1
|
Domingo RA, Vivas-Buitrago T, Jentoft M, Quinones-Hinojosa A. Intracranial Myxoid Mesenchymal Tumor/Myxoid Subtype Angiomatous Fibrous Histiocytoma: Diagnostic and Prognostic Challenges. Neurosurgery 2021; 88:E114-E122. [PMID: 32970137 DOI: 10.1093/neuros/nyaa357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/18/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND IMPORTANCE In the setting of intracranial neoplasms, EWSR1-cAMP Response Element-Binding Protein (CREB) transcription factor family fusions have been described in myxoid mesenchymal tumors, extremely rare entities with a close histopathologic and immunologic resemblance to myxoid subtype angiomatoid fibrous histiocytomas (AFH). Controversy exists on whether these central nervous system lesions are a subtype of myxoid AFH or a completely separate entity, which entitles a distinct clinical behavior and, consequently, a different approach to management. Upon review of the literature, only 14 cases of intracranial tumors harboring an EWSR1-CREB family fusion were identified, with only 3 cases presenting in middle-aged adults, none of which reported an EWSR1-CREM fusion mutation. Significant variability in reported radiographic and histopathological characteristics, as well as in clinical outcomes, was noted. Their similarity with other soft tissue tumors, added to the scarce information on its clinical behavior, represents a great diagnostic and therapeutic challenge to the treating physician. CLINICAL PRESENTATION We present a rare case of EWSR1-CREM mutated intracranial myxoid mesenchymal tumor/myxoid subtype AFH presenting as persistent headaches in a 36-yr-old woman with radiographic evidence of rapid growth and extensive vasogenic edema, for which she underwent surgical resection. CONCLUSION This represents a unique case of EWSR1-CREM mutated intracranial myxoid mesenchymal tumor presenting in adulthood, with evidence of aggressive behavior.
Collapse
Affiliation(s)
- Ricardo A Domingo
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, Florida
| | | | - Mark Jentoft
- Department of Pathology, Mayo Clinic, Jacksonville, Florida
| | | |
Collapse
|
2
|
Dermawan JK, Cheng YW, Tu ZJ, Meyer A, Habeeb O, Zou Y, Goldblum JR, Billings SD, Kilpatrick SE, Reith JD, Shurtleff SA, Farkas DH, Rubin BP, Azzato EM. Diagnostic Utility of a Custom 34-Gene Anchored Multiplex PCR-Based Next-Generation Sequencing Fusion Panel for the Diagnosis of Bone and Soft Tissue Neoplasms With Identification of Novel USP6 Fusion Partners in Aneurysmal Bone Cysts. Arch Pathol Lab Med 2020; 145:851-863. [PMID: 33147323 DOI: 10.5858/arpa.2020-0336-oa] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Bone and soft tissue tumors are heterogeneous, diagnostically challenging, and often defined by gene fusions. OBJECTIVE.— To present our experience using a custom 34-gene targeted sequencing fusion panel. DESIGN.— Total nucleic acid extracted from formalin-fixed, paraffin-embedded (FFPE) tumor specimens was subjected to open-ended, nested anchored multiplex polymerase chain reaction and enrichment of 34 gene targets, thus enabling detection of known and novel fusion partners. RESULTS.— During a 12-month period, 147 patients were tested as part of routine clinical care. Tumor percentage ranged from 10% to 100% and turnaround time ranged from 3 to 15 (median, 7.9) days. The most common diagnostic groups were small round blue cell tumors, tumors of uncertain differentiation, fibroblastic/myofibroblastic tumors, and adipocytic tumors. In-frame fusion transcripts were identified in 64 of 142 cases sequenced (45%): in 62 cases, the detection of a disease-defining fusion confirmed the morphologic impression; in 2 cases, a germline TFG-GPR128 polymorphic fusion variant was detected. Several genes in the panel partnered with multiple fusion partners specific for different diagnoses, for example, EWSR1, NR4A3, FUS, NCOA2, and TFE3. Interesting examples are presented to highlight how fusion detection or lack thereof was instrumental in establishing accurate diagnoses. Novel fusion partners were detected for 2 cases of solid aneurysmal bone cysts (PTBP1-USP6, SLC38A2-USP6). CONCLUSIONS.— Multiplex detection of fusions in total nucleic acid purified from FFPE specimens facilitates diagnosis of bone and soft tissue tumors. This technology is particularly useful for morphologically challenging entities and in the absence of prior knowledge of fusion partners, and has the potential to discover novel fusion partners.
Collapse
Affiliation(s)
- Josephine K Dermawan
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Yu Wei Cheng
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Zheng Jin Tu
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Anders Meyer
- The Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City (Meyer)
| | - Omar Habeeb
- The Department of Anatomic Pathology, Middlemore Hospital, Counties Manukau District Health Board, Auckland, New Zealand (Habeeb)
| | - Youran Zou
- The Department of Pathology, Kaiser Permanente Oakland Medical Center, Oakland, California (Zou)
| | - John R Goldblum
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Steven D Billings
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Scott E Kilpatrick
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - John D Reith
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Sheila A Shurtleff
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Daniel H Farkas
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Brian P Rubin
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Elizabeth M Azzato
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| |
Collapse
|
3
|
Liu T, Shen JK, Li Z, Choy E, Hornicek FJ, Duan Z. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma. Cancer Lett 2016; 373:109-118. [PMID: 26806808 DOI: 10.1016/j.canlet.2016.01.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 02/07/2023]
Abstract
Sarcomas include some of the most aggressive tumors and typically respond poorly to chemotherapy. In recent years, specific gene fusion/mutations and gene over-expression/activation have been shown to drive sarcoma pathogenesis and development. These emerging genomic alterations may provide targets for novel therapeutic strategies and have the potential to transform sarcoma patient care. The RNA-guided nuclease CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein-9 nuclease) is a convenient and versatile platform for site-specific genome editing and epigenome targeted modulation. Given that sarcoma is believed to develop as a result of genetic alterations in mesenchymal progenitor/stem cells, CRISPR-Cas9 genome editing technologies hold extensive application potentials in sarcoma models and therapies. We review the development and mechanisms of the CRISPR-Cas9 system in genome editing and introduce its application in sarcoma research and potential therapy in clinic. Additionally, we propose future directions and discuss the challenges faced with these applications, providing concise and enlightening information for readers interested in this area.
Collapse
Affiliation(s)
- Tang Liu
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, United States; Department of Orthopaedic, the 2nd Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan 410011, China
| | - Jacson K Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, United States
| | - Zhihong Li
- Department of Orthopaedic, the 2nd Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan 410011, China
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, United States
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, United States
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, United States.
| |
Collapse
|
9
|
Cironi L, Provero P, Riggi N, Janiszewska M, Suva D, Suva ML, Kindler V, Stamenkovic I. Epigenetic features of human mesenchymal stem cells determine their permissiveness for induction of relevant transcriptional changes by SYT-SSX1. PLoS One 2009; 4:e7904. [PMID: 19936258 PMCID: PMC2775947 DOI: 10.1371/journal.pone.0007904] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 10/17/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND A characteristic SYT-SSX fusion gene resulting from the chromosomal translocation t(X;18)(p11;q11) is detectable in almost all synovial sarcomas, a malignant soft tissue tumor widely believed to originate from as yet unidentified pluripotent stem cells. The resulting fusion protein has no DNA binding motifs but possesses protein-protein interaction domains that are believed to mediate association with chromatin remodeling complexes. Despite recent advances in the identification of molecules that interact with SYT-SSX and with the corresponding wild type SYT and SSX proteins, the mechanisms whereby the SYT-SSX might contribute to neoplastic transformation remain unclear. Epigenetic deregulation has been suggested to be one possible mechanism. METHODOLOGY/PRINCIPAL FINDINGS We addressed the effect of SYT/SSX expression on the transcriptome of four independent isolates of primary human bone marrow mesenchymal stem cells (hMSC). We observed transcriptional changes similar to the gene expression signature of synovial sarcoma, principally involving genes whose regulation is linked to epigenetic factors, including imprinted genes, genes with transcription start sites within a CpG island and chromatin related genes. Single population analysis revealed hMSC isolate-specific transcriptional changes involving genes that are important for biological functions of stem cells as well as genes that are considered to be molecular markers of synovial sarcoma including IGF2, EPHRINS, and BCL2. Methylation status analysis of sequences at the H19/IGF2 imprinted locus indicated that distinct epigenetic features characterize hMSC populations and condition the transcriptional effects of SYT-SSX expression. CONCLUSIONS/SIGNIFICANCE Our observations suggest that epigenetic features may define the cellular microenvironment in which SYT-SSX displays its functional effects.
Collapse
Affiliation(s)
- Luisa Cironi
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paolo Provero
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicola Riggi
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Michalina Janiszewska
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Domizio Suva
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mario-Luca Suva
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vincent Kindler
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|