1
|
Ye S, Agalave NM, Ma F, Mahmood DFD, Al-Grety A, Khoonsari PE, Leng L, Svensson CI, Bucala R, Kultima K, Vera PL. MIF-Modulated Spinal Proteins Associated with Persistent Bladder Pain: A Proteomics Study. Int J Mol Sci 2024; 25:4484. [PMID: 38674069 PMCID: PMC11050327 DOI: 10.3390/ijms25084484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Bladder pain is a prominent symptom in Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS). We studied spinal mechanisms of bladder pain in mice using a model where repeated activation of intravesical Protease Activated Receptor-4 (PAR4) results in persistent bladder hyperalgesia (BHA) with little or no bladder inflammation. Persistent BHA is mediated by spinal macrophage migration inhibitory factor (MIF), and is associated with changes in lumbosacral proteomics. We investigated the contribution of individual spinal MIF receptors to persistent bladder pain as well as the spinal proteomics changes associated with relief of persistent BHA by spinal MIF antagonism. Female mice with persistent BHA received either intrathecal (i.t.) MIF monoclonal antibodies (mAb) or mouse IgG1 (isotype control antibody). MIF antagonism temporarily reversed persistent BHA (peak effect: 2 h), while control IgG1 had no effect. Moreover, i.t. antagonism of the MIF receptors CD74 and C-X-C chemokine receptor type 4 (CXCR4) partially reversed persistent BHA. For proteomics experiments, four separate groups of mice received either repeated intravesical scrambled peptide and sham i.t. injection (control, no pain group) or repeated intravesical PAR4 and: sham i.t.; isotype IgG1 i.t. (15 μg); or MIF mAb (15 μg). L6-S1 spinal segments were excised 2 h post-injection and examined for proteomics changes using LC-MS/MS. Unbiased proteomics analysis identified and relatively quantified 6739 proteins. We selected proteins that showed significant changes compared to control (no pain group) after intravesical PAR4 (sham or IgG i.t. treatment) and showed no significant change after i.t. MIF antagonism. Six proteins decreased during persistent BHA (V-set transmembrane domain-containing protein 2-like confirmed by immunohistochemistry), while two proteins increased. Spinal MIF antagonism reversed protein changes. Therefore, spinal MIF and MIF receptors mediate persistent BHA and changes in specific spinal proteins. These novel MIF-modulated spinal proteins represent possible new targets to disrupt spinal mechanisms that mediate persistent bladder pain.
Collapse
Affiliation(s)
- Shaojing Ye
- Research & Development, Lexington VA Health Care System, Lexington, KY 40502, USA; (S.Y.); (F.M.); (D.F.D.M.)
| | - Nilesh M. Agalave
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, SE-751 85 Uppsala, Sweden; (N.M.A.); (A.A.-G.); (P.E.K.); (K.K.)
| | - Fei Ma
- Research & Development, Lexington VA Health Care System, Lexington, KY 40502, USA; (S.Y.); (F.M.); (D.F.D.M.)
| | - Dlovan F. D. Mahmood
- Research & Development, Lexington VA Health Care System, Lexington, KY 40502, USA; (S.Y.); (F.M.); (D.F.D.M.)
| | - Asma Al-Grety
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, SE-751 85 Uppsala, Sweden; (N.M.A.); (A.A.-G.); (P.E.K.); (K.K.)
| | - Payam E. Khoonsari
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, SE-751 85 Uppsala, Sweden; (N.M.A.); (A.A.-G.); (P.E.K.); (K.K.)
| | - Lin Leng
- Department of Internal Medicine, Yale University, New Haven, CT 06510, USA; (L.L.); (R.B.)
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet (KI), SE-171 65 Solna, Sweden;
| | - Richard Bucala
- Department of Internal Medicine, Yale University, New Haven, CT 06510, USA; (L.L.); (R.B.)
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, SE-751 85 Uppsala, Sweden; (N.M.A.); (A.A.-G.); (P.E.K.); (K.K.)
| | - Pedro L. Vera
- Research & Development, Lexington VA Health Care System, Lexington, KY 40502, USA; (S.Y.); (F.M.); (D.F.D.M.)
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
2
|
Melchiorre CK, Lynes MD, Bhandari S, Su SC, Potts CM, Thees AV, Norris CE, Liaw L, Tseng YH, Lynes MA. Extracellular metallothionein as a therapeutic target in the early progression of type 1 diabetes. Cell Stress Chaperones 2024; 29:312-325. [PMID: 38490439 PMCID: PMC10990868 DOI: 10.1016/j.cstres.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
Type 1 diabetes (T1D) is characterized by lymphocyte infiltration into the pancreatic islets of Langerhans, leading to the destruction of insulin-producing beta cells and uncontrolled hyperglycemia. In the nonobese diabetic (NOD) murine model of T1D, the onset of this infiltration starts several weeks before glucose dysregulation and overt diabetes. Recruitment of immune cells to the islets is mediated by several chemotactic cytokines, including CXCL10, while other cytokines, including SDF-1α, can confer protective effects. Global gene expression studies of the pancreas from prediabetic NOD mice and single-cell sequence analysis of human islets from prediabetic, autoantibody-positive patients showed an increased expression of metallothionein (MT), a small molecular weight, cysteine-rich metal-binding stress response protein. We have shown that beta cells can release MT into the extracellular environment, which can subsequently enhance the chemotactic response of Th1 cells to CXCL10 and interfere with the chemotactic response of Th2 cells to SDF-1α. These effects can be blocked in vitro with a monoclonal anti-MT antibody, clone UC1MT. When administered to NOD mice before the onset of diabetes, UC1MT significantly reduces the development of T1D. Manipulation of extracellular MT may be an important approach to preserving beta cell function and preventing the development of T1D.
Collapse
Affiliation(s)
- Clare K Melchiorre
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Matthew D Lynes
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Sadikshya Bhandari
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Sheng-Chiang Su
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Christian M Potts
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Amy V Thees
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Carol E Norris
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Lucy Liaw
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
3
|
Hu S, Bourgonje AR, Gacesa R, Jansen BH, Björk JR, Bangma A, Hidding IJ, van Dullemen HM, Visschedijk MC, Faber KN, Dijkstra G, Harmsen HJM, Festen EAM, Vich Vila A, Spekhorst LM, Weersma RK. Mucosal host-microbe interactions associate with clinical phenotypes in inflammatory bowel disease. Nat Commun 2024; 15:1470. [PMID: 38368394 PMCID: PMC10874382 DOI: 10.1038/s41467-024-45855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024] Open
Abstract
Disrupted host-microbe interactions at the mucosal level are key to the pathophysiology of IBD. This study aimed to comprehensively examine crosstalk between mucosal gene expression and microbiota in patients with IBD. To study tissue-specific interactions, we perform transcriptomic (RNA-seq) and microbial (16S-rRNA-seq) profiling of 697 intestinal biopsies (645 derived from 335 patients with IBD and 52 from 16 non-IBD controls). Mucosal gene expression patterns in IBD are mainly determined by tissue location and inflammation, whereas the mucosal microbiota composition shows a high degree of individual specificity. Analysis of transcript-bacteria interactions identifies six distinct groups of inflammation-related pathways that are associated with intestinal microbiota (adjusted P < 0.05). An increased abundance of Bifidobacterium is associated with higher expression of genes involved in fatty acid metabolism, while Bacteroides correlates with increased metallothionein signaling. In patients with fibrostenosis, a transcriptional network dominated by immunoregulatory genes is associated with Lachnoclostridium bacteria in non-stenotic tissue (adjusted P < 0.05), while being absent in CD without fibrostenosis. In patients using TNF-α-antagonists, a transcriptional network dominated by fatty acid metabolism genes is linked to Ruminococcaceae (adjusted P < 0.05). Mucosal microbiota composition correlates with enrichment of intestinal epithelial cells, macrophages, and NK-cells. Overall, these data demonstrate the presence of context-specific mucosal host-microbe interactions in IBD, revealing significantly altered inflammation-associated gene-taxa modules, particularly in patients with fibrostenotic CD and patients using TNF-α-antagonists. This study provides compelling insights into host-microbe interactions that may guide microbiota-directed precision medicine and fuels the rationale for microbiota-targeted therapeutics as a strategy to alter disease course in IBD.
Collapse
Affiliation(s)
- Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bernadien H Jansen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Johannes R Björk
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Amber Bangma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Iwan J Hidding
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hendrik M van Dullemen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marijn C Visschedijk
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lieke M Spekhorst
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Mayer MP, Blair L, Blatch GL, Borges TJ, Chadli A, Chiosis G, de Thonel A, Dinkova-Kostova A, Ecroyd H, Edkins AL, Eguchi T, Fleshner M, Foley KP, Fragkostefanakis S, Gestwicki J, Goloubinoff P, Heritz JA, Heske CM, Hibshman JD, Joutsen J, Li W, Lynes M, Mendillo ML, Mivechi N, Mokoena F, Okusha Y, Prahlad V, Repasky E, Sannino S, Scalia F, Shalgi R, Sistonen L, Sontag E, van Oosten-Hawle P, Vihervaara A, Wickramaratne A, Wang SXY, Zininga T. Stress biology: Complexity and multifariousness in health and disease. Cell Stress Chaperones 2024; 29:143-157. [PMID: 38311120 PMCID: PMC10939078 DOI: 10.1016/j.cstres.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.
Collapse
Affiliation(s)
- Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Laura Blair
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Gregory L Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Thiago J Borges
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Ahmed Chadli
- Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Gabriela Chiosis
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aurélie de Thonel
- CNRS, UMR 7216, 75250 Paris Cedex 13, Paris, France; Univeristy of Paris Diderot, Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Albena Dinkova-Kostova
- Division of Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Takanori Eguchi
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Jason Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jennifer A Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny Joutsen
- Department of Pathology, Lapland Central Hospital, Lapland Wellbeing Services County, Rovaniemi, Finland
| | - Wei Li
- Department of Dermatology and the Norris Comprehensive Cancer Center, University of Southern California Keck Medical Center, Los Angeles, CA 90033, USA
| | - Michael Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nahid Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Fortunate Mokoena
- Department of Biochemistry, North-West University, Mmabatho 2735, South Africa
| | - Yuka Okusha
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Elizabeth Repasky
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Emily Sontag
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | | | - Anniina Vihervaara
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Anushka Wickramaratne
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shawn Xiang Yang Wang
- Developmental Therapeutics Program, VCU Comprehensive Massey Cancer Center, VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| |
Collapse
|
5
|
Ye S, Agalave NM, Ma F, D Mahmood DF, Al-Grety A, Khoonsari PE, Svensson CI, Kultima K, Vera PL. Lumbosacral spinal proteomic changes during PAR4-induced persistent bladder pain. Neurosci Lett 2024; 818:137563. [PMID: 38036085 PMCID: PMC10929774 DOI: 10.1016/j.neulet.2023.137563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
Repeated intravesical activation of protease-activated receptor-4 (PAR4) in mice results in persistent bladder hyperalgesia (BHA). We investigated spinal proteomic changes associated with persistent BHA. Persistent BHA was induced in female mice by repeated (3x; days 0,2,4; n = 9) intravesical instillation of PAR4 activating peptide (PAR4-AP) while scrambled peptide served as the control (no pain; n = 9) group. The threshold to lower abdominal von Frey stimulation was recorded prior to and during treatment. On day 7, L6-S1 spinal segments were excised and examined for proteomic changes using LC-MS/MS. In-depth, unbiased proteomic tandem-mass tag (TMT) analysis identified and relatively quantified 6739 proteins. We identified significant changes with 29 decreasing and 51 increasing proteins in the persistent BHA group and they were associated with neuroprotection, redox modulation, mitochondrial factors, and neuronal-related proteins. In an additional experiment, decreases in protein levels were confirmed by immunohistochemistry for metallothionein 1/2. Our results show that persistent bladder pain is associated with central (spinal) protein changes. Previous work showed that PAR4-induced bladder pain is mediated, at least in part by spinal MIF. Further functional studies of these top changing proteins may lead to the discovery of novel potential therapeutic targets at the spinal level to modulate persistent bladder pain. Future studies will examine the effect of spinal MIF antagonism on PAR4-induced spinal proteomics associated with persistent bladder pain.
Collapse
Affiliation(s)
- Shaojing Ye
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
| | - Nilesh M Agalave
- Uppsala University, Department of Medical Sciences, Clinical Chemistry, Uppsala, Sweden
| | - Fei Ma
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
| | - Dlovan F D Mahmood
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
| | - Asma Al-Grety
- Uppsala University, Department of Medical Sciences, Clinical Chemistry, Uppsala, Sweden
| | - Payam Emani Khoonsari
- Uppsala University, Department of Medical Sciences, Clinical Chemistry, Uppsala, Sweden
| | - Camila I Svensson
- Karolinska Institutet, Depts of Physiology & Pharmacology Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Kim Kultima
- Uppsala University, Department of Medical Sciences, Clinical Chemistry, Uppsala, Sweden
| | - Pedro L Vera
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA; University of Kentucky, Dept of Physiology Department of Physiology, Lexington, KY, USA
| |
Collapse
|
6
|
Wang J, Zhang L, Shi Q, Yang B, He Q, Wang J, Weng Q. Targeting innate immune responses to attenuate acetaminophen-induced hepatotoxicity. Biochem Pharmacol 2022; 202:115142. [PMID: 35700755 DOI: 10.1016/j.bcp.2022.115142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is an important cause of acute liver failure, resulting in massive deaths in many developed countries. Currently, the metabolic process of APAP in the body has been well studied. However, the underlying mechanism of APAP-induced liver injury remains elusive. Increasing clinical and experimental evidences indicate that the innate immune responses are involved in the pathogenesis of APAP-induced acute liver injury (AILI), in which immune cells have dual roles of inducing inflammation to exacerbate hepatotoxicity and removing dead cells and debris to help liver regeneration. In this review, we summarize the latest findings of innate immune cells involved in AILI, particularly emphasizing the activation of innate immune cells and their different roles during the injury and repair phases. Moreover, current available treatments are discussed according to the different roles of innate immune cells in the development of AILI. This review aims to update the knowledge about innate immune responses in the pathogenesis of AILI, and provide potential therapeutic interventions for AILI.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lulu Zhang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Shi
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
7
|
Thees AV, Pietrosimone KM, Melchiorre CK, Marden JN, Graf J, Lynes MA, Maltz-Matyschsyk M. PmtA Regulates Pyocyanin Expression and Biofilm Formation in Pseudomonas aeruginosa. Front Microbiol 2021; 12:789765. [PMID: 34867928 PMCID: PMC8636135 DOI: 10.3389/fmicb.2021.789765] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 01/30/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa expresses a small molecular weight, cysteine-rich protein (PmtA), identified as a metallothionein (MT) protein family member. The MT family proteins have been well-characterized in eukaryotes as essential for zinc and copper homeostasis, protection against oxidative stress, and the ability to modify a variety of immune activities. Bacterial MTs share sequence homology, antioxidant chemistry, and heavy metal-binding capacity with eukaryotic MTs, however, the impact of bacterial MTs on virulence and infection have not been well-studied. In the present study, we investigated the role of PmtA in P. aeruginosa PAO1 using a PmtA-deficient strain (ΔpmtA). Here we demonstrated the virulence factor, pyocyanin, relies on the expression of PmtA. We showed that PmtA may be protective against oxidative stress, as an alternative antioxidant, glutathione, can rescue pyocyanin expression. Furthermore, the expression of phzM, which encodes a pyocyanin precursor enzyme, was decreased in the ΔpmtA mutant during early stationary phase. Upregulated pmtA expression was previously detected in confluent biofilms, which are essential for chronic infection, and we observed that the ΔpmtA mutant was disrupted for biofilm formation. As biofilms also modulate antibiotic susceptibility, we examined the ΔpmtA mutant susceptibility to antibiotics and found that the ΔpmtA mutant is more susceptible to cefepime and ciprofloxacin than the wild-type strain. Finally, we observed that the deletion of pmtA results in decreased virulence in a waxworm model. Taken together, our results support the conclusion that PmtA is necessary for the full virulence of P. aeruginosa and may represent a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Amy V Thees
- Department of Molecular and Cell Biology, University of Connecticut, Mansfield, CT, United States
| | - Kathryn M Pietrosimone
- Department of Molecular and Cell Biology, University of Connecticut, Mansfield, CT, United States
| | - Clare K Melchiorre
- Department of Molecular and Cell Biology, University of Connecticut, Mansfield, CT, United States
| | - Jeremiah N Marden
- Department of Molecular and Cell Biology, University of Connecticut, Mansfield, CT, United States
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, Mansfield, CT, United States
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Mansfield, CT, United States
| | - Michele Maltz-Matyschsyk
- Department of Molecular and Cell Biology, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
8
|
Metallothioneins in Inflammatory Bowel Diseases: Importance in Pathogenesis and Potential Therapy Target. Can J Gastroenterol Hepatol 2021; 2021:6665697. [PMID: 33987146 PMCID: PMC8093040 DOI: 10.1155/2021/6665697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Immunological disorders, increased oxidative stress, and damage to the epithelial barrier play an important role in the pathogenesis of inflammatory bowel diseases (IBDs). In the treatment of patients with Crohn's disease (CD) and ulcerative colitis (UC), it is increasingly common to use biological drugs that selectively affect individual components of the inflammatory cascade. However, administering the medicines currently available does not always result in obtaining and maintaining remission, and it may also lead to the development of resistance to a given agent over time. Metallothioneins (MTs) belong to the group of low molecular weight proteins, which, among others, regulate the inflammation and homeostasis of heavy metals as well as participating in the regulation of the intensity of oxidative stress. The results of the studies conducted so far do not clearly indicate the role of MTs in the process of inflammation in patients with IBD. However, there are reports that suggest the possibility of using MTs as a potential target in the treatment of this group of patients.
Collapse
|
9
|
Devisscher L, Van Campenhout S, Lefere S, Raevens S, Tilleman L, Van Nieuwerburgh F, Van Eeckhoutte HP, Hoorens A, Lynes MA, Geerts A, Laukens D, Van Vlierberghe H. Metallothioneins alter macrophage phenotype and represent novel therapeutic targets for acetaminophen-induced liver injury. J Leukoc Biol 2021; 111:123-133. [PMID: 33724533 DOI: 10.1002/jlb.3a0820-527r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acetaminophen (APAP) intoxication is the foremost cause of drug-induced liver failure in developed countries. The only pharmacologic treatment option, N-acetylcysteine (NAC), is not effective for patients who are admitted too late and/or who have excessive liver damage, emphasizing the need for alternative treatment options. APAP intoxication results in hepatocyte death and release of danger signals, which further contribute to liver injury, in part by hepatic monocyte/macrophage infiltration and activation. Metallothionein (MT) 1 and 2 have important danger signaling functions and might represent novel therapeutic targets in APAP overdose. Therefore, we evaluated hepatic MT expression and the effect of anti-MT antibodies on the transcriptional profile of the hepatic macrophage population and liver injury following APAP overdose in mice. Hepatic MT expression was significantly induced in APAP-intoxicated mice and abundantly present in human livers. APAP intoxication in mice resulted in increased serum transaminase levels, extended necrotic regions on liver histology and induced expression of proinflammatory markers, which was significantly less pronounced in mice treated with anti-MT antibodies. Anti-MT antibody therapy attenuated proinflammatory macrophage polarization, as demonstrated by RNA sequencing analyses of isolated liver macrophages and in LPS-stimulated bone marrow-derived macrophages. Importantly, NAC and anti-MT antibodies were equally effective whereas administration of anti-MT antibody in combination with NAC exceeded the efficiency of both monotherapies in APAP-induced liver injury (AILI). We conclude that the neutralization of secreted MTs using a monoclonal antibody is a novel therapeutic strategy as mono- or add-on therapy for AILI. In addition, we provide evidence suggesting that MTs in the extracellular environment are involved in macrophage polarization.
Collapse
Affiliation(s)
- Lindsey Devisscher
- Gut-Liver ImmunoPharmacology Unit, Department Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sanne Van Campenhout
- Gut-Liver ImmunoPharmacology Unit, Department Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Hepatology Research Unit, Department of Gastroenterology and Hepatology, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Gut-Liver ImmunoPharmacology Unit, Department Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Hepatology Research Unit, Department of Gastroenterology and Hepatology, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sarah Raevens
- Hepatology Research Unit, Department of Gastroenterology and Hepatology, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Hannelore P Van Eeckhoutte
- Hepatology Research Unit, Department of Gastroenterology and Hepatology, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Anja Geerts
- Hepatology Research Unit, Department of Gastroenterology and Hepatology, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Debby Laukens
- Hepatology Research Unit, Department of Gastroenterology and Hepatology, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Gastroenterology and Hepatology, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and Above Metal Homeostasis and Antioxidant Response. BIOLOGY 2021; 10:biology10030176. [PMID: 33652748 PMCID: PMC7996892 DOI: 10.3390/biology10030176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Defective insulin secretion by pancreatic beta cells is key for the development of type 2 diabetes but the precise mechanisms involved are poorly understood. Metallothioneins are metal binding proteins whose precise biological roles have not been fully characterized. Available evidence indicated that Metallothioneins are protective cellular effectors involved in heavy metal detoxification, metal ion homeostasis and antioxidant defense. This concept has however been challenged by emerging evidence in different medical research fields revealing novel negative roles of Metallothioneins, including in the context of diabetes. In this review, we gather and analyze the available knowledge regarding the complex roles of Metallothioneins in pancreatic beta cell biology and insulin secretion. We comprehensively analyze the evidence showing positive effects of Metallothioneins on beta cell function and survival as well as the emerging evidence revealing negative effects and discuss the possible underlying mechanisms. We expose in parallel findings from other medical research fields and underscore unsettled questions. Then, we propose some future research directions to improve knowledge in the field. Abstract Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins whose precise biological roles have not been fully characterized. Existing evidence implicated MTs in heavy metal detoxification, metal ion homeostasis and antioxidant defense. MTs were thus categorized as protective effectors that contribute to cellular homeostasis and survival. This view has, however, been challenged by emerging evidence in different medical fields revealing novel pathophysiological roles of MTs, including inflammatory bowel disease, neurodegenerative disorders, carcinogenesis and diabetes. In the present focused review, we discuss the evidence for the role of MTs in pancreatic beta-cell biology and insulin secretion. We highlight the pattern of specific isoforms of MT gene expression in rodents and human beta-cells. We then discuss the mechanisms involved in the regulation of MTs in islets under physiological and pathological conditions, particularly type 2 diabetes, and analyze the evidence revealing adaptive and negative roles of MTs in beta-cells and the potential mechanisms involved. Finally, we underscore the unsettled questions in the field and propose some future research directions.
Collapse
|
11
|
Yang JY, Jie Z, Mathews A, Zhou X, Li Y, Gu M, Xie X, Ko CJ, Cheng X, Qi Y, Estrella JS, Wang J, Sun SC. Intestinal Epithelial TBK1 Prevents Differentiation of T-helper 17 Cells and Tumorigenesis in Mice. Gastroenterology 2020; 159:1793-1806. [PMID: 32745468 PMCID: PMC7680348 DOI: 10.1053/j.gastro.2020.07.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Intestinal epithelial cells (IECs) regulate intestinal immune cells, particularly development of T-helper 17 (Th17) cells. Deregulation of this process leads to intestinal inflammation and tumorigenesis, via unknown mechanisms. TANK-binding kinase 1 (TBK1) is expressed by IECs and cells in the innate immune system. We studied the functions of TBK1 in the intestinal immune response and tumorigenesis in mice. METHODS We performed studies of wild-type mice, mice with conditional disruption of Tbk1 (Tbk1IEC-KO), Tbk1IEC-KO mice crossed with ApcMin/+ mice, and Mt-/- mice crossed with ApcMin/+ mice. Some mice were given intraperitoneal injections of a neutralizing antibody against interleukin 17 (IL17) or IL1β. Intestine tissues were collected from mice and analyzed by histology, for numbers of adenomas and Th17 cells, and expression of inflammatory cytokines by real-time PCR. IECs were isolated from wild-type and Tbk1IEC-KO mice, stimulated with lipopolysaccharide, co-cultured for with bone marrow-derived macrophages, and analyzed by RNA sequencing and biochemical analyses. RESULTS Compared to ApcMin/+Tbk1WT mice, ApcMin/+Tbk1IEC-KO mice had significant increases in number and size of intestinal polyps, and significantly more Th17 cells in lamina propria. Administration of an antibody against IL17 reduced the number of intestinal polyps in ApcMin/+Tbk1IEC-KO mice to that observed in ApcMin/+Tbk1WT mice. In culture, TBK1-deficient IECs promoted expression of IL1β by macrophages, which induced differentiation of naïve CD4+ T cells into Th17 cells. RNA sequencing analysis revealed that the TBK1-deficient IECs had increased expression of metallothionein 1 (MT1), an immune regulator that promotes intestinal inflammation. Intestine tissues from ApcMin/+Mt-/- mice had significant fewer Th17 cells than ApcMin/+Mt+/+ mice, and a significantly lower number of polyps. Analyses of colorectal tumors in the Cancer Genome Atlas found colorectal tumors with high levels of MT1 and IL17 mRNAs to be associated with reduced survival times of patients. CONCLUSIONS Expression of TBK1 by IECs suppresses expression of MT1 and prevents expression of IL1β by macrophages and differentiation of Th17 cells, to prevent inflammation and tumorigenesis. Strategies to block this pathway might be developed for colorectal tumorigenesis.
Collapse
Affiliation(s)
- Jin-Young Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA;,Department of Biological Sciences, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, South Korea
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Amber Mathews
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Yuan Qi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Jeannelyn S. Estrella
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas; MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
12
|
Foligné B, George F, Standaert A, Garat A, Poiret S, Peucelle V, Ferreira S, Sobry H, Muharram G, Lucau‐Danila A, Daniel C. High‐dose dietary supplementation with zinc prevents gut inflammation: Investigation of the role of metallothioneins and beyond by transcriptomic and metagenomic studies. FASEB J 2020; 34:12615-12633. [DOI: 10.1096/fj.202000562rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Benoît Foligné
- Univ. Lille, INSERM, CHU Lille, U1286 ‐ Infinite ‐ Institute for Translational Research in Inflammation Lille France
| | - Fanny George
- Univ. Lille, INSERM, CHU Lille, U1286 ‐ Infinite ‐ Institute for Translational Research in Inflammation Lille France
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483‐IMPECS‐IMPact de l'Environnement Chimique sur la Santé humaine Lille France
| | - Annie Standaert
- Univ. Lille, INSERM, CHU Lille, U1286 ‐ Infinite ‐ Institute for Translational Research in Inflammation Lille France
| | - Anne Garat
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483‐IMPECS‐IMPact de l'Environnement Chimique sur la Santé humaine Lille France
- CHU Lille, Unité Fonctionnelle de Toxicologie Lille France
| | - Sabine Poiret
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | - Véronique Peucelle
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | | | - Hélène Sobry
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | - Ghaffar Muharram
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | - Anca Lucau‐Danila
- BIOECOAGRO INRAe, UArtois, ULiege, ULille, ULCO, UPJV, YNCREA, Institut Charles Viollette Lille France
| | - Catherine Daniel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| |
Collapse
|
13
|
Comes G, Fernandez-Gayol O, Molinero A, Giralt M, Capdevila M, Atrian S, Hidalgo J. Mouse metallothionein-1 and metallothionein-2 are not biologically interchangeable in an animal model of multiple sclerosis, EAE. Metallomics 2020; 11:327-337. [PMID: 30543238 DOI: 10.1039/c8mt00285a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mouse metallothionein-1 and 2 (MT1 and MT2) are often considered physiologically equivalent, because they are normally regulated coordinately by a wide range of stimuli, and it is assumed that in vivo they will be normally fully loaded with zinc(ii) (Zn7-MT1/2), although other metal ions, such as copper(i), may be eventually found as well. However, mouse MT2, in contrast to MT1, exhibits a preference for Zn(ii) coordination in comparison to that for Cu(i), which might underlie putatively different biological functions for these two mammalian isoforms. We have characterized the effects of exogenously administered mouse MT1 and MT2, and of transgenic Mt1 overexpression, in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), by active immunization with MOG35-55 peptide. Mice treated daily with MT2 showed a significant amelioration of the clinical course, with decreased peak and cumulative scores and delayed onset of EAE. In contrast, treatment with MT1 or its transgenic overexpression only caused a non-significant trend. MT2 treatment preserved better the myelin of the spinal cord, and the pattern of leukocyte infiltrates and gene expression are compatible with an inhibitory effect on neuroinflammation. Splenocytes from these animals in culture responded adequately to MOG35-55 peptide, but a bias for a Th2 profile seemed to be present in the MT2-treated mice. Interestingly, MT1 but not MT2 decreased the number of cytokines in the serum. The present results indicate that mouse MT1 and MT2 are not biologically interchangeable in the EAE model.
Collapse
Affiliation(s)
- Gemma Comes
- Animal Physiology Unit, C/Vall Moronta s/n, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kazakevych J, Denizot J, Liebert A, Portovedo M, Mosavie M, Jain P, Stellato C, Fraser C, Corrêa RO, Célestine M, Mattiuz R, Okkenhaug H, Miller JR, Vinolo MAR, Veldhoen M, Varga-Weisz P. Smarcad1 mediates microbiota-induced inflammation in mouse and coordinates gene expression in the intestinal epithelium. Genome Biol 2020; 21:64. [PMID: 32160911 PMCID: PMC7065452 DOI: 10.1186/s13059-020-01976-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND How intestinal epithelial cells interact with the microbiota and how this is regulated at the gene expression level are critical questions. Smarcad1 is a conserved chromatin remodeling factor with a poorly understood tissue function. As this factor is highly expressed in the stem and proliferative zones of the intestinal epithelium, we explore its role in this tissue. RESULTS Specific deletion of Smarcad1 in the mouse intestinal epithelium leads to colitis resistance and substantial changes in gene expression, including a striking increase of expression of several genes linked to innate immunity. Absence of Smarcad1 leads to changes in chromatin accessibility and significant changes in histone H3K9me3 over many sites, including genes that are differentially regulated upon Smarcad1 deletion. We identify candidate members of the gut microbiome that elicit a Smarcad1-dependent colitis response, including members of the poorly understood TM7 phylum. CONCLUSIONS Our study sheds light onto the role of the chromatin remodeling machinery in intestinal epithelial cells in the colitis response and shows how a highly conserved chromatin remodeling factor has a distinct role in anti-microbial defense. This work highlights the importance of the intestinal epithelium in the colitis response and the potential of microbial species as pharmacological and probiotic targets in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Juri Kazakevych
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Jérémy Denizot
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK.,Present Address: Université Clermont Auvergne, Inserm U1071, INRA USC2018, M2iSH, F-63000, Clermont-Ferrand, France
| | - Anke Liebert
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK.,Present Address: The Francis Crick Institute, London, NW1 1AT, UK
| | - Mariana Portovedo
- Laboratory of Immunoinflammation, Institute of Biology, UNICAMP, Campinas, 13083-862, Brazil
| | - Mia Mosavie
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Payal Jain
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Claire Fraser
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Renan Oliveira Corrêa
- Laboratory of Immunoinflammation, Institute of Biology, UNICAMP, Campinas, 13083-862, Brazil
| | | | - Raphaël Mattiuz
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - J Ross Miller
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Marc Veldhoen
- Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK.,Present Address: Instituto de Medicina Molecular
- Joâo Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Patrick Varga-Weisz
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK. .,School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK.
| |
Collapse
|
15
|
Raevens S, Van Campenhout S, Debacker PJ, Lefere S, Verhelst X, Geerts A, Van Vlierberghe H, Colle I, Devisscher L. Combination of sivelestat and N-acetylcysteine alleviates the inflammatory response and exceeds standard treatment for acetaminophen-induced liver injury. J Leukoc Biol 2019; 107:341-355. [PMID: 31841237 DOI: 10.1002/jlb.5a1119-279r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/12/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte death during acetaminophen (APAP) intoxication elicits a reactive inflammatory response, with hepatic recruitment of neutrophils and monocytes, which further aggravates liver injury. Neutrophil elastase (NE), secreted by activated neutrophils, carries degradative and cytotoxic functions and maintains a proinflammatory state. We investigated NE as a therapeutic target in acetaminophen-induced liver injury (AILI). C57BL/6 mice were administered a toxic dose of APAP, 2 h prior to receiving the NE inhibitor sivelestat, N-acetylcysteine (NAC), or a combination therapy, and were euthanized after 24 and 48 h. Upon APAP overdose, neutrophils and monocytes infiltrate the injured liver, accompanied by increased levels of NE. Combination therapy of NAC and sivelestat significantly limits liver damage, as evidenced by lower serum transaminase levels and less hepatic necrosis compared to mice that received APAP only, and this to a greater extent than NAC monotherapy. Lower hepatic expression of proinflammatory markers was observed in the combination treatment group, and flow cytometry revealed significantly less monocyte influx in livers from mice treated with the combination therapy, compared to untreated mice and mice treated with NAC only. The potential of NE to induce leukocyte migration was confirmed in vitro. Importantly, sivelestat did not impair hepatic repair. In conclusion, combination of NE inhibition with sivelestat and NAC dampens the inflammatory response and reduces liver damage following APAP overdose. This strategy exceeds the standard of care and might represent a novel therapeutic option for AILI.
Collapse
Affiliation(s)
- Sarah Raevens
- Department of Gastroenterology and Hepatology, Ghent University, Ghent, Belgium
| | | | - Pieter-Jan Debacker
- Department of Gastroenterology and Hepatology, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Department of Gastroenterology and Hepatology, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Department of Gastroenterology and Hepatology, Ghent University, Ghent, Belgium
| | - Anja Geerts
- Department of Gastroenterology and Hepatology, Ghent University, Ghent, Belgium
| | | | - Isabelle Colle
- Department of Gastroenterology and Hepatology, Ghent University, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Gastroenterology and Hepatology, Ghent University, Ghent, Belgium.,Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Holtan SG, Shabaneh A, Betts BC, Rashidi A, MacMillan ML, Ustun C, Amin K, Vaughn BP, Howard J, Khoruts A, Arora M, DeFor TE, Johnson D, Blazar BR, Weisdorf DJ, Wang J. Stress responses, M2 macrophages, and a distinct microbial signature in fatal intestinal acute graft-versus-host disease. JCI Insight 2019; 5:129762. [PMID: 31393854 DOI: 10.1172/jci.insight.129762] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Steroid-refractory intestinal acute graft-versus-host disease (aGVHD) is a frequently fatal condition with little known about mechanisms driving failed steroid responses in gut mucosa. To uncover novel molecular insights in steroid-refractory aGVHD, we compared gene expression profiles of rectosigmoid biopsies from patients at diagnosis of clinical stage 3-4 lower intestinal aGVHD (N=22), to repeat biopsies when the patients became steroid refractory (N=22), and normal controls (N=10). We also performed single gene analyses of factors associated with tolerance (programmed death ligand-1 [PDL1], indoleamine 2,3 dioxygenase [IDO1], and T cell immunoreceptor with Ig and ITIM domains [TIGIT]) and found that significantly higher expression levels of these aGVHD inhibitory genes (PDL1, IDO1, TIGIT) at aGVHD onset became decreased in the steroid-refractory state. We examined genes triggered by microbial ligands to stimulate gut repair, amphiregulin (AREG) and the aryl hydrocarbon receptor (AhR), and found that both AREG and AhR gene expression levels were increased at aGVHD onset and remained elevated in steroid-refractory aGVHD. We also identified higher expression levels of metallothioneines, metal-binding enzymes induced in stress responses, and M2 macrophage genes in steroid-refractory aGVHD. We observed no differences in T-cell subsets between onset and steroid-refractory aGVHD. Patients with a rapidly fatal course showed greater DNA damage and a distinct microbial signature at aGVHD onset, whereas patients with more prolonged survival exhibited a gene expression profile consistent with activation of Smoothened. Our results extend the paradigm beyond T cell-centric therapies for steroid-refractory GI aGVHD and highlight new mechanisms for therapeutic exploration.
Collapse
Affiliation(s)
| | | | - Brian C Betts
- Blood and Marrow Transplant Program, Department of Medicine
| | - Armin Rashidi
- Blood and Marrow Transplant Program, Department of Medicine
| | - Margaret L MacMillan
- Blood and Marrow Transplant Program, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Celalletin Ustun
- Rush University Blood and Marrow Transplant Program, Chicago, Illinois, USA
| | | | | | - Justin Howard
- Division of Gastroenterology, Department of Medicine
| | | | - Mukta Arora
- Blood and Marrow Transplant Program, Department of Medicine
| | | | | | - Bruce R Blazar
- Blood and Marrow Transplant Program, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Jinhua Wang
- Cancer Bioinformatics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
17
|
Mendes GG, Servato JPS, Borges FC, Rosa RR, Siqueira CS, de Faria PR, Loyola AM, Cardoso SV. Differential metallothionein expression in oral lichen planus and amalgam-associated oral lichenoid lesions. Med Oral Patol Oral Cir Bucal 2018; 23:e262-e268. [PMID: 29680841 PMCID: PMC5945242 DOI: 10.4317/medoral.22144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/25/2018] [Indexed: 01/20/2023] Open
Abstract
Background Oral lichen planus (OLP) is a chronic inflammatory disease mediated by T cells, which manifests as reticular (white) or erosive (red) lesions, that are eventually painful. Oral lichenoid lesion (OLL) are distinguished from OLP by the presence of precipitating factors. The aim of this study was to evaluate whether the presence of metallothionein, which is involved in anti-apoptotic pathways and the anti-oxidative response, could serve as a differential diagnostic for OLP and OLL. Material and Methods We evaluated the expression of metallothionein in 40 cases of OLP and 20 cases of OLL using immunohistochemistry. Results and Conclusions White OLP has higher concentrations of metallothionein than red OLP in basal and parabasal layers. Moreover, metallothionein was more frequently observed in the cytoplasm and nuclei of basal cells in OLP patients compared to the same regions of OLL cases. Metallothionein levels are related to OLP severity and may contribute to a differential diagnosis between OLP and OLL. Key words:Oral lichen planus, oral lichenoid lesions, autoimmune disorders, metallothionein, immunohistochemistry.
Collapse
Affiliation(s)
- G-G Mendes
- Universidade Federal de Uberlândia, Faculdade de Odontologia, Área de Patologia. Av. Pará, 1720, Campus Umuarama. CEP: 38405-320, Uberlândia - MG Brazil,
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Park Y, Zhang J, Cai L. Reappraisal of metallothionein: Clinical implications for patients with diabetes mellitus. J Diabetes 2018; 10:213-231. [PMID: 29072367 DOI: 10.1111/1753-0407.12620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 08/29/2017] [Accepted: 10/20/2017] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS, respectively) are byproducts of cellular physiological processes of the metabolism of intermediary nutrients. Although physiological defense mechanisms readily convert these species into water or urea, an improper balance between their production and removal leads to oxidative stress (OS), which is harmful to cellular components. This OS may result in uncontrolled growth or, ultimately, cell death. In addition, ROS and RNS are closely related to the development of diabetes and its complications. Therefore, numerous researchers have proposed the development of strategies for the removal of ROS/RNS to prevent or treat diabetes and its complications. Some molecules that are synthesized in the body or obtained from food participate in the removal and neutralization of ROS and RNS. Metallothionein, a cysteine-rich protein, is a metal-binding protein that has a wide range of functions in cellular homeostasis and immunity. Metallothionein can be induced by a variety of conditions, including zinc supplementation, and plays a crucial role in mediating anti-OS, anti-apoptotic, detoxification, and anti-inflammatory effects. Metallothionein can modulate various stress-induced signaling pathways (mitogen-activated protein kinase, Wnt, nuclear factor-κB, phosphatidylinositol 3-kinase, sirtuin 1/AMP-activated protein kinase and fibroblast growth factor 21) to alleviate diabetes and diabetic complications. However, a deeper understanding of the functional, biochemical, and molecular characteristics of metallothionein is needed to bring about new opportunities for OS therapy. This review focuses on newly proposed functions of a metallothionein and their implications relevant to diabetes and its complications.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, Louisville, Kentucky, USA
- Hanyang University, College of Medicine and Engineering, Seoul, South Korea
| | - Jian Zhang
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, Louisville, Kentucky, USA
- The Center of Cardiovascular Disorders, The First Hospital of Jilin University, Changchun, China
| | - Lu Cai
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, Louisville, Kentucky, USA
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
19
|
Starr AE, Deeke SA, Ning Z, Chiang CK, Zhang X, Mottawea W, Singleton R, Benchimol EI, Wen M, Mack DR, Stintzi A, Figeys D. Proteomic analysis of ascending colon biopsies from a paediatric inflammatory bowel disease inception cohort identifies protein biomarkers that differentiate Crohn's disease from UC. Gut 2017; 66:1573-1583. [PMID: 27216938 PMCID: PMC5561380 DOI: 10.1136/gutjnl-2015-310705] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/10/2016] [Accepted: 04/25/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Accurate differentiation between Crohn's disease (CD) and UC is important to ensure early and appropriate therapeutic intervention. We sought to identify proteins that enable differentiation between CD and UC in children with new onset IBD. DESIGN Mucosal biopsies were obtained from children undergoing baseline diagnostic endoscopy prior to therapeutic interventions. Using a super-stable isotope labeling with amino acids in cell culture (SILAC)-based approach, the proteomes of 99 paediatric control and biopsies of patients with CD and UC were compared. Multivariate analysis of a subset of these (n=50) was applied to identify novel biomarkers, which were validated in a second subset (n=49). RESULTS In the discovery cohort, a panel of five proteins was sufficient to distinguish control from IBD-affected tissue biopsies with an AUC of 1.0 (95% CI 0.99 to 1.0); a second panel of 12 proteins segregated inflamed CD from UC within an AUC of 0.95 (95% CI 0.86 to 1.0). Application of the two panels to the validation cohort resulted in accurate classification of 95.9% (IBD from control) and 80% (CD from UC) of patients. 116 proteins were identified to have correlation with the severity of disease, four of which were components of the two panels, including visfatin and metallothionein-2. CONCLUSIONS This study has identified two panels of candidate biomarkers for the diagnosis of IBD and the differentiation of IBD subtypes to guide appropriate therapeutic interventions in paediatric patients.
Collapse
Affiliation(s)
- Amanda E Starr
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Shelley A Deeke
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Cheng-Kang Chiang
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Walid Mottawea
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada,Department of Microbiology and Immunology, Mansoura University, Mansoura, Egypt
| | - Ruth Singleton
- Children's Hospital of Eastern Ontario (CHEO) Inflammatory Bowel Disease Centre and CHEO Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Eric I Benchimol
- Children's Hospital of Eastern Ontario (CHEO) Inflammatory Bowel Disease Centre and CHEO Research Institute, University of Ottawa, Ottawa, Ontario, Canada,Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada,School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ming Wen
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - David R Mack
- Children's Hospital of Eastern Ontario (CHEO) Inflammatory Bowel Disease Centre and CHEO Research Institute, University of Ottawa, Ottawa, Ontario, Canada,Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Bhandari S, Melchiorre C, Dostie K, Laukens D, Devisscher L, Louwrier A, Thees A, Lynes MA. Detection and Manipulation of the Stress Response Protein Metallothionein. ACTA ACUST UNITED AC 2017; 71:17.19.1-17.19.28. [PMID: 28146278 DOI: 10.1002/cptx.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Metallothioneins (MTs) are small molecular weight stress response proteins that play a central role as reservoir of essential divalent heavy metal cations such as zinc and copper, and also can diminish the effects of toxic heavy metals such as mercury and cadmium. Historically, MT has been considered to be an intracellular protein with roles to play in the management of heavy metals, as a regulator of cellular redox potential, and as a buffer of free radicals. Our recent studies have highlighted immunomodulatory role of MT in inflammatory diseases and also in the progression of metastatic cell movement. Hence, manipulation and detection of MT is essential for its possible use as a diagnostic and in therapeutic interventions of chronic inflammation. This review describes procedures used to detect MT using techniques such as western immunoblot, competition ELISA, flow cytometry and immunohistochemistry. Additionally, it also describes the use of a colorimetric cell proliferation assay (CellTiter 96 AQueous One Solution/MTS) to study the proliferative effect of MT. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Sadikshya Bhandari
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Clare Melchiorre
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Kristen Dostie
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Debby Laukens
- Department of Internal Medicine, De Pintelaan, Gent, Belgium
| | | | - Ariel Louwrier
- StressMarq Biosciences, Victoria, British Columbia, Canada
| | - Amy Thees
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
21
|
Manso Y, Comes G, López-Ramos JC, Belfiore M, Molinero A, Giralt M, Carrasco J, Adlard PA, Bush AI, Delgado-García JM, Hidalgo J. Overexpression of Metallothionein-1 Modulates the Phenotype of the Tg2576 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 51:81-95. [PMID: 26836194 DOI: 10.3233/jad-151025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is the most commonly diagnosed dementia, where signs of neuroinflammation and oxidative stress are prominent. In this study we intend to further characterize the roles of the antioxidant, anti-inflammatory, and heavy metal binding protein, metallothionein-1 (MT-1), by crossing Mt1 overexpressing mice with a well-known mouse model of AD, Tg2576 mice, which express the human amyloid-β protein precursor (hAβPP) with the Swedish K670N/M671L mutations. Mt1 overexpression increased overall perinatal survival, but did not affect significantly hAβPP-induced mortality and weight loss in adult mice. Amyloid plaque burden in ∼14-month-old mice was increased by Mt1 overexpression in the hippocampus but not the cortex. Despite full length hAβPP levels and amyloid plaques being increased by Mt1 overexpression in the hippocampus of both sexes, oligomeric and monomeric forms of Aβ, which may contribute more to toxicity, were decreased in the hippocampus of females and increased in males. Several behavioral traits such as exploration, anxiety, and learning were altered in Tg2576 mice to various degrees depending on the age and the sex. Mt1 overexpression ameliorated the effects of hAβPP on exploration in young females, and potentiated those on anxiety in old males, and seemed to improve the rate of spatial learning (Morris water maze) and the learning elicited by a classical conditioning procedure (eye-blink test). These results clearly suggest that MT-1 may be involved in AD pathogenesis.
Collapse
Affiliation(s)
- Yasmina Manso
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gemma Comes
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Mónica Belfiore
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Amalia Molinero
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mercedes Giralt
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Javier Carrasco
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| | | | - Juan Hidalgo
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
22
|
Rice JM, Zweifach A, Lynes MA. Metallothionein regulates intracellular zinc signaling during CD4(+) T cell activation. BMC Immunol 2016; 17:13. [PMID: 27251638 PMCID: PMC4890327 DOI: 10.1186/s12865-016-0151-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/23/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The ultra-low redox potential and zinc binding properties of the intracellular pool of mammalian metallothioneins (MT) suggest a role for MT in the transduction of redox signals into intracellular zinc signals. Increased expression of MT after exposure to heavy metals, oxidative stress, or inflammatory cytokines leads to an increased intracellular redox-mobilizable zinc pool that can affect downstream zinc-sensitive signaling pathways. CD4(+) T helper cells are poised to be influenced by MT transduced zinc signaling because they produce intracellular reactive oxygen species following activation through the T cell receptor and are sensitive to small changes in intracellular [Zn(2+)]. RESULTS MT expression and intracellular [Zn(2+)] are both increased during primary activation and expansion of naïve CD4(+) T cells into the Tr1 phenotype in vitro. When Tr1 cells from wildtype mice are compared with congenic mice lacking functional Mt1 and Mt2 genes, the expression of intracellular MT is associated with a greater increase in intracellular [Zn(2+)] immediately following exposure to reactive oxygen species or upon restimulation through the T cell receptor. The release of Zn(2+) from MT is associated with a greater increase in p38 MAPK activation following restimulation and decreased p38 MAPK activation in MT knockout Tr1 cells can be rescued by increasing intracellular [Zn(2+)]. Additionally, IL-10 secretion is increased in MT knockout Tr1 cells compared with wildtype controls and this increase is prevented when the intracellular [Zn(2+)] is increased experimentally. CONCLUSIONS Differences in zinc signaling associated with MT expression appear to be a result of preferential oxidation of MT and concomitant release of Zn(2+). Although zinc is released from many proteins following oxidation, release is greater when the cell contains an intracellular pool of MT. By expressing MT in response to certain environmental conditions, CD4(+) T cells are able to more efficiently release intracellular zinc and regulate signaling pathways following stimulation. The link between MT expression and increased zinc signaling following activation represents an important immunomodulatory mechanism of MT and illuminates the complex role MT plays in shaping immune responses.
Collapse
Affiliation(s)
- James M Rice
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit 3125, Storrs, CT, 06269, USA. .,Present address: Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave., Boston, 02115, MA, USA.
| | - Adam Zweifach
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit 3125, Storrs, CT, 06269, USA
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit 3125, Storrs, CT, 06269, USA
| |
Collapse
|
23
|
Does oral exposure to cadmium and lead mediate susceptibility to colitis? The dark-and-bright sides of heavy metals in gut ecology. Sci Rep 2016; 6:19200. [PMID: 26752005 PMCID: PMC4707487 DOI: 10.1038/srep19200] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/08/2015] [Indexed: 12/15/2022] Open
Abstract
Although the heavy metals cadmium (Cd) and lead (Pb) are known environmental health concerns, their long-term impacts on gut ecology and susceptibility to gastrointestinal autoimmune diseases have not been extensively investigated. We sought to determine whether subchronic oral exposure to Cd or Pb is a risk factor for the development and progression of inflammatory bowel disease (IBD). Mice were exposed to various doses of CdCl2 or PbCl2 in drinking water for 1, 4 or 6 weeks prior to infection with Salmonella, the induction of colitis with dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). In human cell-based models, exposure to Cd and Pb is associated with reduced transepithelial electric resistance and changes in bacteria-induced cytokine responses. Although 1- and 6-week exposures did not have clear effects on the response to Salmonella infectious challenges, 1-week short-term treatments with CdCl2 tended to enhance intestinal inflammation in mice. Unexpectedly, subchronic exposure to Cd and (to a lesser extent) Pb significantly mitigated some of the symptoms of DSS-induced colitis and reduced the severity of TNBS colitis in a dose-dependent manner. The possible adaptive and immunosuppressive mechanisms by which heavy metals might reduce intestinal inflammation are explored and discussed.
Collapse
|
24
|
Emeny RT, Kasten-Jolly J, Mondal T, Lynes MA, Lawrence DA. Metallothionein differentially affects the host response to Listeria infection both with and without an additional stress from cold-restraint. Cell Stress Chaperones 2015; 20:1013-22. [PMID: 26267326 PMCID: PMC4595426 DOI: 10.1007/s12192-015-0630-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 01/04/2023] Open
Abstract
Acute stress alters anti-bacterial defenses, but the neuroimmunological mechanisms underlying this association are not yet well understood. Metallothionein (MT), a cysteine-rich protein, is a stress response protein that is induced by a variety of chemical, biological, and psychological stressors, and MT has been shown to influence immune activities. We investigated MT's role in the management of anti-bacterial responses that occur during stress, using a C57BL/6 (B6) strain that has targeted disruptions of the Mt1 and Mt2 genes (B6-MTKO), and a B6 strain that has additional copies of Mt (B6-MTTGN). The well-characterized listeriosis model was used to examine immune mechanisms that are altered by a 1-h stress treatment (cold-restraint, CR) administered just prior to bacterial infection. Intriguingly, MT gene doses both greater and lower than that of wild-type (WT) B6 mice were associated with improved host defenses against Listeria monocytogenes (LM). This augmented protection was diminished by CR stress in the MTKO mice, but transgenic mice with additional MT copies had no CR stress-induced increase in their listerial burden. During the transition from innate to adaptive immunity, on day 3 after infection, oxidative burst and apoptosis were assessed by flow cytometric methods, and cytokine transcription was measured by real-time quantitative PCR. MT gene expression and CR-stress affected the expression of IL-6 and TNFα. Additionally, these genetic and environmental modulations altered the generation of ROS responses as well as the number of apoptotic cells in livers and spleens. Although the level of MT altered the listerial response, MT expression was equally elevated by listerial infection with or without CR stress. These results indicate the ability of MT to regulate immune response mechanisms and demonstrate that increased amounts of MT can eliminate the immunosuppression induced by CR.
Collapse
Affiliation(s)
- Rebecca T Emeny
- Laboratory of Immunology, Wadsworth Center, New York State Department of Health, 150 New Scotland Ave, Albany, NY, 12201, USA
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, GmbH, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jane Kasten-Jolly
- Laboratory of Immunology, Wadsworth Center, New York State Department of Health, 150 New Scotland Ave, Albany, NY, 12201, USA
| | - Tapan Mondal
- Laboratory of Immunology, Wadsworth Center, New York State Department of Health, 150 New Scotland Ave, Albany, NY, 12201, USA
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - David A Lawrence
- Laboratory of Immunology, Wadsworth Center, New York State Department of Health, 150 New Scotland Ave, Albany, NY, 12201, USA.
| |
Collapse
|
25
|
Lynes MA, Hidalgo J, Manso Y, Devisscher L, Laukens D, Lawrence DA. Metallothionein and stress combine to affect multiple organ systems. Cell Stress Chaperones 2014; 19:605-11. [PMID: 24584987 PMCID: PMC4147071 DOI: 10.1007/s12192-014-0501-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 01/23/2014] [Accepted: 01/23/2014] [Indexed: 12/16/2022] Open
Abstract
Metallothioneins (MTs) are a family of low molecular weight, cysteine-rich, metal-binding proteins that have a wide range of functions in cellular homeostasis and immunity. MTs can be induced by a variety of conditions including metals, glucocorticoids, endotoxin, acute phase cytokines, stress, and irradiation. In addition to their important immunomodulatory functions, MTs can protect essential cellular compartments from toxicants, serve as a reservoir of essential heavy metals, and regulate cellular redox potential. Many of the roles of MTs in the neuroinflammation, intestinal inflammation, and stress response have been investigated and were the subject of a session at the 6th International Congress on Stress Proteins in Biology and Medicine in Sheffield, UK. Like the rest of the cell stress response, there are therapeutic opportunities that arise from an understanding of MTs, and these proteins also provide potential insights into the world of the heat shock protein.
Collapse
Affiliation(s)
- Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA,
| | | | | | | | | | | |
Collapse
|