1
|
Amer N, Hesham D, Al-Shehaby N, Elshoky HA, Amer M, Magdeldin S, Mansour M, Abou-Aisha K, El-Naggar S. LC3A-mediated autophagy elicits PERK-eIF2α-ATF4 axis activation and mitochondrial dysfunction: Exposing vulnerability in aggresome-positive cancer cells. J Biol Chem 2024; 300:107398. [PMID: 38777145 PMCID: PMC11227016 DOI: 10.1016/j.jbc.2024.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
The unfolded protein response pathways (UPR), autophagy, and compartmentalization of misfolded proteins into inclusion bodies are critical components of the protein quality control network. Among inclusion bodies, aggresomes are particularly intriguing due to their association with cellular survival, drug resistance, and aggresive cancer behavior. Aggresomes are molecular condensates formed when collapsed vimentin cages encircle misfolded proteins before final removal by autophagy. Yet significant gaps persist in the mechanisms governing aggresome formation and elimination in cancer cells. Understanding these mechanisms is crucial, especially considering the involvement of LC3A, a member of the MAP1LC3 family, which plays a unique role in autophagy regulation and has been reported to be epigenetically silenced in many cancers. Herein, we utilized the tetracycline-inducible expression of LC3A to investigate its role in choroid plexus carcinoma cells, which inherently exhibit the presence of aggresomes. Live cell imaging was employed to demonstrate the effect of LC3A expression on aggresome-positive cells, while SILAC-based proteomics identified LC3A-induced protein and pathway alterations. Our findings demonstrated that extended expression of LC3A is associated with cellular senescence. However, the obstruction of lysosomal degradation in this context has a deleterious effect on cellular viability. In response to LC3A-induced autophagy, we observed significant alterations in mitochondrial morphology, reflected by mitochondrial dysfunction and increased ROS production. Furthermore, LC3A expression elicited the activation of the PERK-eIF2α-ATF4 axis of the UPR, underscoring a significant change in the protein quality control network. In conclusion, our results elucidate that LC3A-mediated autophagy alters the protein quality control network, exposing a vulnerability in aggresome-positive cancer cells.
Collapse
Affiliation(s)
- Nada Amer
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt; Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Dina Hesham
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt; Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Nouran Al-Shehaby
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Hisham A Elshoky
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
| | - May Amer
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Manar Mansour
- Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Khaled Abou-Aisha
- Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Shahenda El-Naggar
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt.
| |
Collapse
|
2
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
3
|
Liu BN, Chen J, Piao Y. Global research and emerging trends in autophagy in lung cancer: a bibliometric and visualized study from 2013 to 2022. Front Pharmacol 2024; 15:1352422. [PMID: 38476332 PMCID: PMC10927969 DOI: 10.3389/fphar.2024.1352422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose: To highlight the knowledge structure and evolutionary trends in research on autophagy in lung cancer. Methods: Research publications on autophagy in lung cancer were retrieved from the Web of Science Core Collection database. VOSviewer and CiteSpace data analysis software were used for the bibliometric and visualization analysis of countries, institutions, authors, journals, and keywords related to this field. Results: From 2013 to 2022, research on autophagy in lung cancer developed rapidly, showing rising trends in annual publications and citations. China (1,986 papers; 48,913 citations), Shandong University (77 publications; 1,460 citations), and Wei Zhang (20 publications; 342 citations) were the most productive and influential country, institution, and author, respectively. The journal with the most publications and citations on autophagy in lung cancer was the International Journal of Molecular Sciences (93 publications; 3,948 citations). An analysis of keyword co-occurrence showed that related research topics were divided into five clusters: 1) Mechanisms influencing autophagy in lung cancer and the role of autophagy in lung cancer; 2) Effect of autophagy on the biological behavior of lung cancer; 3) Regulatory mechanisms of 2 cell death processes: autophagy and apoptosis in lung cancer cells; 4) Role of autophagy in lung cancer treatment and drug resistance; and 5) Role of autophagy-related genes in the occurrence and development of lung cancer. Cell proliferation, migration, epithelial-mesenchymal transition, and tumor microenvironment were the latest high-frequency keywords that represented promising future research directions. Conclusion: This is the first comprehensive study describing the knowledge structure and emerging frontiers of research on autophagy in lung cancer from 2013 to 2022 by means of a bibliometric analysis. The study points to promising future research directions focusing on in-depth autophagy mechanisms, clinical applications, and potential therapeutic strategies, providing a valuable reference for researchers in the field. Systematic Review Registration: [https://systematicreview.gov/], identifier [registration number].
Collapse
Affiliation(s)
| | | | - Ying Piao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
4
|
Morozova A, Chan SC, Bayle S, Sun L, Grassie D, Iermolaieva A, Kalaga MN, Frydman S, Sansil S, Schönbrunn E, Duckett D, Monastyrskyi A. Development of potent and selective ULK1/2 inhibitors based on 7-azaindole scaffold with favorable in vivo properties. Eur J Med Chem 2024; 266:116101. [PMID: 38232465 DOI: 10.1016/j.ejmech.2023.116101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024]
Abstract
The UNC-51-like kinase-1 (ULK1) is one of the central upstream regulators of the autophagy pathway, represents a key target for the development of molecular probes to abrogate autophagy and explore potential therapeutic avenues. Here we report the discovery, structure-activity and structure-property relationships of selective, potent, and cell-active ULK1/2 inhibitors based on a 7-azaindole scaffold. Using structure-based drug design, we have developed a series of analogs with excellent binding affinity and biochemical activity against ULK1/2 (IC50 < 25 nM). The validation of cellular target engagement for these compounds was achieved through the employment of the ULK1 NanoBRET intracellular kinase assay. Notably, we have successfully solved the crystal structure of the lead compound, MR-2088, bound to the active site of ULK1. Moreover, the combination treatment of MR-2088 with known KRAS→RAF→MEK→ERK pathway inhibitors, such as trametinib, showed promising synergistic effect in vitro using H2030 (KRASG12C) cell lines. Lastly, our findings underscore MR-2088's potential to inhibit starvation/stimuli-induced autophagic flux, coupled with its suitability for in vivo studies based on its pharmacokinetic properties.
Collapse
Affiliation(s)
- Alisa Morozova
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Sean Chin Chan
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Simon Bayle
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Luxin Sun
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Dylan Grassie
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Anna Iermolaieva
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Mahalakshmi N Kalaga
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Sylvia Frydman
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Samer Sansil
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Ernst Schönbrunn
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Derek Duckett
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Andrii Monastyrskyi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States.
| |
Collapse
|
5
|
Han W, Wang W, Wang Q, Maduray K, Hao L, Zhong J. A review on regulation of DNA methylation during post-myocardial infarction. Front Pharmacol 2024; 15:1267585. [PMID: 38414735 PMCID: PMC10896928 DOI: 10.3389/fphar.2024.1267585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Myocardial infarction (MI) imposes a huge medical and economic burden on society, and cardiac repair after MI involves a complex series of processes. Understanding the key mechanisms (such as apoptosis, autophagy, inflammation, and fibrosis) will facilitate further drug development and patient treatment. Presently, a substantial body of evidence suggests that the regulation of epigenetic processes contributes to cardiac repair following MI, with DNA methylation being among the notable epigenetic factors involved. This article will review the research on the mechanism of DNA methylation regulation after MI to provide some insights for future research and development of related drugs.
Collapse
Affiliation(s)
- Wenqiang Han
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenxin Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qinhong Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Kellina Maduray
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Hao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jingquan Zhong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
6
|
Metur SP, Lei Y, Zhang Z, Klionsky DJ. Regulation of autophagy gene expression and its implications in cancer. J Cell Sci 2023; 136:jcs260631. [PMID: 37199330 PMCID: PMC10214848 DOI: 10.1242/jcs.260631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Autophagy is a catabolic cellular process that targets and eliminates superfluous cytoplasmic components via lysosomal degradation. This evolutionarily conserved process is tightly regulated at multiple levels as it is critical for the maintenance of homeostasis. Research in the past decade has established that dysregulation of autophagy plays a major role in various diseases, such as cancer and neurodegeneration. However, modulation of autophagy as a therapeutic strategy requires identification of key players that can fine tune the induction of autophagy without complete abrogation. In this Review, we summarize the recent discoveries on the mechanism of regulation of ATG (autophagy related) gene expression at the level of transcription, post transcription and translation. Furthermore, we briefly discuss the role of aberrant expression of ATG genes in the context of cancer.
Collapse
Affiliation(s)
- Shree Padma Metur
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuchen Lei
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhihai Zhang
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Hatat AS, Benoit-Pilven C, Pucciarelli A, de Fraipont F, Lamothe L, Perron P, Rey A, Giaj Levra M, Toffart AC, Auboeuf D, Eymin B, Gazzeri S. Altered splicing of ATG16-L1 mediates acquired resistance to tyrosine kinase inhibitors of EGFR by blocking autophagy in non-small cell lung cancer. Mol Oncol 2022; 16:3490-3508. [PMID: 35593080 PMCID: PMC9533692 DOI: 10.1002/1878-0261.13229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 11/11/2022] Open
Abstract
Despite the initial efficacy of using tyrosine kinase inhibitors of epidermal growth factor receptor (EGFR-TKIs) for treating patients with non-small cell lung cancer (NSCLC), resistance inevitably develops. Recent studies highlight a link between alternative splicing and cancer drug response. Therefore, we aimed to identify deregulated splicing events that play a role in resistance to EGFR-TKI. By using RNA sequencing, reverse transcription PCR (RT-PCR) and RNA interference, we showed that overexpression of a splice variant of the autophagic gene ATG16-L1 that retains exon 8 and encodes the β-isoform of autophagy-related protein 16-1 (ATG16-L1-β) concurs acquired resistance to EGFR-TKI in NSCLC cells. Using matched biopsies, we found increased levels of ATG16-L1-β at the time of progression in 3 of 11 NSCLC patients treated with EGFR-TKI. Mechanistically, gefitinib-induced autophagy was impaired in resistant cells that accumulated ATG16-L1-β. Neutralization of ATG16-L1-β restored autophagy in response to gefitinib, induced apoptosis and inhibited the growth of in ovo tumor xenografts. Conversely, overexpression of ATG16-L1-β in parental sensitive cells prevented gefitinib-induced autophagy and increased cell survival. These results support a role for defective autophagy in acquired resistance to EGFR-TKIs and identify splicing regulation of ATG16-L1 as a therapeutic vulnerability that could be explored for improving EGFR-targeted cancer therapy.
Collapse
Affiliation(s)
- Anne-Sophie Hatat
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Clara Benoit-Pilven
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| | - Amélie Pucciarelli
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Florence de Fraipont
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France.,Molecular Genetic Unit, Grenoble-Alpes University Hospital, Grenoble, France
| | - Lucie Lamothe
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Pascal Perron
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Amandine Rey
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| | - Matteo Giaj Levra
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France.,Thoracic Oncology Unit, Grenoble-Alpes University Hospital, Grenoble, France
| | - Anne-Claire Toffart
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France.,Thoracic Oncology Unit, Grenoble-Alpes University Hospital, Grenoble, France
| | - Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| | - Beatrice Eymin
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Sylvie Gazzeri
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
8
|
Guo W, Du K, Luo S, Hu D. Recent Advances of Autophagy in Non-Small Cell Lung Cancer: From Basic Mechanisms to Clinical Application. Front Oncol 2022; 12:861959. [PMID: 35600411 PMCID: PMC9115384 DOI: 10.3389/fonc.2022.861959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/04/2022] [Indexed: 12/27/2022] Open
Abstract
Lung cancer is characterized by the most common oncological disease and leading cause of cancer death worldwide, of which a group of subtypes known as non-small cell lung cancer (NSCLC) accounts for approximately 85%. In the past few decades, important progression in the therapies of NSCLC has enhanced our understanding of the biology and progression mechanisms of tumor. The application of immunotherapy and small molecule tyrosine kinase inhibitors has brought significant clinical benefits in certain patients. However, early metastasis and the emergence of resistance to antitumor therapy have resulted in the relatively low overall cure and survival rates for NSCLC. Autophagy is a conserved process that allows cells to recycle unused or damaged organelles and cellular components. It has been reported to be related to the progression of NSCLC and resistance to targeted therapy and cytotoxic chemotherapy. Therefore, autophagy is considered as a potential therapeutic target for NSCLC. Mounting results have been reported about the combination of tyrosine kinase inhibitors and inhibitors of autophagy in models of NSCLC. This review aims to provide a comprehensive review on the roles of autophagy in NSCLC, focusing on related clinical data of agents that regulate autophagy in NSCLC. Furthermore, this study will provide a theoretical basis for further improvement of autophagy-based cancer therapy.
Collapse
Affiliation(s)
- Weina Guo
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keye Du
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
- Department of immunology, Hubei Clinical Research Center of Cancer Immunotherapy, Wuhan, China
| |
Collapse
|
9
|
Kaewjanthong P, Sooksai S, Sasano H, Hutvagner G, Bajan S, McGowan E, Boonyaratanakornkit V. Cell-penetrating peptides containing the progesterone receptor polyproline domain inhibits EGF signaling and cell proliferation in lung cancer cells. PLoS One 2022; 17:e0264717. [PMID: 35235599 PMCID: PMC8890653 DOI: 10.1371/journal.pone.0264717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/15/2022] [Indexed: 01/10/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for the majority (80-85%) of all lung cancers. All current available treatments have limited efficacy. The epidermal growth factor receptor (EGFR) plays a critical role in the development and progression of NSCLC, with high EGFR expression associated with increased cell proliferation and poor prognosis. Thus, interfering with EGFR signaling has been shown to effectively reduce cell proliferation and help in the treatment of NSCLC. We previously demonstrated that the progesterone receptor (PR) contains a polyproline domain (PPD) that directly interacts with Src homology 3 (SH3) domain-containing molecules and expression of PR-PPD peptides inhibits NSCLC cell proliferation. In this study, we investigated whether the introduction of PR-PPD by cell-penetrating peptides (CPPs) could inhibit EGF-induced cell proliferation in NSCLC cells. PR-PPD was attached to a cancer-specific CPP, Buforin2 (BR2), to help deliver the PR-PPD into NSCLC cells. Interestingly, addition of BR2-2xPPD peptides containing two PR-PPD repeats was more effective in inhibiting NSCLC proliferation and significantly reduced EGF-induced phosphorylation of Erk1/2. BR2-2xPPD treatment induced cell cycle arrest by inhibiting the expression of cyclin D1 and CDK2 genes in EGFR-wild type A549 cells. Furthermore, the combination treatment of EGFR-tyrosine kinase inhibitors (TKIs), including Gefitinib or Erlotinib, with BR2-2xPPD peptides further suppressed the growth of NSCLC PC9 cells harboring EGFR mutations as compared to EGFR-TKIs treatment alone. Importantly, BR2-2xPPD peptides mediated growth inhibition in acquired Gefitinib- and Erlotinib- resistant lung adenocarcinoma cells. Our data suggests that PR-PPD is the minimal protein domain sufficient to inhibit NSCLC cell growth and has the potential to be developed as a novel NSCLC therapeutic agent.
Collapse
Affiliation(s)
- Panthita Kaewjanthong
- Department of Clinical Chemistry and Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sarintip Sooksai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Australia
| | - Sarah Bajan
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Australia
- Sunshine Coast Health Institute, Birtinya, Australia
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Viroj Boonyaratanakornkit
- Department of Clinical Chemistry and Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Chen P, Dai CH, Shi ZH, Wang Y, Wu JN, Chen K, Su JY, Li J. Synergistic inhibitory effect of berberine and icotinib on non-small cell lung cancer cells via inducing autophagic cell death and apoptosis. Apoptosis 2021; 26:639-656. [PMID: 34743246 DOI: 10.1007/s10495-021-01694-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 01/12/2023]
Abstract
Resistance to epidermal growth factor receptor-tyrosin kinase inhibitors (TKIs, e.g. icotinib) remains a major clinical challenge. Non-small cell lung cancer patients with wild-type EGFR and/or K-RAS mutation are primary resistance to EGFR-TKIs. Berberine has been found to have potent anticancer activities via distinct molecular mechanism. In this study, we sought to investigate the therapeutic utility of BBR in combination with icotinib to overcome icotinib resistance in NSCLC cells, and explore the molecular mechanism of synergism of icotinib and BBR to EGFR-resistant NSCLC cells. We used the two EGFR-resistant NSCLC cell lines H460 and H1299 for testing the inhibitory effect of icotinib and/or BBR on them. Moreover, xenograft mouse model was applied for assessing the anti-tumor activities of BBR and icotinib in combination. Results showed that BBR and icotinib have a synergistic inhibitory effect on H460 and H1299 cells through induction of autophagic cell death and apoptosis. Accordingly, the anti-cancer effect of BBR plus icotinib was further confirmed in the NSCLC xenograft mouse models. Combination of BBR and icotinib significantly inhibited the protein expression and the activity of EGFR by inducing autophagic EGFR degradation. BBR plus icotinib resulted in intracellular ROS accumulation, which could mediated autophagy and apoptosis and involved in the suppression of cell migration and invasion. In conclusions, combination application of BBR and icotinib could be an effective strategy to overcome icotinib resistance in the treatment of NSCLC.
Collapse
Affiliation(s)
- Ping Chen
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chun-Hua Dai
- Department of Radiation Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhi-Hao Shi
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Wang
- Center of Medical Experiment, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jian-Nong Wu
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kang Chen
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jin-Yu Su
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jian Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
11
|
Ghaznavi H, Shirvaliloo M, Zarebkohan A, Shams Z, Radnia F, Bahmanpour Z, Sargazi S, Saravani R, Shirvalilou S, Shahraki O, Shahraki S, Nazarlou Z, Sheervalilou R. An Updated Review on Implications of Autophagy and Apoptosis in Tumorigenesis: Possible Alterations in Autophagy through Engineered Nanomaterials and Their Importance in Cancer Therapy. Mol Pharmacol 2021; 100:119-143. [PMID: 33990406 DOI: 10.1124/molpharm.121.000234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Most commonly recognized as a catabolic pathway, autophagy is a perplexing mechanism through which a living cell can free itself of excess cytoplasmic components, i.e., organelles, by means of certain membranous vesicles or lysosomes filled with degrading enzymes. Upon exposure to external insult or internal stimuli, the cell might opt to activate such a pathway, through which it can gain control over the maintenance of intracellular components and thus sustain homeostasis by intercepting the formation of unnecessary structures or eliminating the already present dysfunctional or inutile organelles. Despite such appropriateness, autophagy might also be considered a frailty for the cell, as it has been said to have a rather complicated role in tumorigenesis. A merit in the early stages of tumor formation, autophagy appears to be salutary because of its tumor-suppressing effects. In fact, several investigations on tumorigenesis have reported diminished levels of autophagic activity in tumor cells, which might result in transition to malignancy. On the contrary, autophagy has been suggested to be a seemingly favorable mechanism to progressed malignancies, as it contributes to survival of such cells. Based on the recent literature, this mechanism might also be activated upon the entry of engineered nanomaterials inside a cell, supposedly protecting the host from foreign materials. Accordingly, there is a good chance that therapeutic interventions for modulating autophagy in malignant cells using nanoparticles may sensitize cancerous cells to certain treatment modalities, e.g., radiotherapy. In this review, we will discuss the signaling pathways involved in autophagy and the significance of the mechanism itself in apoptosis and tumorigenesis while shedding light on possible alterations in autophagy through engineered nanomaterials and their potential therapeutic applications in cancer. SIGNIFICANCE STATEMENT: Autophagy has been said to have a complicated role in tumorigenesis. In the early stages of tumor formation, autophagy appears to be salutary because of its tumor-suppressing effects. On the contrary, autophagy has been suggested to be a favorable mechanism to progressed malignancies. This mechanism might be affected upon the entry of nanomaterials inside a cell. Accordingly, therapeutic interventions for modulating autophagy using nanoparticles may sensitize cancerous cells to certain therapies.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Milad Shirvaliloo
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Amir Zarebkohan
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Zinat Shams
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Fatemeh Radnia
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Zahra Bahmanpour
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Saman Sargazi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Ramin Saravani
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Sakine Shirvalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Sheida Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Ziba Nazarlou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| |
Collapse
|
12
|
Mandhair HK, Novak U, Radpour R. Epigenetic regulation of autophagy: A key modification in cancer cells and cancer stem cells. World J Stem Cells 2021; 13:542-567. [PMID: 34249227 PMCID: PMC8246247 DOI: 10.4252/wjsc.v13.i6.542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/02/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Aberrant epigenetic alterations play a decisive role in cancer initiation and propagation via the regulation of key tumor suppressor genes and oncogenes or by modulation of essential signaling pathways. Autophagy is a highly regulated mechanism required for the recycling and degradation of surplus and damaged cytoplasmic constituents in a lysosome dependent manner. In cancer, autophagy has a divergent role. For instance, autophagy elicits tumor promoting functions by facilitating metabolic adaption and plasticity in cancer stem cells (CSCs) and cancer cells. Moreover, autophagy exerts pro-survival mechanisms to these cancerous cells by influencing survival, dormancy, immunosurveillance, invasion, metastasis, and resistance to anti-cancer therapies. In addition, recent studies have demonstrated that various tumor suppressor genes and oncogenes involved in autophagy, are tightly regulated via different epigenetic modifications, such as DNA methylation, histone modifications and non-coding RNAs. The impact of epigenetic regulation of autophagy in cancer cells and CSCs is not well-understood. Therefore, uncovering the complex mechanism of epigenetic regulation of autophagy provides an opportunity to improve and discover novel cancer therapeutics. Subsequently, this would aid in improving clinical outcome for cancer patients. In this review, we provide a comprehensive overview of the existing knowledge available on epigenetic regulation of autophagy and its importance in the maintenance and homeostasis of CSCs and cancer cells.
Collapse
Affiliation(s)
- Harpreet K Mandhair
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Urban Novak
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Ramin Radpour
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| |
Collapse
|
13
|
Shu YH, Yuan HH, Xu MT, Hong YT, Gao CC, Wu ZP, Han HT, Sun X, Gao RL, Yang SF, Li SX, Tian JK, Zhang JB. A novel Diels-Alder adduct of mulberry leaves exerts anticancer effect through autophagy-mediated cell death. Acta Pharmacol Sin 2021; 42:780-790. [PMID: 32814819 PMCID: PMC8115316 DOI: 10.1038/s41401-020-0492-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/22/2020] [Indexed: 02/01/2023]
Abstract
Guangsangon E (GSE) is a novel Diels-Alder adduct isolated from leaves of Morus alba L, a traditional Chinese medicine widely applied in respiratory diseases. It is reported that GSE has cytotoxic effect on cancer cells. In our research, we investigated its anticancer effect on respiratory cancer and revealed that GSE induces autophagy and apoptosis in lung and nasopharyngeal cancer cells. We first observed that GSE inhibits cell proliferation and induces apoptosis in A549 and CNE1 cells. Meanwhile, the upregulation of autophagosome marker LC3 and increased formation of GFP-LC3 puncta demonstrates the induction of autophagy in GSE-treated cells. Moreover, GSE increases the autophagy flux by enhancing lysosomal activity and the fusion of autophagosomes and lysosomes. Next, we investigated that endoplasmic reticulum (ER) stress is involved in autophagy induction by GSE. GSE activates the ER stress through reactive oxygen species (ROS) accumulation, which can be blocked by ROS scavenger NAC. Finally, inhibition of autophagy attenuates GSE-caused cell death, termed as "autophagy-mediated cell death." Taken together, we revealed the molecular mechanism of GSE against respiratory cancer, which demonstrates great potential of GSE in the treatment of representative cancer.
Collapse
Affiliation(s)
- Yu-Han Shu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Hua-Hua Yuan
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Meng-Ting Xu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Ye-Ting Hong
- Hangzhou Medical College, Hangzhou, 310053, China
| | - Cheng-Cheng Gao
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Pan Wu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Hao-Te Han
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Xin Sun
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Rui-Lan Gao
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Si-Fu Yang
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Shou-Xin Li
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jing-Kui Tian
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Jian-Bin Zhang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
14
|
Kawana S, Saito R, Miki Y, Kimura Y, Abe J, Sato I, Endo M, Sugawara S, Sasano H. Suppression of tumor immune microenvironment via microRNA-1 after epidermal growth factor receptor-tyrosine kinase inhibitor resistance acquirement in lung adenocarcinoma. Cancer Med 2020; 10:718-727. [PMID: 33305905 PMCID: PMC7877390 DOI: 10.1002/cam4.3639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is considered one of the most important therapeutic strategies for patients with lung adenocarcinoma after the development of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance. However, useful predictors of immunotherapy for these patients has not been examined well, although the status of the tumor immune microenvironment (TIME), including programmed death-ligand 1 expression and lymphocyte infiltration, has been generally known to provide predictive markers for the efficacy of immunotherapy. This study aimed to clarify novel predictors of immunotherapy following EGFR-TKI resistance in lung adenocarcinoma, especially regarding micro RNA (miRNA). We evaluated the correlation between EGFR-TKI resistance and lymphocyte infiltration, before and after acquiring EGFR-TKI resistance, in 21 cases of lung adenocarcinoma, and further explored this by in vitro studies, using miRNA PCR arrays. Subsequently, we transfected miRNA-1 (miR-1), the most variable miRNA in this array, into three kinds of lung cancer cells, and examined the effects of miR-1 on EGFR-TKI sensitivity, cytokine expression and lymphocyte migration. Histopathological examination demonstrated that infiltration levels of CD8-positive T cells were significantly decreased after development of EGFR-TKI resistance. In vitro studies revealed that miR-1 significantly inhibited EGFR-TKI effect and induction of cytokines, such as C-C motif chemokine ligand 5 and C-X-C motif chemokine ligand 10, causing inhibition of monocyte migration. These results indicate that the upregulated miR-1 might suppress the TIME, following development of EGFR-TKI resistance. Therefore, miR-1 could be a clinically useful marker to predict therapeutic efficacy of immunotherapy in lung adenocarcinoma patients with EGFR-TKI resistance.
Collapse
Affiliation(s)
- Sachiko Kawana
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan.,Department of Respiratory Medicine, Sendai Kousei Hospital, Miyagi, Japan
| | - Ryoko Saito
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| | - Yuichiro Kimura
- Department of Respiratory Medicine, Sendai Kousei Hospital, Miyagi, Japan
| | - Jiro Abe
- Department of Thoracic Surgery, Miyagi Cancer Center, Miyagi, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Cancer Center, Miyagi, Japan
| | - Mareyuki Endo
- Department of Pathology, Sendai Kousei Hospital, Miyagi, Japan
| | - Shunichi Sugawara
- Department of Respiratory Medicine, Sendai Kousei Hospital, Miyagi, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
15
|
Van Der Steen N, Keller K, Dekker H, Porcelli L, Honeywell RJ, Van Meerloo J, Musters RJP, Kathmann I, Frampton AE, Liu DSK, Ruijtenbeek R, Rolfo C, Pauwels P, Giovannetti E, Peters GJ. Crizotinib sensitizes the erlotinib resistant HCC827GR5 cell line by influencing lysosomal function. J Cell Physiol 2020; 235:8085-8097. [PMID: 31960422 PMCID: PMC7540474 DOI: 10.1002/jcp.29463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
In non-small cell lung cancer, sensitizing mutations in epidermal growth factor receptor (EGFR) or cMET amplification serve as good biomarkers for targeted therapies against EGFR or cMET, respectively. Here we aimed to determine how this different genetic background would affect the interaction between the EGFR-inhibitor erlotinib and the cMET-inhibitor crizotinib. To unravel the mechanism of synergy we investigated the effect of the drugs on various parameters, including cell cycle arrest, migration, protein phosphorylation, kinase activity, the expression of drug efflux pumps, intracellular drug concentrations, and live-cell microscopy. We observed additive effects in EBC-1, H1975, and HCC827, and a strong synergism in the HCC827GR5 cell line. This cell line is a clone of the HCC827 cells that harbor an EGFR exon 19 deletion and has been made resistant to the EGFR-inhibitor gefitinib, resulting in cMET amplification. Remarkably, the intracellular concentration of crizotinib was significantly higher in HCC827GR5 compared to the parental HCC827 cell line. Furthermore, live-cell microscopy with a pH-sensitive probe showed a differential reaction of the pH in the cytoplasm and the lysosomes after drug treatment in the HCC827GR5 in comparison with the HCC827 cells. This change in pH could influence the process of lysosomal sequestration of drugs. These results led us to the conclusion that lysosomal sequestration is involved in the strong synergistic reaction of the HCC827GR5 cell line to crizotinib-erlotinib combination. This finding warrants future clinical studies to evaluate whether genetic background and lysosomal sequestration could guide tailored therapeutic interventions.
Collapse
Affiliation(s)
- Nele Van Der Steen
- Center for Oncological ResearchUniversity of AntwerpAntwerpBelgium
- Department of PathologyAntwerp University HospitalAntwerpBelgium
- Laboratory of Medical OncologyAmsterdam Universities Medical Centers, VUmcAmsterdamThe Netherlands
| | - Kaylee Keller
- Laboratory of Medical OncologyAmsterdam Universities Medical Centers, VUmcAmsterdamThe Netherlands
| | - Henk Dekker
- Laboratory of Medical OncologyAmsterdam Universities Medical Centers, VUmcAmsterdamThe Netherlands
| | - Letizia Porcelli
- Experimental Pharmacology LaboratoryIRCCS Istituto Tumori "Giovanni Paolo II"BariItaly
| | - Richard J. Honeywell
- Laboratory of Medical OncologyAmsterdam Universities Medical Centers, VUmcAmsterdamThe Netherlands
| | - Johan Van Meerloo
- Department of Pediatric Oncology/HematologyVUmcAmsterdamThe Netherlands
| | | | - Ietje Kathmann
- Laboratory of Medical OncologyAmsterdam Universities Medical Centers, VUmcAmsterdamThe Netherlands
| | - Adam E. Frampton
- Division of Cancer, Department of Surgery & CancerImperial CollegeLondonUnited Kingdom
- Department of Clinical & Experimental Medicine, Faculty of Health & Medical SciencesUniversity of SurreyGuildfordUnited Kingdom
| | - Daniel S. K. Liu
- Division of Cancer, Department of Surgery & CancerImperial CollegeLondonUnited Kingdom
| | - Rob Ruijtenbeek
- Pamgene International BVPamGene‘s‐HertogenboschThe Netherlands
| | - Christian Rolfo
- Center for Oncological ResearchUniversity of AntwerpAntwerpBelgium
- Phase I‐Early Clinical Trials Unit, Oncology DepartmentAntwerp University HospitalAntwerpBelgium
| | - Patrick Pauwels
- Center for Oncological ResearchUniversity of AntwerpAntwerpBelgium
- Department of PathologyAntwerp University HospitalAntwerpBelgium
| | - Elisa Giovannetti
- Laboratory of Medical OncologyAmsterdam Universities Medical Centers, VUmcAmsterdamThe Netherlands
- Cancer Pharmacology Lab, AIRC Start‐Up UnitFondazione Pisana per la ScienzaPisaItaly
| | - Godefridus J. Peters
- Laboratory of Medical OncologyAmsterdam Universities Medical Centers, VUmcAmsterdamThe Netherlands
| |
Collapse
|
16
|
Epigenetic Control of Autophagy in Cancer Cells: A Key Process for Cancer-Related Phenotypes. Cells 2019; 8:cells8121656. [PMID: 31861179 PMCID: PMC6952790 DOI: 10.3390/cells8121656] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Although autophagy is a well-known and extensively described cell pathway, numerous studies have been recently interested in studying the importance of its regulation at different molecular levels, including the translational and post-translational levels. Therefore, this review focuses on the links between autophagy and epigenetics in cancer and summarizes the. following: (i) how ATG genes are regulated by epigenetics, including DNA methylation and post-translational histone modifications; (ii) how epidrugs are able to modulate autophagy in cancer and to alter cancer-related phenotypes (proliferation, migration, invasion, tumorigenesis, etc.) and; (iii) how epigenetic enzymes can also regulate autophagy at the protein level. One noteable observation was that researchers most often reported conclusions about the regulation of the autophagy flux, following the use of epidrugs, based only on the analysis of LC3B-II form in treated cells. However, it is now widely accepted that an increase in LC3B-II form could be the consequence of an induction of the autophagy flux, as well as a block in the autophagosome-lysosome fusion. Therefore, in our review, all the published results describing a link between epidrugs and autophagy were systematically reanalyzed to determine whether autophagy flux was indeed increased, or inhibited, following the use of these potentially new interesting treatments targeting the autophagy process. Altogether, these recent data strongly support the idea that the determination of autophagy status could be crucial for future anticancer therapies. Indeed, the use of a combination of epidrugs and autophagy inhibitors could be beneficial for some cancer patients, whereas, in other cases, an increase of autophagy, which is frequently observed following the use of epidrugs, could lead to increased autophagy cell death.
Collapse
|
17
|
Kwon Y, Kim M, Jung HS, Kim Y, Jeoung D. Targeting Autophagy for Overcoming Resistance to Anti-EGFR Treatments. Cancers (Basel) 2019; 11:cancers11091374. [PMID: 31527477 PMCID: PMC6769649 DOI: 10.3390/cancers11091374] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) plays critical roles in cell proliferation, tumorigenesis, and anti-cancer drug resistance. Overexpression and somatic mutations of EGFR result in enhanced cancer cell survival. Therefore, EGFR can be a target for the development of anti-cancer therapy. Patients with cancers, including non-small cell lung cancers (NSCLC), have been shown to response to EGFR-tyrosine kinase inhibitors (EGFR-TKIs) and anti-EGFR antibodies. However, resistance to these anti-EGFR treatments has developed. Autophagy has emerged as a potential mechanism involved in the acquired resistance to anti-EGFR treatments. Anti-EGFR treatments can induce autophagy and result in resistance to anti-EGFR treatments. Autophagy is a programmed catabolic process stimulated by various stimuli. It promotes cellular survival under these stress conditions. Under normal conditions, EGFR-activated phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling inhibits autophagy while EGFR/rat sarcoma viral oncogene homolog (RAS)/mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (MAPK) signaling promotes autophagy. Thus, targeting autophagy may overcome resistance to anti-EGFR treatments. Inhibitors targeting autophagy and EGFR signaling have been under development. In this review, we discuss crosstalk between EGFR signaling and autophagy. We also assess whether autophagy inhibition, along with anti-EGFR treatments, might represent a promising approach to overcome resistance to anti-EGFR treatments in various cancers. In addition, we discuss new developments concerning anti-autophagy therapeutics for overcoming resistance to anti-EGFR treatments in various cancers.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Misun Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chunchon 24251, Korea.
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| |
Collapse
|
18
|
Cell-intrinsic survival signals. The role of autophagy in metastatic dissemination and tumor cell dormancy. Semin Cancer Biol 2019; 60:28-40. [PMID: 31400500 DOI: 10.1016/j.semcancer.2019.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Metastasis is the main cause of cancer-related deaths. Disseminated tumor cells (DTCs), which seed metastasis, can remain undetected in a dormant state for decades after treatment of the primary tumor and their persistence is the main cause of late relapse and death in a substantial proportion of cancer patients. Understanding the mechanisms underlying the survival of dormant DTCs is of utmost importance to develop new therapies that effectively kill DTCs while in a quiescent state, therefore preventing metastatic disease and minimizing the chance of future relapses. Besides key interactions with the local microenvironment, dormant DTCs must integrate survival mechanisms to remain viable for long periods of time. Here, the pro-survival role of autophagy in tumor cell dissemination and dormant DTC maintenance are discussed, as well as the implications of the current knowledge for future research efforts.
Collapse
|
19
|
Abstract
Resistance to therapy is one of the prime causes for treatment failure in cancer and recurrent disease. In recent years, autophagy has emerged as an important cell survival mechanism in response to different stress conditions that are associated with cancer treatment and aging. Autophagy is an evolutionary conserved catabolic process through which damaged cellular contents are degraded after uptake into autophagosomes that subsequently fuse with lysosomes for cargo degradation, thereby alleviating stress. In addition, autophagy serves to maintain cellular homeostasis by enriching nutrient pools. Although autophagy can act as a double-edged sword at the interface of cell survival and cell death, increasing evidence suggest that in the context of cancer therapy-induced stress responses, it predominantly functions as a cell survival mechanism. Here, we provide an up-to-date overview on our current knowledge of the role of pro-survival autophagy in cancer therapy at the preclinical and clinical stages and delineate the molecular mechanisms of autophagy regulation in response to therapy-related stress conditions. A better understanding of the interplay of cancer therapy and autophagy may allow to unveil new targets and avenues for an improved treatment of therapy-resistant tumors in the foreseeable future.
Collapse
|
20
|
Wang Q, Shen B, Qin X, Liu S, Feng J. Akt/mTOR and AMPK signaling pathways are responsible for liver X receptor agonist GW3965-enhanced gefitinib sensitivity in non-small cell lung cancer cell lines. Transl Cancer Res 2019; 8:66-76. [PMID: 35116735 PMCID: PMC8797756 DOI: 10.21037/tcr.2018.12.34] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/14/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND This study was to systemically analyze the mechanism of LXR ligand GW3965-induced sensitivity to EGFR-TKI in EGFR-TKI-resistant non-small cell lung cancer (NSCLC) cell lines. METHODS Gefitinib-resistant PC9 cell line (EGFR exon 19 deletion) was treated with single and combined treatment with GW3965 and gefitinib. Cell viability, apoptosis and autophagy were detected using MTT, flow cytometric analysis and immunofluorescent analysis, respectively. Autophagy-related signaling pathways were detected using Western blot analysis. RESULTS Inhibited cell viability by single and combined treatment with gefitinib and GW3965 were observed. Combined treatment with gefitinib and GW3965 increased LC3 II/I ratio and Beclin 1 expression. Synergistic effect of gefitinib and GW3965 on apoptosis and autophagosome accumulation as well as on the inhibition of Akt/mTOR signaling and activation of AMP-activated protein kinase (AMPK) was observed in gefitinib-resistant PC9 cells. AMPK expression showed similar profile with apoptosis and autophagy of PC9 cells. CONCLUSIONS We confirmed that GW3965 and gefitinib showed synergistic effect on Akt/mTOR inhibition, apoptosis and autophagy of lung cancer cells. Gefitinib sensitivity in PC9 cell line might be mediated by Akt/mTOR, AMPK and JNK signaling pathways.
Collapse
Affiliation(s)
- Qingbo Wang
- The Fourth Clinical School of Nanjing Medical University, Nanjing 210029, China
| | - Bo Shen
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Xiaobing Qin
- The Fourth Clinical School of Nanjing Medical University, Nanjing 210029, China
| | - Siwen Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Jifeng Feng
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing 210009, China
| |
Collapse
|
21
|
Kobayashi M, Saito R, Miki Y, Nanamiya R, Inoue C, Abe J, Sato I, Okada Y, Sasano H. The correlation of p22 phox and chemosensitivity in EGFR-TKI resistant lung adenocarcinoma. Oncotarget 2019; 10:1119-1131. [PMID: 30800222 PMCID: PMC6383684 DOI: 10.18632/oncotarget.26637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/12/2019] [Indexed: 12/22/2022] Open
Abstract
Background Enhancing the chemosensitivity in the patients with epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistant lung adenocarcinoma (LUAD) is pivotal in achieving their successful therapeutic outcome. We aimed to explore the mechanisms regarding the development of therapeutic resistance to chemotherapy in EGFR-TKI resistant LUAD. Methods: Microarray analysis lead to potential involvement of p22phox, which was abundantly expressed in the cell lines harboring EGFR-TKI resistance and chemoresistance, and was known to regulate several important chemoresistance-associated factors such as hypoxia inducible factor-1α (HIF-1α) and epithelial-mesenchymal transition (EMT). We compared the status of p22phox with that of chemoresistance, HIF-1α expression and EMT in LUAD cell lines. We immunolocalized p22phox in the specimens of lung cancer patients. Results p22phox and HIF-1α mRNAs were significantly elevated in the cells harboring EMT and chemoresistance. p22phox knockdown enhanced chemosensitivity and reduced the expression of HIF-1α and EMT-associated factors. HIF-1α knockdown enhanced the chemosensitivity, while HIF-1α transfection induced EMT and chemoresistance in these cell lines. All LUAD patients with T790M mutation were associated with abundant p22phox immunoreactivity in carcinoma cells. Conclusions The analysis of p22phox in lung carcinoma tissues could provide new insights into the selection of chemotherapy for the patients with EGFR-TKI resistant LUAD.
Collapse
Affiliation(s)
- Masayuki Kobayashi
- Department of Pathology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ryoko Saito
- Department of Pathology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ren Nanamiya
- Department of Pathology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Chihiro Inoue
- Department of Pathology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Jiro Abe
- Department of Thoracic Surgery, Miyagi Cancer Center, Miyagi, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Cancer Center, Miyagi, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Tohoku University Hospital, Miyagi, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
22
|
Shintani T, Higashisaka K, Maeda M, Hamada M, Tsuji R, Kurihara K, Kashiwagi Y, Sato A, Obana M, Yamamoto A, Kawasaki K, Lin Y, Kijima T, Kinehara Y, Miwa Y, Maeda S, Morii E, Kumanogoh A, Tsutsumi Y, Nagatomo I, Fujio Y. Eukaryotic translation initiation factor 3 subunit C is associated with acquired resistance to erlotinib in non-small cell lung cancer. Oncotarget 2018; 9:37520-37533. [PMID: 30680067 PMCID: PMC6331022 DOI: 10.18632/oncotarget.26494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
The acquisition of resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) is one of the major problems in the pharmacotherapy against non-small cell lung cancers; however, molecular mechanisms remain to be fully elucidated. Here, using a newly-established erlotinib-resistant cell line, PC9/ER, from PC9 lung cancer cells, we demonstrated that the expression of translation-related molecules, including eukaryotic translation initiation factor 3 subunit C (eIF3c), was upregulated in PC9/ER cells by proteome analyses. Immunoblot analyses confirmed that eIF3c protein increased in PC9/ER cells, compared with PC9 cells. Importantly, the knockdown of eIF3c with its siRNAs enhanced the drug sensitivity in PC9/ER cells. Mechanistically, we found that LC3B-II was upregulated in PC9/ER cells, while downregulated by the knockdown of eIF3c. Consistently, the overexpression of eIF3c increased the number of autophagosomes, proposing the causality between eIF3c expression and autophagy. Moreover, chloroquine, an autophagy inhibitor, restored the sensitivity to erlotinib. Finally, immunohistochemical analyses of biopsy samples showed that the frequency of eIF3c-positive cases was higher in the patients with EGFR-TKI resistance than those prior to EGFR-TKI treatment. Moreover, the eIF3c-positive cases exhibited poor prognosis in EGFR-TKI treatment. Collectively, the upregulation of eIF3c could impair the sensitivity to EGFR-TKI as a novel mechanism of the drug resistance.
Collapse
Affiliation(s)
- Takuya Shintani
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Department of Pharmacy, Osaka University Hospital, Suita, Japan
| | - Kazuma Higashisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makiko Maeda
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Masaya Hamada
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Ryosuke Tsuji
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Koudai Kurihara
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Yuri Kashiwagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Atsuhiro Sato
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Masanori Obana
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Ayaha Yamamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Keisuke Kawasaki
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ying Lin
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takashi Kijima
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuhei Kinehara
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshihiro Miwa
- Department of Pharmacy, Osaka University Hospital, Suita, Japan
| | - Shinichiro Maeda
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Department of Pharmacy, Osaka University Hospital, Suita, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Fujio
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
23
|
Xu C, Zhang W, Liu S, Wu W, Qin M, Huang J. Activation of the SphK1/ERK/p-ERK pathway promotes autophagy in colon cancer cells. Oncol Lett 2018; 15:9719-9724. [PMID: 29928348 PMCID: PMC6004663 DOI: 10.3892/ol.2018.8588] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 03/16/2018] [Indexed: 12/22/2022] Open
Abstract
Sphingosine kinase 1 (SphK1) is a master kinase that catalyzes the synthesis of sphingosine 1 phosphate and participates in the regulation of cell proliferation and autophagy. The present study aimed to assess the effects of the activation of the SphK1/extracellular signal-regulated kinase (ERK)/phosphorylated (p-)ERK pathway in the regulation of autophagy in colon cancer (HT-29) cells. Inverted fluorescence microscopy was used to detect the expression of green fluorescent protein (GFP) in the SphK1-overexpressing HT-29 cells [SphK1(+)-HT-29] and the negative control HT-29 cells (NC-HT-29). Western blotting was used to detect the protein expression levels of SphK1, ERK1/2, p-ERK1/2, as well as those of the autophagy-associated markers LC3A, ATG5, and ULK1. Protein localization and expression of the LC3A antibody were detected by immunofluorescence. The results demonstrated that GFP was similarly expressed in SphK1(+)-HT-29 and NC-HT-29 cells. However, significantly increased SphK1 mRNA and protein expression levels were detected in SphK1(+)-HT-29 cells compared with in NC-HT-29 cells, which resulted in upregulated ERK/p-ERK. Furthermore, the protein expression levels of the three autophagy-associated markers increased. LC3A protein was localized in the cytoplasm of SphK1(+)-HT-29 cells, indicating autophagy. In summary, the findings of the present study suggested that activation of the SphK1/ERK/p-ERK pathway promotes autophagy in colon cancer HT-29 cells.
Collapse
Affiliation(s)
- Chunyan Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Wenlu Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Wenhong Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Mengbin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| |
Collapse
|
24
|
Kim JH, Kang HM, Yu SB, Song JM, Kim CH, Kim BJ, Park BS, Shin SH, Kim IR. Cytoprotective effect of flavonoid-induced autophagy on bisphosphonate mediated cell death in osteoblast. J Cell Biochem 2018; 119:5571-5580. [PMID: 29380898 PMCID: PMC6001630 DOI: 10.1002/jcb.26728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/24/2018] [Indexed: 11/26/2022]
Abstract
With rapid economic growth and further developments in medical science, the entry into the aging population is currently increasing, as is the number of patients with metabolic diseases, such as hypertension, hyperlipidemia, heart disease, and diabetes. The current treatments for metabolic bone diseases, which are also on the rise, cause negative side effects. Bisphosphonates, which are used to treat osteoporosis, inhibit the bone resorption ability of osteoclasts and during prolonged administration, cause bisphosphonate‐related osteonecrosis of the jaw (BRONJ). Numerous studies have shown the potential role of natural plant products as flavonoids in the protection against osteoporosis and in the influence of bone remodeling. Autophagy occurs after the degradation of cytoplasmic components within the lysosome and serves as an essential cytoprotective response to pathologic stress caused by certain diseases. In the present study, we hypothesized that the cytoprotective effects of flavonoids might be related to those associated with autophagy, an essential cytoprotective response to the pathologic stress caused by certain diseases, in osteoblasts. We demonstrated the cytoprotective effect of flavonoid‐induced autophagy against the toxicity of zoledronate and the induction of autophagy by flavonoids to support osteogenic transcription factors, leading to osteoblast differentiation and bone formation. Further studies are necessary to clarify the connections between autophagy and osteogenesis. It would be helpful to shed light on methodological challenges through molecular biological studies and new animal models. The findings of the current study may help to delineate the potential role of flavonoids in the treatment of metabolic bone disease.
Collapse
Affiliation(s)
- Jung-Han Kim
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, Yangsan-si, Gyeongsangnam-do, South Korea.,Department of Oral and Maxillofacial Surgery, Medical center, Dong-A University, Seo-gu, Busan, South Korea
| | - Hae-Mi Kang
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea.,BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Su-Bin Yu
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea.,BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Jae-Min Song
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Chul-Hoon Kim
- Department of Oral and Maxillofacial Surgery, Medical center, Dong-A University, Seo-gu, Busan, South Korea
| | - Bok-Joo Kim
- Department of Oral and Maxillofacial Surgery, Medical center, Dong-A University, Seo-gu, Busan, South Korea
| | - Bong-Soo Park
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea.,BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, Yangsan-si, Gyeongsangnam-do, South Korea
| | - In-Ryoung Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| |
Collapse
|
25
|
Saito R, Miki Y, Ishida N, Inoue C, Kobayashi M, Hata S, Yamada-Okabe H, Okada Y, Sasano H. The Significance of MMP-1 in EGFR-TKI-Resistant Lung Adenocarcinoma: Potential for Therapeutic Targeting. Int J Mol Sci 2018; 19:ijms19020609. [PMID: 29463039 PMCID: PMC5855831 DOI: 10.3390/ijms19020609] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022] Open
Abstract
Epidermal growth factor receptor–tyrosine kinase inhibitor (EGFR-TKI) resistance is one of the most important problems in lung cancer therapy. Lung adenocarcinoma with EGFR-TKI resistance was reported to have higher abilities of invasion and migration than cancers sensitive to EGFR-TKI, but the function of matrix metalloproteinases (MMPs) has not been explored in EGFR-TKI–resistant lung adenocarcinoma. This study aims to clarify the significance of MMP-1 in EGFR-TKI–resistant lung adenocarcinoma. From the results of in vitro studies of migration and invasion assays using EGFR-TKI–sensitive and –resistant cell lines and phosphorylation antibody arrays using EGF and rapamycin, we first demonstrate that overexpression of MMP-1, which might follow activation of a mammalian target of rapamycin (mTOR) pathway, plays an important role in the migration and invasion abilities of EGFR-TKI–resistant lung adenocarcinoma. Additionally, immunohistochemical studies using 89 cases of lung adenocarcinoma demonstrate that high expression of MMP-1 is significantly correlated with poor prognosis and factors such as smoking history and the subtype of invasive mucinous adenocarcinoma. These are consistent with the results of this in vitro study. To conclude, this study provides insights into the development of a possible alternative therapy manipulating MMP-1 and the mTOR signaling pathway in EGFR-TKI–resistant lung adenocarcinoma.
Collapse
Affiliation(s)
- Ryoko Saito
- Department of Pathology, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan.
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan.
| | - Naoya Ishida
- Department of Pathology, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan.
| | - Chihiro Inoue
- Department of Pathology, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan.
| | - Masayuki Kobayashi
- Department of Pathology, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan.
| | - Shuko Hata
- Department of Pathology, Tohoku Medical and Pharmaceutical University School of Medicine, 981-8558 Sendai, Japan.
| | | | - Yoshinori Okada
- Department of Thoracic Surgery, Tohoku University Hospital, 980-8574, Sendai, Japan.
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 980-8575, Sendai, Japan.
| |
Collapse
|
26
|
The Clinical Influence of Autophagy-Associated Proteins on Human Lung Cancer. DISEASE MARKERS 2018; 2018:8314963. [PMID: 29545906 PMCID: PMC5818951 DOI: 10.1155/2018/8314963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Exploitation of autophagy might potentially improve therapeutic strategy. Here, we analyzed the protein expression of autophagy-associated genes including LC3A, LC3B, Beclin-1, p62, and Atg5 in 88–131 primary lung tumors by immunohistochemistry (IHC) on tissue-microarrays (TMAs). Additionally, the DNA methylation pattern of LC3A was investigated by bisulfite sequencing (BS) and methylation-specific-PCR (MSP). It turned out that the higher expression of LC3A protein was associated with adenocarcinoma compared to squamous cell carcinoma of lung (p = 0.008), positive staining of LC3B was significantly related to tumor grade (p = 0.006), and the protein expression of Beclin-1 was significantly correlated to pN stage (p = 0.041). The expression of p62 and Atg5 was however not significantly associated with any clinicopathological parameters. Downregulation of LC3A was related to DNA methylation in lung cancer cell lines, while in primary lung tumor samples, protein expression of LC3A was not significantly correlated with DNA methylation, and the methylation status of LC3A was not related to clinicopathological features. Taken together, our results suggest that autophagy-associated proteins such as LC3A, LC3B, and Beclin-1 might be potential biomarkers for subclassification, differentiation, and local metastasis in primary lung tumor, and epigenetic mechanism is partially responsible for gene silencing of LC3A in lung cancer cell lines.
Collapse
|
27
|
Clinical Implications of the Autophagy Core Gene Variations in Advanced Lung Adenocarcinoma Treated with Gefitinib. Sci Rep 2017; 7:17814. [PMID: 29259263 PMCID: PMC5736620 DOI: 10.1038/s41598-017-18165-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022] Open
Abstract
EGFR-TKIs show dramatic treatment benefits for advanced lung adenocarcinoma patients with activating EGFR mutations. Considering the essential role of autophagy in EGFR-TKIs treatments, we hypothesized that genetic variants in autophagy core genes might contribute to outcomes of advanced lung adenocarcinoma treated with gefitinib. We systematically examined 27 potentially functional genetic polymorphisms in 11 autophagy core genes among 108 gefitinib-treated advanced lung adenocarcinoma patients. We found that ATG10 rs10036653, ATG12 rs26538, ATG16L1 rs2241880 and ATG16L2 rs11235604 were significantly associated with survival of lung adenocarcinoma patients (all P < 0.05). Among EGFR-mutant patients, ATG5 rs688810, ATG5 rs510432, ATG7 rs8154, ATG10 rs10036653, ATG12 rs26538, ATG16L1 rs2241880 and ATG16L2 rs11235604 significantly contributed to disease prognosis. We also found that ATG5 rs510432, ATG5 rs688810, ATG10 rs10036653 and ATG10 rs1864182 were associated with primary or acquired resistance to gefitinib. Functional analyses of ATG10 rs10036653 polymorphism suggested that ATG10 A allele might increase transcription factor OCT4 binding affinity compared to the T allele in lung cancer cells. Our results indicate that autophagy core genetic variants show potential clinical implications in gefitinib treatment, especially among advanced lung adenocarcinoma patients, highlighting the possibility of patient-tailored decisions during EGFR-TKIs based on both germline and somatic variation detection.
Collapse
|
28
|
Huang H, Song J, Liu Z, Pan L, Xu G. Autophagy activation promotes bevacizumab resistance in glioblastoma by suppressing Akt/mTOR signaling pathway. Oncol Lett 2017; 15:1487-1494. [PMID: 29434840 PMCID: PMC5774481 DOI: 10.3892/ol.2017.7446] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022] Open
Abstract
Glioblastomas are the most common primary and malignant brain tumors. The standard therapy includes surgery and radiotherapy plus chemotherapy, with additional bevacizumab to block the angiogenesis in tumors. However, the ever-growing tolerance of glioblastomas to chemotherapeutic drugs impairs the clinical outputs of tumor treatment. The present study investigated the tolerance of glioblastomas to bevacizumab. Although bevacizumab resulted in direct anti-proliferation and pro-apoptosis effects on glioblastoma cells via downregulating the anti-apoptotic proteins and upregulating the pro-apoptotic proteins, tolerance was also encountered that was mainly caused by autophagy induction in tumor cells. The suppressed Akt-mTOR signaling pathway led to the upregulated autophagy process. Blockade of the autophagy process significantly increased the tumor-suppressive effect of bevacizumab on glioblastoma cells. To our knowledge, the present study is the first to report the involvement of autophagy in the tolerance of glioblastomas to bevacizumab. Therefore, autophagy inhibition may be considered a novel way to overcome the tolerance of glioblastomas to anti-angiogenic agents.
Collapse
Affiliation(s)
- He Huang
- Department of Neurosurgery, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jian Song
- Department of Neurosurgery, Wuhan General Hospital of PLA, Wuhan, Hubei 430070, P.R. China
| | - Zheng Liu
- Department of Neurosurgery, Wuhan General Hospital of PLA, Wuhan, Hubei 430070, P.R. China
| | - Li Pan
- Department of Neurosurgery, Wuhan General Hospital of PLA, Wuhan, Hubei 430070, P.R. China
| | - Guozheng Xu
- Department of Neurosurgery, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
29
|
Zhang L, Huang Y, Zhuo W, Zhu Y, Zhu B, Chen Z. Identification and characterization of biomarkers and their functions for Lapatinib-resistant breast cancer. Med Oncol 2017; 34:89. [DOI: 10.1007/s12032-017-0953-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/05/2017] [Indexed: 11/29/2022]
|
30
|
Zhang Q, Xu K. [Advances in the Research of Autophagy in EGFR-TKI Treatment and Resistance
in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:607-14. [PMID: 27666552 PMCID: PMC5972950 DOI: 10.3779/j.issn.1009-3419.2016.09.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
表皮生长因子受体激酶抑制剂(epidermal growth factor receptor-tyrosine kinase inhibitor, EGFR-TKI)是一类针对肿瘤细胞中EGFR的异常活化而开发的肿瘤靶向药物,可以有效抑制带有EGFR敏感突变的肿瘤细胞的生长。然而先天性以及获得性耐药严重制约了该类药物的使用。近些年的研究发现自噬(autophagy),作为一个细胞编码的高度保守的应对压力的存活机制,其与肿瘤的发生发展及抗肿瘤药物的耐药密切相关。EGFR的激活可以通过多条通路调控自噬。EGFR-TKI也可以诱导自噬,且自噬在EGFR-TKI的治疗和产生耐药性的过程中发挥着双刃剑的作用:一方面EGFR-TKI诱导的自噬是肿瘤细胞的一个保护机制,联合使用自噬抑制剂可以增强药物的细胞毒性效果;同时还有研究证明EGFR-TKI诱导的高水平自噬可以在凋亡缺陷的细胞中造成自噬性死亡,这种情况下联合使用自噬诱导剂则可能产生更好的效果。因此,针对不同的情况通过调控自噬以提高EGFR-TKI的治疗效果是一个颇具前景的治疗方案。本文对EGFR-TKI和自噬相关的信号通路进行了阐述,并对自噬在EGFR-TKI类药物对肺癌的治疗和耐药中作用的最新研究进展进行了总结,为设计联合方案提高EGFR-TKI的抑制效果,降低耐药性提供线索。
Collapse
Affiliation(s)
- Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
31
|
Aveic S, Tonini GP. Resistance to receptor tyrosine kinase inhibitors in solid tumors: can we improve the cancer fighting strategy by blocking autophagy? Cancer Cell Int 2016; 16:62. [PMID: 27486382 PMCID: PMC4970224 DOI: 10.1186/s12935-016-0341-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/25/2016] [Indexed: 12/19/2022] Open
Abstract
A growing field of evidence suggests the involvement of oncogenic receptor tyrosine kinases (RTKs) in the transformation of malignant cells. Constitutive and abnormal activation of RTKs may occur in tumors either through hyperactivation of mutated RTKs or via functional upregulation by RTK-coding gene amplification. In several types of cancer prognosis and therapeutic responses were found to be associated with deregulated activation of one or more RTKs. Therefore, targeting various RTKs remains a significant challenge in the treatment of patients with diverse malignancies. However, a frequent issue with the use of RTK inhibitors is drug resistance. Autophagy activation during treatment with RTK inhibitors has been commonly observed as an obstacle to more efficacious therapy and has been associated with the limited efficacy of RTK inhibitors. In the present review, we discuss autophagy activation after the administration of RTK inhibitors and summarize the achievements of combination RTK/autophagy inhibitor therapy in overcoming the reported resistance to RTK inhibitors in a growing number of cancers.
Collapse
Affiliation(s)
- Sanja Aveic
- Neuroblastoma Laboratory, Pediatric Research Institute-Città della Speranza, Padua, Italy
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Pediatric Research Institute-Città della Speranza, Padua, Italy
| |
Collapse
|
32
|
Saleh T, Cuttino L, Gewirtz DA. Autophagy is not uniformly cytoprotective: a personalized medicine approach for autophagy inhibition as a therapeutic strategy in non-small cell lung cancer. Biochim Biophys Acta Gen Subj 2016; 1860:2130-6. [PMID: 27316314 DOI: 10.1016/j.bbagen.2016.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/07/2016] [Accepted: 06/12/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. In addition to surgical resection, which is considered first-line treatment at early stages of the disease, chemotherapy and radiation are widely used when the disease is advanced. Of multiple responses that may occur in the tumor cells in response to cancer therapy, the functional importance of autophagy remains equivocal; this is likely to restrict current efforts to sensitize this malignancy to chemotherapy and/or radiation by pharmacological interference with the autophagic response. SCOPE OF REVIEW In this review, we attempt to summarize the current state of knowledge based on studies that evaluated the function of autophagy in non-small cell lung cancer (NSCLC) cells in response to radiation and the most commonly used chemotherapeutic agents. MAJOR CONCLUSIONS In addition to the expected prosurvival function of autophagy, where autophagy inhibition enhances the response to therapy, autophagy appears also to have a "non-cytoprotective" function, where autophagy blockade does not affect cell viability, clonogenicity or tumor volume in response to therapy. In other cases, autophagy may actually mediate drug action via expression of its cytotoxic function. GENERAL SIGNIFICANCE These observations emphasize the complexity of autophagy function when examined in different tumor cell lines and in response to different chemotherapeutic agents. A more in-depth understanding of the conditions that promote the unique functions of autophagy is required in order to translate preclinical findings of autophagy inhibition to the clinic for the purpose of improving patient response to chemotherapy and radiation.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States
| | - Laurie Cuttino
- Department of Radiation Oncology, Virginia Commonwealth University, Henrico Doctor's Hospital, 1602 Skipwith Rd, Richmond, VA 23229, United States
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States; Department of Medicine, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States.
| |
Collapse
|
33
|
Sakuma Y, Nishikiori H, Hirai S, Yamaguchi M, Yamada G, Watanabe A, Hasegawa T, Kojima T, Niki T, Takahashi H. Prolyl isomerase Pin1 promotes survival in EGFR-mutant lung adenocarcinoma cells with an epithelial-mesenchymal transition phenotype. J Transl Med 2016; 96:391-8. [PMID: 26752745 DOI: 10.1038/labinvest.2015.155] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022] Open
Abstract
The secondary epidermal growth factor receptor (EGFR) T790M mutation is the most prominent mechanism that confers resistance to first- or second-generation EGFR tyrosine kinase inhibitors (TKIs) in lung cancer treatment. Although third-generation EGFR TKIs can suppress the kinase activity of T790M-positive EGFR, they still cannot eradicate EGFR-mutated cancer cells. We previously reported that a subpopulation of EGFR-mutant lung adenocarcinomas depends on enhanced autophagy, instead of EGFR, for survival, and in this study we explore another mechanism that contributes to TKI resistance. We demonstrate here that an EGFR-mutant lung adenocarcinoma cell line, H1975 (L858R+T790M), has a subset of cells that exhibits an epithelial-mesenchymal transition (EMT) phenotype and can thrive in the presence of third-generation EGFR TKIs. These cells depend on not only autophagy but also on the isomerase Pin1 for survival in vitro, unlike their parental cells. The Pin1 protein was expressed in an EGFR-mutant lung cancer tissue that has undergone partial EMT and acquired resistance to EGFR TKIs, but not its primary tumor. These findings suggest that inhibition of Pin1 activity can be a novel strategy in lung cancer treatment.
Collapse
Affiliation(s)
- Yuji Sakuma
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirotaka Nishikiori
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sachie Hirai
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Miki Yamaguchi
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Gen Yamada
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Watanabe
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiro Niki
- Department of Pathology, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
34
|
Bhattacharya B, Mohd Omar MF, Soong R. The Warburg effect and drug resistance. Br J Pharmacol 2016; 173:970-9. [PMID: 26750865 PMCID: PMC4793921 DOI: 10.1111/bph.13422] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022] Open
Abstract
: The Warburg effect describes the increased utilization of glycolysis rather than oxidative phosphorylation by tumour cells for their energy requirements under physiological oxygen conditions. This effect has been the basis for much speculation on the survival advantage of tumour cells, tumourigenesis and the microenvironment of tumours. More recently, studies have begun to reveal how the Warburg effect could influence drug efficacy and how our understanding of tumour energetics could be exploited to improve drug development. In particular, evidence is emerging demonstrating how better modelling of the tumour metabolic microenvironment could lead to a better prediction of drug efficacy and the identification of new combination strategies. This review will provide details of the current understanding of the complex interplay between glucose metabolism and pharmacology and discuss opportunities for utilizing the Warburg effect in future drug development.
Collapse
Affiliation(s)
| | | | - Richie Soong
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of PathologyNational University of SingaporeSingapore
| |
Collapse
|
35
|
Zhao L, Yang G, Shi Y, Su C, Chang J. Co-delivery of Gefitinib and chloroquine by chitosan nanoparticles for overcoming the drug acquired resistance. J Nanobiotechnology 2015; 13:57. [PMID: 26395758 PMCID: PMC4579980 DOI: 10.1186/s12951-015-0121-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/10/2015] [Indexed: 11/13/2022] Open
Abstract
Background Acquired drug resistance is becoming common during cancer chemotherapy and leads to treatment failure in clinic. To conquer acquired drug resistance, nanotechnology has been employed to deliver drug. In this paper, we prepared chitosan nanoparticles (CS NPs) capable of entrapping Gefitinib and chloroquine (CQ) for multiple drugs combinational therapy. Results The results showed that Gefitinib/CQ-NPs were characterized of small particle size about 80.8 ± 9.7 nm and positive zeta potential about 21.3 ± 1.56 mV, and drug controlled to release slowly on a biphasic pattern. Compared with free Gefitinib and Gefitinib loaded NPs, Gefitinib and CQ co-delivery by CS nanoparticles showed the higher inhibition rates and enhanced cell apoptosis. Through western blot analysis, we found that Gefitinib could promote LC3 expression, which is the marker of autophagosomes. So, the acquired drug resistance may be associated with autophagy. CQ as an inhibitor of autophagolysosomes formation could overcome autophagy in the resistant cells. Conclusions These findings demonstrated that chitosan nanoparticles entrapping Gefitinib and chloroquine have the potential to overcome acquired resistance and improve cancer treatment efficacy, especially towards resistant strains.Cellular distribution of NPs after incubating QGY (a) and QGY/Gefitinib cells (b) with rhodamine B-labeled NPs. ![]()
Collapse
Affiliation(s)
- Liang Zhao
- School of Materials Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, 300072, People's Republic of China. .,School of Pharmacy, Liaoning Medical University, Jinzhou, 121000, People's Republic of China.
| | - Guang Yang
- Department of Oncology, BenQ Medical Center, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| | - Yijie Shi
- School of Pharmacy, Liaoning Medical University, Jinzhou, 121000, People's Republic of China.
| | - Chang Su
- School of Veterinary Medicine, Liaoning Medical University, Jinzhou, 121000, People's Republic of China.
| | - Jin Chang
- School of Materials Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
36
|
A computational strategy to select optimized protein targets for drug development toward the control of cancer diseases. PLoS One 2015; 10:e0115054. [PMID: 25625699 PMCID: PMC4308075 DOI: 10.1371/journal.pone.0115054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/21/2014] [Indexed: 12/18/2022] Open
Abstract
In this report, we describe a strategy for the optimized selection of protein targets suitable for drug development against neoplastic diseases taking the particular case of breast cancer as an example. We combined human interactome and transcriptome data from malignant and control cell lines because highly connected proteins that are up-regulated in malignant cell lines are expected to be suitable protein targets for chemotherapy with a lower rate of undesirable side effects. We normalized transcriptome data and applied a statistic treatment to objectively extract the sub-networks of down- and up-regulated genes whose proteins effectively interact. We chose the most connected ones that act as protein hubs, most being in the signaling network. We show that the protein targets effectively identified by the combination of protein connectivity and differential expression are known as suitable targets for the successful chemotherapy of breast cancer. Interestingly, we found additional proteins, not generally targeted by drug treatments, which might justify the extension of existing formulation by addition of inhibitors designed against these proteins with the consequence of improving therapeutic outcomes. The molecular alterations observed in breast cancer cell lines represent either driver events and/or driver pathways that are necessary for breast cancer development or progression. However, it is clear that signaling mechanisms of the luminal A, B and triple negative subtypes are different. Furthermore, the up- and down-regulated networks predicted subtype-specific drug targets and possible compensation circuits between up- and down-regulated genes. We believe these results may have significant clinical implications in the personalized treatment of cancer patients allowing an objective approach to the recycling of the arsenal of available drugs to the specific case of each breast cancer given their distinct qualitative and quantitative molecular traits.
Collapse
|