1
|
Shi Y, Li D, Xu Y, Guo Y, Mao J, Lu Y. Circ_RUSC2 Sequesters miR-661 and Elevates TUSC2 Expression to Suppress Colorectal Cancer Progression. Int J Mol Sci 2025; 26:2937. [PMID: 40243558 PMCID: PMC11989122 DOI: 10.3390/ijms26072937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Despite advancements in diagnostic efficiency, colorectal cancer (CRC) remains a leading cause of cancer-related mortality, with increasing incidence rates. Circular RNA (circRNA) is a closed-loop, generally stable noncoding RNA that functions as a sponge for microRNAs in CRC. The purpose of this study was to investigate the function and underlying mechanism of circ_RUSC2, a new circRNA, in CRC. The expression levels of circ_RUSC2, miR-661, and TUSC2 were assessed using qRT-PCR, Western blot, and immunohistochemistry. Functional assays, including CCK-8, Transwell, and scratch wound healing, were performed to evaluate cell proliferation, migration, and invasion. RNA pull-down and actinomycin D assays were used to study RNA interactions and stability. In both CRC cells and tissues, miR-661 was markedly elevated, while circ_RUSC2 expression was considerably reduced. Poor differentiation, distant metastases, lymph node metastases, and an advanced stage were all strongly correlated with either miR-661 overexpression or circ_RUSC2 downregulation. circ_RUSC2 was more stable compared to its linear RUSC2 mRNA. CRC cell invasion, migration, and proliferation were suppressed by circ_RUSC2 ectopic expression; this inhibitory effect was restored by a miR-661 mimic. Circ_RUSC2 served as miR-661's sponge. TUSC2 counteracted the effects of miR-661, which stimulated CRC cell proliferation, migration, and invasion. At the post-transcriptional level, miR-661 controlled the expression of TUSC2 in CRC cells. In comparison to the negative control, circ_RUSC2 expression was markedly reduced, and its half-life was shortened by methyltransferase-like 3 (METTL3) knockdown. Circ_RUSC2 is a stable cytoplasmic circRNA. Circ_RUSC2 inhibits CRC cell malignant phenotypes via the miR-661/TUSC2 axis. The onset and progression of CRC are linked to the downregulation of Circ_RUSC2. circ_RUSC2 might become more stable through N6-methyladenosine (m6A) methylation regulated by METTL3. According to our research, circ_RUSC2 might be a new biomarker and treatment target for CRC.
Collapse
Affiliation(s)
- Yixin Shi
- Liaoning Laboratory of Cancer Genomics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Dingru Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yunchao Xu
- Department of Psychology, Dalian Medical University, Dalian 116044, China
| | - Yijun Guo
- Liaoning Laboratory of Cancer Genomics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jun Mao
- Department of Medical Morphology Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ying Lu
- Department of Medical Morphology Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
2
|
Farris T, González-Ochoa S, Mohammed M, Rajakaruna H, Tonello J, Kanagasabai T, Korolkova O, Shimamoto A, Ivanova A, Shanker A. Loss of Mitochondrial Tusc2/Fus1 Triggers a Brain Pro-Inflammatory Microenvironment and Early Spatial Memory Impairment. Int J Mol Sci 2024; 25:7406. [PMID: 39000512 PMCID: PMC11242373 DOI: 10.3390/ijms25137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Brain pathological changes impair cognition early in disease etiology. There is an urgent need to understand aging-linked mechanisms of early memory loss to develop therapeutic strategies and prevent the development of cognitive impairment. Tusc2 is a mitochondrial-resident protein regulating Ca2+ fluxes to and from mitochondria impacting overall health. We previously reported that Tusc2-/- female mice develop chronic inflammation and age prematurely, causing age- and sex-dependent spatial memory deficits at 5 months old. Therefore, we investigated Tusc2-dependent mechanisms of memory impairment in 4-month-old mice, comparing changes in resident and brain-infiltrating immune cells. Interestingly, Tusc2-/- female mice demonstrated a pro-inflammatory increase in astrocytes, expression of IFN-γ in CD4+ T cells and Granzyme-B in CD8+T cells. We also found fewer FOXP3+ T-regulatory cells and Ly49G+ NK and Ly49G+ NKT cells in female Tusc2-/- brains, suggesting a dampened anti-inflammatory response. Moreover, Tusc2-/- hippocampi exhibited Tusc2- and sex-specific protein changes associated with brain plasticity, including mTOR activation, and Calbindin and CamKII dysregulation affecting intracellular Ca2+ dynamics. Overall, the data suggest that dysregulation of Ca2+-dependent processes and a heightened pro-inflammatory brain microenvironment in Tusc2-/- mice could underlie cognitive impairment. Thus, strategies to modulate the mitochondrial Tusc2- and Ca2+- signaling pathways in the brain should be explored to improve cognitive health.
Collapse
Affiliation(s)
- Tonie Farris
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Salvador González-Ochoa
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Muna Mohammed
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Harshana Rajakaruna
- The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA;
| | - Jane Tonello
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Thanigaivelan Kanagasabai
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Olga Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Alla Ivanova
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
- The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
3
|
Tan WJT, Santos-Sacchi J, Tonello J, Shanker A, Ivanova AV. Pharmacological Modulation of Energy and Metabolic Pathways Protects Hearing in the Fus1/Tusc2 Knockout Model of Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2023; 12:1225. [PMID: 37371955 DOI: 10.3390/antiox12061225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Tightly regulated and robust mitochondrial activities are critical for normal hearing. Previously, we demonstrated that Fus1/Tusc2 KO mice with mitochondrial dysfunction exhibit premature hearing loss. Molecular analysis of the cochlea revealed hyperactivation of the mTOR pathway, oxidative stress, and altered mitochondrial morphology and quantity, suggesting compromised energy sensing and production. Here, we investigated whether the pharmacological modulation of metabolic pathways using rapamycin (RAPA) or 2-deoxy-D-glucose (2-DG) supplementation can protect against hearing loss in female Fus1 KO mice. Additionally, we aimed to identify mitochondria- and Fus1/Tusc2-dependent molecular pathways and processes critical for hearing. We found that inhibiting mTOR or activating alternative mitochondrial energetic pathways to glycolysis protected hearing in the mice. Comparative gene expression analysis revealed the dysregulation of critical biological processes in the KO cochlea, including mitochondrial metabolism, neural and immune responses, and the cochlear hypothalamic-pituitary-adrenal axis signaling system. RAPA and 2-DG mostly normalized these processes, although some genes showed a drug-specific response or no response at all. Interestingly, both drugs resulted in a pronounced upregulation of critical hearing-related genes not altered in the non-treated KO cochlea, including cytoskeletal and motor proteins and calcium-linked transporters and voltage-gated channels. These findings suggest that the pharmacological modulation of mitochondrial metabolism and bioenergetics may restore and activate processes critical for hearing, thereby protecting against hearing loss.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joseph Santos-Sacchi
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jane Tonello
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anil Shanker
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Alla V Ivanova
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
4
|
Arrigo A, Regua AT, Najjar MK, Lo HW. Tumor Suppressor Candidate 2 (TUSC2): Discovery, Functions, and Cancer Therapy. Cancers (Basel) 2023; 15:2455. [PMID: 37173921 PMCID: PMC10177220 DOI: 10.3390/cancers15092455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Tumor Suppressor Candidate 2 (TUSC2) was first discovered as a potential tumor suppressor gene residing in the frequently deleted 3p21.3 chromosomal region. Since its discovery, TUSC2 has been found to play vital roles in normal immune function, and TUSC2 loss is associated with the development of autoimmune diseases as well as impaired responses within the innate immune system. TUSC2 also plays a vital role in regulating normal cellular mitochondrial calcium movement and homeostasis. Moreover, TUSC2 serves as an important factor in premature aging. In addition to TUSC2's normal cellular functions, TUSC2 has been studied as a tumor suppressor gene that is frequently deleted or lost in a multitude of cancers, including glioma, sarcoma, and cancers of the lung, breast, ovaries, and thyroid. TUSC2 is frequently lost in cancer due to somatic deletion within the 3p21.3 region, transcriptional inactivation via TUSC2 promoter methylation, post-transcriptional regulation via microRNAs, and post-translational regulation via polyubiquitination and proteasomal degradation. Additionally, restoration of TUSC2 expression promotes tumor suppression, eventuating in decreased cell proliferation, stemness, and tumor growth, as well as increased apoptosis. Consequently, TUSC2 gene therapy has been tested in patients with non-small cell lung cancer. This review will focus on the current understanding of TUSC2 functions in both normal and cancerous tissues, mechanisms of TUSC2 loss, TUSC2 cancer therapeutics, open questions, and future directions.
Collapse
Affiliation(s)
- Austin Arrigo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
- Graduate School of Arts and Sciences, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Angelina T. Regua
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
| | - Mariana K. Najjar
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
- Graduate School of Arts and Sciences, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Hui-Wen Lo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
| |
Collapse
|
5
|
Uzhachenko R, Shimamoto A, Chirwa SS, Ivanov SV, Ivanova AV, Shanker A. Mitochondrial Fus1/Tusc2 and cellular Ca2 + homeostasis: tumor suppressor, anti-inflammatory and anti-aging implications. Cancer Gene Ther 2022; 29:1307-1320. [PMID: 35181743 PMCID: PMC9576590 DOI: 10.1038/s41417-022-00434-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022]
Abstract
FUS1/TUSC2 (FUSion1/TUmor Suppressor Candidate 2) is a tumor suppressor gene (TSG) originally described as a member of the TSG cluster from human 3p21.3 chromosomal region frequently deleted in lung cancer. Its role as a TSG in lung, breast, bone, and other cancers was demonstrated by several groups, but molecular mechanisms of its activities are starting to unveil lately. They suggest that Fus1-dependent mechanisms are relevant in etiologies of diseases beyond cancer, such as chronic inflammation, bacterial and viral infections, premature aging, and geriatric diseases. Here, we revisit the discovery of FUS1 gene in the context of tumor initiation and progression, and review 20 years of research into FUS1 functions and its molecular, structural, and biological aspects that have led to its use in clinical trials and gene therapy. We present a data-driven view on how interactions of Fus1 with the mitochondrial Ca2+ (mitoCa2+) transport machinery maintain cellular Ca2+ homeostasis and control cell apoptosis and senescence. This Fus1-mediated cellular homeostasis is at the crux of tumor suppressor, anti-inflammatory and anti-aging activities.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, TN, USA
| | - Sanika S Chirwa
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Sergey V Ivanov
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Alla V Ivanova
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA.
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA.
- Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Rimkus TK, Arrigo AB, Zhu D, Carpenter RL, Sirkisoon S, Doheny D, Regua AT, Wong GL, Manore S, Wagner C, Lin HK, Jin G, Ruiz J, Chan M, Debinski W, Lo HW. NEDD4 degrades TUSC2 to promote glioblastoma progression. Cancer Lett 2022; 531:124-135. [PMID: 35167936 PMCID: PMC8920049 DOI: 10.1016/j.canlet.2022.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Whether tumor suppressor candidate 2 (TUSC2) plays an important role in glioblastoma (GBM) progression is largely unknown. Whether TUSC2 undergoes polyubiquitination is unknown. Herein, we report that TUSC2 protein expression is reduced/lost in GBM compared to normal brain due to protein destabilization; TUSC2 mRNA is equally expressed in both tissues. NEDD4 E3 ubiquitin ligase polyubiquitinates TUSC2 at residue K71, and the TUSC2-K71R mutant is resistant to NEDD4-mediated proteasomal degradation. Analysis of GBM specimens showed NEDD4 protein is highly expressed in GBM and the level is inversely correlated with TUSC2 protein levels. Furthermore, TUSC2 restoration induces apoptosis and inhibits patient-derived glioma stem cells (PD-GSCs) in vitro and in vivo. Conversely, TUSC2-knockout promotes PD-GSCs in vitro and in vivo. RNA-Seq analysis and subsequent validations showed GBM cells with TUSC2-knockout expressed increased Bcl-xL and were more resistant to apoptosis induced by a Bcl-xL-specific BH3 mimetic. A TUSC2-knockout gene signature created from the RNA-seq data predicts poor patient survival. Together, these findings establish that NEDD4-mediated polyubiquitination is a novel mechanism for TUSC2 degradation in GBM and that TUSC2 loss promotes GBM progression in part through Bcl-xL upregulation.
Collapse
|
7
|
Ghosh A, Upadhyay P, Sarker S, Das S, Bhattacharjee M, Bhattacharya S, Ahir M, Guria S, Gupta P, Chattopadhyay S, Ghosh S, Adhikari S, Adhikary A. Delivery of novel coumarin-dihydropyrimidinone conjugates through mixed polymeric nanoparticles to potentiate therapeutic efficacy against triple-negative breast cancer. Biomater Sci 2021; 9:5665-5690. [PMID: 34259681 DOI: 10.1039/d1bm00424g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To date, most of the accessible therapeutic options are virtually non-responsive towards triple-negative breast cancer (TNBC) due to its highly aggressive and metastatic nature. Interestingly, chemotherapy reacts soundly in many TNBC cases compared to other types of breast cancer. However, the side effects of many chemotherapeutic agents are still under cross-examination, and thus prohibit their extensive uses. In this present study, we have developed a series of coumarin-dihydropyrimidinone conjugates (CDHPs) and subsequently their poly(lactic-co-glycolic acid) (PLGA)-PEG4000 mixed copolymer nanoparticles as excellent chemotherapeutic nanomedicine to control TNBC. Among all the synthesized CDHPs, CDHP-4 (prepared by the combination of EDCO with 3,4-difluorobenzaldehyde) showed excellent therapeutic effect on a wide variety of cancer cell lines, including TNBC. Besides, it can control the metastasis and stemness property of TNBC. Furthermore, the nano-encapsulation of CDHP-4 in a mixed polymer nanoparticle system (CDHP-4@PP-NPs) and simultaneous delivery showed much improved therapeutic efficacy at a much lower dose, and almost negligible side effects in normal healthy cells or organs. The effectiveness of the present therapeutic agent was observed both in intravenous and oral mode of administration in in vivo experiments. Moreover, on elucidating the molecular mechanism, we found that CDHP-4@PP-NPs could exhibit apoptotic, anti-migratory, as well as anti-stemness activity against TNBC cell lines through the downregulation of miR-138. We validated our findings in MDA-MB-231 xenograft chick embryos, as well as in 4T1-induced mammary tumor-bearing BALB/c mice models, and studied the bio-distribution of CDHP-4@PP-NPs on the basis of the photoluminescence property of nanoparticles. Our recent study, hence for the first time, unravels the synthesis of CDHP-4@PP-NPs and the molecular mechanism behind the anti-migration, anti-stemness and anti-tumor efficacy of the nanoparticles against the TNBC cells through the miR-138/p65/TUSC2 axis.
Collapse
Affiliation(s)
- Avijit Ghosh
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Priyanka Upadhyay
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Sushmita Sarker
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Shaswati Das
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Mousumi Bhattacharjee
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Saurav Bhattacharya
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Manisha Ahir
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| | - Subhajit Guria
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700009, West Bengal, India
| | - Payal Gupta
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700009, West Bengal, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700009, West Bengal, India
| | - Swatilekha Ghosh
- Amity Institute of Biotechnology, Amity University, Rajarhat, New Town, Kolkata-700156, West Bengal, India
| | - Susanta Adhikari
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700009, West Bengal, India
| | - Arghya Adhikary
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India.
| |
Collapse
|
8
|
TWIST1/miR-584/TUSC2 pathway induces resistance to apoptosis in thyroid cancer cells. Oncotarget 2018; 7:70575-70588. [PMID: 27661106 PMCID: PMC5342575 DOI: 10.18632/oncotarget.12129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022] Open
Abstract
TWIST1, a transcription factor, plays a pivotal role in cancer initiation and progression. Anaplastic thyroid carcinoma (ATC) is one of the deadliest human malignancies; TWIST1 is overexpressed in ATC and increases thyroid cancer cell survival, migration and invasion. The molecular mechanisms underlying the effects of TWIST1 are partially known. Here, using miRNome profiling of papillary thyroid cancer cells (TPC-1) ectopically expressing TWIST1, we identified miR-584. We showed that TWIST1 directly binds miR-584 using chromatin immunoprecipitation. Importantly, miR-584 was up-regulated in human ATC compared to papillary thyroid carcinoma (PTC) and normal thyroid samples. Overexpression of miR-584 in TPC cells induced resistance to apoptosis, whereas stable transfection of anti-miR-584 in TPC-TWIST1 and 8505C cells increased the sensitivity to apoptosis. Using bioinformatics programs, we identified TUSC2 (tumor suppressor candidate 2) as a novel target of miR-584. TUSC2 mRNA and protein levels were decreased in TPC miR-584 and increased in TPC-TWIST1 anti-miR-584 cells. Luciferase assays demonstrated direct targeting. Restored expression of TUSC2 rescued the inhibition of apoptosis induced by miR-584. Finally, qRT-PCR and immunohistochemical analysis showed that TUSC2 was down-regulated in ATC and PTC samples compared to normal thyroids. In conclusion, our study identified a novel TWIST1/miR-584/TUSC2 pathway that plays a role in resistance to apoptosis of thyroid cancer cells.
Collapse
|
9
|
Meraz IM, Majidi M, Cao X, Lin H, Li L, Wang J, Baladandayuthapani V, Rice D, Sepesi B, Ji L, Roth JA. TUSC2 Immunogene Therapy Synergizes with Anti-PD-1 through Enhanced Proliferation and Infiltration of Natural Killer Cells in Syngeneic Kras-Mutant Mouse Lung Cancer Models. Cancer Immunol Res 2018; 6:163-177. [PMID: 29339375 DOI: 10.1158/2326-6066.cir-17-0273] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/27/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022]
Abstract
Expression of the multikinase inhibitor encoded by the tumor suppressor gene TUSC2 (also known as FUS1) is lost or decreased in non-small cell lung carcinoma (NSCLC). TUSC2 delivered systemically by nanovesicles has mediated tumor regression in clinical trials. Because of the role of TUSC2 in regulating immune cells, we assessed TUSC2 efficacy on antitumor immune responses alone and in combination with anti-PD-1 in two Kras-mutant syngeneic mouse lung cancer models. TUSC2 alone significantly reduced tumor growth and prolonged survival compared with anti-PD-1. When combined, this effect was significantly enhanced, and correlated with a pronounced increases in circulating and splenic natural killer (NK) cells and CD8+ T cells, and a decrease in regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and T-cell checkpoint receptors PD-1, CTLA-4, and TIM-3. TUSC2 combined with anti-PD-1 induced tumor infiltrating more than NK and CD8+ T cells and fewer MDSCs and Tregs than each agent alone, both in subcutaneous tumor and in lung metastases. NK-cell depletion abrogated the antitumor effect and Th1-mediated immune response of this combination, indicating that NK cells mediate TUSC2/anti-PD-1 synergy. Release of IL15 and IL18 cytokines and expression of the IL15Rα chain and IL18R1 were associated with NK-cell activation by TUSC2. Immune response-related gene expression in the tumor microenvironment was altered by combination treatment. These data provide a rationale for immunogene therapy combined with immune checkpoint blockade in the treatment of NSCLC. Cancer Immunol Res; 6(2); 163-77. ©2018 AACR.
Collapse
Affiliation(s)
- Ismail M Meraz
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Mourad Majidi
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaobo Cao
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lerong Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - David Rice
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Boris Sepesi
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lin Ji
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jack A Roth
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
10
|
Uzhachenko R, Boyd K, Olivares-Villagomez D, Zhu Y, Goodwin JS, Rana T, Shanker A, Tan WJT, Bondar T, Medzhitov R, Ivanova AV. Mitochondrial protein Fus1/Tusc2 in premature aging and age-related pathologies: critical roles of calcium and energy homeostasis. Aging (Albany NY) 2017; 9:627-649. [PMID: 28351997 PMCID: PMC5391223 DOI: 10.18632/aging.101213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/18/2017] [Indexed: 12/20/2022]
Abstract
Decreased energy production and increased oxidative stress are considered to be major contributors to aging and aging-associated pathologies. The role of mitochondrial calcium homeostasis has also been highlighted as an important factor affecting different pathological conditions. Here, we present evidence that loss of a small mitochondrial protein Fus1 that maintains mitochondrial homeostasis results in premature aging, aging-associated pathologies, and decreased survival. We showed that Fus1KO mice develop multiple early aging signs including lordokyphosis, lack of vigor, inability to accumulate fat, reduced ability to tolerate stress, and premature death. Other prominent pathological changes included low sperm counts, compromised ability of adult stem cells to repopulate tissues, and chronic inflammation. At the molecular level, we demonstrated that mitochondria of Fus1 KO cells have low reserve respiratory capacity (the ability to produce extra energy during sudden energy demanding situations), and show significantly altered dynamics of cellular calcium response. Our recent studies on early hearing and memory loss in Fus1 KO mice combined with the new data presented here suggest that calcium and energy homeostasis controlled by Fus1 may be at the core of its aging-regulating activities. Thus, Fus1 protein and Fus1-dependent pathways and processes may represent new tools and targets for anti-aging strategies.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Kelli Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Danyvid Olivares-Villagomez
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yueming Zhu
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - J Shawn Goodwin
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Tanu Rana
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA.,Present address: Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA.,Department of Surgery, Section of Otolaryngology, Yale University School of Medicine, New Haven, CT 0651, USA
| | - Winston J T Tan
- Department of Surgery, Section of Otolaryngology, Yale University School of Medicine, New Haven, CT 0651, USA
| | - Tanya Bondar
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 0651, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 0651, USA
| | - Alla V Ivanova
- Department of Surgery, Section of Otolaryngology, Yale University School of Medicine, New Haven, CT 0651, USA
| |
Collapse
|
11
|
Tan WJT, Song L, Graham M, Schettino A, Navaratnam D, Yarbrough WG, Santos-Sacchi J, Ivanova AV. Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear. Antioxid Redox Signal 2017; 27:489-509. [PMID: 28135838 PMCID: PMC5564041 DOI: 10.1089/ars.2016.6851] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIMS Acquired hearing loss is a worldwide epidemic that affects all ages. It is multifactorial in etiology with poorly characterized molecular mechanisms. Mitochondria are critical components in hearing. Here, we aimed to identify the mechanisms of mitochondria-dependent hearing loss using Fus1 KO mice, our novel model of mitochondrial dysfunction/oxidative stress. RESULTS Using auditory brainstem responses (ABRs), we characterized the Fus1 KO mouse as a novel, clinically relevant model of age-related hearing loss (ARHL) of metabolic etiology. We demonstrated early decline of the endocochlear potential (EP) that may occur due to severe mitochondrial and vascular pathologies in the Fus1 KO cochlear stria vascularis. We showed that pathological alterations in antioxidant (AO) and nutrient and energy sensing pathways (mTOR and PTEN/AKT) occur in cochleae of young Fus1 KO mice before major hearing loss. Importantly, short-term AO treatment corrected pathological molecular changes, while longer AO treatment restored EP, improved ABR parameters, restored mitochondrial structure, and delayed the development of hearing loss in the aging mouse. INNOVATION Currently, no molecular mechanisms linked to metabolic ARHL have been identified. We established pathological and molecular mechanisms that link the disease to mitochondrial dysfunction and oxidative stress. CONCLUSION Since chronic mitochondrial dysfunction is common in many patients, it could lead to developing hearing loss that can be alleviated/rescued by AO treatment. Our study creates a framework for clinical trials and introduces the Fus1 KO model as a powerful platform for developing novel therapeutic strategies to prevent/delay hearing loss associated with mitochondrial dysfunction. Antioxid. Redox Signal. 27, 489-509.
Collapse
Affiliation(s)
- Winston J T Tan
- 1 Department of Surgery, Section of Otolaryngology, Yale University School of Medicine , New Haven, Connecticut
| | - Lei Song
- 2 Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China .,3 Ear Institute, Shanghai Jiao Tong University School of Medicine , Shanghai, China .,4 Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases , Shanghai, China
| | - Morven Graham
- 5 CCMI EM Core Facility, Yale University School of Medicine , New Haven, Connecticut
| | | | - Dhasakumar Navaratnam
- 7 Department of Neurology, Yale University School of Medicine , New Haven, Connecticut.,8 Department of Neuroscience, Yale University School of Medicine , New Haven, Connecticut
| | - Wendell G Yarbrough
- 1 Department of Surgery, Section of Otolaryngology, Yale University School of Medicine , New Haven, Connecticut.,9 Department of Pathology, Yale University School of Medicine , New Haven, Connecticut
| | - Joseph Santos-Sacchi
- 1 Department of Surgery, Section of Otolaryngology, Yale University School of Medicine , New Haven, Connecticut.,8 Department of Neuroscience, Yale University School of Medicine , New Haven, Connecticut.,10 Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, Connecticut
| | - Alla V Ivanova
- 1 Department of Surgery, Section of Otolaryngology, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
12
|
Udenwobele DI, Su RC, Good SV, Ball TB, Varma Shrivastav S, Shrivastav A. Myristoylation: An Important Protein Modification in the Immune Response. Front Immunol 2017; 8:751. [PMID: 28713376 PMCID: PMC5492501 DOI: 10.3389/fimmu.2017.00751] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/13/2017] [Indexed: 01/24/2023] Open
Abstract
Protein N-myristoylation is a cotranslational lipidic modification specific to the alpha-amino group of an N-terminal glycine residue of many eukaryotic and viral proteins. The ubiquitous eukaryotic enzyme, N-myristoyltransferase, catalyzes the myristoylation process. Precisely, attachment of a myristoyl group increases specific protein–protein interactions leading to subcellular localization of myristoylated proteins with its signaling partners. The birth of the field of myristoylation, a little over three decades ago, has led to the understanding of the significance of protein myristoylation in regulating cellular signaling pathways in several biological processes especially in carcinogenesis and more recently immune function. This review discusses myristoylation as a prerequisite step in initiating many immune cell signaling cascades. In particular, we discuss the hitherto unappreciated implication of myristoylation during myelopoiesis, innate immune response, lymphopoiesis for T cells, and the formation of the immunological synapse. Furthermore, we discuss the role of myristoylation in inducing the virological synapse during human immunodeficiency virus infection as well as its clinical implication. This review aims to summarize existing knowledge in the field and to highlight gaps in our understanding of the role of myristoylation in immune function so as to further investigate into the dynamics of myristoylation-dependent immune regulation.
Collapse
Affiliation(s)
- Daniel Ikenna Udenwobele
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Ruey-Chyi Su
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Sara V Good
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Terry Blake Ball
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shailly Varma Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,VastCon Inc., Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Coronas-Samano G, Baker KL, Tan WJT, Ivanova AV, Verhagen JV. Fus1 KO Mouse As a Model of Oxidative Stress-Mediated Sporadic Alzheimer's Disease: Circadian Disruption and Long-Term Spatial and Olfactory Memory Impairments. Front Aging Neurosci 2016; 8:268. [PMID: 27895577 PMCID: PMC5108791 DOI: 10.3389/fnagi.2016.00268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
Insufficient advances in the development of effective therapeutic treatments of sporadic Alzheimer's Disease (sAD) to date are largely due to the lack of sAD-relevant animal models. While the vast majority of models do recapitulate AD's hallmarks of plaques and tangles by virtue of tau and/or beta amyloid overexpression, these models do not reflect the fact that in sAD (unlike familial AD) these genes are not risk factors per se and that other mechanisms like oxidative stress, metabolic dysregulation and inflammation play key roles in AD etiology. Here we characterize and propose the Fus1 KO mice that lack a mitochondrial protein Fus1/Tusc2 as a new sAD model. To establish sAD relevance, we assessed sAD related deficits in Fus1 KO and WT adult mice of 4-5 months old, the equivalent human age when the earliest cognitive and olfactory sAD symptoms arise. Fus1 KO mice showed oxidative stress (increased levels of ROS, decreased levels of PRDX1), disruption of metabolic homeostasis (decreased levels of ACC2, increased phosphorylation of AMPK), autophagy (decreased levels of LC3-II), PKC (decreased levels of RACK1) and calcium signaling (decreased levels of Calb2) in the olfactory bulb and/or hippocampus. Mice were behaviorally tested using objective and accurate video tracking (Noldus), in which Fus1 KO mice showed clear deficits in olfactory memory (decreased habituation/cross-habituation in the short and long term), olfactory guided navigation memory (inability to reduce their latency to find the hidden cookie), spatial memory (learning impairments on finding the platform in the Morris water maze) and showed more sleep time during the diurnal cycle. Fus1 KO mice did not show clear deficits in olfactory perception (cross-habituation), association memory (passive avoidance) or in species-typical behavior (nest building) and no increased anxiety (open field, light-dark box) or depression/anhedonia (sucrose preference) at this relatively young age. These neurobehavioral deficits of the Fus1 KO mice at this relatively young age are highly relevant to sAD, making them suitable for effective research on pharmacological targets in the context of early intervention of sAD.
Collapse
Affiliation(s)
| | - Keeley L Baker
- The John B. Pierce LaboratoryNew Haven, CT, USA; Department of Neuroscience, Yale University School of MedicineNew Haven, CT, USA
| | - Winston J T Tan
- Department of Surgery, Yale University School of Medicine New Haven, CT, USA
| | - Alla V Ivanova
- Department of Surgery, Yale University School of Medicine New Haven, CT, USA
| | - Justus V Verhagen
- The John B. Pierce LaboratoryNew Haven, CT, USA; Department of Neuroscience, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
14
|
Mitochondria, calcium, and tumor suppressor Fus1: At the crossroad of cancer, inflammation, and autoimmunity. Oncotarget 2016; 6:20754-72. [PMID: 26246474 PMCID: PMC4673227 DOI: 10.18632/oncotarget.4537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/27/2015] [Indexed: 12/12/2022] Open
Abstract
Mitochondria present a unique set of key intracellular functions such as ATP synthesis, production of reactive oxygen species (ROS) and Ca2+ buffering. Mitochondria both encode and decode Ca2+ signals and these interrelated functions have a direct impact on cell signaling and metabolism. High proliferative potential is a key energy-demanding feature shared by cancer cells and activated T lymphocytes. Switch of a metabolic state mediated by alterations in mitochondrial homeostasis plays a fundamental role in maintenance of the proliferative state. Recent studies show that tumor suppressors have the ability to affect mitochondrial homeostasis controlling both cancer and autoimmunity. Herein, we discuss established and putative mechanisms of calcium–dependent regulation of both T cell and tumor cell activities. We use the mitochondrial protein Fus1 as a case of tumor suppressor that controls immune response and tumor growth via maintenance of mitochondrial homeostasis. We focus on the regulation of mitochondrial Ca2+ handling as a key function of Fus1 and highlight the mechanisms of a crosstalk between Ca2+ accumulation and mitochondrial homeostasis. Given the important role of Ca2+ signaling, mitochondrial Ca2+ transport and ROS production in the activation of NFAT and NF-κB transcription factors, we outline the importance of Fus1 activities in this context.
Collapse
|
15
|
The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs. Nat Commun 2015; 5:2914. [PMID: 24394498 PMCID: PMC3896787 DOI: 10.1038/ncomms3914] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/11/2013] [Indexed: 01/16/2023] Open
Abstract
Various non-coding regions of the genome, once presumed to be ‘junk’ DNA, have recently been found to be transcriptionally active. In particular, pseudogenes are now known to have important biological roles. Here we report that transcripts of the two tumour suppressor candidate-2 pseudogenes (TUSC2P), found on chromosomes X and Y, are homologous to the 3′-UTR of their corresponding protein coding transcript, TUSC2. TUSC2P and the TUSC2 3′-UTR share many common miRNA-binding sites, including miR-17, miR-93, miR-299-3p, miR-520a, miR-608 and miR-661. We find that ectopic expression of TUSC2P and the TUSC2 3′-UTR inhibits cell proliferation, survival, migration, invasion and colony formation, and increases tumour cell death. By interacting with endogenous miRNAs, TUSC2P and TUSC2 3′-UTR arrest the functions of these miRNAs, resulting in increased translation of TUSC2. The TUSC2P and TUSC2 3′-UTR could thus be used as combinatorial miRNA inhibitors and might have clinical applications. Non-coding RNAs have recently emerged as crucial regulators of gene expression. Here Rutnam et al. identify a pseudogene complementary to the 3′-UTR of the TUSC2 tumour suppressor that regulates TUSC2 levels by acting as a decoy for endogenous microRNAs and thereby inhibits tumorigenesis.
Collapse
|
16
|
XIN JUN, ZHANG XUEKUI, XIN DEYOU, LI XIANFENG, SUN DEKE, MA YUEYE, TIAN LIQIANG. FUS1 acts as a tumor-suppressor gene by upregulating miR-197 in human glioblastoma. Oncol Rep 2015; 34:868-76. [DOI: 10.3892/or.2015.4069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/14/2015] [Indexed: 11/05/2022] Open
|
17
|
Cellular oxidative stress response mediates radiosensitivity in Fus1-deficient mice. Cell Death Dis 2015; 6:e1652. [PMID: 25695605 PMCID: PMC4669799 DOI: 10.1038/cddis.2014.593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/08/2014] [Accepted: 12/19/2014] [Indexed: 01/26/2023]
Abstract
Mechanism of radiosensitivity of normal tissues, a key factor in determining the toxic side effects of cancer radiotherapy, is not fully understood. We recently demonstrated that deficiency of mitochondrial tumor suppressor, Fus1, increases radiosensitivity at the organismal, tissue and cellular levels. Since Fus1-deficient mice and cells exhibit high levels of oxidative stress, we hypothesized that dysregulation of cellular antioxidant defenses may contribute to the increased radiosensitivity. To address this potential mechanism, we treated the Fus1 KO mice with an inhibitor of pathogenic oxidative reactions, pyridoxamine (PM). Treatment with PM ameliorated IR-induced damage to GI epithelium of Fus1 KO mice and significantly increased the survival of irradiated mice. In cultured Fus1 KO epithelial cells, IR-induced oxidative stress was enhanced because of inadequate cellular antioxidant defenses, such as low levels and/or activities of cytochrome C, Sod 2 and STAT3. This resulted in dysregulation of IR-induced DNA-damage response and DNA synthesis. Treatment of Fus1 KO cells with PM or Sod 2 mimetic Tempol normalized the oxidative stress response, thus compensating to a significant degree for inadequate antioxidant response. Our findings using Fus1 KO radiosensitive mice suggest that radiosensitivity is mediated via dysregulation of antioxidant response and defective redox homeostasis.
Collapse
|
18
|
Li L, Yu C, Ren J, Ye S, Ou W, Wang Y, Yang W, Zhong G, Chen X, Shi H, Su X, Chen L, Zhu W. Synergistic effects of eukaryotic coexpression plasmid carrying LKB1 and FUS1 genes on lung cancer in vitro and in vivo. J Cancer Res Clin Oncol 2014; 140:895-907. [PMID: 24659339 DOI: 10.1007/s00432-014-1607-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/02/2014] [Indexed: 12/24/2022]
Abstract
PURPOSE LKB1 and FUS1 are two kinds of new tumor suppressor genes as well as early-stage genes in lung cancer. Recent studies showed that LKB1 and FUS1 play important roles in lung carcinogenesis process. We hypothesized that combined gene therapy with LKB1 and FUS1 could inhibit lung cancer growth and development synergistically. METHODS In this study, two kinds of tumor suppressor genes, LKB1 and FUS1, were constructed in an eukaryotic coexpression plasmid pVITRO(2), and then, we evaluated the synergistic effects of the two genes on anticancer activity and explored the relevant molecular mechanisms. RESULTS We defined coexpression of LKB1 and FUS1 could synergistically inhibited lung cancer cells growth,invasion and migration and induced the cell apoptosis and arrested cell cycle in vitro. Intratumoral administration of liposomes: pVITRO(2)–LKB1–FUS1 complex (LPs–pVITRO(2)–LKB1–FUS1) into subcutaneous lung tumor xenograft resulted in more significant inhibition of tumor growth. Furthermore, intravenous injection of LPs–pVITRO(2)–LKB1–FUS1 into mice bearing experimental A549 lung metastasis demonstrated synergistic decrease in the number of metastatic tumor nodules. Finally, combined treatment with LKB1 and FUS1 prolonged overall survival in lung tumor-bearing mice. Further study showed tha tthe synergistic anti-lung cancer effects of coexpression ofLKB1 and FUS1 might be related to upregulation of p-p53, p-AMPK and downregulation of p-mTOR, p-FAK, MMPs, NEDD9, VEGF/R and PDGF/R. CONCLUSIONS Our results suggest that combined therapy with eukaryotic coexpression plasmid carrying LKB1 and FUS1 genes may be a novel and efficient treatment strategy for human lung cancer.
Collapse
|
19
|
Uzhachenko R, Ivanov SV, Yarbrough WG, Shanker A, Medzhitov R, Ivanova AV. Fus1/Tusc2 is a novel regulator of mitochondrial calcium handling, Ca2+-coupled mitochondrial processes, and Ca2+-dependent NFAT and NF-κB pathways in CD4+ T cells. Antioxid Redox Signal 2014; 20:1533-47. [PMID: 24328503 PMCID: PMC3942676 DOI: 10.1089/ars.2013.5437] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Fus1 has been established as mitochondrial tumor suppressor, immunomodulator, and antioxidant protein, but molecular mechanism of these activities remained to be identified. Based on putative calcium-binding and myristoyl-binding domains that we identified in Fus1, we explored our hypothesis that Fus1 regulates mitochondrial calcium handling and calcium-coupled processes. RESULTS Fus1 loss resulted in reduced rate of mitochondrial calcium uptake in calcium-loaded epithelial cells, splenocytes, and activated CD4(+) T cells. The reduced rate of mitochondrial calcium uptake in Fus1-deficient cells correlated with cytosolic calcium increase and dysregulation of calcium-coupled mitochondrial parameters, such as reactive oxygen species production, ΔμH(+), mitochondrial permeability transition pore opening, and GSH content. Inhibition of calcium efflux via mitochondria, Na(+)/Ca(2+) exchanger significantly improved the mitochondrial calcium uptake in Fus1(-/-) cells. Ex vivo analysis of activated CD4(+) T cells showed Fus1-dependent changes in calcium-regulated processes, such as surface expression of CD4 and PD1/PD-L1, proliferation, and Th polarization. Fus1(-/-) T cells showed increased basal expression of calcium-dependent NF-κB and NFAT targets but were unable to fully activate these pathways after stimulation. INNOVATION Our results establish Fus1 as one of the few identified regulators of mitochondrial calcium handling. Our data support the idea that alterations in mitochondrial calcium dynamics could lead to the disruption of metabolic coupling in mitochondria that, in turn, may result in multiple cellular and systemic abnormalities. CONCLUSION Our findings suggest that Fus1 achieves its protective role in inflammation, autoimmunity, and cancer via the regulation of mitochondrial calcium and calcium-coupled parameters.
Collapse
Affiliation(s)
- Roman Uzhachenko
- 1 Department of Biochemistry and Cancer Biology, VICC, Meharry Medical College , Nashville, Tennessee
| | | | | | | | | | | |
Collapse
|
20
|
Han L, Ravoori M, Wu G, Sakai R, Yan S, Singh S, Xu K, Roth JA, Ji L, Kundra V. Somatostatin Receptor Type 2–Based Reporter Expression after Plasmid-Based in Vivo Gene Delivery to Non–Small Cell Lung Cancer. Mol Imaging 2013; 12:7290.2013.00060. [DOI: 10.2310/7290.2013.00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Lin Han
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Murali Ravoori
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Guanglin Wu
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ryo Sakai
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shaoyu Yan
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sheela Singh
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kai Xu
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jack A. Roth
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lin Ji
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vikas Kundra
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
21
|
Loss of mitochondrial protein Fus1 augments host resistance to Acinetobacter baumannii infection. Infect Immun 2013; 81:4461-9. [PMID: 24042119 DOI: 10.1128/iai.00771-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fus1 is a tumor suppressor protein with recently described immunoregulatory functions. Although its role in sterile inflammation is being elucidated, its role in regulating immune responses to infectious agents has not been examined. We used here a murine model of Acinetobacter baumannii pneumonia to identify the role of Fus1 in antibacterial host defenses. We found that the loss of Fus1 in mice results in significantly increased resistance to A. baumannii pneumonia. We observed earlier and more robust recruitment of neutrophils and macrophages to the lungs of infected Fus1(-/-) mice, with a concomitant increase in phagocytosis of invading bacteria and more rapid clearance. Such a prompt and enhanced immune response to bacterial infection in Fus1(-/-) mice stems from early activation of proinflammatory pathways (NF-κB and phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin [mTOR]), most likely due to significantly increased mitochondrial membrane potential and mitochondrial reactive oxygen species production. Significant early upregulation of interleukin-17 (IL-17) in Fus1(-/-) immune cells was also observed, together with significant downregulation of IL-10. Depletion of neutrophils eliminates the enhanced antibacterial defenses of the Fus1(-/-) mice, suggesting that ultimately it is the enhanced immune cell recruitment that mediates the increased resistance of Fus1(-/-) mice to A. baumannii pneumonia. Taken together, our data define the novel role for Fus1 in the immune response to A. baumannii pneumonia and highlight new avenues for immune modulating therapeutic targets for this treatment-resistant nosocomial pathogen.
Collapse
|
22
|
Abstract
FUS1/TUSC2 is a mitochondrial tumor suppressor with activity to regulate cellular oxidative stress by maintaining balanced ROS production and mitochondrial homeostasis. Fus1 expression is inhibited by ROS, suggesting that individuals with a high level of ROS may have lower Fus1 in normal tissues and, thus, may be more prone to oxidative stress-induced side effects of cancer treatment, including radiotherapy. As the role of Fus1 in the modulation of cellular radiosensitivity is unknown, we set out to determine molecular mechanisms of Fus1 involvement in the IR response in normal tissues. Mouse whole-body irradiation methodology was employed to determine the role for Fus1 in the radiation response and explore underlying molecular mechanisms. Fus1(-/-) mice were more susceptible to radiation compared with Fus1(+/+) mice, exhibiting increased mortality and accelerated apoptosis of the GI crypt epithelial cells. Following untimely reentrance into the cell cycle, the Fus1(-/-) GI crypt cells died at accelerated rate via mitotic catastrophe that resulted in diminished and/or delayed crypt regeneration after irradiation. At the molecular level, dysregulated dynamics of activation of main IR response proteins (p53, NFκB, and GSK-3β), as well as key signaling pathways involved in oxidative stress response (SOD2, PRDX1, and cytochrome c), apoptosis (BAX and PARP1), cell cycle (Cyclins B1 and D1), and DNA repair (γH2AX) were found in Fus1(-/-) cells after irradiation. Increased radiosensitivity of other tissues, such as immune cells and hair follicles was also detected in Fus1(-/-) mice. Our findings demonstrate a previously unknown radioprotective function of the mitochondrial tumor suppressor Fus1 in normal tissues and suggest new individualized therapeutic approaches based on Fus1 expression.
Collapse
|
23
|
Caza TN, Talaber G, Perl A. Metabolic regulation of organelle homeostasis in lupus T cells. Clin Immunol 2012; 144:200-13. [PMID: 22836085 PMCID: PMC3423541 DOI: 10.1016/j.clim.2012.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 12/23/2022]
Abstract
Abnormal T-cell signaling and activation are characteristic features in systemic lupus erythematosus (SLE). Lupus T cells are shifted toward an over-activated state, important signaling pathways are rewired, and signaling molecules are replaced. Disturbances in metabolic and organelle homeostasis, importantly within the mitochondrial, endosomal, and autophagosomal compartments, underlie the changes in signal transduction. Mitochondrial hyperpolarization, enhanced endosomal recycling, and dysregulated autophagy are hallmarks of pathologic organelle homeostasis in SLE. This review is focused on the metabolic checkpoints of endosomal traffic that control immunological synapse formation and mitophagy and may thus serve as targets for treatment in SLE.
Collapse
Affiliation(s)
- Tiffany N Caza
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, 13210, USA
| | | | | |
Collapse
|
24
|
Uzhachenko R, Issaeva N, Boyd K, Ivanov SV, Carbone DP, Ivanova AV. Tumour suppressor Fus1 provides a molecular link between inflammatory response and mitochondrial homeostasis. J Pathol 2012; 227:456-69. [PMID: 22513871 DOI: 10.1002/path.4039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/04/2012] [Accepted: 04/07/2012] [Indexed: 02/04/2023]
Abstract
Fus1, encoded by a 3p21.3 tumour suppressor gene, is down-regulated, mutated or lost in the majority of inflammatory thoracic malignancies. The mitochondrial localization of Fus1 stimulated us to investigate how Fus1 modulates inflammatory response and mitochondrial function in a mouse model of asbestos-induced peritoneal inflammation. Asbestos treatment resulted in a decreased Fus1 expression in wild-type (WT) peritoneal immune cells, suggesting that asbestos exposure may compromise the Fus1-mediated inflammatory response. Untreated Fus1(-/-) mice had an ~eight-fold higher proportion of peritoneal granulocytes than Fus1(+/+) mice, pointing at ongoing chronic inflammation. Fus1(-/-) mice exhibited a perturbed inflammatory response to asbestos, reflected in decreased immune organ weight and peritoneal fluid protein concentration, along with an increased proportion of peritoneal macrophages. Fus1(-/-) immune cells showed augmented asbestos-induced activation of key inflammatory, anti-oxidant and genotoxic stress response proteins ERK1/2, NFκB, SOD2, γH2AX, etc. Moreover, Fus1(-/-) mice demonstrated altered dynamics of pro- and anti-inflammatory cytokine expression, such as IFNγ, TNFα, IL-1A, IL-1B and IL-10. 'Late' response cytokine Ccl5 was persistently under-expressed in Fus1(-/-) immune cells at both basal and asbestos-activated states. We observed an asbestos-related difference in the size of CD3(+) CD4(-) CD8(-) DN T cell subset that was expanded four-fold in Fus1(-/-) mice. Finally, we demonstrated Fus1-dependent basal and asbestos-induced changes in major mitochondrial parameters (ROS production, mitochondrial potential and UCP2 expression) in Fus1(-/-) immune cells and in Fus1-depleted cancer cells, thus supporting our hypothesis that Fus1 establishes its immune- and tumour-suppressive activities via regulation of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
25
|
Qi J, Mu D. MicroRNAs and lung cancers: from pathogenesis to clinical implications. Front Med 2012; 6:134-55. [PMID: 22528868 DOI: 10.1007/s11684-012-0188-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/08/2012] [Indexed: 02/07/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths in the US and worldwide. Better understanding of the disease is warranted for improvement in clinical management. Here we summarize the functions of small-RNA-based, posttranscriptional gene regulators, i.e. microRNAs, in the pathogenesis of lung cancers. We discuss the microRNAs that play oncogenic as well as tumor suppressive roles. We also touch on the value of microRNAs as markers for diagnosis, prognosis and the promising field of microRNA-based novel therapies for lung cancers.
Collapse
Affiliation(s)
- Ji Qi
- Department of Pathology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
26
|
Wang Q, Wang S, Wang H, Li P, Ma Z. MicroRNAs: novel biomarkers for lung cancer diagnosis, prediction and treatment. Exp Biol Med (Maywood) 2012; 237:227-35. [PMID: 22345301 DOI: 10.1258/ebm.2011.011192] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-protein-coding RNAs that post-transcriptionally regulate mRNA expression. A large body of evidence has identified important roles for these regulators in cell proliferation, differentiation, apoptosis and metabolism, as well as activation of oncogenic and antioncogenic signals. Aberrant expression of miRNAs has been found in most human malignancies and is strongly associated with tumorigenesis, prediction, diagnosis, progress, treatment and prognosis. Thus, miRNAs may become an intriguing and promising therapeutic target for many diseases, including cancer. In addition, research into miRNAs may provide insight into the mechanisms underlying tumor occurrence, progression and metastasis. This review summarizes the current knowledge of miRNAs, their roles in lung cancer and avenues for future research.
Collapse
Affiliation(s)
- Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Ivanova AV, Ivanov SV, Prudkin L, Nonaka D, Liu Z, Tsao A, Wistuba I, Roth J, Pass HI. Mechanisms of FUS1/TUSC2 deficiency in mesothelioma and its tumorigenic transcriptional effects. Mol Cancer 2009; 8:91. [PMID: 19852844 PMCID: PMC2776015 DOI: 10.1186/1476-4598-8-91] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 10/24/2009] [Indexed: 12/28/2022] Open
Abstract
Background FUS1/TUSC2 is a novel tumor suppressor located in the critical 3p21.3 chromosomal region frequently deleted in multiple cancers. We previously showed that Tusc2-deficient mice display a complex immuno-inflammatory phenotype with a predisposition to cancer. The goal of this study was to analyze possible involvement of TUSC2 in malignant pleural mesothelioma (MPM) - an aggressive inflammatory cancer associated with exposure to asbestos. Methods TUSC2 insufficiency in clinical specimens of MPM was assessed via RT-PCR (mRNA level), Representational Oligonucleotide Microarray Analysis (DNA level), and immunohistochemical evaluation (protein level). A possible link between TUSC2 expression and exposure to asbestos was studied using asbestos-treated mesothelial cells and ROS (reactive oxygen species) scavengers. Transcripional effects of TUSC2 in MPM were assessed through expression array analysis of TUSC2-transfected MPM cells. Results Expression of TUSC2 was downregulated in ~84% of MM specimens while loss of TUSC2-containing 3p21.3 region observed in ~36% of MPMs including stage 1 tumors. Exposure to asbestos led to a transcriptional suppression of TUSC2, which we found to be ROS-dependent. Expression array studies showed that TUSC2 activates transcription of multiple genes with tumor suppressor properties and down-regulates pro-tumorigenic genes, thus supporting its role as a tumor suppressor. In agreement with our knockout model, TUSC2 up-regulated IL-15 and also modulated more than 40 other genes (~20% of total TUSC2-affected genes) associated with immune system. Among these genes, we identified CD24 and CD274, key immunoreceptors that regulate immunogenic T and B cells and play important roles in systemic autoimmune diseases. Finally, clinical significance of TUSC2 transcriptional effects was validated on the expression array data produced previously on clinical specimens of MPM. In this analysis, 42 TUSC2 targets proved to be concordantly modulated in MM serving as disease discriminators. Conclusion Our data support immuno-therapeutic potential of TUSC2, define its targets, and underscore its importance as a transcriptional stimulator of anti-tumorigenic pathways.
Collapse
Affiliation(s)
- Alla V Ivanova
- Hematology/Oncology Division, Vanderbilt Medical Center, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Du L, Schageman JJ, Subauste MC, Saber B, Hammond SM, Prudkin L, Wistuba II, Ji L, Roth JA, Minna JD, Pertsemlidis A. miR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1. Mol Cancer Res 2009; 7:1234-43. [PMID: 19671678 PMCID: PMC2741087 DOI: 10.1158/1541-7786.mcr-08-0507] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
FUS1 is a tumor suppressor gene located on human chromosome 3p21, and expression of Fus1 protein is highly regulated at various levels, leading to lost or greatly diminished tumor suppressor function in many lung cancers. Here we show that selected microRNAs (miRNA) interact with the 3'-untranslated region (3'UTR) of FUS1, leading to down-regulation of protein expression. Using computational methods, we first predicted that FUS1 is a target of three miRNAs, miR-93, miR-98, and miR-197, and then showed that exogenous overexpression of these miRNAs inhibited Fus1 protein expression. We then confirmed that the three miRNAs target the 3'UTR region of the FUS1 transcript and that individual deletion of the three miRNA target sites in the FUS1 3'UTR restores the expression level of Fus1 protein. We further found that miR-93 and miR-98 are expressed at higher levels in small-cell lung cancer cell lines (SCLC) than in non-small-cell lung cancer cell lines (NSCLC) and immortalized human bronchial epithelial cells (HBEC), and that miR-197 is expressed at higher levels in both SCLCs and NSCLCs than in HBECs. Finally, we found that elevated miR-93 and miR-197 expression is correlated with reduced Fus1 expression in NSCLC tumor specimens. These results suggest that the three miRNAs are negative regulators of Fus1 expression in lung cancers.
Collapse
Affiliation(s)
- Liqin Du
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390
| | - Jeoffrey J. Schageman
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390
| | - Maria C. Subauste
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390
| | - Barbara Saber
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390
| | - Scott M. Hammond
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599
| | - Ludmila Prudkin
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Ignacio I. Wistuba
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Lin Ji
- Department of Thoracic Surgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Jack A. Roth
- Department of Thoracic Surgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - John D. Minna
- Nancy and Jake Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390
- Department of Pharmacology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390
| | - Alexander Pertsemlidis
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390
| |
Collapse
|
29
|
Ivanov SV, Miller J, Lucito R, Tang C, Ivanova AV, Pei J, Carbone M, Cruz C, Beck A, Webb C, Nonaka D, Testa JR, Pass HI. Genomic events associated with progression of pleural malignant mesothelioma. Int J Cancer 2009; 124:589-99. [PMID: 18973227 PMCID: PMC2933144 DOI: 10.1002/ijc.23949] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pleural malignant mesothelioma (MM) is an aggressive cancer with a very long latency and a very short median survival. Little is known about the genetic events that trigger MM and their relation to poor outcome. The goal of our study was to characterize major genomic gains and losses associated with MM origin and progression and assess their clinical significance. We performed Representative Oligonucleotide Microarray Analysis (ROMA) on DNA isolated from tumors of 22 patients who recurred at variable interval with the disease after surgery. The total number of copy number alterations (CNA) and frequent imbalances for patients with short time (<12 months from surgery) and long time to recurrence were recorded and mapped using the Analysis of Copy Errors algorithm. We report a profound increase in CNA in the short-time recurrence group with most chromosomes affected, which can be explained by chromosomal instability associated with MM. Deletions in chromosomes 22q12.2, 19q13.32 and 17p13.1 appeared to be the most frequent events (55-74%) shared between MM patients followed by deletions in 1p, 9p, 9q, 4p, 3p and gains in 5p, 18q, 8q and 17q (23-55%). Deletions in 9p21.3 encompassing CDKN2A/ARF and CDKN2B were characterized as specific for the short-term recurrence group. Analysis of the minimal common areas of frequent gains and losses identified candidate genes that may be involved in different stages of MM: OSM (22q12.2), FUS1 and PL6 (3p21.3), DNAJA1 (9p21.1) and CDH2 (18q11.2-q12.3). Imbalances seen by ROMA were confirmed by Affymetrix genome analysis in a subset of samples.
Collapse
Affiliation(s)
- Sergey V Ivanov
- Department of Cardiothoracic Surgery, Thoracic Surgery Laboratory, NYU Langone Medical Center, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
FUS1 is a novel tumor suppressor gene identified in the human chromosome 3p21.3 region where allele losses and genetic alterations occur early and frequently for many human cancers. Expression of FUS1 protein is absent or reduced in the majority of lung cancers and premalignant lung lesions. Restoration of wt-FUS1 function in 3p21.3-deficient non-small cell lung carcinoma cells significantly inhibits tumor cell growth by induction of apoptosis and alteration of cell cycle kinetics. Here we present recent findings indicating that FUS1 induces apoptosis through the activation of the intrinsic mitochondrial-dependent and Apaf-1-associated pathways and inhibits the function of protein tyrosine kinases including EGFR, PDGFR, AKT, c-Abl, and c-Kit. Intravenous administration of a nanoparticle encapsulated FUS1 expression plasmid effectively delivers FUS1 to distant tumor sites and mediates an antitumor effect in orthotopic human lung cancer xenograft models. This approach is the rationale for an ongoing FUS1-nanoparticle-mediated gene delivery clinical trial for the treatment of lung cancer.
Collapse
|