1
|
Xiong A, Xiong R, Luo F. Ski ameliorates synovial cell inflammation in monosodium iodoacetate-induced knee osteoarthritis. Heliyon 2024; 10:e24471. [PMID: 38298665 PMCID: PMC10827772 DOI: 10.1016/j.heliyon.2024.e24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Knee osteoarthritis (KOA) is one of the most common degenerative diseases and is characterized by cartilage degeneration, synovial inflammation, joint stiffness and even loss of motor function. In the clinical treatment of arthritis, conventional analgesic and anti-inflammatory drugs have great side effects. We have evaluated the possibility of the endogenous transcription regulator Ski as an anti-inflammatory alternative in OA through experimental studies in animal models and in vivo and in vitro. Male Sprague‒Dawley rats were injected with monosodium iodoacetate (MIA) into the knee joints to induce symptoms identical to those of human OA. We isolated knee synovial tissue under sterile conditions and cultured primary synovial cells. In vitro, Ski inhibits the proinflammatory factors IL-1β, IL-6 and TNF-α mRNA and protein expression in lipopolysaccharide (LPS)-stimulated fibroblast-like synoviocytes (FLSs) and U-937 cells. In addition, Ski attenuates or inhibits OA-induced synovial inflammation by upregulating the protein expression of the anti-inflammatory factor IL-4 and downregulating the protein expression of downstream molecules related to the NF-κB inflammatory signaling pathway. In vivo, Ski downregulated proinflammatory factors and p-NF-κB p65 in KOA synovial tissue and alleviated pain-related behaviors in KOA rats. These experimental data show that Ski has strong anti-inflammatory activity. Ski is an endogenous factor, and if used in the clinical treatment of OA, the side effects are small. However, the anti-inflammatory mechanism of Ski must be further studied.
Collapse
Affiliation(s)
- Ao Xiong
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Renping Xiong
- Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
2
|
Li Q, Lyu C, Chen D, Cai W, Kou F, Li Q, Wei H, Zhang H. Gallic Acid Treats Hypertrophic Scar in Rabbit Ears via the TGF-β/Smad and TRPC3 Signaling Pathways. Pharmaceuticals (Basel) 2023; 16:1514. [PMID: 38004381 PMCID: PMC10675562 DOI: 10.3390/ph16111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Hypertrophic scars (HSs) develop due to excessive collagen deposition and abnormal fibroblast proliferation during wound healing, significantly impacting patient quality of life. Three dosages of GA ointments were administered to rabbit ear HS models to investigate the potential efficacy and mechanism of gallic acid (GA) on HS. Daily application of ointment was performed on the matrix group, the GA ointment groups, and the silicone gel group for 28 days. (No drug treatment was performed on the skin and model groups as a blank group and vehicle group, and silicone gel ointment was topically administered to the silicone gel group as a positive control group.) Scar specimens were collected for histopathology analysis, RNA sequencing analysis, real-time quantitative polymerase chain reaction, and Western blot analysis at the first, second, and fourth weeks after the treatment. Low-dose and medium-dose GA effectively suppressed HS formation and markedly decreased fibroblast infiltration levels and scar thickness. Moreover, decreased expression of TRPC3 mRNA and TGF-β1, p-Smad2/3, and Smad2/3 protein was observed in the low- and medium-dose GA groups and the silicone gel group. This study provides evidence for the efficacy of GA in treating HS and sheds light on its potential underlying pharmacological mechanisms.
Collapse
Affiliation(s)
- Qiannan Li
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.L.); (W.C.)
| | - Chunming Lyu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Qinghai Province Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Daqin Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.C.); (F.K.); (Q.L.)
| | - Wanling Cai
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.L.); (W.C.)
| | - Fang Kou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.C.); (F.K.); (Q.L.)
| | - Qiang Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.C.); (F.K.); (Q.L.)
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.C.); (F.K.); (Q.L.)
| | - Huimin Zhang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.L.); (W.C.)
| |
Collapse
|
3
|
Zhai Y, Ye SY, Wang QS, Xiong RP, Fu SY, Du H, Xu YW, Peng Y, Huang ZZ, Yang N, Zhao Y, Ning YL, Li P, Zhou YG. Overexpressed ski efficiently promotes neurorestoration, increases neuronal regeneration, and reduces astrogliosis after traumatic brain injury. Gene Ther 2023; 30:75-87. [PMID: 35132206 DOI: 10.1038/s41434-022-00320-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 11/09/2022]
Abstract
Traumatic brain injury (TBI) survivors suffer from long-term disability and neuropsychiatric sequelae due to irreparable brain tissue destruction. However, there are still few efficient therapies to promote neurorestoration in damaged brain tissue. This study aimed to investigate whether the pro-oncogenic gene ski can promote neurorestoration after TBI. We established a ski-overexpressing experimental TBI mouse model using adenovirus-mediated overexpression through immediate injection after injury. Hematoxylin-eosin staining, MRI-based 3D lesion volume reconstruction, neurobehavioral tests, and analyses of neuronal regeneration and astrogliosis were used to assess neurorestorative efficiency. The effects of ski overexpression on the proliferation of cultured immature neurons and astrocytes were evaluated using imaging flow cytometry. The Ski protein level increased in the perilesional region at 3 days post injury. ski overexpression further elevated Ski protein levels up to 14 days post injury. Lesion volume was attenuated by approximately 36-55% after ski overexpression, with better neurobehavioral recovery, more newborn immature and mature neurons, and less astrogliosis in the perilesional region. Imaging flow cytometry results showed that ski overexpression elevated the proliferation rate of immature neurons and reduced the proliferation rate of astrocytes. These results show that ski can be considered a novel neurorestoration-related gene that effectively promotes neurorestoration, facilitates neuronal regeneration, and reduces astrogliosis after TBI.
Collapse
Affiliation(s)
- Yu Zhai
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Shi-Yang Ye
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Qiu-Shi Wang
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China.,Department of Pathology, Research Institute of Surgery and Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Ren-Ping Xiong
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Sheng-Yu Fu
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Hao Du
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Ya-Wei Xu
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Yan Peng
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Zhi-Zhong Huang
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Nan Yang
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Yan Zhao
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Ya-Lei Ning
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Ping Li
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China.
| | - Yuan-Guo Zhou
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
4
|
D'Arpa P, Leung KP. Pharmaceutical Prophylaxis of Scarring with Emphasis on Burns: A Review of Preclinical and Clinical Studies. Adv Wound Care (New Rochelle) 2022; 11:428-442. [PMID: 33625898 PMCID: PMC9142134 DOI: 10.1089/wound.2020.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: The worldwide estimate of burns requiring medical attention each year is 11 million. Each year in the United States, ∼486,000 burn injuries receive medical attention, including 40,000 hospitalizations. Scars resulting from burns can be disfiguring and impair functions. The development of prophylactic drugs for cutaneous scarring could improve the outcomes for burns, traumatic lacerations (>6 million/year treated in U.S. emergency rooms), and surgical incisions (∼250 million/year worldwide). Antiscar pharmaceuticals have been estimated to have a market of $12 billion. Recent Advances: Many small molecules, cells, proteins/polypeptides, and nucleic acids have mitigated scarring in animal studies and clinical trials, but none have received Food and Drug Administration (FDA) approval yet. Critical Issues: The development of antiscar pharmaceuticals involves the identification of the proper dose, frequency of application, and window of administration postwounding for the indicated wound. Risks of infection and impaired healing must be considered. Scar outcome needs to be evaluated after scars have matured. Future Directions: Once treatments have demonstrated safety and efficacy in rodent and/or rabbit and porcine wound models, human testing can begin, such as on artificially created wounds on healthy subjects and on bilateral-surgical wounds, comparing treatments versus vehicle controls on intrapatient-matched wounds, before testing on separate cohorts of patients. Given the progress made in the past 20 years, FDA-approved drugs for improving scar outcomes may be expected.
Collapse
Affiliation(s)
- Peter D'Arpa
- The Geneva Foundation, Tacoma, Washington, USA.,Correspondence: 15104 DuFief Dr, North Potomac, MD 20878, USA.
| | - Kai P. Leung
- Division of Combat Wound Repair, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA.,Correspondence: Division of Combat Wound Repair, U.S. Army Institute of Surgical Research, 3650 Chambers Pass, Building 3611, Fort Sam Houston, TX 78234-6315, USA.
| |
Collapse
|
5
|
Liao HY, Ran R, Da CM, Wang ZQ, Zhou KS, Zhang HH. Ski Regulates the Inflammatory Response of Reactive Astrocytes Induced by Oxygen Glucose Deprivation/Reoxygenation (OGD/R) Through the NF-κB Pathway. Neuroscience 2022; 490:250-263. [PMID: 35339646 DOI: 10.1016/j.neuroscience.2022.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 10/18/2022]
Abstract
Spinal cord injury (SCI) is a common disease of the nervous system, including primary and secondary injuries. Neuronal inflammation after SCI is the most important pathological process of SCI and a chemical barrier to nerve function recovery after injury. Ski, an evolutionarily conserved functional transcriptional regulator protein, is upregulated in reactive astrocytes after SCI and regulates the biological characteristics of astrocytes. However, its role in the glial inflammatory response triggered by reactive astrocytes after spinal cord ischemia and its exact mechanism remains unclear. This study investigated the role and mechanism of Ski in the inflammatory response triggered by reactive astrocytes induced by oxygen and sugar deprivation/reoxygenation (OGD/R) model in vitro. In the ODG/R model, Ski expression was upregulated. In contrast, Ski upregulation was accompanied by increased levels of iNOS, IL-1β, IL-6, TNF-α, and other inflammation-related factors. These results indicated that the inflammatory response triggered by astrocytes was significantly enhanced in OGD/R-stimulated astrocytes. Astrocytes were transfected with Ski specific siRNA to knock out Ski and subsequently attenuate OGD-induced astrocyte-triggered inflammation. Our results also suggest that Ski downregulation downregulates the expression of iNOS, IL-1β, IL-6, and TNF-α in OGD/R-induced reactive astrocytes by inhibiting the activity of the NF-κB signaling pathway. In conclusion, downregulation of Ski can effectively inhibit glial inflammation in SCI by inhibiting the activity of the NF-κB pathway. These findings suggest that Ski is a promising therapeutic target for inflammatory responses after SCI.In conclusion, Ski downregulation can effectively inhibit glial inflammation in SCI by inhibiting the activity of the NF-κB pathway. These findings suggest that Ski might serve as a promising target for the treatment of inflammatory responses after SCI.
Collapse
Affiliation(s)
- Hai-Yang Liao
- The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Rui Ran
- The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Chao-Ming Da
- The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Gansu Provincial Maternal and Child Health Hospital, 143 Qilihe North Street, Lanzhou 730050, PR China
| | - Zhi-Qiang Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Kai-Sheng Zhou
- The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China.
| |
Collapse
|
6
|
Menchaca AD, Style CC, Olutoye OO. A Review of Hypertrophic Scar and Keloid Treatment and Prevention in the Pediatric Population: Where Are We Now? Adv Wound Care (New Rochelle) 2022; 11:255-279. [PMID: 34030473 DOI: 10.1089/wound.2021.0028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Significance: This body of work gives a concise and comprehensive overview for the clinician and scientist on the latest treatment modalities for hypertrophic scars (HTS) and keloids in the pediatric population, as well as the most promising methods of prevention currently being investigated. This review will serve as a guide to the clinician for treatment selection and as an efficient tool for the scientist to achieve a comprehensive overview of the scientific literature to guide their future experiments aimed at pathologic scar prevention. Recent Advances: Current studies in the literature suggest carbon dioxide (CO2) laser and E-light (bipolar radiofrequency, intense pulsed light, and cooling) are two of the most effective treatment modalities for HTS, while surgical excision+CO2 laser+triamcinolone injection was one of the most successful treatments for keloids. In animal models, drug impregnated electrospun nanofiber dressings offer encouraging results for HTS prevention, while Kelulut honey showed promising results for keloid prevention. Critical Issues: Treatment outcome reproducibility is hindered by small cohorts of patients, inadequate-follow up, and variability in assessment tools. Prevention studies show multiple ways of achieving the same result, yet fall short of complete prevention. Furthermore, some studies that have purported full prevention have not been validated. Future Directions: To establish a standard of care, large clinical trials of the most successful modalities in small cohorts are needed. The key for prevention will be validation in animal models of the most successful methods, followed by translational and clinical studies.
Collapse
Affiliation(s)
- Alicia D. Menchaca
- Center for Regenerative Medicine, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
- Department of General Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Candace C. Style
- Center for Regenerative Medicine, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Oluyinka O. Olutoye
- Center for Regenerative Medicine, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Liao HY, Wang ZQ, Da CM, Zhou KS, Zhang HH. Ski regulates proliferation and migration of reactive astrocytes induced by lipopolysaccharide (LPS) through PI3K/Akt pathway. J Neuroimmunol 2022; 364:577807. [PMID: 35007896 DOI: 10.1016/j.jneuroim.2022.577807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is a leading cause of disability and death worldwide. Reactive astrogliosis, a typical feature of SCI, undergoes various molecular and morphological changes and contributes to glial scar formation, which impedes axonal regeneration. Ski is a novel molecule that regulates the biological characteristics of astrocytes after spinal cord injury, but its function and the exact mechanism of its overexpression in reactive astrocyte proliferation and migration after SCI remain unclear. The purpose of this study was to elucidate the effect and mechanism of Ski on the proliferation and migration of reactive astrocytes, and to regulate the spatiotemporal formation of glial scars after SCI. In an in vitro lipopolysaccharide (LPS)-induced astrocyte injury model, the expression of Ski was upregulated in a time-dependent manner in LPS-induced astrocytes, and the upregulation of Ski was accompanied by that of PCNA, CDK4, CyclinD1, and other proliferation-related proteins. Our findings suggest that Ski promotes the proliferation and migration of reactive astrocytes. Next, astrocytes were transfected with a specific lentivirus to cause the overexpression of Ski, which significantly enhanced the proliferation and migration of reactive astrocytes and LPS-induced activation of the PI3K/Akt pathway. The PI3K/Akt pathway inhibitor LY294002 significantly inhibited the proliferation and migration of LPS-induced reactive astrocytes after Ski overexpression. In conclusion, Ski regulates LPS-induced astrocyte proliferation and migration through the PI3K/Akt pathway, making Ski a promising target for strategies to combat glial scarring after SCI.
Collapse
Affiliation(s)
- Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Zhi-Qiang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Chao-Ming Da
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Kai-Sheng Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China.
| |
Collapse
|
8
|
Zhou X, Backman LJ, Danielson P. Activation of NF-κB signaling via cytosolic mitochondrial RNA sensing in kerotocytes with mitochondrial DNA common deletion. Sci Rep 2021; 11:7360. [PMID: 33795727 PMCID: PMC8016944 DOI: 10.1038/s41598-021-86522-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Scar formation as a result of corneal wound healing is a leading cause of blindness. It is a challenge to understand why scar formation is more likely to occur in the central part of the cornea as compared to the peripheral part. The purpose of this study was to unravel the underlying mechanisms. We applied RNA-seq to uncover the differences of expression profile in keratocytes in the central/peripheral part of the cornea. The relative quantity of mitochondrial RNA was measured by multiplex qPCR. The characterization of mitochondrial RNA in the cytoplasm was confirmed by immunofluoresence microscope and biochemical approach. Gene expression was analyzed by western blot and RT qPCR. We demonstrate that the occurrence of mitochondrial DNA common deletion is greater in keratocytes from the central cornea as compared to those of the peripheral part. The keratocytes with CD have elevated oxidative stress levels, which leads to the leakage of mitochondrial double-stranded RNA into the cytoplasm. The cytoplasmic mitochondrial double-stranded RNA is sensed by MDA5, which induces NF-κB activation. The NF-κB activation thereafter induces fibrosis-like extracellular matrix expressions and IL-8 mRNA transcription. These results provide a novel explanation of the different clinical outcome in different regions of the cornea during wound healing.
Collapse
Affiliation(s)
- Xin Zhou
- grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - Ludvig J. Backman
- grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, 90187 Umeå, Sweden
| | - Patrik Danielson
- grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Shen W, Zhang Z, Ma J, Lu D, Lyu L. The Ubiquitin Proteasome System and Skin Fibrosis. Mol Diagn Ther 2021; 25:29-40. [PMID: 33433895 DOI: 10.1007/s40291-020-00509-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
The ubiquitin proteasome system (UPS) is a highly conserved way to regulate protein turnover in cells. The UPS hydrolyzes and destroys variant or misfolded proteins and finely regulates proteins involved in differentiation, apoptosis, and other biological processes. This system is a key regulatory factor in the proliferation, differentiation, and collagen secretion of skin fibroblasts. E3 ubiquitin protein ligases Parkin and NEDD4 regulate multiple signaling pathways in keloid. Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) binding with deubiquitinase USP10 can induce p53 destabilization and promote keloid-derived fibroblast proliferation. The UPS participates in the occurrence and development of hypertrophic scars by regulating the transforming growth factor (TGF)-β/Smad signaling pathway. An initial study suggests that TNFα-induced protein 3 (TNFAIP3) polymorphisms may be significantly associated with scleroderma susceptibility in individuals of Caucasian descent. Sumoylation and multiple ubiquitin ligases, including Smurfs, UFD2, and KLHL42, play vital roles in scleroderma by targeting the TGF-β/Smad signaling pathway. In the future, drugs targeting E3 ligases and deubiquitinating enzymes have great potential for the treatment of skin fibrosis.
Collapse
Affiliation(s)
- Wanlu Shen
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zhigang Zhang
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jiaqing Ma
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Di Lu
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Lechun Lyu
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| |
Collapse
|
10
|
Peng Y, Xiong RP, Zhang ZH, Ning YL, Zhao Y, Tan SW, Zhou YG, Li P. Ski promotes proliferation and inhibits apoptosis in fibroblasts under high-glucose conditions via the FoxO1 pathway. Cell Prolif 2020; 54:e12971. [PMID: 33349993 PMCID: PMC7849170 DOI: 10.1111/cpr.12971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The present study clarified the role and signalling pathway of Ski in regulating proliferation and apoptosis in fibroblasts under high-glucose (HG) conditions. MATERIALS AND METHODS The proliferation and apoptosis of rat primary fibroblasts were assessed using EdU incorporation and TUNEL assays. The protein and phosphorylation levels of the corresponding factors were measured using immunofluorescence staining and Western blotting. Immunoprecipitation was used to determine the interactions between Ski and FoxO1 or Ski and HDAC1. The Ski protein was overexpressed via recombinant adenovirus transfection, and FoxO1 and HDAC1 were knocked down using targeted small-interfering RNA. RESULTS The present study found that HG inhibited fibroblast proliferation, increased apoptosis and reduced Ski levels in rat primary fibroblasts. Conversely, increasing Ski protein levels alleviated HG-induced proliferation inhibition and apoptosis promotion. Increasing Ski protein levels also increased Ski binding to FoxO1 to decrease FoxO1 acetylation, and interfering with FoxO1 caused loss of the regulatory effect of Ski in fibroblasts under HG. Increasing Ski protein levels decreased FoxO1 acetylation via HDAC1-mediated deacetylation. CONCLUSIONS Therefore, these findings confirmed for the first time that Ski regulated fibroblast proliferation and apoptosis under HG conditions via the FoxO1 pathway.
Collapse
Affiliation(s)
- Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ren-Ping Xiong
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhuo-Hang Zhang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Si-Wei Tan
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
11
|
Liao HY, Da CM, Wu ZL, Zhang HH. Ski: Double roles in cancers. Clin Biochem 2020; 87:1-12. [PMID: 33188772 DOI: 10.1016/j.clinbiochem.2020.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
The Ski (Sloan-Kettering Institute) is an evolutionarily conserved protein that plays a dual role as an oncoprotein and tumor suppressor gene in the development of human cancer. The Ski oncogene was first identified as a transforming protein of the avian Sloan-Kettering retrovirus in 1986. Since its discovery, Ski has been identified as a carcinogenic regulator in a variety of malignant tumors. Later, it was reported that Ski regulates the occurrence and development of some cancers by acting as an oncogene. Ski mediates the proliferation, differentiation, metastasis, and invasion of numerous cancer cells through various mechanisms. Several studies have shown that Ski expression is correlated with the clinical characteristics of cancer patients and is a promising biomarker and therapeutic target for cancer. In this review, we summarize the mechanisms and potential clinical implications of Ski in dimorphism, cancer occurrence, and progression in various types of cancer.
Collapse
Affiliation(s)
- Hai-Yang Liao
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Chao-Ming Da
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Zuo-Long Wu
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
12
|
Chogan F, Mirmajidi T, Rezayan AH, Sharifi AM, Ghahary A, Nourmohammadi J, Kamali A, Rahaie M. Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing. Acta Biomater 2020; 113:144-163. [PMID: 32590170 DOI: 10.1016/j.actbio.2020.06.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Abnormal wound healing caused by the over-expression of collagen and fibronectin leads to fibrosis, the major complication of all treatment modalities. A three-layer nanofiber scaffold was designed, optimized, and fabricated. This scaffold comprised two supportive polycaprolactone (PCL)-chitosan layers on the sides and a polyvinyl alcohol (PVA)-metformin hydrochloride (metformin-HCl) in the middle. The physico-chemical properties of scaffold, such as mechanical characteristics, degradation, swelling, and in-vitro drug release, were evaluated. The biological tests, including cell viability in response to metformin-HCl and Tween 80, scaffold biocompatibility, cell attachment, and antibacterial activity, were further conducted. The wound healing effect of scaffold loaded with metformin-HCl (MSc+Met) was assessed in donut-shaped silicone splints in rats. Histopathological and immunohistochemical evaluation as well as mRNA expression levels of fibrosis markers were also studied. SEM images indicated a uniform, bead-less morphology and high porosity. Surface modification of scaffold by Tween 80 improved the surface hydrophilicity and enhanced the adhesion and proliferation of fibroblasts. The scar area on day 15 in MSc+Met was significantly lower than that of other groups. Histopathological and immunohistochemical evaluation revealed that group MSc+Met was the best, having significantly lower inflammation, higher angiogenesis, the smallest scar width and depth, maximum epitheliogenesis score, and the most optimal modulation of collagen density. Local administration of metformin-HCl substantially down-regulated the expression of fibrosis-involved genes: transforming growth factor (TGF-β1), collagen type 1 (Col-I), fibronectin, collagen type 3 (Col-III), and alpha-smooth muscle actin (α-SMA). Inhibiting these genes alleviates scar formation but delays wound healing; thus, an engineered scaffold was used to prevent delay in wound healing. These results provided evidence for the first time to introduce an anti-fibrogenic slow-releasing scaffold, which acts in a dual role, both alleviating fibrosis and accelerating wound healing.
Collapse
|
13
|
Li P, Wang QS, Zhai Y, Xiong RP, Chen X, Liu P, Peng Y, Zhao Y, Ning YL, Yang N, Zhou YG. Ski mediates TGF-β1-induced fibrosarcoma cell proliferation and promotes tumor growth. J Cancer 2020; 11:5929-5940. [PMID: 32922535 PMCID: PMC7477421 DOI: 10.7150/jca.46074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/20/2020] [Indexed: 11/05/2022] Open
Abstract
Background: TGF-β1 promotes cell proliferation in only some tumors and exerts bidirectional regulatory effects on the proliferation of fibroblasts. This study intends to explore whether the mechanism is related to increased expression of Ski. Methods: Cell proliferation of the fibrosarcoma cell line L929 was assessed with an ELISA BrdU kit. The mRNA and protein expression levels of the corresponding factors were measured by RT-qPCR, immunohistochemistry or Western blotting in vitro and in vivo. Additionally, c-Ski was knocked down using RNAi. The expression of Ski in human dermatofibrosarcoma protuberans (DFSP) specimens was measured by immunohistochemistry. Results: TGF-β1 promoted the continued proliferation of L929 cells in a dose-dependent manner, with increased c-Ski expression levels. Conversely, inhibition of c-Ski significantly abrogated this unidirectional effect, significantly inhibited the decrease in p21 protein levels and did not affect the increase in p-Smad2/3 levels upon TGF-β1 treatment. Similarly, inhibition of c-Ski significantly abrogated the growth-promoting effect of TGF-β1 on xenograft tumors. Furthermore, we found that high expression of Ski in DFSP was correlated with a low degree of tumor differentiation. Conclusions: Our data reveal that high c-Ski expression is a cause of TGF-β1-promoted proliferation in fibrosarcoma tumor cells and show that inhibiting Ski expression might be effective for treating tumors with high Ski levels.
Collapse
Affiliation(s)
- Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Qiu-Shi Wang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China.,Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yu Zhai
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Ren-Ping Xiong
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Xing Chen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Ping Liu
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Nan Yang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| |
Collapse
|
14
|
Cappelli C, Sepulveda H, Rivas S, Pola V, Urzúa U, Donoso G, Sagredo E, Carrero D, Casanova-Ortiz E, Sagredo A, González M, Manterola M, Nardocci G, Armisén R, Montecino M, Marcelain K. Ski Is Required for Tri-Methylation of H3K9 in Major Satellite and for Repression of Pericentromeric Genes: Mmp3, Mmp10 and Mmp13, in Mouse Fibroblasts. J Mol Biol 2020; 432:3222-3238. [PMID: 32198114 DOI: 10.1016/j.jmb.2020.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/23/2020] [Accepted: 03/11/2020] [Indexed: 11/27/2022]
Abstract
Several mechanisms directing a rapid transcriptional reactivation of genes immediately after mitosis have been described. However, little is known about the maintenance of repressive signals during mitosis. In this work, we address the role of Ski in the repression of gene expression during M/G1 transition in mouse embryonic fibroblasts (MEFs). We found that Ski localises as a distinct pair of dots at the pericentromeric region of mitotic chromosomes, and the absence of the protein is related to high acetylation and low tri-methylation of H3K9 in pericentromeric major satellite. Moreover, differential expression assays in early G1 cells showed that the presence of Ski is significantly associated with repression of genes localised nearby to pericentromeric DNA. In mitotic cells, chromatin immunoprecipitation assays confirmed the association of Ski to major satellite and the promoters of the most repressed genes: Mmp3, Mmp10 and Mmp13. These genes are at pericentromeric region of chromosome 9. In these promoters, the presence of Ski resulted in increased H3K9 tri-methylation levels. This Ski-dependent regulation is also observed during interphase. Consequently, Mmp activity is augmented in Ski-/- MEFs. Altogether, these data indicate that association of Ski with the pericentromeric region of chromosomes during mitosis is required to maintain the silencing bookmarks of underlying chromatin.
Collapse
Affiliation(s)
- Claudio Cappelli
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Bioquimica y Microbiologia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Hugo Sepulveda
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Solange Rivas
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Víctor Pola
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ulises Urzúa
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gerardo Donoso
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eduardo Sagredo
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - David Carrero
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Emmanuel Casanova-Ortiz
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alfredo Sagredo
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marisel González
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marcia Manterola
- Instituto de Ciencias Biomédicas. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gino Nardocci
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; FONDAP Center for Genome Regulation, Santiago, Chile
| | - Ricardo Armisén
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Martin Montecino
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; FONDAP Center for Genome Regulation, Santiago, Chile
| | - Katherine Marcelain
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
15
|
Sun GF, Li HC, Zhan YP, Zhang XF, Pan LY, Chen YF, Xu K, Feng DX. SnoN residue (1-366) attenuates hypertrophic scars through resistance to transforming growth factor-β1-induced degradation. J Transl Med 2019; 99:1861-1873. [PMID: 31409891 DOI: 10.1038/s41374-019-0302-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 01/07/2023] Open
Abstract
Hypertrophic scars (HSs) are characterized by fibroblast hyperproliferation and excessive matrix deposition. During wound healing, transforming growth factor (TGF)-β1/Smad signaling acts as a key regulator. As a transcriptional corepressor of TGF-β1/Smads, SnoN is expressed at low levels in many fibrotic diseases due to TGF-β1/Smad-induced degradation. SnoN residue (1-366; SR) is resistant to TGF-β1-induced degradation. However, the expression and role of SR in HSs are unknown. Here, we inhibited TGF-β1/Smad signaling via overexpression of SR to block fibroblast transdifferentiation, proliferation, and collagen deposition during HS formation. Our results showed that SnoN was downregulated in HS fibroblasts (HSFs) owing to TGF-β1/Smad-induced degradation. Overexpression of SR in normal human dermal fibroblasts (NHDFs) and HSFs successfully blocked phosphorylation of Smad2 and Smad3, thereby inhibiting NHDF transdifferentiation and HSF proliferation and reducing type I collagen (ColI) and type III collagen (ColIII) production and secretion. In addition, we applied overexpressed full-length SnoN (SF) and SR to wound granulation tissue in a rabbit model of HSs. SR reduced wound scarring, improved collagen deposition and arrangement of scar tissue, and decreased mRNA and protein expression of ColI, ColIII, and α-smooth muscle actin (α-SMA) more effectively than SF in vivo. These results suggest that SR could be a promising therapy for the prevention of HS.
Collapse
Affiliation(s)
- Gui-Fang Sun
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Hong-Chang Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yue-Ping Zhan
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Xiao-Fen Zhang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Li-Yun Pan
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Ya-Feng Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Ke Xu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Dian-Xu Feng
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
16
|
Xu T, Yang R, Ma X, Chen W, Liu S, Liu X, Cai X, Xu H, Chi B. Bionic Poly(γ-Glutamic Acid) Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars. Adv Healthc Mater 2019; 8:e1900123. [PMID: 30972958 DOI: 10.1002/adhm.201900123] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/15/2019] [Indexed: 12/16/2022]
Abstract
Hypertrophic scarring (HS) remains a great challenge in wound dressing. Although various bionic extracellular matrix (ECM) biomaterials have been designed towards HS treatment, not all biomaterials can synergize biological functions and application functions in wound repair. Bionic scar-inhibiting scaffolds, loaded with biomolecules or drugs, become promising strategies for scarless skin regeneration. In this work, inspired by the physicochemical environment of ECM, a versatile fabrication of poly(γ-glutamic acid) based on electrospun photocrosslinkable hydrogel fibrous scaffolds incorporated with ginsenoside Rg3 (GS-Rg3) is developed for tissue repair and wound therapy. Decorated with adhesive peptide, bionic fibrous scaffolds can accelerate fibroblasts to sprout and grow, forming organized space-filling basement that gradually fills a depression before wound close up in the early stage. Additionally, by sustained release of GS-Rg3 in late stage, fibrous scaffolds promote scarless wound healing in vivo as evidenced by the promotion of cell communication and skin regeneration, as well as the subsequent decrease of angiogenesis and collagen accumulation. These ECM-inspired fibrous scaffolds, therefore, offer new perspectives on accelerated wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
| | - Rong Yang
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
| | - Xuebin Ma
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing 210094 China
| | - Wei Chen
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
| | - Shuai Liu
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing 210094 China
| | - Xin Liu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
| | - Xiaojun Cai
- College of Materials Science and EngineeringNanjing Tech University Nanjing 211816 Nanjing China
| | - Hong Xu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
- Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Bo Chi
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
- Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
17
|
Kim M, Kim SW, Kim H, Hwang CW, Man Choi J, Kang HW. Development of a reproducible in vivo laser-induced scar model for wound healing study and management. BIOMEDICAL OPTICS EXPRESS 2019; 10:1965-1977. [PMID: 31061768 PMCID: PMC6485006 DOI: 10.1364/boe.10.001965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The aim of the current study was to establish animal scar models in a simple and rapid manner by comparing three methods. Wounds were created on the buttocks of Sprague Dawley rats. For Group 1, the initial wound was created by surgical incision. For Groups 2 and 3, a 1470-nm laser was employed to generate dermal burns as the initial wound. The wounds in Groups 1 and 3 were then sutured for three days. After the wound healing, Group 2 generated the largest collagen proportion with abundant collagen type I and significant increases in α-SMA and TGF-β1. The proposed method can be an efficient way to develop rat scar models in a simple manner for evaluating scar treatment.
Collapse
Affiliation(s)
- Myeongjin Kim
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, South Korea
- The authors (M Kim and SW Kim) equally contributed to this work
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, South Korea
- The authors (M Kim and SW Kim) equally contributed to this work
| | - Hyejin Kim
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, South Korea
| | - Chi Woo Hwang
- Department of Molecular Biology, Kosin University College of Medicine, Busan, Republic of Korea
| | | | - Hyun Wook Kang
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, South Korea
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, South Korea
| |
Collapse
|
18
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Zhong L, Hao H, Chen D, Hou Q, Zhu Z, He W, Sun S, Sun M, Li M, Fu X. Arsenic trioxide inhibits the differentiation of fibroblasts to myofibroblasts through nuclear factor erythroid 2‐like 2 (NFE2L2) protein and the Smad2/3 pathway. J Cell Physiol 2018; 234:2606-2617. [PMID: 30317545 DOI: 10.1002/jcp.27073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/28/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Lingzhi Zhong
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Haojie Hao
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Deyun Chen
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Qian Hou
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Ziying Zhu
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Wenjun He
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Sujing Sun
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Mengli Sun
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Meirong Li
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan BranchSanya China
| | - Xiaobing Fu
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| |
Collapse
|
20
|
Song Y, Yu Z, Song B, Guo S, Lei L, Ma X, Su Y. Usnic acid inhibits hypertrophic scarring in a rabbit ear model by suppressing scar tissue angiogenesis. Biomed Pharmacother 2018; 108:524-530. [PMID: 30243085 DOI: 10.1016/j.biopha.2018.06.176] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 12/27/2022] Open
Abstract
Hypertrophic scarring is a common condition in the Chinese population; however, there are currently no satisfactory drugs to treat the disorder. Previous studies showed that angiogenesis plays an important role in the early phase of hypertrophic scarring and inhibition of angiogenesis has been reported as an effective strategy for anti-hypertrophic scar therapy. A recent study showed that usnic acid (UA), an active compound found mainly in lichens, inhibited tumor angiogenesis both in vivo and in vitro. To investigate the therapeutic effects of UA on hypertrophic scarring and to explore the possible mechanism involved, a rabbit ear hypertrophic scar model was established. Scars were treated once a week for four weeks with UA, DMSO or triamcinolone acetonide acetate. Histological evaluation of hematoxylin and eosin staining indicated that UA significantly inhibited hypertrophic scar formation, with obvious reductions in scar height and coloration. The scar elevation index (SEI) was also evidently reduced. Masson's trichrome staining showed that UA significantly ameliorated accumulation of collagen tissue. Immunohistochemical analysis of CD31 expression showed that UA significantly inhibited scar angiogenesis. In vitro, UA inhibited endothelial cell migration and tube formation as well as the proliferation of both human umbilical vein endothelial cells and scar fibroblast cells. These results provide the first evidence of the therapeutic effectiveness of UA in hypertrophic scar formation in an animal model via a mechanism that involves suppression of scar angiogenesis.
Collapse
Affiliation(s)
- Yajuan Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shuzhong Guo
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lei Lei
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xianjie Ma
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Yingjun Su
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
21
|
Li P, Liu P, Peng Y, Zhang ZH, Li XM, Xiong RP, Chen X, Zhao Y, Ning YL, Yang N, Zhang B, Zhou YG. The ERK/CREB pathway is involved in the c-Ski expression induced by low TGF-β1 concentrations during primary fibroblast proliferation. Cell Cycle 2018; 17:1319-1328. [PMID: 29950153 DOI: 10.1080/15384101.2018.1480221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Increasing evidence has suggested that bidirectional regulation of cell proliferation is one important effect of TGF-β1 in wound healing. Increased c-Ski expression plays a role in promoting fibroblast proliferation at low TGF-β1 concentrations, but the mechanism by which low TGF-β1 concentrations regulate c-Ski levels remains unclear. In this study, the proliferation of rat primary fibroblasts was assessed with an ELISA BrdU kit. The mRNA and protein expression and phosphorylation levels of corresponding factors were measured by RT-qPCR, immunohistochemistry or Western blotting. We first found that low TGF-β1 concentrations not only promoted c-ski mRNA and protein expression in rat primary fibroblasts but also increased the phosphorylation levels of Extracellular Signal-Regulated Kinases (ERK) and cAMP response element binding (CREB) protein. An ERK kinase (mitogen-activated protein kinase kinase, MEK) inhibitor significantly inhibited ERK1/2 phosphorylation levels, markedly reducing c-Ski expression and CREB phosphorylation levels and abrogating the growth-promoting effect of low TGF-β1 concentrations. At the same time, Smad2/3 phosphorylation levels were not significantly changed. Taken together, these results suggest that the increased cell proliferation induced by low TGF-β1 concentrations mediates c-Ski expression potentially through the ERK/CREB pathway rather than through the classic TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Ping Li
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Ping Liu
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China.,b Department 4, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Yan Peng
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Zhuo-Hang Zhang
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Xiao-Ming Li
- b Department 4, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Ren-Ping Xiong
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Xing Chen
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Yan Zhao
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Ya-Lei Ning
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Nan Yang
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Bo Zhang
- b Department 4, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Yuan-Guo Zhou
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| |
Collapse
|
22
|
Stone Ii R, Natesan S, Kowalczewski CJ, Mangum LH, Clay NE, Clohessy RM, Carlsson AH, Tassin DH, Chan RK, Rizzo JA, Christy RJ. Advancements in Regenerative Strategies Through the Continuum of Burn Care. Front Pharmacol 2018; 9:672. [PMID: 30038569 PMCID: PMC6046385 DOI: 10.3389/fphar.2018.00672] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023] Open
Abstract
Burns are caused by several mechanisms including flame, scald, chemical, electrical, and ionizing and non-ionizing radiation. Approximately half a million burn cases are registered annually, of which 40 thousand patients are hospitalized and receive definitive treatment. Burn care is very resource intensive as the treatment regimens and length of hospitalization are substantial. Burn wounds are classified based on depth as superficial (first degree), partial-thickness (second degree), or full-thickness (third degree), which determines the treatment necessary for successful healing. The goal of burn wound care is to fully restore the barrier function of the tissue as quickly as possible while minimizing infection, scarring, and contracture. The aim of this review is to highlight how tissue engineering and regenerative medicine strategies are being used to address the unique challenges of burn wound healing and define the current gaps in care for both partial- and full-thickness burn injuries. This review will present the current standard of care (SOC) and provide information on various treatment options that have been tested pre-clinically or are currently in clinical trials. Due to the complexity of burn wound healing compared to other skin injuries, burn specific treatment regimens must be developed. Recently, tissue engineering and regenerative medicine strategies have been developed to improve skin regeneration that can restore normal skin physiology and limit adverse outcomes, such as infection, delayed re-epithelialization, and scarring. Our emphasis will be centered on how current clinical and pre-clinical research of pharmacological agents, biomaterials, and cellular-based therapies can be applied throughout the continuum of burn care by targeting the stages of wound healing: hemostasis, inflammation, cell proliferation, and matrix remodeling.
Collapse
Affiliation(s)
- Randolph Stone Ii
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Shanmugasundaram Natesan
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Christine J Kowalczewski
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Lauren H Mangum
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States.,Extremity Trauma and Regenerative Medicine, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Nicholas E Clay
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Ryan M Clohessy
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Anders H Carlsson
- Dental and Craniofacial Trauma Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - David H Tassin
- Dental and Craniofacial Trauma Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Rodney K Chan
- Dental and Craniofacial Trauma Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Julie A Rizzo
- Burn Flight Team, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Robert J Christy
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| |
Collapse
|
23
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
24
|
Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018; 129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed.
Collapse
|
25
|
Abstract
Ski is an evolutionarily conserved protein and widely participates in the regulation of various pathological and physiological processes such as wound healing, liver regeneration, development of the embryonic nervous system, muscle differentiation, and progression of many kinds of tumors. However, the distribution and function of Ski in central nervous system lesion and disease remain unclear. In this study, we investigated the spatiotemporal expression of Ski in a spinal cord injury (SCI) model in adult rats. Western Blot analysis indicated that Ski was expressed in both normal and injured spinal cord, and showed a significant upregulation after SCI compared with the sham group. Double-labeled immunofluorescence staining showed that Ski was significantly expressed in astrocytes, but not in the neurons. Western Blot analyses of glial fibrillary acidic protein (GFAP) and BBB scores were carried out and correlation analysis showed a positive correlation between them. In addition, the relative expression level of Ski was also positively correlated with the relative expression level of GFAP. Moreover, the conspicuous co-expression band of Ski and GFAP at the lesion border was found in the results of immunofluorescence staining combined with the pattern of glial scar formation reflected by H&E staining; in addition, it was found that Ski was also highly associated with glial scar. On the basis of our data, we speculated that Ski might play an important role in the process of reactive astrogliosis after SCI and our study might provide a basis for further study on the detailed role of Ski in astrocytes.
Collapse
|
26
|
Zhao X, Wang XW, Zhou KS, Nan W, Guo YQ, Kou JL, Wang J, Xia YY, Zhang HH. Expression of Ski and its role in astrocyte proliferation and migration. Neuroscience 2017; 362:1-12. [DOI: 10.1016/j.neuroscience.2017.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 10/19/2022]
|
27
|
Górnikiewicz B, Ronowicz A, Madanecki P, Sachadyn P. Genome-wide DNA methylation profiling of the regenerative MRL/MpJ mouse and two normal strains. Epigenomics 2017; 9:1105-1122. [DOI: 10.2217/epi-2017-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: We aimed to identify the pivotal differences in the DNA methylation profiles between the regeneration capable MRL/MpJ mouse and reference mouse strains. Materials & methods: Global DNA methylation profiling was performed in ear pinnae, bone marrow, spleen, liver and heart from uninjured adult females of the MRL/MpJ and C57BL/6J and BALB/c. Results & conclusion: A number of differentially methylated regions (DMRs) distinguishing between the MRL/MpJ mouse and both references were identified. In the ear pinnae, the DMRs were enriched in genes associated with development, inflammation and apoptosis, and in binding sites of transcriptional modulator Smad1. Several DMRs overlapped previously mapped quantitative trait loci of regenerative capability. The results suggest potential epigenetic determinants of regenerative phenomenon.
Collapse
Affiliation(s)
- Bartosz Górnikiewicz
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| | - Anna Ronowicz
- Department of Biology & Pharmaceutical Botany of Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Madanecki
- Department of Biology & Pharmaceutical Botany of Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sachadyn
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
28
|
Herter EK, Xu Landén N. Non-Coding RNAs: New Players in Skin Wound Healing. Adv Wound Care (New Rochelle) 2017; 6:93-107. [PMID: 28289554 PMCID: PMC5346954 DOI: 10.1089/wound.2016.0711] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/26/2016] [Indexed: 12/22/2022] Open
Abstract
Significance: Wound healing is a basic physiological process that is utilized to keep the integrity of the skin. Impaired wound repair, such as chronic wounds and pathological scars, presents a major health and economic burden worldwide. To date, efficient targeted treatment for these wound disorders is still lacking, which is largely due to our limited understanding of the biological mechanisms underlying these diseases. Research driven around discovering new therapies for these complications is, therefore, an urgent need. Recent Advances: The vast majority of the human genome is transcribed to RNAs that lack protein-coding capacity. Intensive research in the recent decade has revealed that these non-coding RNAs (ncRNAs) function as important regulators of cellular physiology and pathology, which makes them promising therapeutic and diagnostic entities. Critical Issues: A class of short ncRNAs, microRNAs, has been found to be indispensable for all the phases of skin wound healing and plays important roles in the pathogenesis of wound complications. The role of long ncRNAs (lncRNA) in skin wound healing remains largely unexplored. Recent studies revealed the essential role of lncRNAs in epidermal differentiation and stress response, indicating their potential importance for skin wound healing, which warrants future research. Future Directions: An investigation of ncRNAs will add new layers of complexity to our understanding of normal skin wound healing as well as to the pathogenesis of wound disorders. Development of ncRNA-based biomarkers and treatments is an interesting and important avenue for future research on wound healing.
Collapse
Affiliation(s)
- Eva K. Herter
- Unit of Dermatology and Venereology, Molecular Dermatology Research Group, Department of Medicine, Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden
| | - Ning Xu Landén
- Unit of Dermatology and Venereology, Molecular Dermatology Research Group, Department of Medicine, Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Rahimnejad M, Derakhshanfar S, Zhong W. Biomaterials and tissue engineering for scar management in wound care. BURNS & TRAUMA 2017; 5:4. [PMID: 28127573 PMCID: PMC5251275 DOI: 10.1186/s41038-017-0069-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 01/12/2017] [Indexed: 04/24/2023]
Abstract
Scars are a natural and unavoidable result from most wound repair procedures and the body's physiological healing response. However, they scars can cause considerable functional impairment and emotional and social distress. There are different forms of treatments that have been adopted to manage or eliminate scar formation. This review covers the latest research in the past decade on using either natural agents or synthetic biomaterials in treatments for scar reduction.
Collapse
Affiliation(s)
| | | | - Wen Zhong
- University of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
30
|
Xiao Y, Ahadian S, Radisic M. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:9-26. [PMID: 27405960 DOI: 10.1089/ten.teb.2016.0200] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell-matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them.
Collapse
Affiliation(s)
- Yun Xiao
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | - Samad Ahadian
- 2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | - Milica Radisic
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
31
|
Peng Y, Li P, Zhao ZA, Chen L, Zhao XG, Chen X, Zhao Y, Xiong RP, Ning YL, Yang N, Ye J, Zhou YG. Comparative evaluation of the wound-healing potency of recombinant bFGF and ski gene therapy in rats. Growth Factors 2016; 34:119-27. [PMID: 27418111 DOI: 10.1080/08977194.2016.1200570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We previously demonstrated that cellular Sloan-Kettering Institute (c-Ski) played a dual role, both promoting wound healing and alleviating scar formation. However, its mechanism and therapeutic effects are not clear, especially compared with widely used treatments, such as basic fibroblast growth factor (bFGF) administration. However, Ski treatment led to an even shorter healing time and a more significant reduction in scar area than bFGF treatment. The mechanism underlying this difference was related to a reduced inflammatory response, more rapid re-epithelialization, less collagen after healing and a greater reduction in the proportion of alpha-smooth muscle actin and SMemb-positive cells after Ski treatment. These results not only confirm that Ski plays a dual role in promoting healing and reducing scarring but also suggest that Ski yields better treatment effects than bFGF, indicating better potential therapeutic effects in wound repair.
Collapse
Affiliation(s)
- Yan Peng
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Ping Li
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Zi-Ai Zhao
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Lei Chen
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Xiao-Guang Zhao
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Xing Chen
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Yan Zhao
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Ren-Ping Xiong
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Ya-Lei Ning
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Nan Yang
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Jian Ye
- b Department of Ophthalmology , Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China
| | - Yuan-Guo Zhou
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| |
Collapse
|
32
|
MiR-1908 promotes scar formation post-burn wound healing by suppressing Ski-mediated inflammation and fibroblast proliferation. Cell Tissue Res 2016; 366:371-380. [PMID: 27256397 DOI: 10.1007/s00441-016-2434-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/06/2016] [Indexed: 02/03/2023]
Abstract
The cell biological basis for scar formation is mainly via excessive fibroblast proliferation accompanied by hypernomic Col I accumulation and inflammation. The role of miR-1908 in scar formation has not been investigated. In this study, we found that miR-1908 expression was inversely associated with the scar suppressor Ski in normal, burn-wounded, healing and scar dermal tissues in humans. Bioinformatics and luciferase reporter gene assays confirmed that miR-1908 targeted the 3'UTR region of Ski mRNA and suppressed Ski expression. Next, human scar epidermal fibroblasts were isolated and the miR-1908 oligonucleotide mimic and inhibitor were respectively transfected into the cells. Western blot analysis proved that Ski expression was sharply reduced by the miR-1908 mimic. MTT and Cell Counting Kit-8 analyses showed that miR-1908 mimic transfection promoted cell proliferation. Simultaneously, data on real-time qPCR analysis indicated that expression of the fibrotic master gene TGF-β1, Ski-suppressing gene Meox2, Col I and proinflammatory markers IL-1α and TNF-α, were all significantly upregulated. In contrast, the miR-1908 inhibitor had a completely opposite effect on cell proliferation and gene expression. The mimic and inhibitor were locally injected into rats with abdominal burn-wounded scars during a 180-day, post-healing experiment. The miR-1908 mimic injection significantly reduced Ski expression, as well as the area, volume and fibrosis of scars in vivo. And, in contrast, the miR-1908 inhibitor injection had an opposite effect to that of the miR-1908 mimic injection. In conclusion, miR-1908 had a positive role in scar formation by suppressing Ski-mediated inflammation and fibroblast proliferation in vitro and in vivo.
Collapse
|
33
|
Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen 2016; 24:215-22. [PMID: 26704519 DOI: 10.1111/wrr.12398] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/19/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
Scar formation, with persistent alteration of the normal tissue structure, is an undesirable and significant result of both wound healing and fibrosing disorders. There are few strategies to prevent or to treat scarring. The transforming growth factor beta (TGF-β) superfamily is an important mediator of tissue repair. Each TGF-β isoform may exert a different effect on wound healing, which may be context-dependent. In particular, TGF-β1 may mediate fibrosis in adults' wounds, while TGF-β3 may promote scarless healing in the fetus and reduced scarring in adults. Thus, TGF-β3 may offer a scar-reducing therapy for acute and chronic wounds and fibrosing disorders.
Collapse
Affiliation(s)
- Michael K Lichtman
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts.,Veterans' Administration, Boston Healthcare System, Division of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - Marta Otero-Vinas
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts.,Department of Systems Biology, The Tissue Repair and Regeneration Laboratory, University of Vic-Central University of Catalonia, Vic, Spain
| | - Vincent Falanga
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts.,Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
34
|
Vellayappan M, Jaganathan SK, Manikandan A. Nanomaterials as a game changer in the management and treatment of diabetic foot ulcers. RSC Adv 2016. [DOI: 10.1039/c6ra24590k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nanoengineered biomaterials have tremendously improved the range of tools utilized for the control of as well as acceleration of healing of diabetic foot ulcers (DFU) over the last few decades.
Collapse
Affiliation(s)
- M. V. Vellayappan
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - S. K. Jaganathan
- Department for Management of Science and Technology Development
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| | - A. Manikandan
- Department of Chemistry
- Bharath University
- Chennai
- India
| |
Collapse
|
35
|
Butzelaar L, Ulrich MMW, Mink van der Molen AB, Niessen FB, Beelen RHJ. Currently known risk factors for hypertrophic skin scarring: A review. J Plast Reconstr Aesthet Surg 2015; 69:163-9. [PMID: 26776348 DOI: 10.1016/j.bjps.2015.11.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 07/20/2015] [Accepted: 11/15/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The study aims to provide an overview of risk factors for hypertrophic scarring. BACKGROUND Hypertrophic skin scarring remains a major concern in medicine and causes considerable morbidity. Despite extensive research on this topic, the precise mechanism of excessive scarring is still unknown. In addition, the current literature lacks an overview of the possible risk factors in the development of hypertrophic scars. METHODS PubMed searches were performed on risk factors for hypertrophic scar (HTS) formation. RESULTS Eleven studies suggesting nine factors associated with HTS formation were found. Studies concerning chemotherapy, age, stretch, infection, and smoking have a moderate to high strength of evidence, but some other factors have not been studied in a convincing manner or are still disputed. CONCLUSIONS Risk factors for HTS formation are young age, bacterial colonization, and skin subjected to stretch. Chemotherapy, statins, and smoking seem to play a protective role in HTS formation.
Collapse
Affiliation(s)
- L Butzelaar
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam, The Netherlands.
| | - M M W Ulrich
- Association of Dutch Burn Centers, Beverwijk, The Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - A B Mink van der Molen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center, Utrecht, The Netherlands
| | - F B Niessen
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - R H J Beelen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Hou Q, He WJ, Hao HJ, Han QW, Chen L, Dong L, Liu JJ, Li X, Zhang YJ, Ma YZ, Han WD, Fu XB. The four-herb Chinese medicine ANBP enhances wound healing and inhibits scar formation via bidirectional regulation of transformation growth factor pathway. PLoS One 2014; 9:e112274. [PMID: 25489732 PMCID: PMC4260828 DOI: 10.1371/journal.pone.0112274] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/10/2014] [Indexed: 12/26/2022] Open
Abstract
The four-herb Chinese medicine ANBP is a pulverized mixture of four herbs including Agrimonia Eupatoria (A), Nelumbo Nucifera Gaertn (N), Boswellia Carteri (B) and Pollen Typhae Angustifoliae (P). The combination of the four herbs was first described in Chinese canonical medicine about 2000 years ago for treatment of various trauma disorders, such as hemostasis, antiinflammatory, analgesia, and wound healing, etc. However, the precise mechanisms of ANBP are still unclear. In our study, using rabbit ear hypertrophic scar models of full-thickness skin defect, we showed that local ANBP treatment not only significantly enhanced wound healing by relieving inflammation, increasing formation of granulation tissue and accelerating re-epithelialization, but also reduced scar formation by decreasing collagen production, protuberant height and volume of scars, and increasing collagen maturity. We demonstrated that these effects of ANBP are associated with transforming growth factor (TGF)-β1-mediated signalling pathways through Smad-dependent pathways. ANBP treatment significantly increased expression of TGF-β1 and Smad2/3 mRNA at the early stage of wound healing, and led to markedly decrease expression of TGF-β1 and Smad2/3 compared with the control group after 14 days post-wounding. Taken together, our results defined a bidirectional regulation role of ANBP for TGF-β1/Smad pathway in promoting wound healing and alleviating scar formation, which may be an effective therapy for human wounds at the earliest stage.
Collapse
Affiliation(s)
- Qian Hou
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, P. R. China
- Department of Internal Medicine, Chinese PLA 148th Hospital, Zibo, P. R. China
| | - Wen-Jun He
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, P. R. China
- Wound Healing and Cell Biology Laboratory, the First Affiliated Hospital, Chinese PLA General Hospital, Beijing, P. R. China
| | - Hao-Jie Hao
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, P. R. China
| | - Qing-Wang Han
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, P. R. China
| | - Li Chen
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, P. R. China
| | - Liang Dong
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, P. R. China
| | - Jie-Jie Liu
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, P. R. China
| | - Xiang Li
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, P. R. China
| | - Ya-Jing Zhang
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, P. R. China
| | - Ying-Zhi Ma
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, P. R. China
| | - Wei-Dong Han
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, P. R. China
| | - Xiao-Bing Fu
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, P. R. China
- Wound Healing and Cell Biology Laboratory, the First Affiliated Hospital, Chinese PLA General Hospital, Beijing, P. R. China
| |
Collapse
|
37
|
Chen Z, Li W, Ning Y, Liu T, Shao J, Wang Y. Ski diminishes TGF-β1-induced myofibroblast phenotype via up-regulating Meox2 expression. Exp Mol Pathol 2014; 97:542-9. [PMID: 25445500 DOI: 10.1016/j.yexmp.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/26/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The aim of the present work was to investigate the mechanism of transforming growth factor (TGF)-β1 and Sloan-Kettering Institute (Ski) in the pathogenesis of hypertrophic scars (HS). BACKGROUND Wound healing is an inherent process, but the aberrant wound healing of skin injury may lead to HS. There has been growing evidence suggesting a role for TGF-β1 and Ski in the pathogenesis of fibrosis. MATERIAL AND METHODS The MTT assay was used to detect the cell proliferation induced by TGF-β1. The Ski gene was transduced into cells with an adenovirus, and then the function of Ski in cell proliferation and differentiation was observed. Ski mRNA levels were measured by RT-PCR. Western blotting was used to detect the protein expression of α-SMA, E-cadherin, Meox1, Meox2, Zeb1 and Zeb2. RESULTS TGF-β1 can promote human skin fibroblast (HSF) cell proliferation in a time-dependent manner, but the promoting effect could be suppressed by Ski. TGF-β1 also induces the formation of the myofibroblast phenotype and the effect of TGF-β1 could be diminished by Ski. Also, Ski modulates the cardiac myofibroblast phenotype and function through suppression of Zeb2 by up-regulating the expression of Meox2. CONCLUSIONS Ski diminishes the myofibroblast phenotype induced by TGF-β1 through the suppression of Zeb2 by up-regulating the expression of Meox2.
Collapse
Affiliation(s)
- Zhaowei Chen
- Department of Burns and Plastic Surgery, Liao Cheng Hospital, Liao Cheng 252000, China.
| | - Wenjing Li
- Department of Burns and Plastic Surgery, Liao Cheng Hospital, Liao Cheng 252000, China
| | - Yan Ning
- Department of Burns and Plastic Surgery, Liao Cheng Hospital, Liao Cheng 252000, China
| | - Tong Liu
- Department of Burns and Plastic Surgery, Liao Cheng Hospital, Liao Cheng 252000, China
| | - Jingxiang Shao
- Department of Burns and Plastic Surgery, Liao Cheng Hospital, Liao Cheng 252000, China
| | - Yaojun Wang
- Department of Burns and Skin Surgery, Xi Jing Hospital, Xian 710032, China
| |
Collapse
|
38
|
Mesenchymal stem cells prevent hypertrophic scar formation via inflammatory regulation when undergoing apoptosis. J Invest Dermatol 2014; 134:2648-2657. [PMID: 24714203 DOI: 10.1038/jid.2014.169] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 03/03/2014] [Accepted: 03/30/2014] [Indexed: 12/29/2022]
Abstract
The cutaneous wound-healing process can lead to hypertrophic scar formation, during which exaggerated inflammation has been demonstrated to have an important role. Therefore, an exploration of strategies designed to regulate this inflammatory process is warranted. Mesenchymal stem cells (MSCs) have recently been demonstrated to regulate inflammation in various diseases. In this regard, using a rabbit model, we locally injected human mesenchymal stem cells (hMSCs) derived from bone marrow to treat hypertrophic scar formation, and explored their underlying mechanisms. We found that hMSC therapy efficiently regulated inflammation and prevented scar formation. We attributed the therapeutic effects of hMSCs to their secretion of an anti-inflammatory protein, TNF-alpha-stimulated gene/protein 6 (TSG-6). Unexpectedly, after injection, the number of surviving hMSCs decreased markedly and the hMSCs underwent extensive apoptosis, which was demonstrated to promote their secretion of TSG-6, partially through the activation of caspase-3. Moreover, H2O2-induced apoptotic hMSCs showed higher inflammatory regulatory abilities. The inhibition of caspase-3 decreased the inflammatory regulatory abilities of hMSCs and attenuated their therapeutic effects. Our results demonstrate that hMSCs can efficiently prevent hypertrophic scar formation via inflammatory regulation. In addition, we found that apoptosis has an important role in the activation of the inflammatory regulatory abilities of hMSCs.
Collapse
|
39
|
Arno AI, Gauglitz GG, Barret JP, Jeschke MG. New molecular medicine-based scar management strategies. Burns 2014; 40:539-51. [PMID: 24438742 DOI: 10.1016/j.burns.2013.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/21/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023]
Abstract
Keloids and hypertrophic scars are prevalent disabling conditions with still suboptimal treatments. Basic science and molecular-based medicine research have contributed to unravel new bench-to-bedside scar therapies and to dissect the complex signalling pathways involved. Peptides such as the transforming growth factor beta (TGF-β) superfamily, with Smads, Ski, SnoN, Fussels, endoglin, DS-Sily, Cav-1p, AZX100, thymosin-β4 and other related molecules may emerge as targets to prevent and treat keloids and hypertrophic scars. The aim of this review is to describe the basic complexity of these new molecular scar management strategies and point out new fibrosis research lines.
Collapse
Affiliation(s)
- Anna I Arno
- Ross Tilley Burn Centre and Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Plastic Surgery Department and Burn Unit, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Gerd G Gauglitz
- Department of Dermatology and Allergology, Ludwig Maximilians University, Munich, Germany
| | - Juan P Barret
- Plastic Surgery Department and Burn Unit, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Marc G Jeschke
- Ross Tilley Burn Centre and Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Xie Z, Paras CB, Weng H, Punnakitikashem P, Su LC, Vu K, Tang L, Yang J, Nguyen KT. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater 2013; 9:9351-9. [PMID: 23917148 DOI: 10.1016/j.actbio.2013.07.030] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/08/2013] [Accepted: 07/24/2013] [Indexed: 01/01/2023]
Abstract
The objective of this research is to develop a dual growth factor-releasing nanoparticle-in-nanofiber system for wound healing applications. In order to mimic and promote the natural healing procedure, chitosan and poly(ethylene oxide) were electrospun into nanofibrous meshes as mimics of extracellular matrix. Vascular endothelial growth factor (VEGF) was loaded within nanofibers to promote angiogenesis in the short term. In addition, platelet-derived growth factor-BB (PDGF-BB) encapsulated poly(lactic-co-glycolic acid) nanoparticles were embedded inside nanofibers to generate a sustained release of PDGF-BB for accelerated tissue regeneration and remodeling. In vitro studies revealed that our nanofibrous composites delivered VEGF quickly and PDGF-BB in a relayed manner, supported fibroblast growth and exhibited anti-bacterial activities. A preliminary in vivo study performed on normal full thickness rat skin wound models demonstrated that nanofiber/nanoparticle scaffolds significantly accelerated the wound healing process by promoting angiogenesis, increasing re-epithelialization and controlling granulation tissue formation. For later stages of healing, evidence also showed quicker collagen deposition and earlier remodeling of the injured site to achieve a faster full regeneration of skin compared to the commercial Hydrofera Blue® wound dressing. These results suggest that our nanoparticle-in-nanofiber system could provide a promising treatment for normal and chronic wound healing.
Collapse
Affiliation(s)
- Zhiwei Xie
- Department of Bioengineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang L, Hou Y, Sun Y, Zhao L, Tang X, Hu P, Yang J, Zeng Z, Yang G, Cui X, Liu M. c-Ski activates cancer-associated fibroblasts to regulate breast cancer cell invasion. Mol Oncol 2013; 7:1116-28. [PMID: 24011664 DOI: 10.1016/j.molonc.2013.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 12/14/2022] Open
Abstract
Aberrant expression of c-Ski oncoprotein in some tumor cells has been shown to be associated with cancer development. However, the role of c-Ski in cancer-associated fibroblasts (CAFs) of tumor microenvironment has not been characterized. In the current study, we found that c-Ski is highly expressed in CAFs derived from breast carcinoma microenvironment and this CAF-associated c-Ski expression is associated with invasion and metastasis of human breast tumors. We showed that c-Ski overexpression in immortalized breast normal fibroblasts (NFs) induces conversion to breast CAFs by repressing p53 and thereby upregulating SDF-1 in NFs. SDF-1 treatment or p53 knockdown in NFs had similar effects on the activation of NFs as c-Ski overexpression. The c-Ski-activated CAFs show increased proliferation, migration, invasion and contraction compared with NFs. Furthermore, c-Ski-activated CAFs facilitated the migration and invasion of MDA-MB-231 breast cancer cells. Our data suggest that c-Ski is an important regulator in the activation of CAFs and may serve as a potential therapeutic target to block breast cancer progression.
Collapse
Affiliation(s)
- Liyang Wang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yixuan Hou
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- Experimental teaching center of Basic Medicine Science, Chongqing Medical University, Chongqing 400016, China
| | - Yan Sun
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Liuyang Zhao
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Xi Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Ping Hu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Jiajia Yang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Zongyue Zeng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Guanglun Yang
- Department of Endocrine and Breast Surgery, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiaojiang Cui
- Department of Surgery, Department of Obstetrics and Gynecology, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center. Los Angeles, CA 91006, USA
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
42
|
Bosè F, Petti L, Diani M, Moscheni C, Molteni S, Altomare A, Rossi RL, Talarico D, Fontana R, Russo V, Altomare G, Reali E. Inhibition of CCR7/CCL19 axis in lesional skin is a critical event for clinical remission induced by TNF blockade in patients with psoriasis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:413-21. [PMID: 23731727 DOI: 10.1016/j.ajpath.2013.04.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 02/27/2013] [Accepted: 04/03/2013] [Indexed: 01/12/2023]
Abstract
Despite the evidence that tumor necrosis factor (TNF) inhibitors block TNF and the downstream inflammatory cascade, their primary mechanism of action in inhibiting the self-sustaining pathogenic cycle in psoriasis is not completely understood. This study has the aim to identify early critical events for the resolution of inflammation in skin lesions using anti-TNF therapy. We used a translational approach that correlates gene expression fold change in lesional skin with the Psoriasis Area and Severity Index score decrease induced by TNF blockade after 4 weeks of treatment. Data were validated by immunofluorescence microscopy on skin biopsy specimens. We found that the anti-TNF-modulated genes that mostly associated with the clinical amelioration were Ccr7, its ligand, Ccl19, and dendritic cell maturation genes. Decreased expression of T-cell activation genes and Vegf also associated with the clinical response. More important, the down-regulation of Ccr7 observed at 4 weeks significantly correlated with the clinical remission occurring at later time points. Immunofluorescence microscopy on skin biopsy specimens showed that reduction of CCR7(+) cells and chemokine ligand (CCL) 19 was paralleled by disaggregation of the dermal lymphoid-like tissue. These data show that an early critical event for the clinical remission of psoriasis in response to TNF inhibitors is the inhibition of the CCR7/CCL19 axis and support its role in psoriasis pathogenesis.
Collapse
Affiliation(s)
- Francesca Bosè
- Laboratory of Translational Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Galeazzi, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Effect of semisolid formulation of persea americana mill (avocado) oil on wound healing in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:472382. [PMID: 23573130 PMCID: PMC3614059 DOI: 10.1155/2013/472382] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/13/2013] [Indexed: 01/08/2023]
Abstract
The aim of this study was to evaluate the wound-healing activity of a semisolid formulation of avocado oil, SSFAO 50%, or avocado oil in natura, on incisional and excisional cutaneous wound models in Wistar rats. An additional objective was to quantify the fatty acids present in avocado oil. On the 14th day, a significant increase was observed in percentage wound contraction and reepithelialization in the groups treated with 50% SSFAO or avocado oil compared to the petroleum jelly control. Anti-inflammatory activity, increase in density of collagen, and tensile strength were observed inSSFAO 50% or avocado oil groups, when compared to control groups. The analysis of the components of avocado oil by gas chromatography detected the majority presence of oleic fatty acid (47.20%), followed by palmitic (23.66%), linoleic (13.46%) docosadienoic (8.88%), palmitoleic (3.58%), linolenic (1.60%), eicosenoic (1.29%), and myristic acids (0.33%). Our results show that avocado oil is a rich source of oleic acid and contains essential fatty acids. When used in natura or in pharmaceutical formulations for topical use, avocado oil can promote increased collagen synthesis and decreased numbers of inflammatory cells during the wound-healing process and may thus be considered a new option for treating skin wounds.
Collapse
|
44
|
Li J, Li P, Zhang Y, Li GB, He FT, Zhou YG, Yang K, Dai SS. Upregulation of ski in fibroblast is implicated in the peroxisome proliferator--activated receptor δ-mediated wound healing. Cell Physiol Biochem 2012; 30:1059-71. [PMID: 23052247 DOI: 10.1159/000341482] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Both peroxisome proliferator-activated receptor (PPAR) δ and Ski are investigate the interaction of PPARδ and Ski and this interaction-associated effect in wound healing. METHODS Effect of PPARδ activation on Ski expression was detected in rat skin fibroblasts by real-time PCR and western blot. Luciferase assay, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay were performed to identify the binding site of PPARδ in the promoter region of rat Ski gene. And the functional activity of PPARδ regulation to Ski was detected in fibroblast proliferation and rat skin wound healing model. RESULTS PPARδ agonist GW501516 upregulated Ski expression in a dose-dependent manner. Direct repeat-1 (DR1) response element locating at -865∼-853 in Ski promoter region was identified to mediate PPARδ binding to Ski and associated induction of Ski. Furthermore, PPARδ upregulated Ski to promote fibroblasts proliferation and rat skin wound repair, which could be largely blocked by pre-treated with Ski RNA interference. CONCLUSION This study demonstrates that Ski is a novel target gene for PPARδ and upregulation of Ski to promote fibroblast proliferation is implicated in the PPARδ-mediated wound healing.
Collapse
Affiliation(s)
- Jun Li
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chen X, Liu Y, Zhang X. Topical insulin application improves healing by regulating the wound inflammatory response. Wound Repair Regen 2012; 20:425-34. [PMID: 22564234 DOI: 10.1111/j.1524-475x.2012.00792.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xuelian Chen
- Department of Burn and Plastic Surgery; ShangHai JiaoTong University; School of Medicine Affiliated Ruijin Hospital; Shanghai; China
| | - Yan Liu
- Department of Burn and Plastic Surgery; ShangHai JiaoTong University; School of Medicine Affiliated Ruijin Hospital; Shanghai; China
| | - Xiong Zhang
- Department of Burn and Plastic Surgery; ShangHai JiaoTong University; School of Medicine Affiliated Ruijin Hospital; Shanghai; China
| |
Collapse
|
46
|
Bonnon C, Atanasoski S. c-Ski in health and disease. Cell Tissue Res 2011; 347:51-64. [DOI: 10.1007/s00441-011-1180-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/15/2011] [Indexed: 01/28/2023]
|