1
|
Gong H, Chen S, Liu S, Hu Q, Li Y, Li Y, Li G, Huang K, Li R, Fang L. Overexpressing lipid raft protein STOML2 modulates the tumor microenvironment via NF-κB signaling in colorectal cancer. Cell Mol Life Sci 2024; 81:39. [PMID: 38214751 PMCID: PMC10786741 DOI: 10.1007/s00018-023-05105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/12/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Colorectal cancer (CRC) is characterized by a complex tumor inflammatory microenvironment, while angiogenesis and immunosuppression frequently occur concomitantly. However, the exact mechanism that controls angiogenesis and immunosuppression in CRC microenvironment remains unclear. Herein, we found that expression levels of lipid raft protein STOML2 were increased in CRC and were associated with advanced disease stage and poor survival outcomes. Intriguingly, we revealed that STOML2 is essential for CRC tumor inflammatory microenvironment, which induces angiogenesis and facilitates tumor immune escape simultaneously both in vitro and in vivo. Moreover, tumors with STOML2 overexpression showed effective response to anti-angiogenesis treatment and immunotherapy in vivo. Mechanistically, STOML2 regulates CRC proliferation, angiogenesis, and immune escape through activated NF-κB signaling pathway via binding to TRADD protein, resulting in upregulation of CCND1, VEGF, and PD-L1. Furthermore, treatment with NF-κB inhibitor dramatically reversed the ability of proliferation and angiogenesis. Clinically, we also observed a strong positive correlation between STOML2 expression and Ki67, CD31, VEGFC and PD-1 of CD8+T cell expression. Taken together, our results provided novel insights into the role of STOML2 in CRC inflammatory microenvironment, which may present a therapeutic opportunity for CRC.
Collapse
Affiliation(s)
- Hui Gong
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan People's Hospital/The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, Guangdong, China
| | - Shaojing Chen
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China
| | - Shuguang Liu
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China
| | - Qianying Hu
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China
| | - Yixuan Li
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China
| | - Yifan Li
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan People's Hospital/The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, Guangdong, China
| | - Guiqiu Li
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan People's Hospital/The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, Guangdong, China.
| | - Kaimeng Huang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Riqing Li
- Shenzhen Agricultural Technology Promotion Center, Shenzhen, 518005, China.
| | - Lishan Fang
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China.
| |
Collapse
|
2
|
Lu YJ, Hsu HL, Lan YH, Chen JP. Thermosensitive Cationic Magnetic Liposomes for Thermoresponsive Delivery of CPT-11 and SLP2 shRNA in Glioblastoma Treatment. Pharmaceutics 2023; 15:1169. [PMID: 37111654 PMCID: PMC10145679 DOI: 10.3390/pharmaceutics15041169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Thermosensitive cationic magnetic liposomes (TCMLs), prepared from dipalmitoylphosphatidylcholine (DPPC), cholesterol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)]-2000, and didodecyldimethylammonium bromide (DDAB) were used in this study for the controlled release of drug/gene for cancer treatment. After co-entrapping citric-acid-coated magnetic nanoparticles (MNPs) and the chemotherapeutic drug irinotecan (CPT-11) in the core of TCML (TCML@CPT-11), SLP2 shRNA plasmids were complexed with DDAB in the lipid bilayer to prepare TCML@CPT-11/shRNA with a 135.6 ± 2.1 nm diameter. As DPPC has a melting temperature slightly above the physiological temperature, drug release from the liposomes can be triggered by an increase in solution temperature or by magneto-heating induced with an alternating magnetic field (AMF). The MNPs in the liposomes also endow the TCMLs with magnetically targeted drug delivery with guidance by a magnetic field. The successful preparation of drug-loaded liposomes was confirmed by various physical and chemical methods. Enhanced drug release, from 18% to 59%, at pH 7.4 was observed when raising the temperature from 37 to 43 °C, as well as during induction with an AMF. The in vitro cell culture experiments endorse the biocompatibility of TCMLs, whereas TCML@CPT-11 shows some enhancement of cytotoxicity toward U87 human glioblastoma cells when compared with free CPT-11. The U87 cells can be transfected with the SLP2 shRNA plasmids with very high efficiency (~100%), leading to silencing of the SLP2 gene and reducing the migration ability of U87 from 63% to 24% in a wound-healing assay. Finally, an in vivo study, using subcutaneously implanted U87 xenografts in nude mice, demonstrates that the intravenous injection of TCML@CPT11-shRNA, plus magnetic guidance and AMF treatment, can provide a safe and promising therapeutic modality for glioblastoma treatment.
Collapse
Affiliation(s)
- Yu-Jen Lu
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, School of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan
| | - Hao-Lung Hsu
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yu-Hsiang Lan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, School of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, School of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
3
|
Liu Y, Sun L, Guo H, Zhou S, Wang C, Ji C, Meng F, Liang S, Zhang B, Yuan Y, Ma K, Li X, Guo X, Cui T, Zhang N, Wang J, Liu Y, Liu L. Targeting SLP2-mediated lipid metabolism reprograming restricts proliferation and metastasis of hepatocellular carcinoma and promotes sensitivity to Lenvatinib. Oncogene 2023; 42:374-388. [PMID: 36473908 DOI: 10.1038/s41388-022-02551-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
SLP2, a protein located on mitochondrial, has been shown to be associated with mitochondrial biosynthesis. Here we explored the potential mechanisms by which SLP2 regulates the development of hepatocellular carcinoma. SLP2 could bind to the c-terminal of JNK2 to affect the ubiquitinated proteasomal degradation pathway of JNK2 and maintain the protein stability of JNK2. The increase of JNK2 markedly increases SREBP1 activity, promoting SREBP1 translocation into the nucleus to promote de novo lipogenesis. Alteration of the JNK2 C-terminal disables SLP2 from mediating SLP2-enhanced de novo lipogenesis. YTHDF1 interacts with SLP2 mRNA in a METTL3/m6A-dependent manner. In a spontaneous HCC animal model, SLP2/c-Myc/sgP53 increases the incidence rate of spontaneous HCC, tumor volume, and tumor number. Importantly, statistical analyses show that levels of SLP2 correlate with tumor sizes, tumor metastasis, overall survival, and disease-free survival of the patients. Targeting the SLP2/SREBP1 pathway effectively inhibits proliferation and metastasis of HCC tumors with high SLP2 expression in vivo combined with lenvatinib. These results illustrate a direct lipogenesis-promoting role of the pro-oncogenic SLP2, providing a mechanistic link between de novo lipogenesis and HCC.
Collapse
Affiliation(s)
- Yufeng Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Linmao Sun
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hongrui Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Shuo Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Chunxu Wang
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Fanzheng Meng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Shuhang Liang
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yubin Yuan
- Department of Hepatobiliary Surgery, Heze City Hospital, Heze, 274000, China
| | - Kun Ma
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xianying Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Xinyu Guo
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Ning Zhang
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China.
| | - Lianxin Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
4
|
Chuang CC, Lan YH, Lu YJ, Weng YL, Chen JP. Targeted delivery of irinotecan and SLP2 shRNA with GRP-conjugated magnetic graphene oxide for glioblastoma treatment. Biomater Sci 2022; 10:3201-3222. [PMID: 35579261 DOI: 10.1039/d2bm00420h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic nanoparticles (MNPs) are useful for magnetic targeted drug delivery while ligand-mediated active targeting is another common delivery strategy for cancer therapy. In this work, we intend to prepare magnetic graphene oxide (mGO) by chemical co-precipitation of MNPs on the GO surface, followed by conjugation of the gastrin releasing peptide (GRP) as a targeting ligand, for dual targeted drug/gene delivery in invasive brain glioma treatment. mGO was grafted with chitosan, complexed with shRNA plasmid DNA for stomatin-like protein 2 (SLP2) gene silencing, modified with urocanic acid for plasmid DNA endosomal escape, PEGylated for GRP conjugation, and loaded with the chemotherapeutic drug irinotecan (CPT-11) by π-π interaction for pH-responsive drug release (mGOCUG/CPT-11/shRNA). In addition to the in depth characterization of the physico-chemical and biological properties during each preparation step, we also study the loading/pH-responsive release behavior of CPT-11 and the shRNA plasmid loading/cell transfection efficiency. The targeting and antitumor efficacies of the nanocomposite were studied with U87 human glioblastoma cells in vitro. An in vivo study revealed that intravenous administration followed by magnetic guidance results in the efficient targeted delivery of mGOCUG/CPT-11/shRNA to orthotopic brain tumors in nude mice, and it exhibits excellent antitumor efficacy with a reduced tumor growth rate and prolonged animal survival time. Our work thus highlights a multifunctional mGO-based drug/gene delivery platform for effective combination cancer therapy in glioblastoma treatment.
Collapse
Affiliation(s)
- Chi-Cheng Chuang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yu-Hsiang Lan
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yu-Lun Weng
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33305, Taiwan
| | - Jyh-Ping Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan.
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33305, Taiwan
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
5
|
Ma W, Chen Y, Xiong W, Li W, Xu Z, Wang Y, Wei Z, Mou T, Wu Z, Cheng M, Zou Y, Zhu Y, Zhou W, Liu F, Geng Y. STOML2 interacts with PHB through activating MAPK signaling pathway to promote colorectal Cancer proliferation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:359. [PMID: 34781982 PMCID: PMC8591804 DOI: 10.1186/s13046-021-02116-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Highly expressed STOML2 has been reported in a variety of cancers, yet few have detailed its function and regulatory mechanism. This research aims to reveal regulatory mechanism of STOML2 and to provide evidence for clinical therapeutics, via exploration of its role in colorectal cancer, and identification of its interacting protein. METHODS Expression level of STOML2 in normal colon and CRC tissue from biobank in Nanfang Hospital was detected by pathologic methods. The malignant proliferation of CRC induced by STOML2 was validated via gain-of-function and loss-of-function experiments, with novel techniques applied, such as organoid culture, orthotopic model and endoscopy monitoring. Yeast two-hybrid assay screened interacting proteins of STOML2, followed by bioinformatics analysis to predict biological function and signaling pathway of candidate proteins. Target protein with most functional similarity to STOML2 was validated with co-immunoprecipitation, and immunofluorescence were conducted to co-localize STOML2 and PHB. Pathway regulated by STOML2 was detected with immunoblotting, and subsequent experimental therapy was conducted with RAF inhibitor Sorafenib. RESULTS STOML2 was significantly overexpressed in colorectal cancer and its elevation was associated with unfavorable prognosis. Knockdown of STOML2 suppressed proliferation of colorectal cancer, thus attenuated subcutaneous and orthotopic tumor growth, while overexpressed STOML2 promoted proliferation in cell lines and organoids. A list of 13 interacting proteins was screened out by yeast two-hybrid assay. DTYMK and PHB were identified to be most similar to STOML2 according to bioinformatics in terms of biological process and signaling pathways; however, co-immunoprecipitation confirmed interaction between STOML2 and PHB, rather than DTYMK, despite its highest rank in previous analysis. Co-localization between STOML2 and PHB was confirmed in cell lines and tissue level. Furthermore, knockdown of STOML2 downregulated phosphorylation of RAF1, MEK1/2, and ERK1/2 on the MAPK signaling pathway, indicating common pathway activated by STOML2 and PHB in colorectal cancer proliferation. CONCLUSIONS This study demonstrated that in colorectal cancer, STOML2 expression is elevated and interacts with PHB through activating MAPK signaling pathway, to promote proliferation both in vitro and in vivo. In addition, combination of screening assay and bioinformatics marks great significance in methodology to explore regulatory mechanism of protein of interest.
Collapse
Affiliation(s)
- Wenhui Ma
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China.,Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yuehong Chen
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China.,Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Wenjun Xiong
- Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China.,Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese, Guangzhou, Guangdong, China
| | - Wenyi Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Zhuoluo Xu
- Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ying Wang
- Departments of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhigang Wei
- Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China
| | - Tingyu Mou
- Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China
| | - Zhaokun Wu
- Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Mingzhen Cheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yini Zou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yu Zhu
- Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China
| | - Weijie Zhou
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China. .,Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| | - Feng Liu
- Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China. .,Department of Colorectal and Anal Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| | - Yan Geng
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China.
| |
Collapse
|
6
|
Zhang H, Wu G, Feng J, Lu X, Liu P. Expression of STOML2 promotes proliferation and glycolysis of multiple myeloma cells via upregulating PAI-1. J Orthop Surg Res 2021; 16:667. [PMID: 34774067 PMCID: PMC8590323 DOI: 10.1186/s13018-021-02819-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND This study aimed to investigate the effects of STOML2 and the relationship between STOML2 and PAI-1 in the development of multiple myeloma (MM). METHODS Cell proliferation was tested using CCK-8 assay and cell colony formation assay. Glucose consumption, lactate production and ATP level were measured using commercial kits. The mRNA and protein expression were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. RESULTS Both mRNA and protein expression of STOML2 were upregulated in MM patients compared to healthy volunteers. CCK-8 and colony formation assays demonstrated that STOML2 silencing inhibited cell proliferation in MM cells. Knockdown of STOML2 reduced glucose consumption, lactate production and ATP/ADP ratios. STOML2 silencing by shSTOML2 led to reduced PAI-1 expression. Overexpression of PAI-1 reversed the inhibitory effects of shSTOML2 on MM cell growth. CONCLUSION Results from this study demonstrated that STOML2 silencing inhibits cell proliferation and glycolysis through downregulation of PAI-1 expression, suggesting a new therapeutic target for MM.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Hematology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, 832008, Xinjiang Uygur Autonomous Region, China
| | - Guangsheng Wu
- Department of Hematology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, 832008, Xinjiang Uygur Autonomous Region, China
| | - Junjian Feng
- Department of Intensive Care Unit, Luzhou People's Hospital, Luzhou City, 646000, Sichuan Province, China
| | - Xiaohong Lu
- Department of Hematology, Luzhou People's Hospital, Luzhou City, 646000, Sichuan Province, China
| | - Ping Liu
- Department of Pathology, Luzhou People's Hospital, Section 2 of JiuGu Avenue, Jiangyang District, Luzhou City, 646000, Sichuan Province, China.
| |
Collapse
|
7
|
Chao D, Ariake K, Sato S, Ohtsuka H, Takadate T, Ishida M, Masuda K, Maeda S, Miura T, Mitachi K, Yu XJ, Fujishima F, Mizuma M, Nakagawa K, Morikawa T, Kamei T, Unno M. Stomatin‑like protein 2 induces metastasis by regulating the expression of a rate‑limiting enzyme of the hexosamine biosynthetic pathway in pancreatic cancer. Oncol Rep 2021; 45:90. [PMID: 33846782 PMCID: PMC8042670 DOI: 10.3892/or.2021.8041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/08/2021] [Indexed: 01/05/2023] Open
Abstract
Stomatin-like protein 2 (SLP-2) is associated with poor prognosis in several types of cancer, including pancreatic cancer (PC); however, the molecular mechanism of its involvement remains elusive. The present study aimed to elucidate the role of this protein in the development of PC. Human PC cell lines AsPC-1 and PANC-1 were transfected by a vector expressing SLP-2 shRNA. Analyses of cell proliferation, migration, invasion, chemosensitivity, and glucose uptake were conducted, while a mouse xenograft model was used to evaluate the functional role of SLP-2 in PC. Immunohistochemical analysis was retrospectively performed on human tissue samples to compare expression between the primary site (n=279) and the liver metastatic site (n=22). Furthermore, microarray analysis was conducted to identify the genes correlated with SLP-2. In vitro analysis demonstrated that cells in which SLP-2 was suppressed exhibited reduced cell motility and glucose uptake, while in vivo analysis revealed a marked decrease in the number of liver metastases. Immunohistochemistry revealed that SLP-2 was increased in liver metastatic sites. Microarray analysis indicated that this protein regulated the expression of glutamine-fructose-6-phosphate transaminase 2 (GFPT2), a rate-limiting enzyme of the hexosamine biosynthesis pathway. SLP-2 contributed to the malignant character of PC by inducing liver metastasis. Cell motility and glucose uptake may be induced via the hexosamine biosynthesis pathway through the expression of GFPT2. The present study revealed a new mechanism of liver metastasis and indicated that SLP-2 and its downstream pathway could provide novel therapeutic targets for PC.
Collapse
Affiliation(s)
- Dang Chao
- Department of Surgery, Tohoku University Graduate School of Medicine, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Kyohei Ariake
- Department of Surgery, Tohoku University Graduate School of Medicine, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Satoko Sato
- Department of Pathology, Tohoku University Hospital, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Tatsuyuki Takadate
- Department of Surgery, Tohoku University Graduate School of Medicine, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Masaharu Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Kunihiro Masuda
- Department of Surgery, Tohoku University Graduate School of Medicine, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Shimpei Maeda
- Department of Surgery, Tohoku University Graduate School of Medicine, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Takayuki Miura
- Department of Surgery, Tohoku University Graduate School of Medicine, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Katsutaka Mitachi
- Department of Surgery, Tohoku University Graduate School of Medicine, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Xun Jing Yu
- Department of Surgery, Tohoku University Graduate School of Medicine, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Hospital, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Seiryo‑machi, Aoba‑ku, Sendai 980‑8574, Japan
| |
Collapse
|
8
|
Lu YJ, Lan YH, Chuang CC, Lu WT, Chan LY, Hsu PW, Chen JP. Injectable Thermo-Sensitive Chitosan Hydrogel Containing CPT-11-Loaded EGFR-Targeted Graphene Oxide and SLP2 shRNA for Localized Drug/Gene Delivery in Glioblastoma Therapy. Int J Mol Sci 2020; 21:7111. [PMID: 32993166 PMCID: PMC7583917 DOI: 10.3390/ijms21197111] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, we aimed to develop a multifunctional drug/gene delivery system for the treatment of glioblastoma multiforme by combining the ligand-mediated active targeting and the pH-triggered drug release features of graphene oxide (GO). Toward this end, we load irinotecan (CPT-11) to cetuximab (CET)-conjugated GO (GO-CET/CPT11) for pH-responsive drug release after endocytosis by epidermal growth factor receptor (EGFR) over-expressed U87 human glioblastoma cells. The ultimate injectable drug/gene delivery system was designed by co-entrapping stomatin-like protein 2 (SLP2) short hairpin RNA (shRNA) and GO-CET/CPT11 in thermosensitive chitosan-g-poly(N-isopropylacrylamide) (CPN) polymer solution, which offers a hydrogel depot for localized, sustained delivery of the therapeutics after the in situ formation of CPN@GO-CET/CPT11@shRNA hydrogel. An optimal drug formulation was achieved by considering both the loading efficiency and loading content of CPT-11 on GO-CET. A sustained and controlled release behavior was found for CPT-11 and shRNA from CPN hydrogel. Confocal microscopy analysis confirmed the intracellular trafficking for the targeted delivery of CPT-11 through interactions of CET with EGFR on the U87 cell surface. The efficient transfection of U87 using SLP2 shRNA was achieved using CPN as a delivery milieu, possibly by the formation of shRNA/CPN polyplex after hydrogel degradation. In vitro cell culture experiments confirmed cell apoptosis induced by CPT-11 released from acid organelles in the cytoplasm by flow cytometry, as well as reduced SLP2 protein expression and inhibited cell migration due to gene silencing. Finally, in vivo therapeutic efficacy was demonstrated using the xenograft of U87 tumor-bearing nude mice through non-invasive intratumoral delivery of CPN@GO-CET/CPT11@shRNA by injection. Overall, we have demonstrated the novelty of this thermosensitive hydrogel to be an excellent depot for the co-delivery of anticancer drugs and siRNA. The in situ forming hydrogel will not only provide extended drug release but also combine the advantages offered by the chitosan-based copolymer structure for siRNA delivery to broaden treatment modalities in cancer therapy.
Collapse
Affiliation(s)
- Yu-Jen Lu
- School of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (Y.-J.L.); (Y.-H.L.)
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; (C.-C.C.); (P.-W.H.)
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
| | - Yu-Hsiang Lan
- School of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (Y.-J.L.); (Y.-H.L.)
- Department of Surgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan;
| | - Chi-Cheng Chuang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; (C.-C.C.); (P.-W.H.)
| | - Wan-Ting Lu
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
| | - Li-Yang Chan
- Department of Surgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan;
| | - Peng-Wei Hsu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; (C.-C.C.); (P.-W.H.)
| | - Jyh-Ping Chen
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
9
|
Liu Q, Li A, Wang L, He W, Zhao L, Wu C, Lu S, Ye X, Zhao H, Shen X, Xiao X, Liu Z. Stomatin-like Protein 2 Promotes Tumor Cell Survival by Activating the JAK2-STAT3-PIM1 Pathway, Suggesting a Novel Therapy in CRC. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:169-179. [PMID: 32346607 PMCID: PMC7177985 DOI: 10.1016/j.omto.2020.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Despite intensive efforts, a considerable proportion of colorectal cancer (CRC) patients develop local recurrence and distant metastasis. Stomatin-like protein 2 (SLP-2), a member of the highly conserved stomatin superfamily, is upregulated across cancer types. However, the biological and functional roles of SLP-2 remain elusive in CRC. Here, we report that high SLP-2 expression was found in CRC tissues and was linked to tumor progression and tumor cell differentiation. Additionally, high SLP-2 expression correlated with poor overall survival (OS) in CRC patients (p < 0.001). SLP-2 knockout (SLP-2KO), generated by CRISPR/Cas9, reduced cell growth, migration, and invasion; induced apoptosis in CRC cells; and reduced tumor xenograft growth in vivo. A 181-compound library screening showed that SLP-2KO produced resistance to JAK2 inhibitors (NVP-BSK805 and TG-101348) and a PIM1 inhibitor (SGI-1776), revealing that the JAK2-STAT3-PIM1 oncogenic pathway was potentially controlled by SLP-2 in CRC. In vitro and in vivo, TG-101348 combined with SGI-1776 was synergistic in CRC (combination index [CI] < 1). Overall, our findings suggest that SLP-2 controls the JAK2-STAT3-PIM1 oncogenic pathway, offering a rationale for a novel therapeutic strategy with combined SGI-1776 and TG-101348 in CRC. Additionally, SLP-2 may be a prognostic marker and biomarker for sensitivity to JAK2 and PIM1 inhibitors.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Anqi Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Lisha Wang
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Wei He
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ling Zhao
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chao Wu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shasha Lu
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xuanguang Ye
- Department of Pathology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Huiyong Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaohan Shen
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo 315021, China
| | - Xiuying Xiao
- Department of Oncology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zebing Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
10
|
Zhao P, Wang M, An J, Sun H, Li T, Li D. A positive feedback loop of miR-30a-5p-WWP1-NF-κB in the regulation of glioma development. Int J Biochem Cell Biol 2019; 112:39-49. [PMID: 30978403 DOI: 10.1016/j.biocel.2019.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023]
Abstract
Previous studies demonstrated that miR-30a-5p promotes glioma cell growth and invasion. Furthermore, WWP1 (WW domain containing E3 ubiquitin protein ligase 1) inhibits NF-κB activation that is strongly correlated with gliomagenesis. Using the GEO database and bioinformatics analyses, we identified WWP1 was downregulated in glioma tissues and might be a putative target for miR-30a-5p. Hence, this study aims to explore the interaction among miR-30a-5p, WWP1, and NF-κB and their roles in the regulation of glioma development. We found decreased WWP and increased miR-30a-5p expression and p65 phosphorylation in glioma tissues. Furthermore, WWP1 mRNA level was negatively correlated with miR-30a-5p expression in glioma tissues. Interestingly, miR-30a-5p targeted WWP1 expression. Additionally, NF-κB p65 overexpression increased miR-30a-5p expression through direct binding of NF-κB RelA subunit to the promoter of miR-30a-5p. We also confirmed that WWP1 overexpression decreased phosphorylation of NF-κB p65. Importantly, miR-30a-5p promoted glioma cell proliferation, migration, and invasion via targeting WWP1. Furthermore, NF-κB p65 overexpression inhibited WWP1 expression and promoted glioma cell malignant behaviors via inducing miR-30a-5p transcription. Moreover, WWP1 overexpression decreased miR-30a-5p expression and inhibited glioma cell malignant behaviors via inhibiting NF-κB p65. Our further assay showed that WWP1 inhibited in vivo growth of xenograft tumors of glioma cells, accompanied with a decrease in miR-30-5p expression and phosphorylation of NF-κB p65. In conclusion, there is a "miR-30a-5p-WWP1-NF-κB" positive feedback loop, which plays an important role in regulating glioma development and might provide a potential therapeutic strategy for treating glioma.
Collapse
Affiliation(s)
- Peichao Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China.
| | - MengMeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Jiyang An
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Hongwei Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Tianhao Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Dongming Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| |
Collapse
|
11
|
Tran VC, Cho SY, Kwon J, Kim D. Alginate oligosaccharide (AOS) improves immuno-metabolic systems by inhibiting STOML2 overexpression in high-fat-diet-induced obese zebrafish. Food Funct 2019; 10:4636-4648. [DOI: 10.1039/c9fo00982e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AOS improves immuno-metabolism systems in high-fat-died-induced obese zebrafish by regulating STOML2.
Collapse
Affiliation(s)
- Van Cuong Tran
- Department of Food Science and Technology
- Chonnam National University
- Gwangju
- Republic of Korea
- Department of Food Science and Post-harvest Technology
| | - Se-Young Cho
- Biological Disaster Analysis Group
- Korea Basic Science Institute
- Daejeon
- Republic of Korea
| | - Joseph Kwon
- Biological Disaster Analysis Group
- Korea Basic Science Institute
- Daejeon
- Republic of Korea
| | - Duwoon Kim
- Department of Food Science and Technology
- Chonnam National University
- Gwangju
- Republic of Korea
- Foodborne Virus Research Center
| |
Collapse
|
12
|
Ma W, Xu Z, Wang Y, Li W, Wei Z, Chen T, Mou T, Cheng M, Luo J, Luo T, Chen Y, Yu J, Zhou W, Li G. A Positive Feedback Loop of SLP2 Activates MAPK Signaling Pathway to Promote Gastric Cancer Progression. Theranostics 2018; 8:5744-5757. [PMID: 30555578 PMCID: PMC6276297 DOI: 10.7150/thno.28898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022] Open
Abstract
Rationale: This study is to validate the clinicopathologic significance and potential prognostic value of SLP2 in gastric cancer (GC), to investigate the biological function and regulation mechanism of SLP2, and to explore potential therapeutic strategies for GC. Methods: The expression of SLP2 in GC tissues from two cohorts was examined by IHC. The biological function and regulation mechanism of SLP2 and PHB was validated via loss-of-function or gain-of-function experiments. In vitro proliferation detection was used to evaluate the therapeutic effects of Sorafenib. Results: We validated that SLP2 was significantly elevated in GC tissues and its elevation was associated with poor prognosis of patients. Loss of SLP2 drastically suppressed the proliferation of GC cells and inhibited the tumor growth, while SLP2 overexpression promoted the progression of GC. Mechanistically, SLP2 competed against E3 ubiquitin ligase SKP2 to bind with PHB and stabilized its expression. Loss of SLP2 significantly suppressed phosphorylation of Raf1, MEK1/2, ERK1/2 and ELK1. Furthermore, phosphorylated ELK1 could in turn activate transcription of SLP2. Finally, we demonstrated that a Raf1 inhibitor, Sorafenib, was sufficient to inhibit the proliferation of GC cells. Conclusion: Our findings demonstrated a positive feedback loop of SLP2 which leads to acceleration of tumor progression and poor survival of GC patients. This finding also provided evidence for the reason of SLP2 elevation. Moreover, we found that sorafenib might be a potential therapeutic drug for GC and disrupting the interaction between SLP2 and PHB might also serve as a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Wenhui Ma
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Departments of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Zhuoluo Xu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Departments of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yutian Wang
- Departments of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Wenyi Li
- Departments of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Zhigang Wei
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingyu Mou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingzhen Cheng
- Departments of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jun Luo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingyue Luo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Departments of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yuehong Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Departments of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Departments of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Weijie Zhou
- Departments of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Piccoli M, D'Angelo E, Crotti S, Sensi F, Urbani L, Maghin E, Burns A, De Coppi P, Fassan M, Rugge M, Rizzolio F, Giordano A, Pilati P, Mammano E, Pucciarelli S, Agostini M. Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research. J Cell Physiol 2018; 233:5937-5948. [PMID: 29244195 DOI: 10.1002/jcp.26403] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 12/25/2022]
Abstract
Three-dimensional (3D) cancer models are overlooking the scientific landscape with the primary goal of bridging the gaps between two-dimensional (2D) cell lines, animal models and clinical research. Here, we describe an innovative tissue engineering approach applied to colorectal cancer (CRC) starting from decellularized human biopsies in order to generate an organotypic 3D-bioactive model. This in vitro 3D system recapitulates the ultrastructural environment of native tissue as demonstrated by histology, immunohistochemistry, immunofluorescence and scanning electron microscopy analyses. Mass spectrometry of proteome and secretome confirmed a different stromal composition between decellularized healthy mucosa and CRC in terms of structural and secreted proteins. Importantly, we proved that our 3D acellular matrices retained their biological properties: using CAM assay, we observed a decreased angiogenic potential in decellularized CRC compared with healthy tissue, caused by direct effect of DEFA3. We demonstrated that following a 5 days of recellularization with HT-29 cell line, the 3D tumor matrices induced an over-expression of IL-8, a DEFA3-mediated pathway and a mandatory chemokine in cancer growth and proliferation. Given the biological activity maintained by the scaffolds after decellularization, we believe this approach is a powerful tool for future pre-clinical research and screenings.
Collapse
Affiliation(s)
- Martina Piccoli
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Edoardo D'Angelo
- Nanoinspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- First Surgical Clinic Section, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Sara Crotti
- Nanoinspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Francesca Sensi
- Nanoinspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- Department of Woman and Child Health, University of Padua, Padua, Italy
| | - Luca Urbani
- Stem Cells & Regenerative Medicine Section, Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
| | - Edoardo Maghin
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Alan Burns
- Stem Cells & Regenerative Medicine Section, Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Paolo De Coppi
- Stem Cells & Regenerative Medicine Section, Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
- Veneto Tumor Registry, Padua, Italy
| | - Flavio Rizzolio
- Department of Translational Research, Pathology Unit, IRCCS-National Cancer Institute, Aviano, Italy
- Department of Molecular Sciences and Nanosystems at Ca' Foscari University, Venice, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | | | | | - Salvatore Pucciarelli
- First Surgical Clinic Section, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Marco Agostini
- Nanoinspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- First Surgical Clinic Section, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| |
Collapse
|
14
|
张 佳, 胡 国, 刘 磊, 陈 伙, 李 丹, 梁 卫. [Silencing of SLP-2 inhibits the migration and invasion of cervical cancer cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:812-817. [PMID: 33168500 PMCID: PMC6765530 DOI: 10.3969/j.issn.1673-4254.2018.07.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the effect of SLP-2 silencing on the migration and invasion of human cervical cancer cells and explore the mechanism. METHODS Small interfering RNA (siRNA) was used to knockdown the expression of SLP-2 in Hela cells and Siha cells. At 48 h after the transfection, the cells were examined for SLP-2 expression with Western blotting, and wound healing assay and Transwell assay were used to evaluate the changes in the cell migration; Matrigel Transwell assay was used to evaluate the changes in the invasion ability of the cells. The expressions of E-cadherin, β-catenin, vimentin and Twist in Hela and Siha cells following the transfection were detected with Western blotting. RESULTS Compared with the control cells, siRNA transfection significantly lowered the expression of SLP-2 and suppressed the migration and invasion ability of Hela cells and Siha cells (P < 0.01). Silencing SLP-2 induced obvious up-regulation of epithelial cell phenotype proteins E-cadherin and β-catenin, down- regulated the expression of interstitial cell phenotype protein vimentin, and lowered the expression of Twist in the cells. CONCLUSIONS Silencing SLP-2 via siRNA transfection can inhibit epithelial-mesenchymal transition of human cervical cancer cells and lower their migration and invasion abilities possibly in relation with downregulated expression of Twist.
Collapse
Affiliation(s)
- 佳露 张
- 南方医科大学南方医院肿瘤内科,广东 广州 510515Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 国林 胡
- 清远市人民医院肿瘤内科,广东 清远 511500Department of Oncology, Qingyuan People's Hospital, Qingyuan 511500, China
| | - 磊 刘
- 南方医科大学南方医院肿瘤内科,广东 广州 510515Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 伙娣 陈
- 南方医科大学南方医院肿瘤内科,广东 广州 510515Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 丹娟 李
- 南方医科大学南方医院肿瘤内科,广东 广州 510515Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 卫江 梁
- 南方医科大学南方医院肿瘤内科,广东 广州 510515Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
Ginkgo biloba Exocarp Extract Inhibits the Metastasis of B16-F10 Melanoma Involving PI3K/Akt/NF- κB/MMP-9 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4969028. [PMID: 30046339 PMCID: PMC6036818 DOI: 10.1155/2018/4969028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/30/2018] [Accepted: 05/15/2018] [Indexed: 12/28/2022]
Abstract
In recent years, interest in natural plant extracts for cancer treatment is growing in the drug development field. Ginkgo biloba exocarp extract (GBEE) is known for possessing inhibitory effects on various mouse and human cancer cells. And no adverse reactions were observed during its clinical application to cancer patients. The aim of this study is to investigate the inhibitory effect of GBEE on the metastasis of B16-F10 melanoma and its related mechanisms. The B16-F10 melanoma lung metastasis model was established in C57BL/6J mice. It was found that GBEE inhibited the growth and pulmonary metastasis of B16-F10 melanoma transplanted tumor and downregulated the level of MMP-9 protein. Meanwhile, the B16-F10 cells were used to study in vitro. The results showed that GBEE inhibited the proliferation and migration of B16-F10 cells. Simultaneously, it suppressed the heterogeneous adhesion of B16-F10 cells to human umbilical vein endothelial cells (HUVEC) in a concentration-dependent manner. In addition, the levels of p-PI3K, p-Akt, NF-κB, and MMP-9 were decreased, while the PI3K and Akt were not significantly changed. These results indicate that GBEE can inhibit the metastasis of B16-F10 melanoma via multiple links and the molecular mechanism involved the regulation of PI3K/Akt/NF-κB/MMP-9 signaling pathway.
Collapse
|
16
|
Gosney JA, Wilkey DW, Merchant ML, Ceresa BP. Proteomics reveals novel protein associations with early endosomes in an epidermal growth factor-dependent manner. J Biol Chem 2018. [PMID: 29523688 DOI: 10.1074/jbc.ra117.000632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is an integral component of proliferative signaling. EGFRs on the cell surface become activated upon EGF binding and have an increased rate of endocytosis. Once in the cytoplasm, the EGF·EGFR complex is trafficked to the lysosome for degradation, and signaling is terminated. During trafficking, the EGFR kinase domain remains active, and the internalized EGFR can continue signaling to downstream effectors. Although effector activity varies based on the EGFR's endocytic location, it is not clear how this occurs. In an effort to identify proteins that uniquely associate with the internalized, liganded EGFR in the early endosome, we developed an early endosome isolation strategy to analyze their protein composition. Post-nuclear supernatant from HeLa cells stimulated with and without EGF were separated on an isotonic 17% Percoll gradient. The gradient was fractionated, and early endosomal fractions were pooled and immunoisolated with an EEA1 mAb. The isolated endosomes were validated by immunoblot using antibodies against organelle-specific marker proteins and transmission EM. These early endosomes were also subjected to LC-MS/MS for proteomic analysis. Five proteins were detected in endosomes in a ligand-dependent manner: EGFR, RUFY1, STOML2, PTPN23, and CCDC51. Knockdown of RUFY1 or PTPN23 by RNAi indicated that both proteins play a role in EGFR trafficking. These experiments indicate that endocytic trafficking of activated EGFR changes the protein composition, membrane trafficking, and signaling potential of the early endosome.
Collapse
Affiliation(s)
| | - Daniel W Wilkey
- Medicine, University of Louisville, Louisville, Kentucky 40202
| | | | | |
Collapse
|
17
|
Wang B, Xie J, He HY, Huang EW, Cao QH, Luo L, Liao YS, Guo Y. Suppression of CLC-3 chloride channel reduces the aggressiveness of glioma through inhibiting nuclear factor-κB pathway. Oncotarget 2017; 8:63788-63798. [PMID: 28969029 PMCID: PMC5609961 DOI: 10.18632/oncotarget.19093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/06/2017] [Indexed: 11/25/2022] Open
Abstract
CLC-3 chloride channel plays important roles on cell volume regulation, proliferation and migration in normal and cancer cells. Recent growing evidence supports a critical role of CLC-3 in glioma metastasis, however, the mechanism underlying is unclear. This study finds that CLC-3 is upregulated in glioma tissues and positively correlated with WHO histological grade. Patients with high CLC-3 expression had an overall shorter survival time, whereas patients with low expression of CLC-3 had a better survival time. Silencing endogenous CLC-3 with ShCLC-3 adenovirus significantly decreases volume-regulated chloride currents, inhibits the nuclear translocation of p65 subunit of Nuclear Factor-κB (NF-κB), decreases transcriptional activity of NF-κB, reduces MMP-3 and MMP-9 expression and decreases glioma cell migration and invasion. Taken together, these results suggest CLC-3 promotes the aggressiveness of glioma at least in part through nuclear factor-κB pathway, and might be a novel prognostic biomarker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Bing Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Neurosurgery, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Jing Xie
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Hai-Yong He
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - En-Wen Huang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qing-Hua Cao
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lun Luo
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yong-Shi Liao
- Department of Neurosurgery, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Ying Guo
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
18
|
Huang Y, Chen Y, Lin X, Lin Q, Han M, Guo G. Clinical significance of SLP-2 in hepatocellular carcinoma tissues and its regulation in cancer cell proliferation, migration, and EMT. Onco Targets Ther 2017; 10:4665-4673. [PMID: 29033585 PMCID: PMC5614784 DOI: 10.2147/ott.s144638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Stomatin-like protein 2 (SLP-2) gene was significantly upregulated in a variety of tumor tissues and found to be involved in proliferation and metastasis. However, its functional role in hepatocellular carcinoma (HCC) remains unknown. Our study was to investigate the function of SLP-2 in cell proliferation, migration, invasion, cell apoptosis, and the process of epithelial-mesenchymal transition (EMT) in HCC. SLP-2 mRNA and protein expression in HCC were assessed by qRT-PCR and immunohistochemical staining. In vitro, we determined cell proliferation, migration, invasion, and cell apoptosis by CCK-8, transwell, and flow cytometry assays, respectively. SLP-2 was found to be upregulated at both mRNA and protein levels in HCC tissues, and its aberrant overexpression was linked with poor prognosis in patients with HCC. SLP-2 downregulation by siRNAs significantly suppressed cell proliferation, migration, invasion, anti-apoptosis abilities, and inhibited EMT process in vitro. In conclusion, the present study demonstrated the overexpression of SLP-2 in HCC tissues for the first time. As an effective regulator involved in cell proliferation, migration, invasion, cell apoptosis, and EMT, SLP-2 could be a novel therapeutic target for patients with HCC who express high levels of SLP-2.
Collapse
Affiliation(s)
- Yijie Huang
- Department of General Surgery, Guangdong General Hospital, Guangzhou
| | - Yexi Chen
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
| | - Xiaoqi Lin
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
| | - Qingjun Lin
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
| | - Ming Han
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Correspondence: Guohu Guo; Ming Han, Department of General Surgery, The Second Affiliated Hospital of Shantou University, 69 Dongxia North Road, Shantou 515100, People’s Republic of China, Tel +86 135 0299 3993, Fax +86 754 8314 1101, Email ;
| | - Guohu Guo
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Correspondence: Guohu Guo; Ming Han, Department of General Surgery, The Second Affiliated Hospital of Shantou University, 69 Dongxia North Road, Shantou 515100, People’s Republic of China, Tel +86 135 0299 3993, Fax +86 754 8314 1101, Email ;
| |
Collapse
|
19
|
Fahrmann JF, Grapov D, Phinney BS, Stroble C, DeFelice BC, Rom W, Gandara DR, Zhang Y, Fiehn O, Pass H, Miyamoto S. Proteomic profiling of lung adenocarcinoma indicates heightened DNA repair, antioxidant mechanisms and identifies LASP1 as a potential negative predictor of survival. Clin Proteomics 2016; 13:31. [PMID: 27799870 PMCID: PMC5084393 DOI: 10.1186/s12014-016-9132-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer mortality in the United States. Non-small cell lung cancer accounts for 85% of all lung cancers for which adenocarcinoma is the most common histological type. Management of lung cancer is hindered by high false-positive rates due to difficulty resolving between benign and malignant tumors. Better molecular analysis comparing malignant and non-malignant tissues will provide important evidence of the underlying biology contributing to tumorigenesis. METHODS We utilized a proteomics approach to analyze 38 malignant and non-malignant paired tissue samples obtained from current or former smokers with early stage (Stage IA/IB) lung adenocarcinoma. Statistical mixed effects modeling and orthogonal partial least squares discriminant analysis were used to identify key cancer-associated perturbations in the adenocarcinoma proteome. Identified proteins were subsequently assessed against clinicopathological variables. RESULTS Top cancer-associated protein alterations were characterized by: (1) elevations in APEX1, HYOU1 and PDIA4, indicative of increased DNA repair machinery and heightened anti-oxidant defense mechanisms; (2) increased LRPPRC, STOML2, COPG1 and EPRS, suggesting altered tumor metabolism and inflammation; (3) reductions in SPTB, SPTA1 and ANK1 implying dysregulation of membrane integrity; and (4) decreased SLCA41 suggesting altered pH regulation. Increased protein levels of HYOU1, EPRS and LASP1 in NSCLC adenocarcinoma was independently validated by tissue microarray immunohistochemistry. Immunohistochemistry for HYOU1 and EPRS indicated AUCs of 0.952 and 0.841, respectively, for classifying tissue as malignant. Increased LASP1 correlated with poor overall survival (HR 3.66 per unit increase; CI 1.37-9.78; p = 0.01). CONCLUSION These results reveal distinct proteomic changes associated with early stage lung adenocarcinoma that may be useful prognostic indicators and therapeutic targets.
Collapse
Affiliation(s)
- Johannes F Fahrmann
- University of California, Davis Genome Center, Davis, CA USA.,Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | | | - Brett S Phinney
- Genome Center Proteomics Core Facility, University of California, Davis, Davis, CA USA
| | - Carol Stroble
- Division of Hematology and Oncology, Department of Internal Medicine, University of California, Davis Medical Center, 4501 X Street, Suite 3016, Sacramento, CA 95817 USA
| | | | - William Rom
- Division of Pulmonary, Critical Care, and Sleep, NYU School of Medicine, New York, NY USA
| | - David R Gandara
- Division of Hematology and Oncology, Department of Internal Medicine, University of California, Davis Medical Center, 4501 X Street, Suite 3016, Sacramento, CA 95817 USA
| | - Yanhong Zhang
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA USA
| | - Oliver Fiehn
- University of California, Davis Genome Center, Davis, CA USA.,Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Harvey Pass
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York City, NY USA
| | - Suzanne Miyamoto
- Division of Hematology and Oncology, Department of Internal Medicine, University of California, Davis Medical Center, 4501 X Street, Suite 3016, Sacramento, CA 95817 USA
| |
Collapse
|
20
|
Chen CY, Yang CY, Chen YC, Shih CW, Lo SS, Lin CH. Decreased expression of stomatin predicts poor prognosis in HER2-positive breast cancer. BMC Cancer 2016; 16:697. [PMID: 27577936 PMCID: PMC5006529 DOI: 10.1186/s12885-016-2681-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/03/2016] [Indexed: 12/30/2022] Open
Abstract
Background Human epidermal growth factor receptor-2 (HER2) is a transmembrane tyrosine kinase receptor that is overexpressed in 25 to 30 % of human breast cancers and is preferentially localized in lipid rafts. Stomatin is a membrane protein that is absent from the erythrocyte plasma membrane in patients with congenital stomatocytosis and is the major component of the lipid raft. Results In a total of 68 clinical cases of HER2-positive breast cancer, the absence of stomatin expression was associated with a decreased 5-year survival (65 % vs. 93 %, p = 0.005) by survival analysis. For stage I-III HER2-positive breast cancer, the absence of stomatin expression was associated with a decreased 5-year disease-free survival (57 % vs. 81 %, p = 0.016) and was an independent prognostic factor by multivariate analysis. Negative stomatin expression predicts distant metastases in a hazard ratio of 4.0 (95 % confidence interval from 1.3 to 12.5). Conclusions These results may suggest that stomatin is a new prognostic indicator for HER2-positive breast cancer.
Collapse
Affiliation(s)
- Chin-Yau Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, 155, Sec.2, Li-Nong St, Taipei, 11221, Taiwan, Republic of China.,Department of Surgery, National Yang-Ming University Hospital, Yilan County, Taiwan, Republic of China
| | - Chih-Yung Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, 155, Sec.2, Li-Nong St, Taipei, 11221, Taiwan, Republic of China.,Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China
| | - Yen-Chung Chen
- Department of Pathology, National Yang-Ming University Hospital, Yilan County, Taiwan, Republic of China
| | - Chia-Wen Shih
- Department of Pathology, Lotung Poh-Ai Hospital, Yilan County, Taiwan, Republic of China
| | - Su-Shun Lo
- Department of Surgery, National Yang-Ming University Hospital, Yilan County, Taiwan, Republic of China
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, 155, Sec.2, Li-Nong St, Taipei, 11221, Taiwan, Republic of China.
| |
Collapse
|
21
|
Chi H, Hu YH. Stomatin-like protein 2 of turbot Scopthalmus maximus: Gene cloning, expression profiling and immunoregulatory properties. FISH & SHELLFISH IMMUNOLOGY 2016; 49:436-441. [PMID: 26806162 DOI: 10.1016/j.fsi.2016.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Stomatin-like protein 2 (SLP-2) is a novel and unusual member of the stomatin gene superfamily. In this study, we obtained a full-length SLP-2 (SmSLP-2) cDNA from turbot (Scopthalmus maximus) spleen cDNA library. The cDNA sequence of SmSLP-2 contains a 5'-UTR of 107 bp, an ORF of 1050 bp, and a 3'-UTR of 959 bp. The ORF encodes a putative protein of 349 residues, which has a calculated molecular mass of 38.7 kDa. The SmSLP-2 protein possesses a prohibitin-homology (PHB) domain (residues 40 to 198) and shares 72.4-87.6% overall sequence identity with that of the teleost species. The highest expression of SmSLP-2 mRNA was found in the skin, followed by the head kidney, gut, spleen, liver, heart, gill and muscle. Moreover, both viral and bacterial pathogen infection resulted in the up-regulation of SmSLP-2 mRNA in the turbot head kidney and spleen in vivo. Subcellular localization analysis indicated that the SmSLP-2 proteins are mainly located in the peripheral membrane of ZF4 cells. This study also demonstrated that SmSLP-2 modulates IL-2 expression via active NFκB signaling pathway, and is possibly involved in host immune defense against bacterial and viral pathogens.
Collapse
Affiliation(s)
- Heng Chi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yong-Hua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
22
|
Sun F, Ding W, He JH, Wang XJ, Ma ZB, Li YF. Stomatin-like protein 2 is overexpressed in epithelial ovarian cancer and predicts poor patient survival. BMC Cancer 2015; 15:746. [PMID: 26487491 PMCID: PMC4615865 DOI: 10.1186/s12885-015-1723-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 10/08/2015] [Indexed: 12/03/2022] Open
Abstract
Background Stomatin-like protein 2 (SLP-2, also known as STOML2) is a stomatin homologue of uncertain function. SLP-2 overexpression has been suggested to be associated with cancer progression, resulting in adverse clinical outcomes in patients. Our study aim to investigate SLP-2 expression in epithelial ovarian cancer cells and its correlation with patient survival. Methods SLP-2 mRNA and protein expression levels were analysed in five epithelial ovarian cancer cell lines and normal ovarian epithelial cells using real-time PCR and western blotting analysis. SLP-2 expression was investigated in eight matched-pair samples of epithelial ovarian cancer and adjacent noncancerous tissues from the same patients. Using immunohistochemistry, we examined the protein expression of paraffin-embedded specimens from 140 patients with epithelial ovarian cancer, 20 cases with borderline ovarian tumours, 20 cases with benign ovarian tumours, and 20 cases with normal ovarian tissues. Statistical analyses were applied to evaluate the clinicopathological significance of SLP-2 expression. Results SLP-2 mRNA and protein expression levels were significantly up-regulated in epithelial ovarian cancer cell lines and cancer tissues compared with normal ovarian epithelial cells and adjacent noncancerous ovarian tissues. Immunohistochemistry analysis revealed that the relative overexpression of SLP-2 was detected in 73.6 % (103/140) of the epithelial ovarian cancer specimens, 45.0 % (9/20) of the borderline ovarian specimens, 30.0 % (6/20) of the benign ovarian specimens and none of the normal ovarian specimens. SLP-2 protein expression in epithelial ovarian cancer was significantly correlated with the tumour stage (P < 0.001). Epithelial ovarian cancer patients with higher SLP-2 protein expression levels had shorter progress free survival and overall survival times compared to patients with lower SLP-2 protein expression levels. Multivariate analyses showed that SLP-2 expression levels were an independent prognostic factor for survival in epithelial ovarian cancer patients. Conclusions SLP-2 mRNA and proteins were overexpressed in epithelial ovarian cancer tissues. SLP-2 protein overexpression was associated with advanced stage disease. Patients with higher SLP-2 protein expression had shorter progress free survival and poor overall survival times. Thus, SLP-2 protein expression was an independent prognostic factor for patients with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Fei Sun
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, P.R.China. .,Present address: Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangdong, 510515, P.R. China.
| | - Wen Ding
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, 9 JinSui Road, 510623, Guangzhou, P.R. China.
| | - Jie-Hua He
- Department of Pathology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, P.R.China.
| | - Xiao-Jing Wang
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, P.R.China.
| | - Ze-Biao Ma
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, P.R.China.
| | - Yan-Fang Li
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, P.R.China.
| |
Collapse
|
23
|
Yang X, Zang W, Xuan X, Wang Z, Liu Z, Wang J, Cui J, Zhao G. miRNA-1207-5p is associated with cancer progression by targeting stomatin-like protein 2 in esophageal carcinoma. Int J Oncol 2015; 46:2163-71. [PMID: 25695396 DOI: 10.3892/ijo.2015.2900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/02/2015] [Indexed: 12/24/2022] Open
Abstract
Newly discovered intrinsic regulators, the miRNAs regulate gene expression by binding to the 3'-untranslated regions of the genome. Accumulating studies have indicated that miRNAs are aberrantly expressed in various human cancers. We found that miRNA-1207-5p (miR‑1207-5p) was markedly downregulated in esophageal carcinoma (EC) tissues, and was correlated with EC differentiation, pathological stage and lymph node metastasis. Rates of apoptosis were increased and cell invasion ability was decreased in EC9706 and EC-1 cells transfected with a miR‑1207-5p mimic. Stomatin-like protein 2 (STOML-2) was predicted to be a potential target of miR‑1207-5p by bioinformatics analysis and this was confirmed by luciferase assay and western blotting. Our study showed that STOML-2 was negatively regulated by miR‑1207-5p. Furthermore, overexpression of STOML-2 abolished the miR‑1207-5p anti-invasion function. Based on these results, we proposed that miR‑1207-5p might act as a potential therapeutic target in the treatment of EC.
Collapse
Affiliation(s)
- Xuan Yang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Wenqiao Zang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Xiaoyan Xuan
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Zhongquan Wang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Zhicai Liu
- Tumor Hospital of Linzhou City, Linzhou, Henan 456500, P.R. China
| | - Jinwu Wang
- Tumor Hospital of Linzhou City, Linzhou, Henan 456500, P.R. China
| | - Jing Cui
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Guoqiang Zhao
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| |
Collapse
|
24
|
Salas S, Brulard C, Terrier P, Ranchere-Vince D, Neuville A, Guillou L, Lae M, Leroux A, Verola O, Jean-Emmanuel K, Bonvalot S, Blay JY, Le Cesne A, Aurias A, Coindre JM, Chibon F. Gene Expression Profiling of Desmoid Tumors by cDNA Microarrays and Correlation with Progression-Free Survival. Clin Cancer Res 2015; 21:4194-200. [DOI: 10.1158/1078-0432.ccr-14-2910] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/28/2015] [Indexed: 11/16/2022]
|
25
|
IKKβ/NF-κB mediated the low doses of bisphenol A induced migration of cervical cancer cells. Arch Biochem Biophys 2015; 573:52-8. [PMID: 25797437 DOI: 10.1016/j.abb.2015.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/22/2015] [Accepted: 03/12/2015] [Indexed: 01/04/2023]
Abstract
Cervical cancer is considered as the second most common female malignant disease. There is an urgent need to illustrate risk factors which can trigger the motility of cervical cancer cells. Our present study revealed that nanomolar concentration of bisphenol A (BPA) significantly promoted the in vitro migration and invasion of cervical cancer HeLa, SiHa, and C-33A cells. Further, BPA treatment increased the expression of metalloproteinase-9 (MMP-9) and fibronectin (FN) in both HeLa and SiHa cells, while did not obviously change the expression of MMP-2, vimentin (Vim) or N-Cadherin (N-Cad). BAY 11-7082, the inhibitor of NF-κB, significantly abolished BPA induced up regulation of FN and MMP-9 in cervical cancer cells. While the inhibitors of PKA (H89), ERK1/2 (PD 98059), EGFR (AG1478), or PI3K/Akt (LY294002) had no effect on the expression of either FN or MMP-9. BPA treatment rapidly increased the phosphorylation of both IκBα and p65, stimulated nuclear translocation, and up regulated the promoter activities of NF-κB. The BPA induced up regulation of MMP-9 and FN and activation of NF-κB were mediated by phosphorylation of IKKβ via PKC signals. Collectively, our study found for the first time that BPA stimulated the cervical cancer migration via IKK-β/NF-κB signals.
Collapse
|
26
|
Liu Z, Yang Y, Zhang Y, Ye X, Wang L, Xu G. Stomatin-like protein 2 is associated with the clinicopathological features of human papillary thyroid cancer and is regulated by TGF-β in thyroid cancer cells. Oncol Rep 2014; 31:153-160. [PMID: 24190591 DOI: 10.3892/or.2013.2833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/28/2013] [Indexed: 11/06/2022] Open
Abstract
Papillary thyroid cancer (PTC) accounts for 80-90% of all cases of thyroid malignancies. Stomatin-like protein 2 (SLP-2) is a novel member of the stomatin superfamily and is found in several types of human tumors. However, whether it is expressed in human PTC is unknown. In the present study, we aimed to explore the diagnostic value of SLP-2 in patients with PTC and to investigate whether SLP-2 expression is regulated by transforming growth factor-β (TGF-β), a cytokine which plays an important role in PTC tumorigenesis. A total of 107 patients consisting of 99 cases of classical and 8 cases of follicular variant PTC was examined. The expression of SLP-2 mRNA and protein was examined by immunohistochemistry (IHC) and qPCR, respectively. We found that SLP-2 was overexpressed in human PTC. The expression of SLP-2 was significantly associated with clinicopathological features of the PTC cases. Particularly, increased SLP-2 expression was mainly correlated with primary tumors >1 cm in size, with late stage tumors and with metastatic lymph nodes. The expression of SLP-2 was correlated with the expression of Ki-67, a cell proliferation marker, in PTC tissues as detected by IHC. SLP-2 was upregulated by TGF-β1 in PTC cells as evaluated by western blotting. The present data revealed for the first time that patients with PTC exhibited SLP-2 overexpression that was associated with clinicopathological features. The correlation between SLP-2 expression and proliferation marker Ki-67 may be characteristic of PTC and may reflect PTC progression. SLP-2 was upregulated by TGF-β1, indicating a possible role of SLP-2 in PTC tumorigenesis. Our data suggest that SLP-2 may be considered as a useful diagnostic marker and therapeutic target for PTC.
Collapse
Affiliation(s)
- Zebing Liu
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | | | | | | | | | | |
Collapse
|
27
|
Li XH, He F, Yan SM, Li Y, Cao Y, Huang CY, Zhou ZW. Increased expression of stomatin-like protein 2 (STOML2) predicts decreased survival in gastric adenocarcinoma: a retrospective study. Med Oncol 2013; 31:763. [PMID: 24258357 DOI: 10.1007/s12032-013-0763-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 10/29/2013] [Indexed: 11/29/2022]
Abstract
Stomatin-like protein 2 (STOML2), a member of the stomatin, has been reported to be upregulated in several human cancers. However, its role and clinical significance in gastric adenocarcinoma remains unclear to date. The purpose of this retrospective study was to explore whether there was a correlation between the expression of STOML2 by immunohistochemistry and the clinical outcome of a large group of patients with gastric adenocarcinoma. In this retrospective study, we performed immunohistochemistry to evaluation of STOML2 expression in a large panel of gastric adenocarcinoma samples. The receiver operating characteristic method was used to define the STOML2 immunoreactivity score cutoff value. The clinical/prognostic significance of STOML2 expression was analyzed statistically. Kaplan-Meier analysis was used to compare the postoperative survival between groups. STOML2 was overexpressed in gastric cancer compared with paracancerous normal mucosa. Increased STOML2 expression was associated with higher histologic grade (P = 0.047), T category (P < 0.001), and N category (P = 0.01). Patients with high expression of STOML2 demonstrated shortened overall survival compared with those with low expression of STOML2 (median of 38.9 vs. 64.0 months, P < 0.001). Furthermore, STOML2 expression could stratify patients survival in stage N0 (P < 0.001). Multivariate analysis showed that the level of STOML2 expression was an independent prognostic factor in gastric adenocarcinoma (RR = 1.920, P = 0.001). Increased expression of STOML2 suggests unfavorable prognosis for gastric adenocarcinoma patients. Further studies are warranted.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Liu D, Zhang L, Shen Z, Tan F, Hu Y, Yu J, Li G. Increased levels of SLP-2 correlate with poor prognosis in gastric cancer. Gastric Cancer 2013; 16:498-504. [PMID: 23371255 DOI: 10.1007/s10120-013-0232-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 12/23/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Stomatin-like protein 2 (SLP-2) is a member of the highly conserved stomatin protein family whose homologues span from Archaea to humans and include stomatin, SLP-1, and SLP-3. Several studies have indicated that overexpression of SLP-2 is strongly associated with adhesion and migration in several human cancers. The aim of the present study was to evaluate SLP-2 expression at the mRNA and protein level in patients with gastric cancer (GC) and to examine the relationships between SLP-2 expression, clinicopathological features, and prognosis. METHODS We investigated SLP-2 expression in primary GC and paired normal gastric tissue by real-time PCR (RT-PCR; n = 16) and Western blot analysis (n = 32). Additionally, we performed immunohistochemistry (IHC) on 113 paraffin-embedded GC specimens, 30 matched normal specimens, and 30 paired metastatic lymph node samples. RESULTS SLP-2 is overexpressed in GC compared with the adjacent normal gastric epithelium (p < 0.001), and high-level SLP-2 expression is significantly correlated with the depth of invasion, lymph node metastasis, distant metastasis, and American Joint Committee on Cancer (AJCC) stage. Furthermore, elevated SLP-2 expression is an independent prognostic factor in multivariate analysis using the Cox regression model (p = 0.005). CONCLUSIONS Overexpression of SLP-2 may contribute to the progression and poor prognosis of GC.
Collapse
Affiliation(s)
- Dongning Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838, The North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China,
| | | | | | | | | | | | | |
Collapse
|
29
|
Clinicopathological significance of SLP-2 overexpression in human gallbladder cancer. Tumour Biol 2013; 35:419-23. [PMID: 23918306 DOI: 10.1007/s13277-013-1058-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 07/24/2013] [Indexed: 12/16/2022] Open
Abstract
Several studies have indicated that overexpression of stomatin-like protein 2 (SLP-2) has been identified in several types of cancer. However, its role and clinical relevance in gallbladder cancer (GBC) is unknown. The purpose of this study was to reveal the prognostic significance of SLP-2 in GBC. The SLP-2 expression was examined at mRNA and protein levels by real-time quantitative polymerase chain reaction (qRT-PCR), and immunohistochemistry in GBC tissues and adjacent noncancerous tissues. Statistical analyses were applied to test the associations between SLP-2 expression, clinicopathologic factors, and prognosis. Immunohistochemistry and qRT-PCR showed that the protein and mRNA expression levels of SLP-2 were both significantly higher in GBC tissues than in adjacent noncancerous tissues. In addition, immunohistochemistry analysis showed that SLP-2 expression was significantly correlated with histological grade (P <0.001), pathologic T stage (P = 0.019), clinical stage (P = 0.001), and lymph node metastasis (P = 0.026). The Kaplan-Meier survival curves indicated that patients with high expression of SLP-2 had shorter overall survival than those with low expression (P <0.001). Meanwhile, the Cox multivariate analysis indicated that high expressions of SLP-2 were an independent prognostic factor for patients with GBC. These data showed that SLP-2 may play an important role in human GBC tumorigenesis, and SLP-2 might serve as a novel prognostic marker in human GBC.
Collapse
|