1
|
Rodemann MM, Dreschmann V, Dörner E, Sommer A, Kraetzschmar J, Klein-Hitpass L, Nagae G, Hiyama E, von Schweinitz D, Kappler R, Vokuhl C, Pietsch T. Identification of a Growth-Promoting Gene Cluster in the Region 2q24 as a Driver of Tumorigenesis in Childhood Hepatoblastoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00147-6. [PMID: 40316217 DOI: 10.1016/j.ajpath.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/19/2025] [Accepted: 04/11/2025] [Indexed: 05/04/2025]
Abstract
Hepatoblastoma (HB) represents the most common primary malignancy of the liver in childhood. Cytogenetic studies uncovered characteristic copy number alterations in HB. The frequent gain of chromosome 2q and particularly the recurrent 2q24 amplification suggest the presence of a so far unidentified oncogenic driver within this amplicon. High-resolution copy number profiles from 76 patients with HB were generated by using molecular inversion probe array technology. 2q gain was present in 63.2%, and 2q24 high-gain/amplification was present in 14.5% of patients analyzed. In the smallest overlapping region at 2q24.2q24.3, spanning >5.2 Mbp, 22 protein-coding genes, 2 long noncoding RNA genes, and one miRNA gene were mapped. RNA expression analysis of these smallest overlapping region genes identified RBMS1, BAZ2B, MARCH7, DPP4, FIGN, and TANK as overexpressed in 2q24 high-gain/amplified HB cases. Accordingly, these six genes were selected for further investigation. In situ, immunohistochemical staining showed higher protein expression of these genes in 2q24 high-gain HB tissue sections. In vitro, functional analyses were performed in established human HB cell lines carrying a 2q (high-)gain. Knockdown of these genes by specific siRNAs resulted in reduced proliferation and marked reduction of Wnt pathway activity. These genes located within the 2q24 amplicon might collaborate in driving cellular growth by interaction with the Wnt pathway that is known to be activated pathologically in HB.
Collapse
Affiliation(s)
- Martin M Rodemann
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Verena Dreschmann
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Evelyn Dörner
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | | | | | | | - Genta Nagae
- Genome Science Laboratory, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Eiso Hiyama
- Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan; Department of Biomedical Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | | | - Roland Kappler
- Department of Pediatric Surgery, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Christian Vokuhl
- Pediatric Pathology, Department of Pathology, University of Bonn Medical Center, Bonn, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany.
| |
Collapse
|
2
|
Roozitalab MR, Prekete N, Allen M, Grose RP, Louise Jones J. The Microenvironment in DCIS and Its Role in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:211-235. [PMID: 39821028 DOI: 10.1007/978-3-031-70875-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Ductal carcinoma in situ (DCIS) accounts for ~20% of all breast cancer diagnoses but whilst known to be a precursor of invasive breast cancer (IBC), evidence suggests only one in six patients will ever progress. A key challenge is to distinguish between those lesions that will progress and those that will remain indolent. Molecular analyses of neoplastic epithelial cells have not identified consistent differences between lesions that progressed and those that did not, and this has focused attention on the tumour microenvironment (ME).The DCIS ME is unique, complex and dynamic. Myoepithelial cells form the wall of the ductal-lobular tree and exhibit broad tumour suppressor functions. However, in DCIS they acquire phenotypic changes that bestow them with tumour promoter properties, an important evolution since they act as the primary barrier for invasion. Changes in the peri-ductal stromal environment also arise in DCIS, including transformation of fibroblasts into cancer-associated fibroblasts (CAFs). CAFs orchestrate other changes in the stroma, including the physical structure of the extracellular matrix (ECM) through altered protein synthesis, as well as release of a plethora of factors including proteases, cytokines and chemokines that remodel the ECM. CAFs can also modulate the immune ME as well as impact on tumour cell signalling pathways. The heterogeneity of CAFs, including recognition of anti-tumourigenic populations, is becoming evident, as well as heterogeneity of immune cells and the interplay between these and the adipocyte and vascular compartments. Knowledge of the impact of these changes is more advanced in IBC but evidence is starting to accumulate for a role in DCIS. Detailed in vitro, in vivo and tissue studies focusing on the interplay between DCIS epithelial cells and the ME should help to define features that can better predict DCIS behaviour.
Collapse
Affiliation(s)
- Mohammad Reza Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Niki Prekete
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Michael Allen
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK.
| |
Collapse
|
3
|
Deckwirth V, Hundi S, Hytönen MK, Hannula S, Ellonen P, Björkenheim P, Sukura A, Lohi H. Differential somatic coding variant landscapes between laser microdissected luminal epithelial cells from canine mammary invasive ductal solid carcinoma and comedocarcinoma. BMC Cancer 2024; 24:1524. [PMID: 39696035 DOI: 10.1186/s12885-024-13239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women. Likewise, canine mammary tumors (CMT) represent the most common cancer in intact female dogs and develop in the majority spontaneously. Similarities exist in clinical presentation, histopathology, biomarkers, and treatment. However, CMT subtype-specific genomic background is less investigated. Here, we assess the genetic etiology of two histomorphological (HM) subtypes with BC counterparts, the CMT invasive ductal simple solid carcinoma (SC) and comedocarcinoma (CC), and compare the results with BC data. METHODS Groups of 11-13 transformed ductal luminal epithelial cells were laser-capture microdissected from snap-frozen invasive mammary SC and CC subtypes of one intact female dog. HM unaffected lobular luminal epithelial cells were controls. Single-cell whole genome libraries were generated using PicoPLEX and sequenced to compare the subtypes' somatic coding variant landscapes with each other and with BC data available in COSMIC-CGC and KEGG. Furthermore, HM and immunohistochemical (IHC) subtype characteristics were compared with the genomic results. RESULTS The CC had six times more variants than the SC. The SC showed variants in adherens junction genes and genes of the MAPK, mTOR and NF-kappa-B signaling pathways. In the CC, the extracellular matrix (ECM) receptor interaction, cell adhesion, PI3K-Akt and cGMP-PKG pathways were enriched, reflecting the higher cellular malignancy. Affected pathways in both CMT subtypes overlapped with BC pathways in KEGG. Additionally, we identified ATP6V1C2, GLYATL3, CARMIL3, GATAD2B, OBSCN, SIX2, CPEB3 and ZNF521 as potential new subtype-distinct driver genes. Furthermore, our results revealed biomarker alterations in IHC in the basal/myoepithelial cell layer without respective genetic mutations, suggesting changes to their complex signaling pathways, disturbed regulative feedback loops or other silencing mechanisms. CONCLUSIONS This study contributes to understanding the subtype-specific molecular mechanisms in the canine mammary invasive ductal simple SC and CC, and revealed subtype-specific molecular complexity for phenotypically similar characteristics. Several affected genes and signaling pathways overlapped with BC indicating the potential use of CMT as model for BC. Our findings emphasize the need for thorough characterization of cancer specimens with respect to translational cancer research, but also how insight into tumor heterogeneity will be crucial for the development of targeted prognostics and therapeutic interventions.
Collapse
Affiliation(s)
- Vivi Deckwirth
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sruthi Hundi
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Marjo K Hytönen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Sari Hannula
- Institute for Molecular Medicine Finland FIMM, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland FIMM, Helsinki, Finland
| | - Pia Björkenheim
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Sukura
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
4
|
Jiang G, Ren X, Shang X. Impact of surgical types on overall survival in patients with ductal carcinoma in situ: an analysis based on the SEER database. Gland Surg 2024; 13:910-926. [PMID: 39015717 PMCID: PMC11247566 DOI: 10.21037/gs-23-468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
Background Breast cancer, as one of the most common malignancies among women globally, presents a concerning incidence rate, underscoring the importance of addressing the treatment of its precursor lesion, ductal carcinoma in situ (DCIS). Treatment decisions for DCIS, involving the balance between breast-conserving surgery (BCS) and mastectomy, remain an area requiring further investigation. This study aimed to compare influence of different surgical types on overall survival (OS) of patients with DCIS and identify specific subgroups with improved OS to develop an effective survival nomogram for patients. Methods Patient data from the Surveillance, Epidemiology, and End Results (SEER) database for DCIS cohort from 2010 to 2020 were retrieved. Kaplan-Meier (K-M) survival curves were utilized to compare prognostic OS of patients with different surgical methods. Cox regression analysis was employed to determine prognostic factors and establish a nomogram to predict 3-, 5-, and 10-year survival rates. The model was confirmed by Concordance Index (C-index), calibration curves, and receiver operating characteristic (ROC) curves. Results A total of 71,675 patients with DCIS were included. Patients who underwent subcutaneous mastectomy (SM) demonstrated the best OS compared to other surgical types. Additionally, adjuvant radiotherapy or chemotherapy in combination with surgery significantly improved OS compared to surgery alone. Among DCIS patients aged ≤74 years, those who underwent SM benefited the most in terms of OS, while in the age group of 63-74 years, patients who underwent BCS had significantly higher OS than those who underwent total (simple) mastectomy (TM)/modified radical mastectomy (MRM). Multiple factors were associated with improved OS in DCIS patients, and these factors were integrated into the nomogram to establish OS predictions. The C-index, calibration curves, and ROC curves indicated that the nomogram was suitable for assessing patient prognosis. Conclusions This study demonstrated that SM treatment yielded the best survival rates for DCIS patients, providing important guidance for future surgical decision-making. Moreover, identifying multiple independent factors related to survival and establishing reliable survival nomograms can assist physicians in developing personalized treatment plans and prolonging patient survival.
Collapse
Affiliation(s)
- Guobin Jiang
- Thyroid and Breast Surgery Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- Thyroid and Breast Surgery Department, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Xia Ren
- Thyroid and Breast Surgery Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- Thyroid and Breast Surgery Department, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Xi Shang
- Thyroid and Breast Surgery Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- Thyroid and Breast Surgery Department, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, China
| |
Collapse
|
5
|
Kaplan HG, Dowdell AK, Berry AB, Shimol RB, Robinson FL, Carney CA, Piening BD. Multi-omic profiling of simultaneous ductal carcinoma in situ and invasive breast cancer. Breast Cancer Res Treat 2024; 205:451-464. [PMID: 38523186 PMCID: PMC11101558 DOI: 10.1007/s10549-024-07270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/24/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE The progression of ductal carcinoma in situ (DCIS) to invasive breast carcinoma (IBC) in humans is highly variable. To better understand the relationship between them, we performed a multi-omic characterization of co-occurring DCIS and IBC lesions in a cohort of individuals. METHODS Formalin-fixed paraffin-embedded tissue samples from 50 patients with co-occurring DCIS and IBC lesions were subjected to DNA-seq and whole transcriptome RNA-seq. Paired DCIS and IBC multi-omics profiles were then interrogated for DNA mutations, gene expression profiles and pathway analysis. RESULTS Most small variants and copy number variations were shared between co-occurring DCIS and IBC lesions, with IBC exhibiting on average a higher degree of additional mutations. However, 36% of co-occurring lesions shared no common mutations and 49% shared no common copy number variations. The most frequent genomic variants in both DCIS and IBC were PIK3CA, TP53, KMT2C, MAP3K1, GATA3 and SF3B1, with KMT2C being more frequent in DCIS and TP53 and MAP3K1 more frequent in IBC, though the numbers are too small for definitive conclusions. The most frequent copy number variations were seen in MCL1, CKSB1 and ERBB2. ERBB2 changes were not seen in IBC unless present in the corresponding DCIS. Transcriptional profiles were highly distinct between DCIS and IBC, with DCIS exhibiting upregulation of immune-related signatures, while IBC showed significant overexpression in genes and pathways associated with cell division and proliferation. Interestingly, DCIS and IBC exhibited significant differential expression of different components of extracellular matrix (ECM) formation and regulation, with DCIS showing overexpression of ECM-membrane interaction components while IBC showed upregulation of genes associated with fibronectin and invadopodia. CONCLUSION While most co-occurring DCIS and IBC were mutationally similar and suggestive of a common clonal progenitor, transcriptionally the lesions are highly distinct, with IBC expressing key pathways that facilitate invasion and proliferation. These results are suggestive of additional levels of regulation, epigenetic or other, that facilitate the acquisition of invasive properties during tumor evolution.
Collapse
MESH Headings
- Humans
- Female
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Mutation
- DNA Copy Number Variations
- Gene Expression Profiling/methods
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Biomarkers, Tumor/genetics
- Middle Aged
- Neoplasm Invasiveness
- Gene Expression Regulation, Neoplastic
- Transcriptome
- Aged
- Adult
- Genomics/methods
- Multiomics
Collapse
Affiliation(s)
- Henry G Kaplan
- Swedish Cancer Institute, 1221 Madison St., Suite 920, Seattle, WA, 98104, USA.
| | - Alexa K Dowdell
- Earle A. Chiles Research Institute, Providence Health, Portland, OR, 97213, USA
| | - Anna B Berry
- Swedish Cancer Institute, 1221 Madison St., Suite 920, Seattle, WA, 98104, USA
| | - Racheli Ben Shimol
- Earle A. Chiles Research Institute, Providence Health, Portland, OR, 97213, USA
| | - Fred L Robinson
- Earle A. Chiles Research Institute, Providence Health, Portland, OR, 97213, USA
| | | | - Brian D Piening
- Earle A. Chiles Research Institute, Providence Health, Portland, OR, 97213, USA
| |
Collapse
|
6
|
Wang J, Li B, Luo M, Huang J, Zhang K, Zheng S, Zhang S, Zhou J. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther 2024; 9:83. [PMID: 38570490 PMCID: PMC10991592 DOI: 10.1038/s41392-024-01779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) represents pre-invasive breast carcinoma. In untreated cases, 25-60% DCIS progress to invasive ductal carcinoma (IDC). The challenge lies in distinguishing between non-progressive and progressive DCIS, often resulting in over- or under-treatment in many cases. With increasing screen-detected DCIS in these years, the nature of DCIS has aroused worldwide attention. A deeper understanding of the biological nature of DCIS and the molecular journey of the DCIS-IDC transition is crucial for more effective clinical management. Here, we reviewed the key signaling pathways in breast cancer that may contribute to DCIS initiation and progression. We also explored the molecular features of DCIS and IDC, shedding light on the progression of DCIS through both inherent changes within tumor cells and alterations in the tumor microenvironment. In addition, valuable research tools utilized in studying DCIS including preclinical models and newer advanced technologies such as single-cell sequencing, spatial transcriptomics and artificial intelligence, have been systematically summarized. Further, we thoroughly discussed the clinical advancements in DCIS and IDC, including prognostic biomarkers and clinical managements, with the aim of facilitating more personalized treatment strategies in the future. Research on DCIS has already yielded significant insights into breast carcinogenesis and will continue to pave the way for practical clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Department of Plastic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Wang K, Kumar T, Wang J, Minussi DC, Sei E, Li J, Tran TM, Thennavan A, Hu M, Casasent AK, Xiao Z, Bai S, Yang L, King LM, Shah V, Kristel P, van der Borden CL, Marks JR, Zhao Y, Zurita AJ, Aparicio A, Chapin B, Ye J, Zhang J, Gibbons DL, Sawyer E, Thompson AM, Futreal A, Hwang ES, Wesseling J, Lips EH, Navin NE. Archival single-cell genomics reveals persistent subclones during DCIS progression. Cell 2023; 186:3968-3982.e15. [PMID: 37586362 PMCID: PMC11831769 DOI: 10.1016/j.cell.2023.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a common precursor of invasive breast cancer. Our understanding of its genomic progression to recurrent disease remains poor, partly due to challenges associated with the genomic profiling of formalin-fixed paraffin-embedded (FFPE) materials. Here, we developed Arc-well, a high-throughput single-cell DNA-sequencing method that is compatible with FFPE materials. We validated our method by profiling 40,330 single cells from cell lines, a frozen tissue, and 27 FFPE samples from breast, lung, and prostate tumors stored for 3-31 years. Analysis of 10 patients with matched DCIS and cancers that recurred 2-16 years later show that many primary DCIS had already undergone whole-genome doubling and clonal diversification and that they shared genomic lineages with persistent subclones in the recurrences. Evolutionary analysis suggests that most DCIS cases in our cohort underwent an evolutionary bottleneck, and further identified chromosome aberrations in the persistent subclones that were associated with recurrence.
Collapse
Affiliation(s)
- Kaile Wang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tapsi Kumar
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junke Wang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Darlan Conterno Minussi
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Emi Sei
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianzhuo Li
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuan M Tran
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Hu
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna K Casasent
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenna Xiao
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shanshan Bai
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Yang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Lorraine M King
- Department of Surgery, Duke University School of Medicine, Durham, NC 27707, USA
| | - Vandna Shah
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London WC2R 2LS, UK
| | - Petra Kristel
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Carolien L van der Borden
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC 27707, USA
| | - Yuehui Zhao
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amado J Zurita
- Department of Genitourinary Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Brian Chapin
- Department of Urology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Ye
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Zhang
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ellinor Sawyer
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London WC2R 2LS, UK
| | - Alastair M Thompson
- Department of Surgery, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University School of Medicine, Durham, NC 27707, USA
| | - Jelle Wesseling
- Department of Pathology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX, the Netherlands; Department of Pathology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Esther H Lips
- Department of Pathology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX, the Netherlands; Department of Pathology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Nicholas E Navin
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Bioinformatics, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Hutten SJ, de Bruijn R, Lutz C, Badoux M, Eijkman T, Chao X, Ciwinska M, Sheinman M, Messal H, Herencia-Ropero A, Kristel P, Mulder L, van der Waal R, Sanders J, Almekinders MM, Llop-Guevara A, Davies HR, van Haren MJ, Martin NI, Behbod F, Nik-Zainal S, Serra V, van Rheenen J, Lips EH, Wessels LFA, Wesseling J, Scheele CLGJ, Jonkers J. A living biobank of patient-derived ductal carcinoma in situ mouse-intraductal xenografts identifies risk factors for invasive progression. Cancer Cell 2023; 41:986-1002.e9. [PMID: 37116492 PMCID: PMC10171335 DOI: 10.1016/j.ccell.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer (IBC). Due to a lack of biomarkers able to distinguish high- from low-risk cases, DCIS is treated similar to early IBC even though the minority of untreated cases eventually become invasive. Here, we characterized 115 patient-derived mouse-intraductal (MIND) DCIS models reflecting the full spectrum of DCIS observed in patients. Utilizing the possibility to follow the natural progression of DCIS combined with omics and imaging data, we reveal multiple prognostic factors for high-risk DCIS including high grade, HER2 amplification, expansive 3D growth, and high burden of copy number aberrations. In addition, sequential transplantation of xenografts showed minimal phenotypic and genotypic changes over time, indicating that invasive behavior is an intrinsic phenotype of DCIS and supporting a multiclonal evolution model. Moreover, this study provides a collection of 19 distributable DCIS-MIND models spanning all molecular subtypes.
Collapse
Affiliation(s)
- Stefan J Hutten
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Madelon Badoux
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Timo Eijkman
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Xue Chao
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Marta Ciwinska
- Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Michael Sheinman
- Oncode Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Hendrik Messal
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Andrea Herencia-Ropero
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Petra Kristel
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Lennart Mulder
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Rens van der Waal
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Joyce Sanders
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Mathilde M Almekinders
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Helen R Davies
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, CB2 0QQ Cambridge, UK; Early Cancer Institute, University of Cambridge, CB2 0XZ Cambridge, UK
| | - Matthijs J van Haren
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2302 BH Leiden, the Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2302 BH Leiden, the Netherlands
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, CB2 0QQ Cambridge, UK; Early Cancer Institute, University of Cambridge, CB2 0XZ Cambridge, UK
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Division of Diagnostic Oncology, Netherlands Cancer Institute - Antonie van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands; Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Colinda L G J Scheele
- Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Chua VH, Chua JH, Aniceto CJ, Antonio JA, Harina MDH, Martinez KC. DCIS: When is accelerated partial breast irradiation an option? A meta-analysis on outcomes and eligibility. Am J Surg 2023; 225:871-877. [PMID: 36914530 DOI: 10.1016/j.amjsurg.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND The natural history of DCIS may not be progression to invasive breast cancer (IBC). Accelerated partial breast irradiation (APBI) has emerged as an alternative to whole breast radiotherapy (WBRT). The purpose of this study was to assess the impact of APBI on DCIS patients. MATERIALS AND METHODS Eligible studies from 2012 to 2022 were identified in PubMed, Cochrane Library, ClinicalTrials, and ICTRP. A meta-analysis was done comparing recurrence rates, breast-related mortality rates, and adverse events of APBI versus WBRT. A subgroup analysis of 2017 ASTRO Guidelines "Suitable" and "Unsuitable" groups was performed. Forest plots and quantitative analysis were done. RESULTS Six studies were eligible (3 on APBI versus WBRT, 3 on APBI suitability). All had a low risk of bias and publication bias. The cumulative incidence was the following for APBI and WBRT respectively: IBTR was 5.7% and 6.3% with odds ratio of 1.09, 95% CI [0.84, 1.42], mortality rate was 4.9% and 5.05%, and adverse events was 48.87% and 69.63%. All had no statistical significance between groups. Adverse events were found to favor the APBI arm. Recurrence rate was significantly less in the Suitable group with an odds ratio 2.69, 95% CI [1.56, 4.67], favoring it over the Unsuitable group. CONCLUSION APBI was comparable to WBRT in terms of recurrence rate, breast cancer-related mortality rate, and adverse events. APBI was not inferior to WBRT and showed better safety in terms of skin toxicity. Patients classified as suitable for APBI had significantly lesser recurrence rate.
Collapse
Affiliation(s)
- Vannesza Hendricke Chua
- Department of Medical Education and Research, Chinese General Hospital and Medical Center, Philippines.
| | - Joyce Hazel Chua
- Department of Surgery, Chinese General Hospital and Medical Center, Philippines
| | - Celina Joyce Aniceto
- Department of Medical Education and Research, Chinese General Hospital and Medical Center, Philippines
| | - Jane April Antonio
- Department of Medical Education and Research, Chinese General Hospital and Medical Center, Philippines
| | - Ma Dara Hannah Harina
- Department of Medical Education and Research, Chinese General Hospital and Medical Center, Philippines
| | - Karen Claire Martinez
- Department of Medical Education and Research, Chinese General Hospital and Medical Center, Philippines
| |
Collapse
|
10
|
Corsi F, Albasini S, Ciciriello S, Villani L, Truffi M, Sevieri M, Sorrentino L. Extensive Intraductal Component in Breast Cancer: What Role in Disease-Free Survival? J Surg Res 2023; 283:233-240. [PMID: 36423471 DOI: 10.1016/j.jss.2022.10.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Extensive intraductal component (EIC) associated to early breast cancer could increase the risk locoregional recurrence, but its impact on distant metastases is still unclear. The aim of the present study was to assess the role of EIC on 5-year survival outcomes in patients affected by early breast cancer treated with breast-conserving surgery. METHODS A total of 414 consecutive patients with a minimum follow-up of 60 mo were collected from January 2007 to December 2015. Disease-free survival (DFS), distant metastasis-free survival (DMFS), and locoregional recurrence-free survival at 5 y were assessed considering the presence or absence of EIC and other clinical and pathological features. RESULTS Absence of EIC was independently associated with worse 5-year DFS (hazard ratio [HR] 1.68, P = 0.008) and 5-year DMFS (HR 1.93, P = 0.007), whereas 5-year locoregional recurrence-free survival was not affected (HR 1.50, P = 0.16). Five-year DFS was increased by EIC in T1 patients (P = 0.03) but not in T2 stage. Moreover, EIC was associated to better DFS in G2 (P = 0.03) and G3 patients (P = 0.01) but not in G1 cases. CONCLUSIONS Our results suggest that EIC is independently correlated with increased 5-year DFS and in particular with 5-year DMFS.
Collapse
Affiliation(s)
- Fabio Corsi
- Breast Unit, Department of Surgery, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco", Università di Milano, Milan, Italy.
| | - Sara Albasini
- Breast Unit, Department of Surgery, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Simone Ciciriello
- Breast Unit, Department of Surgery, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Laura Villani
- Department of Pathology, Istituto Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Marta Truffi
- Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Marta Sevieri
- Department of Biomedical and Clinical Sciences "Luigi Sacco", Università di Milano, Milan, Italy
| | - Luca Sorrentino
- Colorectal Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
11
|
Man YG, Mannion C, Stojadinovic A, Peoples GE, Cho WCS, Fu SW, Tan X, Hsiao YH, Liu A, Semczuk A, Zarogoulidis P, Gapeev AB, Deng X, Peng X, Reva BA, Omelchenko T, Wang J, Song G, Chen T. The most likely but largely ignored triggering factor for breast (or all) cancer invasion. J Cancer 2023; 14:573-590. [PMID: 37057291 PMCID: PMC10088539 DOI: 10.7150/jca.82291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/27/2023] [Indexed: 03/14/2023] Open
Abstract
Breast cancer development and progression are believed to be a sequential process, from normal to hyperplastic, to in situ, and to invasive and metastatic stages. Given that over 90% of cancer deaths are caused by invasive and metastatic lesions, countless factors and multiple theories have been proposed as the triggering factor for the cascade of actions of cancer invasion. However, those factors and theories are largely based on the studies of cell lines or animal models. In addition, corresponding interventions based on these factors and theories have failed to reduce the incidence rate of invasive and metastatic lesions, suggesting that previous efforts may have failed to arm at the right target. Considering these facts and observations, we are proposing "A focal aberrant degeneration in the myoepithelial cell layer (MECL) as the most likely triggering factor for breast cancer invasion". Our hypothesis is based on our recent studies of breast and multiple other cancers. Our commentary provides the rationale, morphologic, immunohistochemical, and molecular data to support our hypotheses. As all epithelium-derived cancers share a very similar architecture, our hypothesis is likely to be applicable to invasion of all cancer types. We believe that human tissue-derived data may provide a more realistic roadmap to guide the clinic practice.
Collapse
Affiliation(s)
- Yan-gao Man
- Department of Pathology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Ciaran Mannion
- Department of Pathology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | | | | | - William CS Cho
- Queen Elizabeth Hospital, Department of Clinical Oncology, Hong Kong, China
| | - Sidney W. Fu
- Division of Genomic Medicine, Department of Medicine, and of Microbiology, Immunology & Tropical Medicine, George Washington University Medical Center, Washington DC, USA
| | - Xiaohui Tan
- Division of Genomic Medicine, Department of Medicine, and of Microbiology, Immunology & Tropical Medicine, George Washington University Medical Center, Washington DC, USA
| | - Yi-Hsuan Hsiao
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Aijun Liu
- Department of Pathology, Chinese PLA General Hospital 7 th Medical Center, Beijing, China
| | - Andrzej Semczuk
- IIND Department of Gynecology, Lublin Medical University, Lublin, Poland
| | - Paul Zarogoulidis
- Pulmonary-Oncology Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece
| | - Andrei B. Gapeev
- Laboratory of Biological Effects of Non-Ionizing Radiation, Institute of Cell Biophysics, Russian Academy of Sciences, Russian Federation
| | - Xiyun Deng
- Department of Pathology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xiaoning Peng
- Department of Pathology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Boris A. Reva
- Department of Genetics and Genomics Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tatiana Omelchenko
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Jialian Wang
- Department of Sema4 Health Informatics, Stamford, CT, USA
| | - Guohong Song
- Department of Medical Oncology, Peking University Cancer Hospital and Institute, China
| | - Tingtao Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University and National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Vicini FA, Mann GB, Shah C, Weinmann S, Leo MC, Whitworth P, Rabinovitch R, Torres MA, Margenthaler JA, Dabbs D, Savala J, Shivers SC, Mittal K, Wärnberg F, Bremer T. A Novel Biosignature Identifies Patients With DCIS With High Risk of Local Recurrence After Breast Conserving Surgery and Radiation Therapy. Int J Radiat Oncol Biol Phys 2023; 115:93-102. [PMID: 36115740 DOI: 10.1016/j.ijrobp.2022.06.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/01/2022] [Accepted: 06/12/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE There is an unmet need to identify women diagnosed with ductal carcinoma in situ (DCIS) with a low risk of in-breast recurrence (IBR) after breast conserving surgery (BCS), which could omit radiation therapy (RT), and also to identify those with elevated IBR risk remaining after BCS plus RT. We evaluated a novel biosignature for a residual risk subtype (RRt) to help identify patients with elevated IBR risk after BCS plus RT. METHODS AND MATERIALS Women with DCIS treated with BCS with or without RT at centers in the US, Australia, and Sweden (n = 926) were evaluated. Patients were classified into 3 biosignature risk groups using the decision score (DS) and the RRt category: (1) Low Risk (DS ≤2.8 without RRt), (2) Elevated Risk (DS >2.8 without RRt), and (3) Residual Risk (DS >2.8 with RRt). Total and invasive IBR rates were assessed by risk group and treatment. RESULTS In patients at low risk, there was no significant difference in IBR rates with or without RT (total, P = .8; invasive IBR, P = .7), and there were low overall 10-year rates (total, 5.1%; invasive, 2.7%). In patients with elevated risk, IBR rates were decreased with RT (total: hazard ratio [HR], 0.25; P < .001; invasive: HR, 0.28; P = .005); 10-year rates were 20.6% versus 4.9% (total) and 10.9% versus 3.1% (invasive). In patients with residual risk, although IBR rates decreased with RT after BCS (total: HR, 0.21; P < .001; invasive: HR, 0.29; P = .028), IBR rates remained significantly higher after RT compared with patients with elevated risk (HR, 2.5; 95% CI, 1.2-5.4; P = .018), with 10-year rates of 42.1% versus 14.7% (total) and 18.3% versus 6.5% (invasive). CONCLUSIONS The novel biosignature identified patients with 3 distinct risk profiles: Low Risk patients with a low recurrence risk with or without adjuvant RT, Elevated Risk patients with excellent outcomes after BCS plus RT, and Residual Risk patients with an elevated recurrence risk remaining after BCS plus RT, warranting potential intensified or alternative treatment approaches.
Collapse
Affiliation(s)
| | - G Bruce Mann
- Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Chirag Shah
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sheila Weinmann
- Center for Health Research, Kaiser Permanente Northwest Research Center, Portland, Oregon
| | - Michael C Leo
- Center for Health Research, Kaiser Permanente Northwest Research Center, Portland, Oregon
| | | | - Rachel Rabinovitch
- Department of Radiation Oncology, University of Colorado, Colorado Springs, Colorado
| | - Mylin A Torres
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Julie A Margenthaler
- Department of General Surgery, Section of Surgical Oncology, Washington University School of Medicine, St Louis, Missouri
| | | | | | | | | | - Fredrik Wärnberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
13
|
Casasent AK, Almekinders MM, Mulder C, Bhattacharjee P, Collyar D, Thompson AM, Jonkers J, Lips EH, van Rheenen J, Hwang ES, Nik-Zainal S, Navin NE, Wesseling J. Learning to distinguish progressive and non-progressive ductal carcinoma in situ. Nat Rev Cancer 2022; 22:663-678. [PMID: 36261705 DOI: 10.1038/s41568-022-00512-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/07/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a non-invasive breast neoplasia that accounts for 25% of all screen-detected breast cancers diagnosed annually. Neoplastic cells in DCIS are confined to the ductal system of the breast, although they can escape and progress to invasive breast cancer in a subset of patients. A key concern of DCIS is overtreatment, as most patients screened for DCIS and in whom DCIS is diagnosed will not go on to exhibit symptoms or die of breast cancer, even if left untreated. However, differentiating low-risk, indolent DCIS from potentially progressive DCIS remains challenging. In this Review, we summarize our current knowledge of DCIS and explore open questions about the basic biology of DCIS, including those regarding how genomic events in neoplastic cells and the surrounding microenvironment contribute to the progression of DCIS to invasive breast cancer. Further, we discuss what information will be needed to prevent overtreatment of indolent DCIS lesions without compromising adequate treatment for high-risk patients.
Collapse
Affiliation(s)
- Anna K Casasent
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Charlotta Mulder
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Serena Nik-Zainal
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Nicholas E Navin
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioinformatics, MD Anderson Cancer Center, Houston, TX, USA
| | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
14
|
Akrida I, Mulita F. The clinical significance of HER2 expression in DCIS. Med Oncol 2022; 40:16. [PMID: 36352293 DOI: 10.1007/s12032-022-01876-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/15/2022] [Indexed: 11/11/2022]
Abstract
HER2 is an established prognostic and predictive marker for patients with invasive breast cancer. The clinical and biological significance of HER2 overexpression in patients with ductal carcinoma in situ (DCIS) remains poorly defined. DCIS is a heterogeneous disease and some patients with DCIS will not progress to invasive breast cancer. However, clinically significant recurrence rates have been reported after breast-conserving surgery for DCIS and approximately half of these cases will be life-threatening invasive recurrences. Since the incidence of DCIS is rising due to the widespread use of screening mammography, there is robust interest in selecting high-risk DCIS patients that may benefit from adjuvant therapies. Molecular prognostic and predictive models in early invasive breast cancer help clinicians identify patients that will benefit from chemotherapy. Molecular subtyping and profiling could also be useful in treating DCIS patients. According to current practice guidelines, HER2 testing is not recommended in DCIS patients. Nevertheless, evidence suggests that HER2-positive DCIS cases may be associated with adverse clinicopathological parameters and increased recurrence rates. This review summarizes the existing body of evidence linking HER2 expression and ipsilateral breast cancer recurrence in DCIS. HER2, as well as its correlation with other clinicopathological markers might be a useful prognostic and predictive marker, helping clinical decision-making in DCIS patients.
Collapse
Affiliation(s)
- Ioanna Akrida
- Department of General Surgery, University General Hospital of Patras, Rion, Greece.
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, 26504, Rion, Greece.
| | - Francesk Mulita
- Department of General Surgery, University General Hospital of Patras, Rion, Greece
| |
Collapse
|
15
|
Lips EH, Kumar T, Megalios A, Visser LL, Sheinman M, Fortunato A, Shah V, Hoogstraat M, Sei E, Mallo D, Roman-Escorza M, Ahmed AA, Xu M, van den Belt-Dusebout AW, Brugman W, Casasent AK, Clements K, Davies HR, Fu L, Grigoriadis A, Hardman TM, King LM, Krete M, Kristel P, de Maaker M, Maley CC, Marks JR, Menegaz BA, Mulder L, Nieboer F, Nowinski S, Pinder S, Quist J, Salinas-Souza C, Schaapveld M, Schmidt MK, Shaaban AM, Shami R, Sridharan M, Zhang J, Stobart H, Collyar D, Nik-Zainal S, Wessels LFA, Hwang ES, Navin NE, Futreal PA, Thompson AM, Wesseling J, Sawyer EJ. Genomic analysis defines clonal relationships of ductal carcinoma in situ and recurrent invasive breast cancer. Nat Genet 2022; 54:850-860. [PMID: 35681052 PMCID: PMC9197769 DOI: 10.1038/s41588-022-01082-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/22/2022] [Indexed: 11/29/2022]
Abstract
Ductal carcinoma in situ (DCIS) is the most common form of preinvasive breast cancer and, despite treatment, a small fraction (5-10%) of DCIS patients develop subsequent invasive disease. A fundamental biologic question is whether the invasive disease arises from tumor cells in the initial DCIS or represents new unrelated disease. To address this question, we performed genomic analyses on the initial DCIS lesion and paired invasive recurrent tumors in 95 patients together with single-cell DNA sequencing in a subset of cases. Our data show that in 75% of cases the invasive recurrence was clonally related to the initial DCIS, suggesting that tumor cells were not eliminated during the initial treatment. Surprisingly, however, 18% were clonally unrelated to the DCIS, representing new independent lineages and 7% of cases were ambiguous. This knowledge is essential for accurate risk evaluation of DCIS, treatment de-escalation strategies and the identification of predictive biomarkers.
Collapse
Affiliation(s)
- Esther H Lips
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tapsi Kumar
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Anargyros Megalios
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Lindy L Visser
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michael Sheinman
- Division of Molecular Carcinogenesis, Oncode Institute and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Angelo Fortunato
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
| | - Vandna Shah
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Marlous Hoogstraat
- Division of Molecular Carcinogenesis, Oncode Institute and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emi Sei
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Diego Mallo
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
| | - Maria Roman-Escorza
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Ahmed A Ahmed
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Mingchu Xu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Wim Brugman
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anna K Casasent
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen Clements
- Screening Quality Assurance Service, Public Health England, London, UK
| | - Helen R Davies
- Early Cancer Unit, Hutchison/MRC Research Centre and Academic Department of Medical Genetics, Cambridge Biomedical Research Campus, University of Cambridge, Cambridge, UK
| | - Liping Fu
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anita Grigoriadis
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Timothy M Hardman
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Lorraine M King
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Marielle Krete
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petra Kristel
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michiel de Maaker
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Carlo C Maley
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Brian A Menegaz
- Department of Surgery, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lennart Mulder
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank Nieboer
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Salpie Nowinski
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Sarah Pinder
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Jelmar Quist
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Carolina Salinas-Souza
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Michael Schaapveld
- Division of Psychosocial research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Abeer M Shaaban
- Queen Elizabeth Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Rana Shami
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Mathini Sridharan
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - John Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Serena Nik-Zainal
- Early Cancer Unit, Hutchison/MRC Research Centre and Academic Department of Medical Genetics, Cambridge Biomedical Research Campus, University of Cambridge, Cambridge, UK
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute and The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - E Shelley Hwang
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas E Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alastair M Thompson
- Department of Surgery, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Divisions of Diagnostic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elinor J Sawyer
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK.
| |
Collapse
|
16
|
Choo JRE, Jan YH, Ow SGW, Wong A, Lee MX, Ngoi N, Yadav K, Lim JSJ, Lim SE, Chan CW, Hartman M, Tang SW, Goh BC, Tan HL, Chong WQ, Yvonne ALE, Chan GHJ, Chen SJ, Tan KT, Lee SC. Serial Tumor Molecular Profiling of Newly Diagnosed HER2-Negative Breast Cancers During Chemotherapy in Combination with Angiogenesis Inhibitors. Target Oncol 2022; 17:355-368. [PMID: 35699834 PMCID: PMC9217774 DOI: 10.1007/s11523-022-00886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Background Breast cancers are heterogeneous with variable clinical courses and treatment responses. Objective We sought to evaluate dynamic changes in the molecular landscape of HER2-negative tumors treated with chemotherapy and anti-angiogenic agents. Patients and Methods Newly diagnosed HER2-negative breast cancer patients received low-dose sunitinib or bevacizumab prior to four 2-weekly cycles of dose-dense doxorubicin and cyclophosphamide. Tumor biopsies were obtained at baseline, after 2 weeks and after 8 weeks of chemotherapy. Next-generation sequencing was performed to assess for single nucleotide variants (SNVs) and copy number alterations (CNAs) of 440 cancer-related genes (ACTOnco®). Observed genomic changes were correlated with the Miller-Payne histological response to treatment. Results Thirty-four patients received sunitinib and 18 received bevacizumab. In total, 77% were hormone receptor positive (HER2−/HR+) and 23% were triple negative breast cancers (TNBC). New therapy-induced mutations were infrequent, occurring only in 13%, and appeared early after a single cycle of treatment. Seventy-two percent developed changes in the variant allele frequency (VAF) of pathogenic SNVs; the majority (51%) of these changes occurred early at 2 weeks and were sustained for 8 weeks. Changes in VAF of SNVs were most commonly seen in the PI3K/mTOR/AKT pathway; 13% developed changes in pathogenic mutations, which potentially confer sensitivity to PIK3CA inhibitors. Tumors with poor Miller-Payne response to treatment were less likely to experience changes in VAF of SNVs compared with those with good response (50% [7/14] vs 15% [4/24] had no changes observed at any timepoint, p = 0.029). Conclusions Serial molecular profiling identifies early therapy-induced genomic alterations, which may guide future selection of targeted therapies in breast cancer patients who progress after standard chemotherapy. Clinical trial registration ClinicalTrials.gov: NCT02790580 (first posted June 6, 2016). Supplementary Information The online version contains supplementary material available at 10.1007/s11523-022-00886-x.
Collapse
Affiliation(s)
- Joan R E Choo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | | | - Samuel G W Ow
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Andrea Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Matilda Xinwei Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Natalie Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Kritika Yadav
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Joline S J Lim
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Siew Eng Lim
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Ching Wan Chan
- Department of Surgery, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Mikael Hartman
- Department of Surgery, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Siau Wei Tang
- Department of Surgery, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Hon Lyn Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Wan Qin Chong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Ang Li En Yvonne
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Gloria H J Chan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | | | | | - Soo Chin Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore. .,Cancer Science Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
A systematic study on phenotypical characteristics of invasive breast carcinoma and surrounding ductal carcinoma in situ in multifocal breast cancers. Hum Pathol 2022; 127:12-20. [DOI: 10.1016/j.humpath.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022]
|
18
|
Kanwar N, Balde Z, Nair R, Dawe M, Chen S, Maganti M, Atenafu EG, Manolescu S, Wei C, Mao A, Fu F, Wang D, Cheung A, Yerofeyeva Y, Peters R, Liu K, Desmedt C, Sotiriou C, Szekely B, Kulka J, McKee TD, Hirano N, Bartlett JMS, Yaffe MJ, Bedard PL, McCready D, Done SJ. Heterogeneity of Circulating Tumor Cell-Associated Genomic Gains in Breast Cancer and Its Association with the Host Immune Response. Cancer Res 2021; 81:6196-6206. [PMID: 34711609 PMCID: PMC9397625 DOI: 10.1158/0008-5472.can-21-1079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/10/2021] [Accepted: 10/25/2021] [Indexed: 01/07/2023]
Abstract
Tumor cells that preferentially enter circulation include the precursors of metastatic cancer. Previously, we characterized circulating tumor cells (CTC) from patients with breast cancer and identified a signature of genomic regions with recurrent copy-number gains. Through FISH, we now show that these CTC-associated regions are detected within the matched untreated primary tumors of these patients (21% to 69%, median 55.5%, n = 19). Furthermore, they are more prevalent in the metastases of patients who died from breast cancer after multiple rounds of treatment (70% to 100%, median 93%, samples n = 41). Diversity indices revealed that higher spatial heterogeneity for these regions within primary tumors is associated with increased dissemination and metastasis. An identified subclone with multiple regions gained (MRG clone) was enriched in a posttreatment primary breast carcinoma as well as multiple metastatic tumors and local breast recurrences obtained at autopsy, indicative of a distinct early subclone with the capability to resist multiple lines of treatment and eventually cause death. In addition, multiplex immunofluorescence revealed that tumor heterogeneity is significantly associated with the degree of infiltration of B lymphocytes in triple-negative breast cancer, a subtype with a large immune component. Collectively, these data reveal the functional potential of genetic subclones that comprise heterogeneous primary breast carcinomas and are selected for in CTCs and posttreatment breast cancer metastases. In addition, they uncover a relationship between tumor heterogeneity and host immune response in the tumor microenvironment. SIGNIFICANCE: As breast cancers progress, they become more heterogeneous for multiple regions amplified in circulating tumor cells, and intratumoral spatial heterogeneity is associated with the immune landscape.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Combined Modality Therapy
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Immunity
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/secondary
- Lung Neoplasms/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Neoplastic Cells, Circulating/pathology
- Prognosis
- Prospective Studies
- Survival Rate
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/immunology
- Triple Negative Breast Neoplasms/pathology
- Triple Negative Breast Neoplasms/therapy
- Tumor Cells, Cultured
- Tumor Microenvironment
Collapse
Affiliation(s)
- Nisha Kanwar
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Zaldy Balde
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ranju Nair
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Melanie Dawe
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shiyi Chen
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Manjula Maganti
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Eshetu G Atenafu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sabrina Manolescu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Carrie Wei
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Amanda Mao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Fred Fu
- STTARR Innovation Centre, University Health Network, Toronto, Canada
| | - Dan Wang
- Biomarker Imaging Research Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Alison Cheung
- Biomarker Imaging Research Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Yulia Yerofeyeva
- Biomarker Imaging Research Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Rachel Peters
- Biomarker Imaging Research Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Kela Liu
- Biomarker Imaging Research Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Christos Sotiriou
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Borbala Szekely
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Trevor D McKee
- STTARR Innovation Centre, University Health Network, Toronto, Canada
| | - Naoto Hirano
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - John M S Bartlett
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Martin J Yaffe
- Biomarker Imaging Research Laboratory, Sunnybrook Research Institute, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Philippe L Bedard
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - David McCready
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Susan J Done
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| |
Collapse
|
19
|
Genetic heterogeneity during breast cancer progression in young patients. Breast 2021; 60:206-213. [PMID: 34736091 PMCID: PMC8569715 DOI: 10.1016/j.breast.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background Because a number of years may be required for normal cells to develop into carcinoma, genes involved in tumorigenesis and progression might differ among breast cancers in young women and those in older women. The present study sought to analyze subclonality during breast cancer evolution as well as diversity within each individual in our young patients’ cohort. Methods A total of 13 women aged <35 years at diagnosis with early breast cancer were recruited. Serial sections of breast samples consisting of synchronous invasive carcinoma, adjacent ductal carcinoma in situ (DCIS), normal breast tissue, and metastatic lymph nodes were collected and prepared for immunohistochemical analysis of estrogen receptor, progesterone receptor, HER2, and Ki67, and for extraction of genomic DNA. Germline and somatic gene alterations of genomic DNA were examined by targeted sequencing. Results Genomic DNA from 13 blood samples and 36 breast tissues consisting of 14 invasive carcinomas, nine adjacent DCIS, 11 normal breast tissues, and two metastatic lymph nodes were successfully sequenced. Germline gene alterations including pathogenic variants and gene alterations that were not yet evaluated for their clinical significance were detected in all patients but one. Somatic gene alterations were identified in eight invasive carcinomas, five DCIS, and one metastatic lymph node. Different somatic gene alterations between invasive carcinoma and DCIS were detected in two patients. Somatic gene mutations were present in non-neoplastic tissues in three patients. No two patients had the same gene alterations. Conclusion Our results reveal diversity within each individual during breast cancer progression. Subclonality during breast cancer progression in young patients were analyzed. No two patients had the same germline and/or somatic gene alterations. Somatic gene mutations were present in normal breast tissue.
Collapse
|
20
|
Breast Cancer Heterogeneity. Diagnostics (Basel) 2021; 11:diagnostics11091555. [PMID: 34573897 PMCID: PMC8468623 DOI: 10.3390/diagnostics11091555] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 01/22/2023] Open
Abstract
Breast tumor heterogeneity is a major challenge in the clinical management of breast cancer patients. Both inter-tumor and intra-tumor heterogeneity imply that each breast cancer (BC) could have different prognosis and would benefit from specific therapy. Breast cancer is a dynamic entity, changing during tumor progression and metastatization and this poses fundamental issues to the feasibility of a personalized medicine approach. The most effective therapeutic strategy for patients with recurrent disease should be assessed evaluating biopsies obtained from metastatic sites. Furthermore, the tumor progression and the treatment response should be strictly followed and radiogenomics and liquid biopsy might be valuable tools to assess BC heterogeneity in a non-invasive way.
Collapse
|
21
|
Lu P, Foley J, Zhu C, McNamara K, Sirinukunwattana K, Vennam S, Varma S, Fehri H, Srivastava A, Zhu S, Rittscher J, Mallick P, Curtis C, West R. Transcriptome and genome evolution during HER2-amplified breast neoplasia. Breast Cancer Res 2021; 23:73. [PMID: 34266469 PMCID: PMC8281634 DOI: 10.1186/s13058-021-01451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/03/2021] [Indexed: 01/05/2023] Open
Abstract
Background The acquisition of oncogenic drivers is a critical feature of cancer progression. For some carcinomas, it is clear that certain genetic drivers occur early in neoplasia and others late. Why these drivers are selected and how these changes alter the neoplasia’s fitness is less understood. Methods Here we use spatially oriented genomic approaches to identify transcriptomic and genetic changes at the single-duct level within precursor neoplasia associated with invasive breast cancer. We study HER2 amplification in ductal carcinoma in situ (DCIS) as an event that can be both quantified and spatially located via fluorescence in situ hybridization (FISH) and immunohistochemistry on fixed paraffin-embedded tissue. Results By combining the HER2-FISH with the laser capture microdissection (LCM) Smart-3SEQ method, we found that HER2 amplification in DCIS alters the transcriptomic profiles and increases diversity of copy number variations (CNVs). Particularly, interferon signaling pathway is activated by HER2 amplification in DCIS, which may provide a prolonged interferon signaling activation in HER2-positive breast cancer. Multiple subclones of HER2-amplified DCIS with distinct CNV profiles are observed, suggesting that multiple events occurred for the acquisition of HER2 amplification. Notably, DCIS acquires key transcriptomic changes and CNV events prior to HER2 amplification, suggesting that pre-amplified DCIS may create a cellular state primed to gain HER2 amplification for growth advantage. Conclusion By using genomic methods that are spatially oriented, this study identifies several features that appear to generate insights into neoplastic progression in precancer lesions at a single-duct level. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01451-6.
Collapse
Affiliation(s)
- Peipei Lu
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Joseph Foley
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Chunfang Zhu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Katherine McNamara
- Department of Medicine and Genetics, Stanford University, Stanford, CA, USA
| | - Korsuk Sirinukunwattana
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.,Big Data Institute/Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Sujay Vennam
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Sushama Varma
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Hamid Fehri
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.,Big Data Institute/Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Arunima Srivastava
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Shirley Zhu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Jens Rittscher
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Parag Mallick
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Christina Curtis
- Department of Medicine and Genetics, Stanford University, Stanford, CA, USA
| | - Robert West
- Department of Pathology, Stanford University, Stanford, CA, USA
| |
Collapse
|
22
|
Is Carboxypeptidase B1 a Prognostic Marker for Ductal Carcinoma In Situ? Cancers (Basel) 2021; 13:cancers13071726. [PMID: 33917306 PMCID: PMC8038727 DOI: 10.3390/cancers13071726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Ductal carcinoma in situ (DCIS) is an early-stage breast cancer (BC), in which tumor cells are growing in a localized duct of the mammary gland. DCIS is considered a precursor disease for invasive BC and, therefore, treated as soon as it is identified. However, low-grade DCIS can be confused with atypical ductal hyperplasia, which is not a malignant lesion, leading to unnecessary surgery in around 70% of women with suspected DCIS. On the other hand, if left untreated, a DCIS has the potential to progress to IDC. In this retrospective study, we identified a gene signature, carboxypeptidase B1 (CPB1), the expression of which could help differentiate DCIS from an ADH lesion and DCIS that may progress to an invasive BC. Abstract Ductal carcinoma in situ (DCIS) is considered a non-obligatory precursor for invasive ductal carcinoma (IDC). Around 70% of women with atypical ductal hyperplasia (ADH) undergo unnecessary surgery due to the difficulty in differentiating ADH from low-grade DCIS. If untreated, 14–60% of DCIS progress to IDC, highlighting the importance of identifying a DCIS gene signature. Human transcriptome data of breast tissue samples representing each step of BC progression were analyzed and high expression of carboxypeptidase B1 (CPB1) expression strongly correlated with DCIS. This was confirmed by quantitative PCR in breast tissue samples and cell lines model. High CPB1 expression correlated with better survival outcome, and mRNA level was highest in DCIS than DCIS adjacent to IDC and IDC. Moreover, loss of CPB1 in a DCIS cell line led to invasive properties associated with activation of HIF1α, FN1, STAT3 and SPP1 and downregulation of SFRP1 and OS9. The expression of CPB1 could predict 90.1% of DCIS in a cohort consisting of DCIS and IDC. We identified CPB1, a biomarker that helps differentiate DCIS from ADH or IDC and in predicting if a DCIS is likely to progress to IDC, thereby helping clinicians in their decisions.
Collapse
|
23
|
Ardila DC, Aggarwal V, Singh M, Chattopadhyay A, Chaparala S, Sant S. Identifying Molecular Signatures of Distinct Modes of Collective Migration in Response to the Microenvironment Using Three-Dimensional Breast Cancer Models. Cancers (Basel) 2021; 13:cancers13061429. [PMID: 33804802 PMCID: PMC8004051 DOI: 10.3390/cancers13061429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary The objective of this study was to investigate the role of two microenvironmental factors, namely, tumor-intrinsic hypoxia and secretome in inducing collective migration. We utilized three-dimensional (3D) discrete-sized microtumor models, which recapitulate hallmarks of transition of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC). Tumor-intrinsic hypoxia induced directional migration in large hypoxic microtumors while secretome from large microtumors induced radial migration in non-hypoxic microtumors. This highlights the emergence phenotypic heterogeneity and plasticity in cancer cells in response to different microenvironmental stimuli. To unravel mechanisms underlying these two distinct modes of migration, we performed differential gene expression analysis of hypoxia- and secretome-induced migratory phenotypes using non-migratory, non-hypoxic microtumors as controls. We proposed unique gene signature sets related to tumor-intrinsic hypoxia, hypoxia-induced epithelial-mesenchymal transition (EMT), as well as hypoxia-induced directional migration and secretome-induced radial migration. Abstract Collective cell migration is a key feature of transition of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) among many other cancers, yet the microenvironmental factors and underlying mechanisms that trigger collective migration remain poorly understood. Here, we investigated two microenvironmental factors, tumor-intrinsic hypoxia and tumor-secreted factors (secretome), as triggers of collective migration using three-dimensional (3D) discrete-sized microtumor models that recapitulate hallmarks of DCIS-IDC transition. Interestingly, the two factors induced two distinct modes of collective migration: directional and radial migration in the 3D microtumors generated from the same breast cancer cell line model, T47D. Without external stimulus, large (600 µm) T47D microtumors exhibited tumor-intrinsic hypoxia and directional migration, while small (150 µm), non-hypoxic microtumors exhibited radial migration only when exposed to the secretome of large microtumors. To investigate the mechanisms underlying hypoxia- and secretome-induced directional vs. radial migration modes, we performed differential gene expression analysis of hypoxia- and secretome-induced migratory microtumors compared with non-hypoxic, non-migratory small microtumors as controls. We propose unique gene signature sets related to tumor-intrinsic hypoxia, hypoxia-induced epithelial-mesenchymal transition (EMT), as well as hypoxia-induced directional migration and secretome-induced radial migration. Gene Set Enrichment Analysis (GSEA) and protein-protein interaction (PPI) network analysis revealed enrichment and potential interaction between hypoxia, EMT, and migration gene signatures for the hypoxia-induced directional migration. In contrast, hypoxia and EMT were not enriched in the secretome-induced radial migration, suggesting that complete EMT may not be required for radial migration. Survival analysis identified unique genes associated with low survival rate and poor prognosis in TCGA-breast invasive carcinoma dataset from our tumor-intrinsic hypoxia gene signature (CXCR4, FOXO3, LDH, NDRG1), hypoxia-induced EMT gene signature (EFEMP2, MGP), and directional migration gene signature (MAP3K3, PI3K3R3). NOS3 was common between hypoxia and migration gene signature. Survival analysis from secretome-induced radial migration identified ATM, KCNMA1 (hypoxia gene signature), and KLF4, IFITM1, EFNA1, TGFBR1 (migration gene signature) to be associated with poor survival rate. In conclusion, our unique 3D cultures with controlled microenvironments respond to different microenvironmental factors, tumor-intrinsic hypoxia, and secretome by adopting distinct collective migration modes and their gene expression analysis highlights the phenotypic heterogeneity and plasticity of epithelial cancer cells.
Collapse
Affiliation(s)
- Diana Catalina Ardila
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.C.A.); (V.A.); (M.S.)
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.C.A.); (V.A.); (M.S.)
| | - Manjulata Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.C.A.); (V.A.); (M.S.)
| | - Ansuman Chattopadhyay
- Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA 15219, USA; (A.C.); (S.C.)
| | - Srilakshmi Chaparala
- Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA 15219, USA; (A.C.); (S.C.)
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.C.A.); (V.A.); (M.S.)
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- UPMC-Hillman Cancer Center, Pittsburgh, PA 15260, USA
- Correspondence: ; Tel.: +1-412-6489804
| |
Collapse
|
24
|
Narayanan PL, Raza SEA, Hall AH, Marks JR, King L, West RB, Hernandez L, Guppy N, Dowsett M, Gusterson B, Maley C, Hwang ES, Yuan Y. Unmasking the immune microecology of ductal carcinoma in situ with deep learning. NPJ Breast Cancer 2021; 7:19. [PMID: 33649333 PMCID: PMC7921670 DOI: 10.1038/s41523-020-00205-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Despite increasing evidence supporting the clinical relevance of tumour infiltrating lymphocytes (TILs) in invasive breast cancer, TIL spatial variability within ductal carcinoma in situ (DCIS) samples and its association with progression are not well understood. To characterise tissue spatial architecture and the microenvironment of DCIS, we designed and validated a new deep learning pipeline, UNMaSk. Following automated detection of individual DCIS ducts using a new method IM-Net, we applied spatial tessellation to create virtual boundaries for each duct. To study local TIL infiltration for each duct, DRDIN was developed for mapping the distribution of TILs. In a dataset comprising grade 2-3 pure DCIS and DCIS adjacent to invasive cancer (adjacent DCIS), we found that pure DCIS cases had more TILs compared to adjacent DCIS. However, the colocalisation of TILs with DCIS ducts was significantly lower in pure DCIS compared to adjacent DCIS, which may suggest a more inflamed tissue ecology local to DCIS ducts in adjacent DCIS cases. Our study demonstrates that technological developments in deep convolutional neural networks and digital pathology can enable an automated morphological and microenvironmental analysis of DCIS, providing a new way to study differential immune ecology for individual ducts and identify new markers of progression.
Collapse
Affiliation(s)
- Priya Lakshmi Narayanan
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, Institute of Cancer Research, London, UK.
| | - Shan E Ahmed Raza
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Allison H Hall
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Lorraine King
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Robert B West
- Department of Pathology, Surgical Pathology, Stanford, CA, USA
| | - Lucia Hernandez
- Department of Anatomic Pathology, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Naomi Guppy
- Breast Cancer Now Histopathology Core, Institute of Cancer Research, London, UK
- UCL Advanced Diagnostics, University College London, London, UK
| | - Mitch Dowsett
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
- Academic Department of Biochemistry, Royal Marsden Hospital, London, UK
| | - Barry Gusterson
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - Carlo Maley
- Biodesign Center for Personalized Diagnostics and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yinyin Yuan
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, Institute of Cancer Research, London, UK.
| |
Collapse
|
25
|
Stanciu-Pop C, Nollevaux MC, Berlière M, Duhoux FP, Fellah L, Galant C, Van Bockstal MR. Morphological intratumor heterogeneity in ductal carcinoma in situ of the breast. Virchows Arch 2021; 479:33-43. [PMID: 33502600 DOI: 10.1007/s00428-021-03040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022]
Abstract
Ductal carcinoma in situ (DCIS) of the breast is a heterogeneous disease in terms of morphological characteristics, protein expression profiles, genetic abnormalities, and potential for progression. Molecular heterogeneity has been extensively studied in DCIS. Yet morphological heterogeneity remains relatively undefined. This study investigated morphological intratumor heterogeneity in a series of 51 large DCIS. Nuclear atypia, DCIS architecture, necrosis, calcifications, stromal architecture, and stromal inflammation were assessed in one biopsy slide and three representative slides from each corresponding resection. For each histopathological feature, a histo-score was determined per slide and compared between the biopsy and the resection, as well as within a single resection. Statistical analysis comprised of Friedman tests, post hoc Wilcoxon tests with Bonferroni corrections, Mann-Whitney U tests, and chi-square tests. Despite substantial morphological heterogeneity in around 50% of DCIS, the histopathological assessment of the biopsy did not statistically significantly differ from the resection. Morphological heterogeneity was not significantly associated with patient age, DCIS size, or type of surgery, except for a weak association between heterogeneous stromal inflammation and smaller DCIS size. At the group level, the degree of heterogeneity did not significantly affect the representativity of a biopsy. At the individual patient level, however, the presence of necrosis, intraductal calcifications, myxoid stromal changes, and high-grade nuclear atypia was underestimated in a minority of DCIS patients. This study confirms the presence of morphological heterogeneity in DCIS for all six evaluated histopathological features. This should be kept in mind when taking biopsy-based treatment decisions for DCIS patients.
Collapse
Affiliation(s)
- Claudia Stanciu-Pop
- Department of Pathology, CHU UCL Namur, Site Godinne, Avenue Docteur G. Thérasse 1, 5530, Yvoir, Belgium
| | - Marie-Cécile Nollevaux
- Department of Pathology, CHU UCL Namur, Site Godinne, Avenue Docteur G. Thérasse 1, 5530, Yvoir, Belgium
| | - Martine Berlière
- Breast Clinic, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Francois P Duhoux
- Breast Clinic, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Department of Medical Oncology, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Latifa Fellah
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Department of Radiology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Christine Galant
- Breast Clinic, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Mieke R Van Bockstal
- Breast Clinic, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium. .,Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium. .,Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.
| |
Collapse
|
26
|
Trinh A, Gil Del Alcazar CR, Shukla SA, Chin K, Chang YH, Thibault G, Eng J, Jovanović B, Aldaz CM, Park SY, Jeong J, Wu C, Gray J, Polyak K. Genomic Alterations during the In Situ to Invasive Ductal Breast Carcinoma Transition Shaped by the Immune System. Mol Cancer Res 2020; 19:623-635. [PMID: 33443130 DOI: 10.1158/1541-7786.mcr-20-0949] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022]
Abstract
The drivers of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) transition are poorly understood. Here, we conducted an integrated genomic, transcriptomic, and whole-slide image analysis to evaluate changes in copy-number profiles, mutational profiles, expression, neoantigen load, and topology in 6 cases of matched pure DCIS and recurrent IDC. We demonstrate through combined copy-number and mutational analysis that recurrent IDC can be genetically related to its pure DCIS despite long latency periods and therapeutic interventions. Immune "hot" and "cold" tumors can arise as early as DCIS and are subtype-specific. Topologic analysis showed a similar degree of pan-leukocyte-tumor mixing in both DCIS and IDC but differ when assessing specific immune subpopulations such as CD4 T cells and CD68 macrophages. Tumor-specific copy-number aberrations in MHC-I presentation machinery and losses in 3p, 4q, and 5p are associated with differences in immune signaling in estrogen receptor (ER)-negative IDC. Common oncogenic hotspot mutations in genes including TP53 and PIK3CA are predicted to be neoantigens yet are paradoxically conserved during the DCIS-to-IDC transition, and are associated with differences in immune signaling. We highlight both tumor and immune-specific changes in the transition of pure DCIS to IDC, including genetic changes in tumor cells that may have a role in modulating immune function and assist in immune escape, driving the transition to IDC. IMPLICATIONS: We demonstrate that the in situ to IDC evolutionary bottleneck is shaped by both tumor and immune cells.
Collapse
Affiliation(s)
- Anne Trinh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Carlos R Gil Del Alcazar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Sachet A Shukla
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Koei Chin
- Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Young Hwan Chang
- Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Guillaume Thibault
- Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, Oregon
| | - Jennifer Eng
- Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, Oregon
| | - Bojana Jovanović
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University Medical College, Seoul, Korea
| | - Catherine Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Joe Gray
- Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
27
|
Bergholtz H, Kumar S, Wärnberg F, Lüders T, Kristensen V, Sørlie T. Comparable cancer-relevant mutation profiles in synchronous ductal carcinoma in situ and invasive breast cancer. Cancer Rep (Hoboken) 2020; 3:e1248. [PMID: 32671987 PMCID: PMC7941529 DOI: 10.1002/cnr2.1248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 11/16/2022] Open
Abstract
Background Ductal carcinoma in situ (DCIS) comprises a diverse group of preinvasive lesions in the breast and poses a considerable clinical challenge due to lack of markers of progression. Genomic alterations are to a large extent similar in DCIS and invasive carcinomas, although differences in copy number aberrations, gene expression patterns, and mutations exist. In mixed tumors with synchronous invasive breast cancer (IBC) and DCIS, it is still unclear to what extent invasive tumor cells are directly derived from the DCIS cells. Aim Our aim was to compare cancer‐relevant mutation profiles of different cellular compartments in mixed DCIS/IBC and pure DCIS tumors. Methods and results We performed targeted sequencing of 50 oncogenes in microdissected tissue from three different epithelial cell compartments (in situ, invasive, and normal adjacent epithelium) from 26 mixed breast carcinomas. In total, 44 tissue samples (19 invasive, 16 in situ, 9 normal) were subjected to sequencing using the Ion Torrent platform and the AmpliSeq Cancer Hotspot Panel v2. For comparison, 10 additional, pure DCIS lesions were sequenced. Across all mixed samples, we detected 23 variants previously described in cancer. The most commonly affected genes were TP53, PIK3CA, and ERBB2. The PIK3CA:p.H1047R variant was found in nine samples from six patients. Most variants detected in invasive compartments were also found in the corresponding in situ cell compartment indicating a clonal relationship between the tumor stages. A lower frequency of variants were observed in pure DCIS lesions. Conclusion Similar mutation profiles between in situ and invasive cell compartments indicate a similar origin of the two tumor stages in mixed breast tumors. The lower number of potential driver variants found in pure DCIS compared with the in situ cell compartments of mixed tumors may imply that pure DCIS is captured earlier in the path of progression to invasive disease.
Collapse
Affiliation(s)
- Helga Bergholtz
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surendra Kumar
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Fredrik Wärnberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Department of Surgery, Uppsala Academic Hospital, Uppsala, Sweden
| | - Torben Lüders
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Vessela Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Therese Sørlie
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
Moon HR, Ospina-Muñoz N, Noe-Kim V, Yang Y, Elzey BD, Konieczny SF, Han B. Subtype-specific characterization of breast cancer invasion using a microfluidic tumor platform. PLoS One 2020; 15:e0234012. [PMID: 32544183 PMCID: PMC7297326 DOI: 10.1371/journal.pone.0234012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding progression of breast cancers to invasive ductal carcinoma (IDC) can significantly improve breast cancer treatments. However, it is still difficult to identify genetic signatures and the role of tumor microenvironment to distinguish pathological stages of pre-invasive lesion and IDC. Presence of multiple subtypes of breast cancers makes the assessment more challenging. In this study, an in-vitro microfluidic assay was developed to quantitatively assess the subtype-specific invasion potential of breast cancers. The developed assay is a microfluidic platform in which a ductal structure of epithelial cancer cells is surrounded with a three-dimensional (3D) collagen matrix. In the developed platform, two triple negative cancer subtypes (MDA-MB-231 and SUM-159PT) invaded into the surrounding matrix but the luminal A subtype, MCF-7, did not. Among invasive subtypes, SUM-159PT cells showed significantly higher invasion and degradation of the surrounding matrix than MDA-MB-231. Interestingly, the cells cultured on the platform expressed higher levels of CD24 than in their conventional 2D cultures. This microfluidic platform may be a useful tool to characterize and predict invasive potential of breast cancer subtypes or patient-derived cells.
Collapse
Affiliation(s)
- Hye-ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Natalia Ospina-Muñoz
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
- Cellular and Molecular Physiology Group, School of Medicine, Universidad Nacional de Colombia, Bogotá D.C, Colombia
| | - Victoria Noe-Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Yi Yang
- Department of Biological Science, Purdue University, West Lafayette, IN, United States of America
| | - Bennett D. Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States of America
| | - Stephen F. Konieczny
- Department of Biological Science, Purdue University, West Lafayette, IN, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States of America
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| |
Collapse
|
29
|
Columnar Cell Lesion and Apocrine Hyperplasia of the Breast: Is There a Common Origin? The Role of Prolactin-induced Protein. Appl Immunohistochem Mol Morphol 2020; 27:508-514. [PMID: 29084054 DOI: 10.1097/pai.0000000000000604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Noninvasive breast lesions encompass a heterogeneous group of risk indicators and nonobligate precursors of breast cancer, such as apocrine hyperplasia (AH) and columnar cell lesions (CCLs). Given the different expression of ER and ER-regulated genes in AH and CCL, these two alterations are currently considered discrete conditions. However, whether they share early biologic changes is not clear to date. Here, we sought to define the clinicopathologic and immunohistochemical features of a prospective series of combined lesions made up by CCLs and AH forming a continuum within single terminal duct-lobular units. The study group included 19 cases, whereas 25 cases of synchronous contiguous CCLs and AH served as control group. The different components of each case were subjected to immunohistochemical analysis for ER, PR, AR, HER2, BCL2, CCND1, MUC1, and PIP. Although CCLs and AHs arising in continuity showed opposite patterns of ER expression, the PIP-positive apocrine signature was consistently present in both components. In conclusion, apocrine changes are highly recurrent in CCLs growing within foci of AH, regardless of the ER activation. Our results suggest that PIP-positive and PIP-negative CCLs are likely to represent biologically distinct conditions and that apocrine changes might occur earlier than ER activation in the natural history of breast precursor lesions.
Collapse
|
30
|
Rakha EA, Pareja FG. New Advances in Molecular Breast Cancer Pathology. Semin Cancer Biol 2020; 72:102-113. [PMID: 32259641 DOI: 10.1016/j.semcancer.2020.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) comprises a diverse spectrum of diseases featuring distinct presentation, morphological, biological, and clinical phenotypes. BC behaviour and response to therapy also vary widely. Current evidence indicates that traditional prognostic and predictive classification systems are insufficient to reflect the biological and clinical heterogeneity of BC. Advancements in high-throughput molecular techniques and bioinformatics have contributed to the improved understanding of BC biology, refinement of molecular taxonomies and the development of novel prognostic and predictive molecular assays. Molecular testing has also become increasingly important in the diagnosis and treatment of BC in the era of precision medicine. Despite the enormous amount of research work to develop and refine BC molecular prognostic and predictive assays, it is still in evolution and proper incorporation of these molecular tests into clinical practice to guide patient's management remains a challenge. With the increasing use of more sophisticated high throughput molecular techniques, large amounts of data will continue to emerge, which could potentially lead to identification of novel therapeutic targets and allow more precise classification systems that can accurately predict outcome and response to therapy. In this review, we provide an update on the molecular classification of BC and molecular prognostic assays. Companion diagnostics, contribution of massive parallel sequencing and the use of liquid biopsy are also highlighted.
Collapse
Affiliation(s)
- Emad A Rakha
- Department of Histopathology, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, NG5 1PB, UK.
| | - Fresia G Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| |
Collapse
|
31
|
Pareja F, Brown DN, Lee JY, Da Cruz Paula A, Selenica P, Bi R, Geyer FC, Gazzo A, da Silva EM, Vahdatinia M, Stylianou AA, Ferrando L, Wen HY, Hicks JB, Weigelt B, Reis-Filho JS. Whole-Exome Sequencing Analysis of the Progression from Non-Low-Grade Ductal Carcinoma In Situ to Invasive Ductal Carcinoma. Clin Cancer Res 2020; 26:3682-3693. [PMID: 32220886 DOI: 10.1158/1078-0432.ccr-19-2563] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/28/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Ductal carcinoma in situ (DCIS) is a nonobligate precursor of invasive breast cancer. Here, we sought to investigate the level of intralesion genetic heterogeneity in DCIS and the patterns of clonal architecture changes in the progression from DCIS to invasive disease. EXPERIMENTAL DESIGN Synchronous DCIS (n = 27) and invasive ductal carcinomas of no special type (IDC-NSTs; n = 26) from 25 patients, and pure DCIS (n = 7) from 7 patients were microdissected separately and subjected to high-depth whole-exome (n = 56) or massively parallel sequencing targeting ≥410 key cancer-related genes (n = 4). Somatic genetic alterations, mutational signatures, clonal composition, and phylogenetic analyses were defined using validated computational methods. RESULTS DCIS revealed genetic alterations similar to those of synchronously diagnosed IDC-NSTs and of non-related IDC-NSTs from The Cancer Genome Atlas (TCGA), whereas pure DCIS lacked PIK3CA mutations. Clonal decomposition and phylogenetic analyses based on somatic mutations and copy number alterations revealed that the mechanisms of progression of DCIS to invasive carcinoma are diverse, and that clonal selection might have constituted the mechanism of progression from DCIS to invasive disease in 28% (7/25) of patients. DCIS displaying a pattern of clonal selection in the progression to invasive cancer harbored higher levels of intralesion genetic heterogeneity than DCIS where no clonal selection was observed. CONCLUSIONS Intralesion genetic heterogeneity is a common feature in DCIS synchronously diagnosed with IDC-NST. DCIS is a nonobligate precursor of IDC-NST, whose mechanisms of progression to invasive breast cancer are diverse and vary from case to case.
Collapse
Affiliation(s)
- Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David N Brown
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ju Youn Lee
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rui Bi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Felipe C Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea Gazzo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edaise M da Silva
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mahsa Vahdatinia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthe A Stylianou
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lorenzo Ferrando
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James B Hicks
- Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
32
|
Janiszewska M. The microcosmos of intratumor heterogeneity: the space-time of cancer evolution. Oncogene 2020; 39:2031-2039. [PMID: 31784650 PMCID: PMC7374939 DOI: 10.1038/s41388-019-1127-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
Abstract
The Cancer Genome Atlas consortium brought us terabytes of information about genetic alterations in different types of human tumors. While many cancer-driver genes have been identified through these efforts, interrogating cancer genomes has also shed new light on tumor complexity. Mutations were found to vary tremendously in their allelic frequencies within the same tumor. Based on those variant allelic frequencies grouping, an estimate of genetically distinct "clones" of cancer cells can be determined for each tumor. It was estimated that 4-8 clones are present in every human tumor. Presence of distinct clones, cells that differ in their genotype and/or phenotype, is one of the roots for the major challenge of effectively curing cancer patients. Any given treatment applied to a heterogeneous mixture of cancer cells will yield distinct responses in different cells and may be ineffective in killing particular clones. Moreover, in highly heterogeneous tumors, stochastically, there is a higher chance of presence of traits, such as point mutations in key receptor tyrosine kinases, that drive drug resistance. Thus, intratumor heterogeneity is like an arsenal, providing a variety of weapons for self-defense against cancer-targeted therapy. However, in this arsenal the supplies are constantly changing, as cancer cells are accumulating new mutations. What is also changing is the battlefield-the tumor microenvironment including all noncancerous cells within the tumor and surrounding tissue, which also contribute to the diversification of cancer's forces. In order to design more effective therapies that would target this ever-changing landscape, we need to learn more about the two elusive variables that shape the tumor ecosystem: the space-how could we exploit the organization of tumor microenvironment? and the time-how could we predict the changes in heterogeneous tumors?
Collapse
Affiliation(s)
- Michalina Janiszewska
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
33
|
Lin CY, Vennam S, Purington N, Lin E, Varma S, Han S, Desa M, Seto T, Wang NJ, Stehr H, Troxell ML, Kurian AW, West RB. Genomic landscape of ductal carcinoma in situ and association with progression. Breast Cancer Res Treat 2019; 178:307-316. [PMID: 31420779 PMCID: PMC6800639 DOI: 10.1007/s10549-019-05401-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE The detection rate of breast ductal carcinoma in situ (DCIS) has increased significantly, raising the concern that DCIS is overdiagnosed and overtreated. Therefore, there is an unmet clinical need to better predict the risk of progression among DCIS patients. Our hypothesis is that by combining molecular signatures with clinicopathologic features, we can elucidate the biology of breast cancer progression, and risk-stratify patients with DCIS. METHODS Targeted exon sequencing with a custom panel of 223 genes/regions was performed for 125 DCIS cases. Among them, 60 were from cases having concurrent or subsequent invasive breast cancer (IBC) (DCIS + IBC group), and 65 from cases with no IBC development over a median follow-up of 13 years (DCIS-only group). Copy number alterations in chromosome 1q32, 8q24, and 11q13 were analyzed using fluorescence in situ hybridization (FISH). Multivariable logistic regression models were fit to the outcome of DCIS progression to IBC as functions of demographic and clinical features. RESULTS We observed recurrent variants of known IBC-related mutations, and the most commonly mutated genes in DCIS were PIK3CA (34.4%) and TP53 (18.4%). There was an inverse association between PIK3CA kinase domain mutations and progression (Odds Ratio [OR] 10.2, p < 0.05). Copy number variations in 1q32 and 8q24 were associated with progression (OR 9.3 and 46, respectively; both p < 0.05). CONCLUSIONS PIK3CA kinase domain mutations and the absence of copy number gains in DCIS are protective against progression to IBC. These results may guide efforts to distinguish low-risk from high-risk DCIS.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/therapy
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- DNA Copy Number Variations
- Female
- Genetic Predisposition to Disease
- Genome-Wide Association Study/methods
- Genomics/methods
- Humans
- In Situ Hybridization, Fluorescence
- Middle Aged
- Neoplasm Metastasis
- Neoplasm Staging
- Tumor Burden
Collapse
Affiliation(s)
- Chieh-Yu Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Sujay Vennam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Natasha Purington
- Department of Medicine, Quantitative Sciences Unit, Stanford University, Stanford, CA, USA
| | - Eric Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Summer Han
- Department of Medicine, Quantitative Sciences Unit, Stanford University, Stanford, CA, USA
| | - Manisha Desa
- Department of Medicine and of Biomedical Data Science, Quantitative Sciences Unit, Stanford University, Stanford, CA, USA
| | - Tina Seto
- Research Information Technology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas J Wang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Henning Stehr
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Megan L Troxell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Allison W Kurian
- Departments of Medicine and of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
34
|
Dessources K, Sebastiao APM, Pareja F, Weigelt B, Reis-Filho JS. How Did We Get There? The Progression from Ductal Carcinoma In Situ to Invasive Ductal Carcinoma. CURRENT BREAST CANCER REPORTS 2019. [DOI: 10.1007/s12609-019-00318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
van Seijen M, Lips EH, Thompson AM, Nik-Zainal S, Futreal A, Hwang ES, Verschuur E, Lane J, Jonkers J, Rea DW, Wesseling J. Ductal carcinoma in situ: to treat or not to treat, that is the question. Br J Cancer 2019; 121:285-292. [PMID: 31285590 PMCID: PMC6697179 DOI: 10.1038/s41416-019-0478-6] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) now represents 20-25% of all 'breast cancers' consequent upon detection by population-based breast cancer screening programmes. Currently, all DCIS lesions are treated, and treatment comprises either mastectomy or breast-conserving surgery supplemented with radiotherapy. However, most DCIS lesions remain indolent. Difficulty in discerning harmless lesions from potentially invasive ones can lead to overtreatment of this condition in many patients. To counter overtreatment and to transform clinical practice, a global, comprehensive and multidisciplinary collaboration is required. Here we review the incidence of DCIS, the perception of risk for developing invasive breast cancer, the current treatment options and the known molecular aspects of progression. Further research is needed to gain new insights for improved diagnosis and management of DCIS, and this is integrated in the PRECISION (PREvent ductal Carcinoma In Situ Invasive Overtreatment Now) initiative. This international effort will seek to determine which DCISs require treatment and prevent the consequences of overtreatment on the lives of many women affected by DCIS.
Collapse
Affiliation(s)
- Maartje van Seijen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alastair M Thompson
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Serena Nik-Zainal
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Andrew Futreal
- Department of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University Comprehensive Cancer Center, Durham, NC, USA
| | | | - Joanna Lane
- Health Cluster Net, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Daniel W Rea
- Department of Medical Oncology, University of Birmingham, Birmingham, UK
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
36
|
APOBEC3B Gene Expression in Ductal Carcinoma In Situ and Synchronous Invasive Breast Cancer. Cancers (Basel) 2019; 11:cancers11081062. [PMID: 31357602 PMCID: PMC6721358 DOI: 10.3390/cancers11081062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 11/17/2022] Open
Abstract
The underlying mechanism of the progression of ductal carcinoma in situ (DCIS), a non-obligate precursor of invasive breast cancer (IBC), has yet to be elucidated. In IBC, Apolipoprotein B mRNA Editing Enzyme, Catalytic Polypeptide-Like 3B (APOBEC3B) is upregulated in a substantial proportion of cases and is associated with higher mutational load and poor prognosis. However, APOBEC3B expression has never been studied in DCIS. We performed mRNA expression analysis of APOBEC3B in synchronous DCIS and IBC and surrounding normal cells. RNA was obtained from 53 patients. The tumors were categorized based on estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (Her2) and phosphoinositide-3-kinase, catalytic, alpha polypeptide (PIK3CA) mutation status. APOBEC3B mRNA levels were measured by RT-qPCR. The expression levels of paired DCIS and adjacent IBC were compared, including subgroup analyses. The normal cells expressed the lowest levels of APOBEC3B. No differences in expression were found between DCIS and IBC. Subgroup analysis showed that APOBEC3B was the highest in the ER subgroups of DCIS and IBC. While there was no difference in APOBEC3B between wild-type versus mutated PIK3CA DCIS, APOBEC3B was higher in wild-type versus PIK3CA-mutated IBC. In summary, our data show that APOBEC3B is already upregulated in DCIS. This suggests that APOBEC3B could already play a role in early carcinogenesis. Since APOBEC3B is a gain-of-function mutagenic enzyme, patients could benefit from the therapeutic targeting of APOBEC3B in the early non-invasive stage of breast cancer.
Collapse
|
37
|
van der Borden CL, Stoffers S, Lips EH, Wesseling J. Avoiding Overtreatment of Ductal Carcinoma in situ. Trends Cancer 2019; 5:391-393. [DOI: 10.1016/j.trecan.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
|
38
|
Targeting the Interplay between Epithelial-to-Mesenchymal-Transition and the Immune System for Effective Immunotherapy. Cancers (Basel) 2019; 11:cancers11050714. [PMID: 31137625 PMCID: PMC6562947 DOI: 10.3390/cancers11050714] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022] Open
Abstract
Over the last decade, both early diagnosis and targeted therapy have improved the survival rates of many cancer patients. Most recently, immunotherapy has revolutionized the treatment options for cancers such as melanoma. Unfortunately, a significant portion of cancers (including lung and breast cancers) do not respond to immunotherapy, and many of them develop resistance to chemotherapy. Molecular characterization of non-responsive cancers suggest that an embryonic program known as epithelial-mesenchymal transition (EMT), which is mostly latent in adults, can be activated under selective pressures, rendering these cancers resistant to chemo- and immunotherapies. EMT can also drive tumor metastases, which in turn also suppress the cancer-fighting activity of cytotoxic T cells that traffic into the tumor, causing immunotherapy to fail. In this review, we compare and contrast immunotherapy treatment options of non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). We discuss why, despite breakthrough progress in immunotherapy, attaining predictable outcomes in the clinic is mostly an unsolved problem for these tumors. Although these two cancer types appear different based upon their tissues of origin and molecular classification, gene expression indicate that they possess many similarities. Patient tumors exhibit activation of EMT, and resulting stem cell properties in both these cancer types associate with metastasis and resistance to existing cancer therapies. In addition, the EMT transition in both these cancers plays a crucial role in immunosuppression, which exacerbates treatment resistance. To improve cancer-related survival we need to understand and circumvent, the mechanisms through which these tumors become therapy resistant. In this review, we discuss new information and complementary perspectives to inform combination treatment strategies to expand and improve the anti-tumor responses of currently available clinical immune checkpoint inhibitors.
Collapse
|
39
|
Agahozo MC, Sieuwerts AM, Doebar SC, Verhoef EI, Beaufort CM, Ruigrok-Ritstier K, de Weerd V, Sleddens HFBM, Dinjens WNM, Martens JWM, van Deurzen CHM. PIK3CA mutations in ductal carcinoma in situ and adjacent invasive breast cancer. Endocr Relat Cancer 2019; 26:471-482. [PMID: 30844755 DOI: 10.1530/erc-19-0019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
PIK3CA is one of the most frequently mutated genes in invasive breast cancer (IBC). These mutations are generally associated with hyper-activation of the phosphatidylinositol 3-kinase signaling pathway, which involves increased phosphorylation of AKT (p-AKT). This pathway is negatively regulated by the tumor suppressor PTEN. Data are limited regarding the variant allele frequency (VAF) of PIK3CA, PTEN and p-AKT expression during various stages of breast carcinogenesis. Therefore, the aim of this study was to gain insight into PIK3CA VAF and associated PTEN and p-AKT expression during the progression from ductal carcinoma in situ (DCIS) to IBC. We isolated DNA from DCIS tissue, synchronous IBC and metastasis when present. These samples were pre-screened for PIK3CA hotspot mutations using the SNaPshot assay and, if positive, validated and quantified by digital PCR. PTEN and p-AKT expression was evaluated by immunohistochemistry using the Histo-score (H-score). Differences in PIK3CA VAF, PTEN and p-AKT H-scores between DCIS and IBC were analyzed. PIK3CA mutations were detected in 17 out of 73 DCIS samples, 16 out of 73 IBC samples and 3 out of 23 lymph node metastasis. We detected a significantly higher VAF of PIK3CA in the DCIS component compared to the adjacent IBC component (P = 0.007). The expression of PTEN was significantly higher in DCIS compared to the IBC component in cases with a wild-type (WT) PIK3CA status (P = 0.007), while it remained similar in both components when PIK3CA was mutated. There was no difference in p-AKT expression between DCIS and the IBC component. In conclusion, our data suggest that PIK3CA mutations could be essential specifically in early stages of breast carcinogenesis. In addition, these mutations do not co-occur with PTEN expression during DCIS progression to IBC in the majority of patients. These results may contribute to further unraveling the process of breast carcinogenesis, and this could aid in the development of patient-specific treatment.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Class I Phosphatidylinositol 3-Kinases/genetics
- Disease Progression
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Inflammatory Breast Neoplasms/genetics
- Inflammatory Breast Neoplasms/pathology
- Middle Aged
- Mutation
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Prognosis
Collapse
Affiliation(s)
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - S Charlane Doebar
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Esther I Verhoef
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Corine M Beaufort
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Hein F B M Sleddens
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Winand N M Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | |
Collapse
|
40
|
Yang M, Xu Z, Zhang QZ, Wang K, Ji XY, Xu J, Zhang JY, Niu G. A breast one-patient panel of heterogeneous genomes reveals genetic alterations driving DCIS into invasive lesions. Future Oncol 2019; 15:1565-1576. [PMID: 30888194 DOI: 10.2217/fon-2018-0555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Utilize breast cancer samples in the same patient to indicate breast cancer development. Patients & methods: We performed whole-exome analysis of spatially independent ductal carcinoma in situ (DCIS) and invasive ductal carcinoma samples from the same breast. Results: In VEGF pathway, we observed two genes disrupted in DCIS, while another four (including ACTN2) mutated in invasive ductal carcinoma. When looked up TCGA database, we identified seven breast cancer patients with ACTN2 somatic mutations and observed a dramatic decrease in the overall survival time in ACTN2 mutant patients (p = 0.0182). A further finding in the TCGA database shows that breast cancer patients with ≥2 mutated genes in VEGF pathways showed worse prognosis (p = 0.0013). Conclusion: TCGA database and special case could inform each other to reveal DCIS developmental rules.
Collapse
Affiliation(s)
- Mei Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Zhe Xu
- Department of Ophthalmology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
- Department of Ophthalmology, General hospital of southern theatre command, Guangzhou 510010, PR China
| | - Qiang-Zu Zhang
- Phil Rivers Technology, Beijing 10095, PR China
- Department of Cancer Genomics, LemonData Biotech (Shenzhen) Ltd, Shenzhen 518000, PR China
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Xiao-Yang Ji
- Phil Rivers Technology, Beijing 10095, PR China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Juan Xu
- Breast Disease Center, Guangdong Women & Children Hospital, Guangzhou 511400, PR China
| | - Jiang-Yu Zhang
- Pathology Department, Guangdong Women & Children Hospital, Guangzhou 511400, PR China
| | - Gang Niu
- Phil Rivers Technology, Beijing 10095, PR China
- Department of Cancer Genomics, LemonData Biotech (Shenzhen) Ltd, Shenzhen 518000, PR China
| |
Collapse
|
41
|
Brock EJ, Ji K, Shah S, Mattingly RR, Sloane BF. In Vitro Models for Studying Invasive Transitions of Ductal Carcinoma In Situ. J Mammary Gland Biol Neoplasia 2019; 24:1-15. [PMID: 30056557 PMCID: PMC6641861 DOI: 10.1007/s10911-018-9405-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
About one fourth of all newly identified cases of breast carcinoma are diagnoses of breast ductal carcinoma in situ (DCIS). Since we cannot yet distinguish DCIS cases that would remain indolent from those that may progress to life-threatening invasive ductal carcinoma (IDC), almost all women undergo aggressive treatment. In order to allow for more rational individualized treatment, we and others are developing in vitro models to identify and validate druggable pathways that mediate the transition of DCIS to IDC. These models range from conventional two-dimensional (2D) monolayer cultures on plastic to 3D cultures in natural or synthetic matrices. Some models consist solely of DCIS cells, either cell lines or primary cells. Others are co-cultures that include additional cell types present in the normal or cancerous human breast. The 3D co-culture models more accurately mimic structural and functional changes in breast architecture that accompany the transition of DCIS to IDC. Mechanistic studies of the dynamic and temporal changes associated with this transition are facilitated by adapting the in vitro models to engineered microfluidic platforms. Ultimately, the goal is to create in vitro models that can serve as a reproducible preclinical screen for testing therapeutic strategies that will reduce progression of DCIS to IDC. This review will discuss the in vitro models that are currently available, as well as the progress that has been made using them to understand DCIS pathobiology.
Collapse
MESH Headings
- Breast/pathology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/drug therapy
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Line, Tumor
- Coculture Techniques/methods
- Drug Screening Assays, Antitumor/methods
- Female
- Humans
- Neoplasm Invasiveness/pathology
- Neoplasm Invasiveness/prevention & control
- Primary Cell Culture/methods
Collapse
Affiliation(s)
- Ethan J Brock
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Seema Shah
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Raymond R Mattingly
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bonnie F Sloane
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University, 540 E. Canfield, Detroit, MI, 48201, USA.
| |
Collapse
|
42
|
Lee J, Oh M, Ko S, Park C, Lee ES, Kim HA, Jung Y, Lee J. Parity Differently Affects the Breast Cancer Specific Survival from Ductal Carcinoma In Situ to Invasive Cancer: A Registry-Based Retrospective Study from Korea. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2019; 13:1178223418825134. [PMID: 30728717 PMCID: PMC6350119 DOI: 10.1177/1178223418825134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 11/27/2022]
Abstract
Purpose: Multiparity might increase general mortality for women, but has inconclusive
in patients with breast cancer. Here, we aim to discover their effect in
terms of the breast cancer development hypothesis: from ductal carcinoma in
situ to invasive carcinoma. Methods: We included 37 947 patients from the web-based breast cancer registration
program of the Korean Breast Cancer Society and analyzed survivals using
multivariate Cox regression analysis and whether the associations of these
factors displayed linear trends. They were divided into the following
groups: (1) pure ductal carcinoma in situ (DCIS), (2) invasive ductal
carcinoma (IDC) mixed with intraductal component (DCIS-IDC), and (3) node
negative pure IDC. Results: The mean age was 48.9 ± 9.9 years including premenopausal women was 61.8%.
Although patients with parities of 1-3 had better prognosis compared with
patients with nulliparous women, high parity (⩾4) increased the hazard ratio
(HR) of overall survival (OS) (DCIS: HR, 1.52; 95% confidence interval [CI]
0.62-3.78; IDC: HR, 1.43, 95% CI 0.89-2.31; and DCIS-IDC: HR, 1.44, 95% CI
0.45-4.59) during 84.2 (±10.7) months. For breast cancer specific survival
(BCSS), the HR of the IDC group (P-value for trend = .04)
increased along with increasing parity and was worse than nulliparous
patients, and the HR of the DCIS-IDC group increased but was better than
nulliparous patients (P-value for trend = .02). Compared
with nulliparous patients, any age at first birth (AFB) decreased HR of OS
in the DCIS and IDC groups (DCIS: P = .01; IDC:
P = .04). Conclusions: Parity show dual effects on OS of women with all ductal typed breast cancer
but show different effects on BCSS in Korea.
Collapse
Affiliation(s)
- JungSun Lee
- Department of Surgery, Haeundae Paik Hospital, College of Medicine, Inje University, Busan, Korea
| | - Minkyung Oh
- Department of Pharmacology and Clinical Trial Center, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - SeungSang Ko
- Department of Surgery, College of Medicine, Dankook University and Cheil General Hospital, Seoul, Korea
| | - Chanheun Park
- Department of Surgery, College of Medicine, SungKyunkwan University and Kangbuk Samsung Hospital, Seoul, Korea
| | - Eun Sook Lee
- Center for Breast Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Hyun-Ah Kim
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Yongsik Jung
- Department of Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - Jungyeon Lee
- Department of Surgery, College of Medicine, Dong-A University, Busan, Korea
| | | |
Collapse
|
43
|
Rosa-Rosa JM, Caniego-Casas T, Leskela S, Cristobal E, González-Martínez S, Moreno-Moreno E, López-Miranda E, Holgado E, Pérez-Mies B, Garrido P, Palacios J. High Frequency of ERBB2 Activating Mutations in Invasive Lobular Breast Carcinoma with Pleomorphic Features. Cancers (Basel) 2019; 11:cancers11010074. [PMID: 30641862 PMCID: PMC6356653 DOI: 10.3390/cancers11010074] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Characterisation of molecular alterations of pleomorphic lobular carcinoma (PLC), an aggressive subtype of invasive lobular carcinoma (ILC), have not been yet completely accomplished. Methods: To investigate the molecular alterations of invasive lobular carcinoma with pleomorphic features, a total of 39 tumour samples (in situ and invasive lesions and lymph node metastases) from 27 patients with nuclear grade 3 invasive lobular carcinomas were subjected to morphological, immunohistochemical and massive parallel sequencing analyses. Results: Our observations indicated that invasive lobular carcinomas with pleomorphic features were morphologically and molecularly heterogeneous. All cases showed absence or aberrant expression of E-cadherin and abnormal expression of β-catenin and p120. CDH1 (89%), PIK3CA (33%) and ERRB2 (26%) were the most common mutated genes. ERBB2 mutations preferentially affected the tyrosine-kinase activity domain, being the most frequent the targetable mutation p.L755S (57%). We also observed higher frequency of mutations in ARID1B, KMT2C, MAP3K1, TP53 and ARID1A in PLC than previously reported in classic ILC. Alterations related to progression from in situ to invasive carcinoma and/or to lymph node metastases included TP53 mutation, amplification of PIK3CA and CCND1 and loss of ARID1A expression. Conclusions: The high frequency of ERBB2 mutations observed suggests that ERBB2 mutation testing should be considered in all invasive lobular carcinomas with nuclear grade 3.
Collapse
Affiliation(s)
| | | | - Susanna Leskela
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain.
| | - Eva Cristobal
- Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain.
| | | | | | - Elena López-Miranda
- Department of Medical Oncology, Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - Esther Holgado
- Department of Medical Oncology, Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - Belén Pérez-Mies
- Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain.
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain.
- Facultad de Medicina, Universidad de Alcalá de Henares, 28029 Madrid, Spain.
| | - Pilar Garrido
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain.
- Department of Medical Oncology, Hospital Ramón y Cajal, 28034 Madrid, Spain.
- Facultad de Medicina, Universidad de Alcalá de Henares, 28029 Madrid, Spain.
| | - José Palacios
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain.
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain.
- Facultad de Medicina, Universidad de Alcalá de Henares, 28029 Madrid, Spain.
| |
Collapse
|
44
|
Rojas KE, Fortes TA, Borgen PI. Leveraging the variable natural history of ductal carcinoma in situ (DCIS) to select optimal therapy. Breast Cancer Res Treat 2018; 174:307-313. [PMID: 30536119 DOI: 10.1007/s10549-018-05080-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 11/27/2022]
Abstract
PURPOSE Ductal carcinoma in situ (DCIS) is a non-obligate precursor to invasive ductal carcinoma. The authors sought to discuss the evidence suggesting that not all DCIS will progress to invasive disease if left untreated. RESULTS Four lines of evidence align to suggest that not all of this in-situ disease progresses to invasive cancer: its prevalence on screening mammography, studies of missed diagnoses, incidental findings in autopsy specimens, and large retrospective reviews of those treated with excision alone. CONCLUSION A clearer understanding of the variable history of DCIS coupled with advances in genomic profiling of the disease holds the promise of reducing widespread over-treatment of this non-invasive cancer. Additionally, identification of higher risk of recurrence subsets may select patients for whom more aggressive treatment may be appropriate.
Collapse
Affiliation(s)
- Kristin E Rojas
- Department of Surgery, Brooklyn Breast Cancer Program of Maimonides Medical Center, 745 64th Street, Brooklyn, NY, 11220, USA.
| | - Thais A Fortes
- Department of Surgery, Brooklyn Breast Cancer Program of Maimonides Medical Center, 745 64th Street, Brooklyn, NY, 11220, USA
| | - Patrick I Borgen
- Department of Surgery, Brooklyn Breast Cancer Program of Maimonides Medical Center, 745 64th Street, Brooklyn, NY, 11220, USA
| |
Collapse
|
45
|
Chung YR, Kim HJ, Kim M, Ahn S, Park SY. Clinical implications of changes in the diversity of c-MYC copy number variation after neoadjuvant chemotherapy in breast cancer. Sci Rep 2018; 8:16668. [PMID: 30420657 PMCID: PMC6232091 DOI: 10.1038/s41598-018-35072-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy can alter the makeup of a tumor cell population by exerting selection pressure. We examined the change in Shannon index, a mathematical diversity measure used in ecology, for c-MYC copy number variation (CNV) after neoadjuvant chemotherapy and evaluated its clinical significance in breast cancer. Associations between Shannon indices for c-MYC CNV in pre- and post-neoadjuvant chemotherapy breast cancer samples and clinicopathologic features of tumors as well as patient survival were analyzed in 144 patients. A change in c-MYC amplification and copy number gain status was found in 14.3% and 33.6% with most cases showing positive to negative conversion. The chemo-sensitive group showed a significant decrease in Shannon index after neoadjuvant chemotherapy. However, there was no difference in diversity indices between pre- and post-neoadjuvant chemotherapy specimens in the chemo-resistant group. In survival analyses, high Shannon indices for c-MYC CNV in post-neoadjuvant chemotherapy samples as well as those in pre-neoadjuvant chemotherapy samples were revealed as independent prognostic factors for poor disease-free survival not only in the whole group but also in the chemo-resistant subgroup. These findings suggest that a change in Shannon index for c-MYC CNV after neoadjuvant chemotherapy reflects chemo-responsiveness and that Shannon indices after neoadjuvant chemotherapy have a prognostic value in breast cancer patients who receive neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Yul Ri Chung
- Department of pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
- Department of pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jeong Kim
- Department of pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - Milim Kim
- Department of pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
- Department of pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soomin Ahn
- Department of pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - So Yeon Park
- Department of pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea.
- Department of pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Genomic profiling of metaplastic breast carcinomas reveals genetic heterogeneity and relationship to ductal carcinoma. Mod Pathol 2018; 31:1661-1674. [PMID: 29946183 DOI: 10.1038/s41379-018-0081-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/30/2022]
Abstract
Metaplastic breast carcinomas comprise a histologically heterogenous group of tumors. Although most are triple (estrogen/progesterone receptor, HER2) negative, these rare tumors are clinicopathologically distinct from other triple negative carcinomas and may be aggressive with worse chemotherapy responses. On the other hand, metaplastic carcinomas are histologically diverse, which is reflected in gene expression differences among subtypes. Whether metaplastic carcinomas are genetically distinct from other triple negative cancers and whether genetic differences underlie histologic subtypes remains poorly understood. We sequenced 408 cancer-related genes in 28 metaplastic carcinomas, including chondroid matrix-producing carcinomas (n = 10), spindle cell carcinomas (n = 5), and carcinomas with squamous (n = 5), mixed spindle/squamous (n = 5), and mixed metaplastic (n = 3) differentiation. Metaplastic carcinomas were highly enriched for PIK3CA/PIK3R1 (61%) and Ras-Map kinase (25%) pathway aberrations compared to other triple negative carcinomas (TCGA dataset 14%, p < 0.001 and 7%, p = 0.005, respectively) and harbored a high frequency of TP53 (64%) and TERT promoter (25%) mutations, but this varied among subtypes. Chondroid-matrix producing carcinomas lacked PI-3 kinase and Ras-Map kinase aberrations and TERT promoter mutations, compared to 100%, 39%, and 39% of non-matrix-producing tumors, respectively. TERT promoter mutations were enriched (47%) in spindle cell carcinomas and tumors with squamous or spindle/squamous differentiation. Spindle cell carcinomas lacked TP53 mutations, in contrast to other subtypes (78%, p = 0.003). Separate analysis of paired ductal carcinoma in situ and metaplastic carcinoma revealed shared clonality in all cases (n = 8). Activating PI-3 kinase and Ras pathway mutations were early events, and inactivating mutations in tumor suppressors including RB1, CDKN2A, and TP53 were associated with invasion in individual cases. Metaplastic components of two tumors showed genetic progression from separately sequenced paired invasive ductal carcinoma. The findings suggest that metaplastic carcinomas are genetically distinct from other triple negative breast cancers and highlight genetic heterogeneity that broadly correlates with histologic subtype. Heterologous elements progress from associated ductal carcinoma.
Collapse
|
47
|
Kitamura M, Nakayama T, Mukaisho KI, Mori T, Umeda T, Moritani S, Kushima R, Tani M, Sugihara H. Progression Potential of Ductal Carcinoma in situ Assessed by Genomic Copy Number Profiling. Pathobiology 2018; 86:92-101. [PMID: 30332671 DOI: 10.1159/000492833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/06/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) of the breast is heterogeneous in terms of the risk of progression to invasive ductal carcinoma (IDC). To treat DCIS appropriately for its progression risk, we classified individual DCIS by its profile of genomic changes into 2 groups and correlated them with clinicopathological progression factors. METHODS We used surgically resected, formalin-fixed, paraffin-embedded tissues of 22 DCIS and 30 IDC lesions. We performed immunohistochemical intrinsic subtyping, array-based comparative genomic hybridization, and unsupervised clustering. RESULTS The samples were divided into 2 major clusters, A and B. Cluster A showed a greater number of gene and chromosome copy number alterations, a larger IDC/DCIS ratio, a higher frequency of nonluminal subtype, a lower frequency of luminal subtype, and a higher nuclear grade, when compared with cluster B. However, there was no difference in the frequencies of lymph node metastasis between clusters A and B. We identified 9 breast-cancer-related genes, including TP53 and GATA3, that highly contributed to the discrimination of A and B clusters. CONCLUSION Classification of breast tumors into rapidly progressive cluster A and the other (cluster B) may contribute to select the treatment appropriate for their progression risk.
Collapse
Affiliation(s)
- Mina Kitamura
- Division of Molecular Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan.,Division of Digestive, Breast and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Takahisa Nakayama
- Division of Molecular Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Ken-Ichi Mukaisho
- Division of Molecular Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Tsuyoshi Mori
- Division of Digestive, Breast and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Tomoko Umeda
- Division of Digestive, Breast and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Suzuko Moritani
- Division of Diagnostic Pathology, Shiga University of Medical Science Hospital, Otsu, Japan
| | - Ryoji Kushima
- Division of Diagnostic Pathology, Shiga University of Medical Science Hospital, Otsu, Japan
| | - Masaji Tani
- Division of Digestive, Breast and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Hiroyuki Sugihara
- Division of Molecular Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan,
| |
Collapse
|
48
|
Progression of ductal carcinoma in situ to invasive breast cancer: comparative genomic sequencing. Virchows Arch 2018; 474:247-251. [PMID: 30284611 PMCID: PMC6349789 DOI: 10.1007/s00428-018-2463-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 12/02/2022]
Abstract
Several models have been described as potential mechanisms for the progression of ductal carcinoma in situ (DCIS) to invasive breast cancer (IBC). The aim of our study was to increase our understanding of DCIS progression by using massive parallel sequencing of synchronous DCIS and IBC. We included patients with synchronous DCIS and IBC (n = 4). Initially, IBC and normal tissue were subjected to whole exome sequencing. Subsequently, targeted sequencing was performed to validate those tumor-specific variants identified by whole exome sequencing. Finally, we analyzed whether those specific variants of the invasive component were also present in the DCIS component. There was a high genomic concordance between synchronous DCIS and IBC (52 out of 92 mutations were present in both components). However, the remaining mutations (40 out of 92) were restricted to the invasive component. The proportion of tumor cells with these mutations was higher in the invasive component compared to the DCIS component in a subset of patients. Our findings support the theory that the progression from DCIS to IBC could be driven by the selection of subclones with specific genetic aberrations. This knowledge improves our understanding of DCIS progression, which may lead to the identification of potential markers of progression and novel therapeutic targets in order to develop a more personalized treatment of patients with DCIS.
Collapse
|
49
|
Hannafon BN, Ding WQ. Functional Role of miRNAs in the Progression of Breast Ductal Carcinoma in Situ. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:966-974. [PMID: 30273605 DOI: 10.1016/j.ajpath.2018.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Abstract
miRNAs are small RNAs that influence gene expression by targeting mRNAs. Depending on the function of their target genes, miRNAs may regulate the expression of oncogenes and tumor suppressors, thereby contributing to the promotion or inhibition of tumor progression. Ductal carcinoma in situ (DCIS), although often diagnosed as breast cancer, is a potential precursor to invasive ductal carcinoma. Many of the genetic events required for the invasive progression of DCIS occur at the preinvasive stage, and these events include changes in the expression of miRNAs. Aberrant expression of miRNAs can influence specific oncogenic or tumor-suppressive pathways required for breast cancer progression. miRNAs in DCIS have been shown to influence hormone signaling, cell-cell adhesion, epithelial-to-mesenchymal transition, transforming growth factor β signaling, maintenance of cancer stem cells, and modulation of the extracellular matrix. Additionally, extracellular DCIS miRNAs, such as those found in exosomes, may promote invasive progression by modifying the tumor microenvironment. Here, we review the miRNAs that have been identified in DCIS and how they may contribute to the progression to invasive disease. We also touch on the current state of miRNA therapy development, including the current challenges, and discuss the key future perspectives for research into miRNA function for the purpose of miRNA therapy development for DCIS.
Collapse
Affiliation(s)
- Bethany N Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
50
|
Wang Y, Lu T, Wang Q, Liu J, Jiao W. Circular RNAs: Crucial regulators in the human body (Review). Oncol Rep 2018; 40:3119-3135. [PMID: 30272328 PMCID: PMC6196641 DOI: 10.3892/or.2018.6733] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) belong to a new type of endogenous non‑coding RNAs (ncRNAs) that are derived from exons and/or introns, and are widely distributed in mammals. The majority of circRNAs have a specific expression profile in cells or tissues, as well as during different stages of development. CircRNAs were originally thought to be the products of mis‑splicing. However, with the assistance of bioinformatics tools and the rapid development of high‑throughput sequencing, an increasing body of evidence has suggested that circRNAs bind micro(mi)RNAs, and have a role as miRNA sponges, thereby regulating target mRNA splicing and transcription. Human diseases are closely associated with circRNAs, especially in cancer as their expression is typically altered during the progression of cancer; this may provide a novel type of biomarker for cancer diagnosis and prognosis. CircRNAs are becoming a key area of interest within the field of cancer research. In the present review, we summarize the known molecular mechanisms and biological origin of circRNAs, as well as their functions, especially those related to human tumors.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Tong Lu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Qian Wang
- College of Nursing, Weifang Medical University, Weifang 261053, P.R. China
| | - Jia Liu
- School of Pharmacy, Qingdao University, Qingdao 266003, P.R. China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| |
Collapse
|