1
|
Alonso‐Eiras J, Anton IM. Multifaceted role of the actin-binding protein WIP: Promotor and inhibitor of tumor progression and dissemination. Cytoskeleton (Hoboken) 2025; 82:186-196. [PMID: 39329352 PMCID: PMC11904860 DOI: 10.1002/cm.21935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Cancer cells depend on actin cytoskeleton reorganization to achieve hallmark malignant functions including abnormal activation, proliferation, migration and invasiveness. (Neural)-Wiskott-Aldrich Syndrome protein ((N-)WASP) binds actin and forms a complex with the WASP-interacting protein (WIP), which plays a critical role in regulating the actin cytoskeleton, through (N)-WASP-dependent and independent functions. Mutations in the WIP gene (WIPF1) lead to severe early onset immunodeficiency in humans and severe autoimmunity and shortened lifespan in mice. This review covers the available evidence about the physiological role of WIP in different tissues and its contribution to human disease, focusing on cancer. In solid tumors overexpression of WIP has mostly been associated with tumor initiation, progression and dissemination through matrix degradation by invadopodia, while a suppressive function has been shown for WIP in certain hematological cancers. Interestingly, a minority of studies suggest a protective role for WIP in specific tumor contexts. These data support the need for further research to fully understand the mechanisms underlying WIP's diverse functions in health and disease and raise important questions for future work.
Collapse
Affiliation(s)
- Jorge Alonso‐Eiras
- Ciencias de la Salud, Escuela de Másteres OficialesUniversidad Rey Juan CarlosMadridSpain
| | - Ines M. Anton
- Departamento de Biología Molecular y CelularCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| |
Collapse
|
2
|
Gadjalova I, Heinze JM, Goess MC, Hofmann J, Buck A, Weber MC, Blissenbach B, Kampick M, Krut O, Steiger K, Janssen KP, Neumann PA, Ruland J, Keppler SJ. B cell-mediated CD4 T-cell costimulation via CD86 exacerbates pro-inflammatory cytokine production during autoimmune intestinal inflammation. Mucosal Immunol 2024; 17:67-80. [PMID: 37918715 DOI: 10.1016/j.mucimm.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Dysregulated B cell responses have been described in inflammatory bowel disease (IBD) patients; however, the role of B cells in IBD pathology remained incompletely understood. We here provide evidence for the detrimental role of activated B cells during the onset of autoimmune intestinal inflammation. Using Wiskott-Aldrich Syndrome interacting protein deficient (Wipf1-/-) mice as a mouse model of chronic colitis, we identified clusters of differentiation (CD)86 expression on activated B cells as a crucial factor exacerbating pro-inflammatory cytokine production of intestinal CD4 T cells. Depleting B cells through anti-CD20 antibody treatment or blocking costimulatory signals mediated by CD86 through cytotoxic T lymphocyte antigen-4-immunoglobulin (CTLA-4-Ig) diminished intestinal inflammation in our mouse model of chronic IBD at the onset of disease. This was due to a reduction in aberrant humoral immune responses and reduced CD4 T cell pro-inflammatory cytokine production, especially interferon-g (IFN-g) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Interestingly, in addition to B cells isolated from the inflamed colon of Wipf1-/- mice, we also found CD86 mRNA and protein expression upregulated on activated B cells isolated from inflamed tissue of human patients with IBD. B cell activation and CD86 expression were boosted by soluble CD40L in vitro, which we found in the serum of mice and human patients with IBD. In summary, our data provides detailed insight into the contribution of B cells to intestinal inflammation, with implications for the treatment of IBD.
Collapse
Affiliation(s)
- Iana Gadjalova
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany
| | - Julia M Heinze
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany
| | - Marie C Goess
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany
| | - Julian Hofmann
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany
| | - Annalisa Buck
- Department of Surgery, Technical University of Munich, School of Medicine, Munich, Germany
| | - Marie-Christin Weber
- Department of Surgery, Technical University of Munich, School of Medicine, Munich, Germany
| | | | - Maximilian Kampick
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany
| | - Oleg Krut
- Paul-Ehrlich-Institut, Langen, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Technical University of Munich, School of Medicine, Munich, Germany
| | | | - Jürgen Ruland
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Center for Infection Research (DZIF), Munich, Germany
| | - Selina J Keppler
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany; Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria.
| |
Collapse
|
3
|
Ko V, Goess MC, Scheel-Platz L, Yuan T, Chmyrov A, Jüstel D, Ruland J, Ntziachristos V, Keppler SJ, Pleitez MA. Fast histological assessment of adipose tissue inflammation by label-free mid-infrared optoacoustic microscopy. NPJ IMAGING 2023; 1:3. [PMID: 38665236 PMCID: PMC11041735 DOI: 10.1038/s44303-023-00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2023] [Indexed: 04/28/2024]
Abstract
Conventional histology, as well as immunohistochemistry or immunofluorescence, enables the study of morphological and phenotypical changes during tissue inflammation with single-cell accuracy. However, although highly specific, such techniques require multiple time-consuming steps to apply exogenous labels, which might result in morphological deviations from native tissue structures. Unlike these techniques, mid-infrared (mid-IR) microspectroscopy is a label-free optical imaging method that retrieves endogenous biomolecular contrast without altering the native composition of the samples. Nevertheless, due to the strong optical absorption of water in biological tissues, conventional mid-IR microspectroscopy has been limited to dried thin (5-10 µm) tissue preparations and, thus, it also requires time-consuming steps-comparable to conventional imaging techniques. Here, as a step towards label-free analytical histology of unprocessed tissues, we applied mid-IR optoacoustic microscopy (MiROM) to retrieve intrinsic molecular contrast by vibrational excitation and, simultaneously, to overcome water-tissue opacity of conventional mid-IR imaging in thick (mm range) tissues. In this proof-of-concept study, we demonstrated application of MiROM for the fast, label-free, non-destructive assessment of the hallmarks of inflammation in excised white adipose tissue; i.e., formation of crown-like structures and changes in adipocyte morphology.
Collapse
Affiliation(s)
- Vito Ko
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marie C. Goess
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Lukas Scheel-Platz
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tao Yuan
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andriy Chmyrov
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dominik Jüstel
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jürgen Ruland
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Garching b. München, Germany
| | - Selina J. Keppler
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Miguel A. Pleitez
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
4
|
Vainchenker W, Arkoun B, Basso-Valentina F, Lordier L, Debili N, Raslova H. Role of Rho-GTPases in megakaryopoiesis. Small GTPases 2021; 12:399-415. [PMID: 33570449 PMCID: PMC8583283 DOI: 10.1080/21541248.2021.1885134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Megakaryocytes (MKs) are the bone marrow (BM) cells that generate blood platelets by a process that requires: i) polyploidization responsible for the increased MK size and ii) cytoplasmic organization leading to extension of long pseudopods, called proplatelets, through the endothelial barrier to allow platelet release into blood. Low level of localized RHOA activation prevents actomyosin accumulation at the cleavage furrow and participates in MK polyploidization. In the platelet production, RHOA and CDC42 play opposite, but complementary roles. RHOA inhibits both proplatelet formation and MK exit from BM, whereas CDC42 drives the development of the demarcation membranes and MK migration in BM. Moreover, the RhoA or Cdc42 MK specific knock-out in mice and the genetic alterations in their down-stream effectors in human induce a thrombocytopenia demonstrating their key roles in platelet production. A better knowledge of Rho-GTPase signalling is thus necessary to develop therapies for diseases associated with platelet production defects. Abbreviations: AKT: Protein Kinase BARHGEF2: Rho/Rac Guanine Nucleotide Exchange Factor 2ARP2/3: Actin related protein 2/3BM: Bone marrowCDC42: Cell division control protein 42 homologCFU-MK: Colony-forming-unit megakaryocyteCIP4: Cdc42-interacting protein 4mDIA: DiaphanousDIAPH1; Protein diaphanous homolog 1ECT2: Epithelial Cell Transforming Sequence 2FLNA: Filamin AGAP: GTPase-activating proteins or GTPase-accelerating proteinsGDI: GDP Dissociation InhibitorGEF: Guanine nucleotide exchange factorHDAC: Histone deacetylaseLIMK: LIM KinaseMAL: Megakaryoblastic leukaemiaMARCKS: Myristoylated alanine-rich C-kinase substrateMKL: Megakaryoblastic leukaemiaMLC: Myosin light chainMRTF: Myocardin Related Transcription FactorOTT: One-Twenty Two ProteinPACSIN2: Protein Kinase C And Casein Kinase Substrate In Neurons 2PAK: P21-Activated KinasePDK: Pyruvate Dehydrogenase kinasePI3K: Phosphoinositide 3-kinasePKC: Protein kinase CPTPRJ: Protein tyrosine phosphatase receptor type JRAC: Ras-related C3 botulinum toxin substrate 1RBM15: RNA Binding Motif Protein 15RHO: Ras homologousROCK: Rho-associated protein kinaseSCAR: Suppressor of cAMP receptorSRF: Serum response factorSRC: SarcTAZ: Transcriptional coactivator with PDZ motifTUBB1: Tubulin β1VEGF: Vascular endothelial growth factorWAS: Wiskott Aldrich syndromeWASP: Wiskott Aldrich syndrome proteinWAVE: WASP-family verprolin-homologous proteinWIP: WASP-interacting proteinYAP: Yes-associated protein
Collapse
Affiliation(s)
- William Vainchenker
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France.,GrEX, Sorbonne Paris Cité, Paris, France
| | - Brahim Arkoun
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France.,GrEX, Sorbonne Paris Cité, Paris, France
| | - Francesca Basso-Valentina
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France.,Université Sorbonne Paris Cité/Université Paris Dideront, Paris, France
| | - Larissa Lordier
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France
| | - Najet Debili
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France
| | - Hana Raslova
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France
| |
Collapse
|
5
|
Hofmann J, Gadjalova I, Mishra R, Ruland J, Keppler SJ. Efficient Tissue Clearing and Multi-Organ Volumetric Imaging Enable Quantitative Visualization of Sparse Immune Cell Populations During Inflammation. Front Immunol 2021; 11:599495. [PMID: 33569052 PMCID: PMC7869862 DOI: 10.3389/fimmu.2020.599495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Spatial information of cells in their tissue microenvironment is necessary to understand the complexity of pathophysiological processes. Volumetric imaging of cleared organs provides this information; however, current protocols are often elaborate, expensive, and organ specific. We developed a simplified, cost-effective, non-hazardous approach for efficient tissue clearing and multi-organ volumetric imaging (EMOVI). EMOVI enabled multiplexed antibody-based immunolabeling, provided adequate tissue transparency, maintained cellular morphology and preserved fluorochromes. Exemplarily, EMOVI allowed the detection and quantification of scarce cell populations during pneumonitis. EMOVI also permitted histo-cytometric analysis of MHC-II expressing cells, revealing distinct populations surrounding or infiltrating glomeruli of nephritic kidneys. Using EMOVI, we found widefield microscopy with real-time computational clearing as a valuable option for rapid image acquisition and detection of rare cellular events in cleared organs. EMOVI has the potential to make tissue clearing and volumetric imaging of immune cells applicable for a broad audience by facilitating flexibility in organ, fluorochrome and microscopy usage.
Collapse
Affiliation(s)
- Julian Hofmann
- Institute for Clinical Chemistry and Pathobiochemistry, München rechts der Isar (MRI), Technical University Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technische Universität München, München, Germany
| | - Iana Gadjalova
- Institute for Clinical Chemistry and Pathobiochemistry, München rechts der Isar (MRI), Technical University Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technische Universität München, München, Germany
| | - Ritu Mishra
- Institute for Clinical Chemistry and Pathobiochemistry, München rechts der Isar (MRI), Technical University Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technische Universität München, München, Germany
| | - Jürgen Ruland
- Institute for Clinical Chemistry and Pathobiochemistry, München rechts der Isar (MRI), Technical University Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technische Universität München, München, Germany
| | - Selina J Keppler
- Institute for Clinical Chemistry and Pathobiochemistry, München rechts der Isar (MRI), Technical University Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technische Universität München, München, Germany
| |
Collapse
|
6
|
Zhou J, Yan Q, Tang C, Liao Y, Zhang Q, Wang X, Zhou X, Lai L, Zou Q. Development of a rabbit model of Wiskott-Aldrich syndrome. FASEB J 2020; 35:e21226. [PMID: 33236397 DOI: 10.1096/fj.202002118rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/11/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a severe recessive X-linked immunodeficiency resulting from loss-of-function mutations in the WAS gene. Mouse is the only mammalian model used for investigation of WAS pathogenesis. However, the mouse model does not accurately recapitulate WAS clinical phenotypes, thus, limiting its application in WAS clinical research. Herein, we report the generation of WAS knockout (KO) rabbits via embryo co-injection of Cas9 mRNA and a pair of sgRNAs targeting exons 2 and 7. WAS KO rabbits exhibited many symptoms similar to those of WAS patients, including thrombocytopenia, bleeding tendency, infections, and reduced numbers of T cell in the spleen and peripheral blood. The WAS KO rabbit model provides a new valuable tool for preclinical trials of WAS treatment.
Collapse
Affiliation(s)
- Juanjuan Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Quanmei Yan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chengcheng Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yuan Liao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Quanjun Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China
| | - Xiaomin Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoqing Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China
| | - Qingjian Zou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
7
|
Janssen E, Geha RS. Primary immunodeficiencies caused by mutations in actin regulatory proteins. Immunol Rev 2019; 287:121-134. [PMID: 30565251 DOI: 10.1111/imr.12716] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022]
Abstract
The identification of patients with monogenic gene defects have illuminated the function of different proteins in the immune system, including proteins that regulate the actin cytoskeleton. Many of these actin regulatory proteins are exclusively expressed in leukocytes and regulate the formation and branching of actin filaments. Their absence or abnormal function leads to defects in immune cell shape, cellular projections, migration, and signaling. Through the study of patients' mutations and generation of mouse models that recapitulate the patients' phenotypes, our laboratory and others have gained a better understanding of the role these proteins play in cell biology and the underlying pathogenesis of immunodeficiencies and immune dysregulatory syndromes.
Collapse
Affiliation(s)
- Erin Janssen
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raif S Geha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Ghalloussi D, Dhenge A, Bergmeier W. New insights into cytoskeletal remodeling during platelet production. J Thromb Haemost 2019; 17:1430-1439. [PMID: 31220402 PMCID: PMC6760864 DOI: 10.1111/jth.14544] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
The past decade has brought unprecedented advances in our understanding of megakaryocyte (MK) biology and platelet production, processes that are strongly dependent on the cytoskeleton. Facilitated by technological innovations, such as new high-resolution imaging techniques (in vitro and in vivo) and lineage-specific gene knockout and reporter mouse strains, we are now able to visualize and characterize the molecular machinery required for MK development and proplatelet formation in live mice. Whole genome and RNA sequencing analysis of patients with rare platelet disorders, combined with targeted genetic interventions in mice, has led to the identification and characterization of numerous new genes important for MK development. Many of the genes important for proplatelet formation code for proteins that control cytoskeletal dynamics in cells, such as Rho GTPases and their downstream targets. In this review, we discuss how the final stages of MK development are controlled by the cellular cytoskeletons, and we compare changes in MK biology observed in patients and mice with mutations in cytoskeleton regulatory genes.
Collapse
Affiliation(s)
- Dorsaf Ghalloussi
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ankita Dhenge
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Wolfgang Bergmeier
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
9
|
Schwinger W, Urban C, Ulreich R, Sperl D, Karastaneva A, Strenger V, Lackner H, Boztug K, Albert MH, Benesch M, Seidel MG. The Phenotype and Treatment of WIP Deficiency: Literature Synopsis and Review of a Patient With Pre-transplant Serial Donor Lymphocyte Infusions to Eliminate CMV. Front Immunol 2018; 9:2554. [PMID: 30450104 PMCID: PMC6224452 DOI: 10.3389/fimmu.2018.02554] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/17/2018] [Indexed: 11/13/2022] Open
Abstract
Early diagnosis of primary immunodeficiency disorders (PID) is vital and allows directed treatment, especially in syndromes with severe or profound combined immunodeficiency. In PID patients with perinatal CMV or other opportunistic, invasive infections (e.g., Pneumocystis or Aspergillus), multi-organ morbidity may already arise within the first months of life, before hematopoietic stem cell transplantation (HSCT) or gene therapy can be undertaken, compromising the definitive treatment and outcome. Deficiency of Wiskott-Aldrich syndrome (WAS) protein-interacting protein (WIP deficiency) causes an autosomal recessive, WAS-like syndrome with early-onset combined immunodeficiency that has been described in three pedigrees to date. While WAS typically includes combined immunodeficiency, microthrombocytopenia, and eczema, the clinical and laboratory phenotypes of WIP-deficient patients-including lymphocyte subsets, platelets, lymphocyte proliferation in vitro, and IgE-varied widely and did not entirely recapitulate WAS, impeding early diagnosis in the reported patients. To elucidate the phenotype of WIP deficiency, we provide a comprehensive synopsis of clinical and laboratory features of all hitherto-described patients (n = 6) and WIP negative mice. Furthermore, we summarize the treatment modalities and outcomes of these patients and review in detail the course of one of them who was successfully treated with serial, unconditioned, maternal, HLA-identical donor lymphocyte infusions (DLI) against life-threatening, invasive CMV infection, followed by a TCRαβ/CD19-depleted, treosulfan/melphalan-conditioned, peripheral blood HSCT and repetitive, secondary-prophylactic, CMV-specific DLI with 1-year post-HSCT follow-up. This strategy could be useful in other patients with substantial premorbidity, considered "too bad to transplant," who have an HLA-identical family donor, to eliminate infections and bridge until definitive treatment.
Collapse
Affiliation(s)
- Wolfgang Schwinger
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Christian Urban
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Raphael Ulreich
- Pediatric Intensive Care Unit, Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Daniela Sperl
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Anna Karastaneva
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Volker Strenger
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Herwig Lackner
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Michael H Albert
- Dr. von Hauner University Children's Hospital, Ludwig Maximilian Universität, Munich, Germany
| | - Martin Benesch
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Markus G Seidel
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria.,Research Unit for Pediatric Hematology and Immunology, Medical University Graz, Graz, Austria
| |
Collapse
|
10
|
Keppler SJ, Gasparrini F, Burbage M, Aggarwal S, Frederico B, Geha RS, Way M, Bruckbauer A, Batista FD. Wiskott-Aldrich Syndrome Interacting Protein Deficiency Uncovers the Role of the Co-receptor CD19 as a Generic Hub for PI3 Kinase Signaling in B Cells. Immunity 2015; 43:660-73. [PMID: 26453379 PMCID: PMC4622935 DOI: 10.1016/j.immuni.2015.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/18/2015] [Accepted: 09/10/2015] [Indexed: 11/01/2022]
Abstract
Humans with Wiskott-Aldrich syndrome display a progressive immunological disorder associated with compromised Wiskott-Aldrich Syndrome Interacting Protein (WIP) function. Mice deficient in WIP recapitulate such an immunodeficiency that has been attributed to T cell dysfunction; however, any contribution of B cells is as yet undefined. Here we have shown that WIP deficiency resulted in defects in B cell homing, chemotaxis, survival, and differentiation, ultimately leading to diminished germinal center formation and antibody production. Furthermore, in the absence of WIP, several receptors, namely the BCR, BAFFR, CXCR4, CXCR5, CD40, and TLR4, were impaired in promoting CD19 co-receptor activation and subsequent PI3 kinase (PI3K) signaling. The underlying mechanism was due to a distortion in the actin and tetraspanin networks that lead to altered CD19 cell surface dynamics. In conclusion, our findings suggest that, by regulating the cortical actin cytoskeleton, WIP influences the function of CD19 as a general hub for PI3K signaling.
Collapse
Affiliation(s)
- Selina Jessica Keppler
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Francesca Gasparrini
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Marianne Burbage
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Shweta Aggarwal
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Bruno Frederico
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Raif S Geha
- Division of Immunology, Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Way
- Cell Motility Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Andreas Bruckbauer
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Facundo D Batista
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
11
|
Abstract
WIP plays an important role in the remodeling of the actin cytoskeleton, which controls cellular activation, proliferation, and function. WIP regulates actin polymerization by linking the actin machinery to signaling cascades. WIP binding to WASp and to its homolog, N-WASp, which are central activators of the actin-nucleating complex Arp2/3, regulates their cellular distribution, function, and stability. By binding to WASp, WIP protects it from degradation and thus, is crucial for WASp retention. Indeed, most mutations that result in WAS, an X-linked immunodeficiency caused by defective/absent WASp activity, are located in the WIP-binding region of WASp. In addition, by binding directly to actin, WIP promotes the formation and stabilization of actin filaments. WASp-independent activities of WIP constitute a new research frontier and are discussed extensively in this article. Here, we review the current information on WIP in human and mouse systems, focusing on its associated proteins, its molecular-regulatory mechanisms, and its role as a key regulator of actin-based processes in the immune system.
Collapse
Affiliation(s)
- Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Elad Noy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
12
|
Megakaryocyte-specific Profilin1-deficiency alters microtubule stability and causes a Wiskott–Aldrich syndrome-like platelet defect. Nat Commun 2014; 5:4746. [DOI: 10.1038/ncomms5746] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/20/2014] [Indexed: 11/08/2022] Open
|
13
|
Moratto D, Giliani S, Notarangelo LD, Mazza C, Mazzolari E, Notarangelo LD. The Wiskott–Aldrich syndrome: from genotype–phenotype correlation to treatment. Expert Rev Clin Immunol 2014; 3:813-24. [DOI: 10.1586/1744666x.3.5.813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Banon-Rodriguez I, Saez de Guinoa J, Bernardini A, Ragazzini C, Fernandez E, Carrasco YR, Jones GE, Wandosell F, Anton IM. WIP regulates persistence of cell migration and ruffle formation in both mesenchymal and amoeboid modes of motility. PLoS One 2013; 8:e70364. [PMID: 23950925 PMCID: PMC3737202 DOI: 10.1371/journal.pone.0070364] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/17/2013] [Indexed: 02/08/2023] Open
Abstract
The spatial distribution of signals downstream from receptor tyrosine kinases (RTKs) or G-protein coupled receptors (GPCR) regulates fundamental cellular processes that control cell migration and growth. Both pathways rely significantly on actin cytoskeleton reorganization mediated by nucleation-promoting factors such as the WASP-(Wiskott-Aldrich Syndrome Protein) family. WIP (WASP Interacting Protein) is essential for the formation of a class of polarised actin microdomain, namely dorsal ruffles, downstream of the RTK for PDGF (platelet-derived growth factor) but the underlying mechanism is poorly understood. Using lentivirally-reconstituted WIP-deficient murine fibroblasts we define the requirement for WIP interaction with N-WASP (neural WASP) and Nck for efficient dorsal ruffle formation and of WIP-Nck binding for fibroblast chemotaxis towards PDGF-AA. The formation of both circular dorsal ruffles in PDGF-AA-stimulated primary fibroblasts and lamellipodia in CXCL13-treated B lymphocytes are also compromised by WIP-deficiency. We provide data to show that a WIP-Nck signalling complex interacts with RTK to promote polarised actin remodelling in fibroblasts and provide the first evidence for WIP involvement in the control of migratory persistence in both mesenchymal (fibroblast) and amoeboid (B lymphocytes) motility.
Collapse
Affiliation(s)
| | - Julia Saez de Guinoa
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Alejandra Bernardini
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Chiara Ragazzini
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Estefania Fernandez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Yolanda R. Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gareth E. Jones
- The Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Francisco Wandosell
- Department of Molecular Neurobiology, Centro de Biología Molecular “Severo Ochoa” (CBM-UAM), Madrid, Spain
| | - Ines Maria Anton
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
15
|
Primary immunodeficiencies: a rapidly evolving story. J Allergy Clin Immunol 2013; 131:314-23. [PMID: 23374262 DOI: 10.1016/j.jaci.2012.11.051] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/06/2012] [Accepted: 11/29/2012] [Indexed: 12/28/2022]
Abstract
The characterization of primary immunodeficiencies (PIDs) in human subjects is crucial for a better understanding of the biology of the immune response. New achievements in this field have been possible in light of collaborative studies; attention paid to new phenotypes, infectious and otherwise; improved immunologic techniques; and use of exome sequencing technology. The International Union of Immunological Societies Expert Committee on PIDs recently reported on the updated classification of PIDs. However, new PIDs are being discovered at an ever-increasing rate. A series of 19 novel primary defects of immunity that have been discovered after release of the International Union of Immunological Societies report are discussed here. These new findings highlight the molecular pathways that are associated with clinical phenotypes and suggest potential therapies for affected patients.
Collapse
|
16
|
Oda A, Eto K. WASPs and WAVEs: from molecular function to physiology in hematopoietic cells. Semin Cell Dev Biol 2013; 24:308-13. [PMID: 23499790 DOI: 10.1016/j.semcdb.2013.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 12/29/2022]
Abstract
The actin cytoskeleton is critically involved in a variety of cell functions. The Arp2/3 complex mediates branching of filamentous actin. The members of the Wiskott-Aldrich syndrome protein (WASP) family are major regulators of the complex. As such, the family proteins are also involved in numerous aspects of cell biology. In this short review, we first define the expanding WASP family. Next, we compare the domain structure of the members, and explain the known or proposed functions of each domain or region. Finally, we demonstrate the well-characterized roles of the proteins in specific cellular functions.
Collapse
Affiliation(s)
- Atsushi Oda
- Department of Internal Medicine, Noguchi Hospital, Ashibetsu 075-0002, Japan.
| | | |
Collapse
|
17
|
Pankewycz O, Ambrus J, Shen L, Xuan J, Li H, Wu J, Guo LW, Feng L, Laftavi MR. Inhibiting Wipf2 downregulation by transgenic expression of its 3′ mRNA-untranslated region improves cytotoxicity and vaccination response. Eur J Immunol 2012; 42:2409-18. [PMID: 22674044 DOI: 10.1002/eji.201141533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oleh Pankewycz
- Department of Surgery; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Julian Ambrus
- Department of Medicine; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Long Shen
- Department of Medicine; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Jingxiu Xuan
- Department of Surgery; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Hong Li
- Joint Research Center of West China Second University; Hospital of Sichuan University; Chengdu; China
| | - Jing Wu
- Department of Medicine; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Li-Wu Guo
- Division of Genetic Toxicology; National Center for Toxicological Research-Food and Drug Administration; Jefferson; AR; USA
| | - Lin Feng
- Department of Surgery; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Mark R. Laftavi
- Department of Surgery; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| |
Collapse
|
18
|
WIP remodeling actin behind the scenes: how WIP reshapes immune and other functions. Int J Mol Sci 2012; 13:7629-7647. [PMID: 22837718 PMCID: PMC3397550 DOI: 10.3390/ijms13067629] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 01/09/2023] Open
Abstract
Actin polymerization is a fundamental cellular process regulating immune cell functions and the immune response. The Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor, which is exclusively expressed in hematopoietic cells, where it plays a key regulatory role in cytoskeletal dynamics. WASp interacting protein (WIP) was first discovered as the binding partner of WASp, through the use of the yeast two hybrid system. WIP was later identified as a chaperone of WASp, necessary for its stability. Mutations occurring at the WASp homology 1 domain (WH1), which serves as the WIP binding site, were found to cause the Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT). WAS manifests as an immune deficiency characterized by eczema, thrombocytopenia, recurrent infections, and hematopoietic malignancies, demonstrating the importance of WIP for WASp complex formation and for a proper immune response. WIP deficiency was found to lead to different abnormalities in the activity of various lymphocytes, suggesting differential cell-dependent roles for WIP. Additionally, WIP deficiency causes cellular abnormalities not found in WASp-deficient cells, indicating that WIP fulfills roles beyond stabilizing WASp. Indeed, WIP was shown to interact with various binding partners, including the signaling proteins Nck, CrkL and cortactin. Recent studies have demonstrated that WIP also takes part in non immune cellular processes such as cancer invasion and metastasis, in addition to cell subversion by intracellular pathogens. Understanding of numerous functions of WIP can enhance our current understanding of activation and function of immune and other cell types.
Collapse
|
19
|
Lanzi G, Moratto D, Vairo D, Masneri S, Delmonte O, Paganini T, Parolini S, Tabellini G, Mazza C, Savoldi G, Montin D, Martino S, Tovo P, Pessach IM, Massaad MJ, Ramesh N, Porta F, Plebani A, Notarangelo LD, Geha RS, Giliani S. A novel primary human immunodeficiency due to deficiency in the WASP-interacting protein WIP. ACTA ACUST UNITED AC 2012; 209:29-34. [PMID: 22231303 PMCID: PMC3260865 DOI: 10.1084/jem.20110896] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A homozygous mutation that gave rise to a stop codon in the WIPF1 gene resulted in WASP protein destabilization and in symptoms resembling those of Wiskott-Aldrich syndrome A female offspring of consanguineous parents, showed features of Wiskott-Aldrich syndrome (WAS), including recurrent infections, eczema, thrombocytopenia, defective T cell proliferation and chemotaxis, and impaired natural killer cell function. Cells from this patient had undetectable WAS protein (WASP), but normal WAS sequence and messenger RNA levels. WASP interacting protein (WIP), which stabilizes WASP, was also undetectable. A homozygous c.1301C>G stop codon mutation was found in the WIPF1 gene, which encodes WIP. Introduction of WIP into the patient’s T cells restored WASP expression. These findings indicate that WIP deficiency should be suspected in patients with features of WAS in whom WAS sequence and mRNA levels are normal.
Collapse
Affiliation(s)
- Gaetana Lanzi
- A. Nocivelli Institute for Molecular Medicine, Pediatric Clinic, University of Brescia, and Laboratory of Genetic Disease of Childhood, Spedali Civili, 25123 Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Becker-Herman S, Meyer-Bahlburg A, Schwartz MA, Jackson SW, Hudkins KL, Liu C, Sather BD, Khim S, Liggitt D, Song W, Silverman GJ, Alpers CE, Rawlings DJ. WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity. ACTA ACUST UNITED AC 2011; 208:2033-42. [PMID: 21875954 PMCID: PMC3182055 DOI: 10.1084/jem.20110200] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In a manner dependent on CD4 T cell help and Toll-like receptor signals, B cells lacking WASp induce autoantibody production and autoimmune disease in mice. Patients with the immunodeficiency Wiskott-Aldrich syndrome (WAS) frequently develop systemic autoimmunity. Here, we demonstrate that mutation of the WAS gene results in B cells that are hyperresponsive to B cell receptor and Toll-like receptor (TLR) signals in vitro, thereby promoting a B cell–intrinsic break in tolerance. Whereas this defect leads to autoantibody production in WAS protein–deficient (WASp−/−) mice without overt disease, chimeric mice in which only the B cell lineage lacks WASp exhibit severe autoimmunity characterized by spontaneous germinal center formation, class-switched autoantibodies, renal histopathology, and early mortality. Both T cell help and B cell–intrinsic TLR engagement play important roles in promoting disease in this model, as depletion with anti-CD4 antibodies or generation of chimeric mice with B cells deficient in both WASp and MyD88 prevented development of autoimmune disease. These data highlight the potentially harmful role for cell-intrinsic loss of B cell tolerance in the setting of normal T cell function, and may explain why WAS patients with mixed chimerism after stem cell transplantation often develop severe humoral autoimmunity.
Collapse
Affiliation(s)
- Shirly Becker-Herman
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA; Seattle Children’s Research Institute, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Franco A, Knafo S, Banon-Rodriguez I, Merino-Serrais P, Fernaud-Espinosa I, Nieto M, Garrido JJ, Esteban JA, Wandosell F, Anton IM. WIP is a negative regulator of neuronal maturation and synaptic activity. ACTA ACUST UNITED AC 2011; 22:1191-202. [PMID: 21810783 DOI: 10.1093/cercor/bhr199] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Wiskott-Aldrich syndrome protein (WASP) -interacting protein (WIP) is an actin-binding protein involved in the regulation of actin polymerization in cells, such as fibroblasts and lymphocytes. Despite its recognized function in non-neuronal cells, the role of WIP in the central nervous system has not been examined previously. We used WIP-deficient mice to examine WIP function both in vivo and in vitro. We report here that WIP(-)(/-) hippocampal neurons exhibit enlargement of somas as well as overgrowth of neuritic and dendritic branches that are more evident in early developmental stages. Dendritic arborization and synaptogenesis, which includes generation of postsynaptic dendritic spines, are actin-dependent processes that occur in parallel at later stages. WIP deficiency also increases the amplitude and frequency of miniature excitatory postsynaptic currents, suggesting that WIP(-)(/-) neurons have more mature synapses than wild-type neurons. These findings reveal WIP as a previously unreported regulator of neuronal maturation and synaptic activity.
Collapse
Affiliation(s)
- A Franco
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Blood platelets are involved in primary and secondary hemostasis and thus maintain the integrity of the vasculature. They circulate with an average lifespan of 5-9 days in humans. Thus, the body must generate and clear platelets daily to maintain normal physiological blood platelet counts. Known platelet clearance mechanisms include antibody-mediated clearance by spleen macrophages, as in immune thrombocytopenia, and platelet consumption due to massive blood loss. RECENT FINDINGS New concepts in the clearance mechanisms of platelets have recently emerged. New evidence shows that platelets desialyted due to chilling or sepsis are cleared in the liver by macrophages, that is Kupffer cells, as well as hepatocytes, through lectin-mediated recognition of platelet glycans. On the contrary, platelet-associated antibodies normalize the clearance of platelets in a mouse model for Wiskott-Aldrich syndrome. SUMMARY The goal of this review is to summarize the latest findings in platelet clearance mechanisms with a focus on lectin-mediated recognition of platelet glycans. Transfusion medicine and treatments of hematopoietic disorders associated with severe thrombocytopenia may benefit from a better understanding of these mechanisms.
Collapse
|
23
|
Wickramarachchi DC, Theofilopoulos AN, Kono DH. Immune pathology associated with altered actin cytoskeleton regulation. Autoimmunity 2010; 43:64-75. [PMID: 20001423 DOI: 10.3109/08916930903374634] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The actin cytoskeleton plays a crucial role in a variety of important cellular processes required for normal immune function, including locomotion, intercellular interactions, endocytosis, cytokinesis, signal transduction, and maintenance of cell morphology. Recent studies have uncovered not only many of the components and mechanisms that regulate the cortical actin cytoskeleton but have also revealed significant immunopathological consequences associated with genetic alteration of actin cytoskeletal regulatory genes. These advances have provided new insights into the role of cortical actin cytoskeletal regulation in a number of immune cell functions and have identified cytoskeletal regulatory proteins critical for normal immune system activity and susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Dilki C Wickramarachchi
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
24
|
Cracking the platelet WIP. Blood 2009; 114:4611-2. [DOI: 10.1182/blood-2009-09-239905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Abstract
The role of the Wiskott-Aldrich syndrome protein (WASp) in platelet function is unclear because platelets that lack WASp function normally. WASp constitutively associates with WASp-interacting protein (WIP) in resting and activated platelets. The role of WIP in platelet function was investigated using mice that lack WIP or WASp. WIP knockout (KO) platelets lack WASp and thus are double deficient. WIP KO mice have a thrombocytopenia, similar to WASp KO mice, resulting in part from enhanced platelet clearance. Most WIP KO, but not WASp KO, mice evolved platelet-associated immunoglobulins (Ig) of the IgA class, which normalize their platelet survival but diminish their glycoprotein VI (GPVI) responses. Protein tyrosine phosphorylation, including that of phospholipase C-gamma2, and calcium mobilization are impaired in IgA-presenting WIP KO platelets stimulated through GPVI, resulting in defects in alpha-granule secretion, integrin alphaIIbbeta3 activation, and actin assembly. The anti-GPVI antibody JAQ1 induces the irreversible loss of GPVI from circulating platelets in wild-type mice, but not in WIP KO mice that bear high levels of platelet-associated IgAs. Together, the data indicate that platelet-associated IgAs negatively modulate GPVI signaling and function in WIP KO mice.
Collapse
|
26
|
An expression module of WIPF1-coexpressed genes identifies patients with favorable prognosis in three tumor types. J Mol Med (Berl) 2009; 87:633-44. [PMID: 19399471 PMCID: PMC2688022 DOI: 10.1007/s00109-009-0467-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/24/2009] [Accepted: 03/27/2009] [Indexed: 11/20/2022]
Abstract
Wiskott–Aldrich syndrome (WAS) predisposes patients to leukemia and lymphoma. WAS is caused by mutations in the protein WASP which impair its interaction with the WIPF1 protein. Here, we aim to identify a module of WIPF1-coexpressed genes and to assess its use as a prognostic signature for colorectal cancer, glioma, and breast cancer patients. Two public colorectal cancer microarray data sets were used for discovery and validation of the WIPF1 co-expression module. Based on expression of the WIPF1 signature, we classified more than 400 additional tumors with microarray data from our own experiments or from publicly available data sets according to their WIPF1 signature expression. This allowed us to separate patient populations for colorectal cancers, breast cancers, and gliomas for which clinical characteristics like survival times and times to relapse were analyzed. Groups of colorectal cancer, breast cancer, and glioma patients with low expression of the WIPF1 co-expression module generally had a favorable prognosis. In addition, the majority of WIPF1 signature genes are individually correlated with disease outcome in different studies. Literature gene network analysis revealed that among WIPF1 co-expressed genes known direct transcriptional targets of c-myc, ESR1 and p53 are enriched. The mean expression profile of WIPF1 signature genes is correlated with the profile of a proliferation signature. The WIPF1 signature is the first microarray-based prognostic expression signature primarily developed for colorectal cancer that is instrumental in other tumor types: low expression of the WIPF1 module is associated with better prognosis.
Collapse
|
27
|
Linkermann A, Gelhaus C, Lettau M, Qian J, Kabelitz D, Janssen O. Identification of interaction partners for individual SH3 domains of Fas ligand associated members of the PCH protein family in T lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:168-76. [PMID: 19041431 DOI: 10.1016/j.bbapap.2008.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 10/27/2008] [Accepted: 10/28/2008] [Indexed: 02/08/2023]
Abstract
Pombe Cdc15 homology (PCH) family proteins are regarded as key elements for linking membrane-associated processes to cytoskeletal elements and thus play a major role in exo- and endocytosis and organelle trafficking. We previously reported that, via their SH3 domains, several members of the PCH proteins interact with the proline-rich region of Fas ligand (FasL, CD95L), a key death factor in immune cells. Since protein-protein interactions that govern the storage and transport of FasL-associated vesicles are largely unknown, the present study was performed to identify other potential binding partners for SH3 domains of FasL-interacting PCH proteins. To this end, individual SH3 domains were expressed as GST fusion proteins and used to precipitate associated proteins from leukemic T cell lines and activated human T cell blasts. 87 protein bands representing 34 individual proteins were identified by mass spectrometry. The presented list of candidate interactors not only highlights the role of PCH proteins as adapters between vesicular membranes and the cytoskeleton but also points to an involvement of these proteins in the regulation of signalling events in T lymphocytes.
Collapse
Affiliation(s)
- Andreas Linkermann
- Institute for Immunology, University Hospital Schleswig-Holstein Campus Kiel, Michaelisstr. 5, D-24105 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Liston A, Enders A, Siggs OM. Unravelling the association of partial T-cell immunodeficiency and immune dysregulation. Nat Rev Immunol 2008; 8:545-58. [PMID: 18551129 DOI: 10.1038/nri2336] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Partial T-cell immunodeficiencies constitute a heterogeneous cluster of disorders characterized by an incomplete reduction in T-cell number or activity. The immune deficiency component of these diseases is less severe than that of the severe T-cell immunodeficiencies and therefore some ability to respond to infectious organisms is retained. Unlike severe T-cell immunodeficiencies, however, partial immunodeficiencies are commonly associated with hyper-immune dysregulation, including autoimmunity, inflammatory diseases and elevated IgE production. This causative association is counter-intuitive--immune deficiencies are caused by loss-of-function changes to the T-cell component, whereas the coincident autoimmune symptoms are the consequence of gain-of-function changes. This Review details the genetic basis of partial T -cell immunodeficiencies and draws on recent advances in mouse models to propose mechanisms by which a reduction in T-cell numbers or function may disturb the population-dependent balance between activation and tolerance.
Collapse
Affiliation(s)
- Adrian Liston
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
29
|
WASP-interacting protein (WIP): working in polymerisation and much more. Trends Cell Biol 2007; 17:555-62. [PMID: 17949983 DOI: 10.1016/j.tcb.2007.08.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Revised: 08/19/2007] [Accepted: 08/20/2007] [Indexed: 11/22/2022]
Abstract
The migration of cells and the movement of some intracellular pathogens, such as Shigella and Vaccinia, are dependent on the actin-based cytoskeleton. Many proteins are involved in regulating the dynamics of the actin-based microfilaments within cells and, among them, WASP and N-WASP have a significant role in the regulation of actin polymerisation. The activity and stability of WASP is regulated by its cellular partner WASP-interacting protein (WIP) during the formation of actin-rich structures, including the immune synapse, filopodia, lamellipodia, stress fibres and podosomes. Here, we review the role of WIP in regulating WASP function by stabilising WASP and shuttling WASP to areas of actin assembly in addition to reviewing the WASP-independent functions of WIP.
Collapse
|