Molecular and Population Genetics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3PX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
van den Donk M, van Engeland M, Pellis L, Witteman BJM, Kok FJ, Keijer J, Kampman E. Dietary folate intake in combination with MTHFR C677T genotype and promoter methylation of tumor suppressor and DNA repair genes in sporadic colorectal adenomas. Cancer Epidemiol Biomarkers Prev 2007; 16:327-33. [PMID: 17301267 DOI: 10.1158/1055-9965.epi-06-0810] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methylation of the promoter region of tumor suppressor genes is increasingly recognized to play a role in cancer development through silencing of gene transcription. We examined the associations between dietary folate intake, MTHFR C677T genotype, and promoter methylation of six tumor suppressor and DNA repair genes. Patients with colorectal adenoma (n = 149) and controls (n = 286) with folate intake in the upper or lower tertile with the CC or TT genotype were selected from a case-control study. Methylation-specific PCRs were conducted on colorectal adenoma specimens. The percentages of promoter methylation ranged from 15.7% to 64.2%. In case-case comparisons, folate was inversely associated with promoter methylation, especially among TT homozygotes. Case-control comparisons suggested that folate was not associated with the occurrence of adenomas with promoter methylation, and increased the risk of unmethylated adenomas, especially in TT homozygotes. The interactions between folate and MTHFR genotype were most pronounced for O(6)-MGMT: compared with CC homozygotes with low folate intake, the adjusted odds ratios (95% confidence interval) of having a methylated O(6)-MGMT promoter were 3.39 (0.82-13.93) for TT homozygotes with low folate intake and 0.37 (0.11-1.29) for TT homozygotes with high folate intake (P interaction = 0.02); the odds ratios for the occurrence of adenomas without methylation were 0.57 (0.16-2.11) for TT homozygotes with low folate intake and 3.37 (1.17-9.68) for TT homozygotes with high folate intake (P interaction = 0.03). In conclusion, folate intake seems to be inversely associated with promoter methylation in colorectal adenomas in case-case comparisons, and was positively associated with the occurrence of adenomas without promoter methylation in case-control comparisons, especially for TT homozygotes.
Collapse
Affiliation(s)
- Maureen van den Donk
- Division of Human Nutrition, Wageningen University, P.O. Box 8129, NL-6700 EV Wageningen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|