1
|
Humphries TLR, Lee S, Urquhart AJ, Vesey DA, Micallef AS, Winterford C, Kassianos AJ, Galloway GJ, Francis RS, Gobe GC. Metabolite pathway alterations identified by magnetic resonance metabolomics in a proximal tubular epithelial cell line treated with TGF-β1. Physiol Rep 2025; 13:e70249. [PMID: 39957082 PMCID: PMC11830627 DOI: 10.14814/phy2.70249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/18/2025] Open
Abstract
Tubulointerstitial fibrosis is a characteristic hallmark of chronic kidney disease (CKD). Metabolic perturbations in cellular energy metabolism contribute to the pathogenesis of CKD, but the chemical contributors remain unclear. The aim of this investigation was to use two dimensional 1H-nuclear magnetic resonance (2D-COSY) metabolomics to identify the chemical changes of kidney fibrogenesis. An in vitro transforming growth factor-β1 (TGF-β1)-induced model of kidney fibrogenesis with human kidney-2 (HK-2) proximal tubular epithelial cells (PTEC) was used. The model was validated by assaying for various pro-fibrotic molecules, using quantitative PCR and Western blotting. 2D-COSY was performed on treated cells. Morphological and functional changes characteristic of tubulointerstitial fibrosis were confirmed in the model; expression of fibronectin, collagen type IV, smooth muscle actin, oxidative stress enzymes increased (p < 0.05). NMR metabolomics provided evidence of altered metabolite signatures associated with glycolysis and glutamine metabolism, with decreased myo-inositol and choline, and metabolites of the oxidative phase of the pentose phosphate pathway with increased glucose and glucuronic acid. The altered PTEC cellular metabolism likely supports the rapid fibrogenic energy demands. These results, using 2D-COSY metabolomics, support development of a biomarker panel of fibrosis detectable using clinical magnetic resonance spectroscopy to diagnose and manage CKD.
Collapse
Affiliation(s)
- Tyrone L. R. Humphries
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- School of Biomedical Sciences, Macgregor BuildingThe University of QueenslandSt LuciaQueenslandAustralia
- Department of Kidney and Transplant ServicesPrincess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Soobin Lee
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- School of Biomedical Sciences, Macgregor BuildingThe University of QueenslandSt LuciaQueenslandAustralia
| | - Aaron J. Urquhart
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- School of Biomedical Sciences, Macgregor BuildingThe University of QueenslandSt LuciaQueenslandAustralia
| | - David A. Vesey
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- Department of Kidney and Transplant ServicesPrincess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Aaron S. Micallef
- Central Analytical Research FacilityQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Clay Winterford
- QIMR‐Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Andrew J. Kassianos
- Conjoint Internal Medicine Laboratory, Chemical PathologyPathology QueenslandBrisbaneQueenslandAustralia
| | - Graham J. Galloway
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- Herston Imaging Research FacilityThe University of QueenslandHerstonQueenslandAustralia
| | - Ross S. Francis
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- Department of Kidney and Transplant ServicesPrincess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Glenda C. Gobe
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- School of Biomedical Sciences, Macgregor BuildingThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
2
|
Duan J, Guan X, Xue J, Wang J, Wang Z, Chen X, Jiang W, Sui W, Song Y, Li T, Rao D, Wu X, Lu M. RAB37 suppresses the EMT, migration and invasion of gastric cancer cells by mediating autophagic degradation of β-catenin. Cell Oncol (Dordr) 2024; 47:2407-2421. [PMID: 39699800 DOI: 10.1007/s13402-024-01028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Gastric cancer, characterized by its high morbidity and mortality rates, exhibits low levels of RAB37. The role and molecular mechanisms of RAB37, a small GTPase, in the pathogenesis of gastric cancer are still unclear. METHODS We assessed RAB37 expression in gastric cancer cells using quantitative Polymerase Chain Reaction (qPCR), Western blot, and immunohistochemical staining (IHC), and analyzed EMT marker proteins and autophagy changes via Western blot, immunofluorescence (IF), and transmission electron microscopy (TEM). Co-immunoprecipitation (co-IP) was used to identify protein-protein interactions. We studied the migration and invasion of gastric cancer cells using wound healing and transwell assays in vitro and a mouse pulmonary metastasis model in vivo. RESULTS Overexpression of RAB37 suppressed EMT, invasion, and migration while enhancing autophagy in gastric cancer cells, which was dependent on its GTPase activity. However, all these effects could be reversed by the autophagy inhibitor chloroquine. Regarding the molecular mechanism, RAB37 strengthened the interaction between p62 and β-catenin, which consequently enhanced the p62-mediated autophagic degradation of β-catenin. Furthermore, RAB37 curbed the pulmonary metastasis of both general and cisplatin-resistant gastric cancer cells. CONCLUSION The low level of RAB37 reduces interaction between p62 and β-catenin and then the autophagic degradation of β-catenin, thereby promoting the EMT, invasion, and migration in gastric cancer cells. The low expression of RAB37 in gastric cancer suggests a potential therapeutic target, especially for cisplatin-resistant gastric cancer.
Collapse
Affiliation(s)
- Jiangling Duan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xiuyin Guan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jiaxin Xue
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jiayu Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhiwei Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xuan Chen
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wen Jiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wannian Sui
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yongfang Song
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Tianshu Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Dewang Rao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xueyan Wu
- Department of Human Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Ming Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
3
|
Song X, Pickel L, Sung HK, Scholey J, Pei Y. Reprogramming of Energy Metabolism in Human PKD1 Polycystic Kidney Disease: A Systems Biology Analysis. Int J Mol Sci 2024; 25:7173. [PMID: 39000280 PMCID: PMC11240917 DOI: 10.3390/ijms25137173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Multiple alterations of cellular metabolism have been documented in experimental studies of autosomal dominant polycystic kidney disease (ADPKD) and are thought to contribute to its pathogenesis. To elucidate the molecular pathways and transcriptional regulators associated with the metabolic changes of renal cysts in ADPKD, we compared global gene expression data from human PKD1 renal cysts, minimally cystic tissues (MCT) from the same patients, and healthy human kidney cortical tissue samples. We found gene expression profiles of PKD1 renal cysts were consistent with the Warburg effect with gene pathway changes favoring increased cellular glucose uptake and lactate production, instead of pyruvate oxidation. Additionally, mitochondrial energy metabolism was globally depressed, associated with downregulation of gene pathways related to fatty acid oxidation (FAO), branched-chain amino acid (BCAA) degradation, the Krebs cycle, and oxidative phosphorylation (OXPHOS) in renal cysts. Activation of mTORC1 and its two target proto-oncogenes, HIF-1α and MYC, was predicted to drive the expression of multiple genes involved in the observed metabolic reprogramming (e.g., GLUT3, HK1/HK2, ALDOA, ENO2, PKM, LDHA/LDHB, MCT4, PDHA1, PDK1/3, MPC1/2, CPT2, BCAT1, NAMPT); indeed, their predicted expression patterns were confirmed by our data. Conversely, we found AMPK inhibition was predicted in renal cysts. AMPK inhibition was associated with decreased expression of PGC-1α, a transcriptional coactivator for transcription factors PPARα, ERRα, and ERRγ, all of which play a critical role in regulating oxidative metabolism and mitochondrial biogenesis. These data provide a comprehensive map of metabolic pathway reprogramming in ADPKD and highlight nodes of regulation that may serve as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xuewen Song
- Division of Nephrology, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, ON M5S 1A8, Canada; (X.S.); (J.S.)
| | - Lauren Pickel
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (L.P.); (H.-K.S.)
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (L.P.); (H.-K.S.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - James Scholey
- Division of Nephrology, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, ON M5S 1A8, Canada; (X.S.); (J.S.)
| | - York Pei
- Division of Nephrology, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, ON M5S 1A8, Canada; (X.S.); (J.S.)
| |
Collapse
|
4
|
Bo C, Liu F, Zhang Z, Du Z, Xiu H, Zhang Z, Li M, Zhang C, Jia Q. Simvastatin attenuates silica-induced pulmonary inflammation and fibrosis in rats via the AMPK-NOX pathway. BMC Pulm Med 2024; 24:224. [PMID: 38720270 PMCID: PMC11080310 DOI: 10.1186/s12890-024-03014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α and transforming growth factor-β1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.
Collapse
Affiliation(s)
- Cunxiang Bo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fang Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Guangzhou Huaxia Vocational College, Guangzhou, China
| | - Zewen Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haidi Xiu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenling Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Caiqing Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
- Pulmonary and Critical Care Medicine, Shandong Province's Second General Hospital (Shandong Province ENT Hospital), Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, Shandong, China.
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
5
|
Wang F, Zhou CX, Zheng Z, Li DJ, Li W, Zhou Y. Metformin reduces myogenic contracture and myofibrosis induced by rat knee joint immobilization via AMPK-mediated inhibition of TGF-β1/Smad signaling pathway. Connect Tissue Res 2023; 64:26-39. [PMID: 35723580 DOI: 10.1080/03008207.2022.2088365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The two structural components contributing to joint contracture formation are myogenic and arthrogenic contracture, and myofibrosis is an important part of myogenic contracture. Myofibrosis is a response to long-time immobilization and is described as a condition with excessive deposition of endomysial and perimysial connective tissue components in skeletal muscle. The purpose of this study was to confirm whether metformin can attenuate the formation of myogenic contracture and myofibrosis through the phosphorylation level of adenosine monophosphate-activated protein kinase (AMPK) and inhabitation of subsequent transforming growth factor beta (TGF-β) 1/Smad signaling pathway. MATERIALS AND METHODS An immobilized rat model was used to determine whether metformin could inhibit myogenic contracture and myofibrosis. The contents of myogenic contracture of knee joint was calculated by measuring instrument of range of motion (ROM), and myofibrosis of rectus femoris were determined by ultrasound shear wave elastography and Masson staining. Protein expression of AMPK and subsequent TGF-β1/Smad signaling pathway were determined by western blot. Subsequently, Compound C, a specific AMPK inhibitor, was used to further clarify the role of the AMPK-mediated inhibition of TGF-β1/Smad signaling pathway. RESULTS We revealed that the levels of myogenic contracture and myofibrosis were gradually increased during immobilization, and overexpression of TGF-β1-induced formation of myofibrosis by activating Smad2/3 phosphorylation. Activation of AMPK by metformin suppressed overexpression of TGF-β1 and TGF-β1-induced Smad2/3 phosphorylation, further reducing myogenic contracture and myofibrosis during immobilization. In contrast, inhibition of AMPK by Compound C partially counteracted the inhibitory effect of TGF-β1/Smad signaling pathway by metformin. CONCLUSION Notably, we first illustrated the therapeutic effect of metformin through AMPK-mediated inhibition of TGF-β1/Smad signaling pathway in myofibrosis, which may provide a new therapeutic strategy for myogenic contracture.
Collapse
Affiliation(s)
- Feng Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.,Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chen Xu Zhou
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhi Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Du Juan Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Wen Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Yun H, Han GH, Kim J, Chung J, Kim J, Cho H. NANOG
regulates epithelial–mesenchymal transition via
AMPK
/
mTOR
signalling pathway in ovarian cancer
SKOV
‐3 and
A2780
cells. J Cell Mol Med 2022; 26:5277-5291. [PMID: 36114703 PMCID: PMC9575063 DOI: 10.1111/jcmm.17557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
NANOG engages with tumour initiation and metastasis by regulating the epithelial–mesenchymal transition (EMT) in epithelial ovarian cancer (EOC). However, its role in association with pAMPKα, and its clinical significance in EOC have not been elucidated even though AMPK is known to degrade NANOG in various human cancers. Hence, we investigated the role of pAMPKα and its association with NANOG as potential prognostic biomarkers in EOC. Both NANOG and pAMPKα expression were significantly overexpressed in EOCs comparing nonadjacent normal epithelial tissues, benign tissues, and borderline tumours. NANOG overexpression was significantly associated with poor disease‐free survival (DFS) and overall survival (OS), whereas pAMPKα overexpression was associated with good DFS and OS. Importantly, multivariate analysis revealed that the combination of high NANOG and low pAMPKα expression was a poor independent prognostic factor for DFS and was associated with platinum resistance. In ovarian cancer cell lines, siRNA‐mediated NANOG knockdown diminished migration and invasion properties by regulating the EMT process via the AMPK/mTOR signalling pathway. Furthermore, treatment with AMPK activator suppressed expression of stemness factors such as NANOG, Oct4 and Sox2. Collectively, these findings established that the combination of high NANOG and low pAMPKα expression was associated with EOC progression and platinum resistance, suggesting a potential prognostic biomarker for clinical management in EOC patients.
Collapse
Affiliation(s)
- Hee Yun
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital Yonsei University College of Medicine Seoul Korea
| | - Gwan Hee Han
- Department of Obstetrics and Gynecology Kyung Hee University Hospital at Gangdong Seoul Korea
| | - Julie Kim
- Weill Cornell Medical College New York New York USA
| | - Joon‐Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute National Institutes of Health Bethesda Maryland USA
| | - Jae‐Hoon Kim
- Department of Obstetrics and Gynecology Yonsei University College of Medicine Seoul Korea
- Institute of Women's Life Medical Science Yonsei University College of Medicine Seoul Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology Yonsei University College of Medicine Seoul Korea
- Institute of Women's Life Medical Science Yonsei University College of Medicine Seoul Korea
| |
Collapse
|
7
|
Hu L, Ding M, He W. Emerging Therapeutic Strategies for Attenuating Tubular EMT and Kidney Fibrosis by Targeting Wnt/β-Catenin Signaling. Front Pharmacol 2022; 12:830340. [PMID: 35082683 PMCID: PMC8784548 DOI: 10.3389/fphar.2021.830340] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a process in which differentiated epithelial cells undergo phenotypic transformation into myofibroblasts capable of producing extracellular matrix, and is generally regarded as an integral part of fibrogenesis after tissue injury. Although there is evidence that the complete EMT of tubular epithelial cells (TECs) is not a major contributor to interstitial myofibroblasts in kidney fibrosis, the partial EMT, a status that damaged TECs remain inside tubules, and co-express both epithelial and mesenchymal markers, has been demonstrated to be a crucial stage for intensifying fibrogenesis in the interstitium. The process of tubular EMT is governed by multiple intracellular pathways, among which Wnt/β-catenin signaling is considered to be essential mainly because it controls the transcriptome associated with EMT, making it a potential therapeutic target against kidney fibrosis. A growing body of data suggest that reducing the hyperactivity of Wnt/β-catenin by natural compounds, specific inhibitors, or manipulation of genes expression attenuates tubular EMT, and interstitial fibrogenesis in the TECs cultured under profibrotic environments and in animal models of kidney fibrosis. These emerging therapeutic strategies in basic researches may provide beneficial ideas for clinical prevention and treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lichao Hu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mengyuan Ding
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Li F, Guo D, Zhi S, Jia K, Wang Y, Zhang A, Pei Y, Hao J. Etoposide-induced protein 2.4 ameliorates high glucose-induced epithelial-mesenchymal transition by activating adenosine monophosphate-activated protein kinase pathway in renal tubular cells. Int J Biochem Cell Biol 2022; 142:106117. [PMID: 34801707 DOI: 10.1016/j.biocel.2021.106117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 01/19/2023]
Abstract
Epithelial-mesenchymal transition (EMT), known as the transition of tubular epithelial cells into fibroblasts, is one of the potential mechanisms of renal fibrosis, which promotes the development of diabetic kidney disease (DKD). Etoposide-induced protein 2.4 (EI24) is known as an endoplasmic reticulum (ER)-localized Bcl-2-binding transmembrane protein with various functions that can affect autophagy, apoptosis and differentiation. However, whether EI24 is involved in EMT of renal tubular epithelial cells and the exact mechanism is still not known. In this study, we first reported that EI24 expression was significantly downregulated in the kidneys of diabetic mice and in high glucose-stimulated HK2 cells. Knockdown of EI24 led to EMT of HK2 cells, as indicated by decreased E-cadherin and increased α-smooth muscle actin (α-SMA). Meanwhile, overexpression of EI24 ameliorated high glucose-induced EMT of HK2 cells via activation of the adenosine monophosphate-activated protein kinase (AMPK) pathway. Then, DNA methyltransferase (DNMT) inhibitor 5-Aza-2'-deoxycytidine (5-Aza) treatment enhanced EI24 expression and alleviated EMT in high glucose-treated HK2 cells and the kidneys of diabetic mice. Furthermore, DNMT1 and DNMT3a upregulation were found to be involved in the decrease of EI24 in high glucose-stimulated HK2 cells. Silencing of DNMT1 and DNMT3a effectively reversed high glucose-induced downregulation of EI24 and aggravation of EMT. Our findings demonstrate that the DNA methyltransferase-regulated EI24 affects EMT of renal tubular cells via AMPK signaling pathway. It is suggested that EI24 may be a potential therapeutic target for diabetic renal injury.
Collapse
Affiliation(s)
- Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017,China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Dongwei Guo
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017,China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Shufeng Zhi
- Department of Pediatrics, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Keqi Jia
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017,China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Yuxue Wang
- Department of Pediatrics, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aobo Zhang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yuqi Pei
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017,China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
9
|
Wang F, Sun H, Zuo B, Shi K, Zhang X, Zhang C, Sun D. Metformin attenuates renal tubulointerstitial fibrosis via upgrading autophagy in the early stage of diabetic nephropathy. Sci Rep 2021; 11:16362. [PMID: 34381133 PMCID: PMC8357942 DOI: 10.1038/s41598-021-95827-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed at comparing the effects of metformin on tubulointerstitial fibrosis (TIF) in different stages of diabetic nephropathy (DN) in vivo and evaluating the mechanism in high glucose (HG)-treated renal tubular epithelial cells (RTECs) in vitro. Sprague–Dawley (SD) rats were used to establish a model of DN, and the changes of biochemical indicators and body weight were measured. The degree of renal fibrosis was quantified using histological analysis, immunohistochemistry, and immunoblot. The underlying relationship between autophagy and DN, and the cellular regulatory mechanism of metformin on epithelial-to-mesenchymal transition (EMT) were investigated. Metformin markedly improved renal function and histological restoration of renal tissues, especially in the early stages of DN, with a significant increase in autophagy and a decrease in the expression of fibrotic biomarkers (fibronectin and collagen I) in renal tissue. Under hyperglycemic conditions, renal tubular epithelial cells inactivated p-AMPK and activated partial EMT. Metformin-induced AMPK significantly ameliorated renal autophagic function, inhibited the partial EMT of RTECs, and attenuated TIF, all of which effectively prevented or delayed the onset of DN. This evidence provides theoretical and experimental basis for the following research on the potential clinical application of metformin in the treatment of diabetic TIF.
Collapse
Affiliation(s)
- Fengzhen Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China. .,Department of Pharmaceutics, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, China.
| | - Haihan Sun
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Bangjie Zuo
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China.,Department of Nephrology, Yancheng Third People's Hospital, Yancheng, China
| | - Kun Shi
- Department of Orthopedics, Xuzhou Central Hospital, Xuzhou, China
| | - Xin Zhang
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China.,Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, Jiangsu, China
| | - Chi Zhang
- Department of Nephrology, Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Dong Sun
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China. .,Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, Jiangsu, China.
| |
Collapse
|
10
|
Tian S, Yang X, Wang J, Luo J, Guo H. 1,25-(OH) 2D 3 ameliorates renal interstitial fibrosis in UUO rats through the AMPKα/mTOR pathway. J Int Med Res 2021; 49:300060520981360. [PMID: 33530801 PMCID: PMC7871069 DOI: 10.1177/0300060520981360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective To investigate the effects of 1,25(OH)2D3 on renal fibrosis associated with the AMP-activated protein kinase (AMPK)α/mechanistic target of rapamycin (mTOR) signalling pathway in a rat model of unilateral ureteral obstruction (UUO). Methods A total of 54 male Sprague Dawley rats were randomly divided into three groups: sham-operation group, UUO group, and UUO plus calcitriol (3 ng/100 g) group. Renal tissue was excised for histological examination by immunohistochemistry and Western blot, and for gene expression analysis using real-time polymerase chain reaction. Results 1,25(OH)2D3 enhanced AMPKα levels, inhibited mTOR levels and slowed the development of interstitial fibrosis in kidney tissue. Compared with the UUO plus calcitriol group, UUO rats demonstrated more severe renal damage characterized by marked tubular atrophy, interstitial fibrosis and significant induction of fibrogenic transforming growth factor-β1 and increased extra-cellular matrix proteins (α-smooth muscle actin and collagen type III), and decreased E-cadherin. Conclusion Treatment with 1,25(OH)2D3 altered the AMPKα/mTOR signalling pathway to suppress excessive fibroblast activation observed in UUO rats. This may serve as a novel mechanism to ameliorate renal dysfunction and fibrotic lesions.
Collapse
Affiliation(s)
- Shasha Tian
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaopeng Yang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianwu Wang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hui Guo
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Nephrology, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Wu CL, Yin R, Wang SN, Ying R. A Review of CXCL1 in Cardiac Fibrosis. Front Cardiovasc Med 2021; 8:674498. [PMID: 33996954 PMCID: PMC8113392 DOI: 10.3389/fcvm.2021.674498] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/01/2021] [Indexed: 12/31/2022] Open
Abstract
Chemokine C-X-C motif ligand-1 (CXCL1), principally expressed in neutrophils, macrophages and epithelial cells, is a valid pro-inflammatory factor which performs an important role in mediating the infiltration of neutrophils and monocytes/macrophages. Elevated serum level of CXCL1 is considered a pro-inflammatory reaction by the organism. CXCL1 is also related to diverse organs fibrosis according to relevant studies. A growing body of evidence suggests that CXCL1 promotes the process of cardiac remodeling and fibrosis. Here, we review structure and physiological functions of CXCL1 and recent progress on the effects and mechanisms of CXCL1 in cardiac fibrosis. In addition, we explore the role of CXCL1 in the fibrosis of other organs. Besides, we probe the possibility that CXCL1 can be a therapeutic target for the treatment of cardiac fibrosis in cardiovascular diseases.
Collapse
Affiliation(s)
- Cheng-Long Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ran Yin
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Su-Nan Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ru Ying
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Lin BM, Grinde KE, Brody JA, Breeze CE, Raffield LM, Mychaleckyj JC, Thornton TA, Perry JA, Baier LJ, de las Fuentes L, Guo X, Heavner BD, Hanson RL, Hung YJ, Qian H, Hsiung CA, Hwang SJ, Irvin MR, Jain D, Kelly TN, Kobes S, Lange L, Lash JP, Li Y, Liu X, Mi X, Musani SK, Papanicolaou GJ, Parsa A, Reiner AP, Salimi S, Sheu WHH, Shuldiner AR, Taylor KD, Smith AV, Smith JA, Tin A, Vaidya D, Wallace RB, Yamamoto K, Sakaue S, Matsuda K, Kamatani Y, Momozawa Y, Yanek LR, Young BA, Zhao W, Okada Y, Abecasis G, Psaty BM, Arnett DK, Boerwinkle E, Cai J, Yii-Der Chen I, Correa A, Cupples LA, He J, Kardia SL, Kooperberg C, Mathias RA, Mitchell BD, Nickerson DA, Turner ST, Vasan RS, Rotter JI, Levy D, Kramer HJ, Köttgen A, Nhlbi Trans-Omics For Precision Medicine TOPMed Consortium, TOPMed Kidney Working Group, Rich SS, Lin DY, Browning SR, Franceschini N. Whole genome sequence analyses of eGFR in 23,732 people representing multiple ancestries in the NHLBI trans-omics for precision medicine (TOPMed) consortium. EBioMedicine 2021; 63:103157. [PMID: 33418499 PMCID: PMC7804602 DOI: 10.1016/j.ebiom.2020.103157] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Genetic factors that influence kidney traits have been understudied for low frequency and ancestry-specific variants. METHODS We combined whole genome sequencing (WGS) data from 23,732 participants from 10 NHLBI Trans-Omics for Precision Medicine (TOPMed) Program multi-ethnic studies to identify novel loci for estimated glomerular filtration rate (eGFR). Participants included European, African, East Asian, and Hispanic ancestries. We applied linear mixed models using a genetic relationship matrix estimated from the WGS data and adjusted for age, sex, study, and ethnicity. FINDINGS When testing single variants, we identified three novel loci driven by low frequency variants more commonly observed in non-European ancestry (PRKAA2, rs180996919, minor allele frequency [MAF] 0.04%, P = 6.1 × 10-11; METTL8, rs116951054, MAF 0.09%, P = 4.5 × 10-9; and MATK, rs539182790, MAF 0.05%, P = 3.4 × 10-9). We also replicated two known loci for common variants (rs2461702, MAF=0.49, P = 1.2 × 10-9, nearest gene GATM, and rs71147340, MAF=0.34, P = 3.3 × 10-9, CDK12). Testing aggregated variants within a gene identified the MAF gene. A statistical approach based on local ancestry helped to identify replication samples for ancestry-specific variants. INTERPRETATION This study highlights challenges in studying variants influencing kidney traits that are low frequency in populations and more common in non-European ancestry.
Collapse
Affiliation(s)
- Bridget M Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Kelsey E Grinde
- Department of Mathematics, Statistics, and Computer Science, Macalester College, St. Paul, MN, United States
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Charles E Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, United States; UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom; Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - James A Perry
- Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, United States
| | - Lisa de las Fuentes
- Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA United States
| | - Benjamin D Heavner
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, United States
| | - Yi-Jen Hung
- Endocrinology and Metabolism, Tri-Service General Hospital Songshan branch, Taipei, Taiwan
| | - Huijun Qian
- Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC, United States
| | - Chao A Hsiung
- Endocrinology and Metabolism, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Jen Hwang
- National Heart, Lung, and Blood Institute Framingham Heart Study, Framingham, MA, United States; National Heart, Lung and Blood Institute, Population Sciences Branch, Division of Intramural Research, Bethesda, MD, United States
| | - Margaret R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, United States
| | - Leslie Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| | - James P Lash
- Department of Medicine, University of Illinois, Chicago, IL, United States
| | - Yun Li
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States; Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
| | - Xiaoming Liu
- USF Genomics & College of Public Health, University of South Florida, Tampa, FL, United States
| | - Xuenan Mi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Solomon K Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - George J Papanicolaou
- Epidemiology Branch, National Heart, Lung, and Blood Institute, Bethesda, MA, United States
| | - Afshin Parsa
- Division of Kidney, Urologic and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MA, United States
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Shabnam Salimi
- Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Wayne H-H Sheu
- Endocrinology & Metabolism, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Alan R Shuldiner
- Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA United States
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States
| | - Adrienne Tin
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dhananjay Vaidya
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert B Wallace
- University of Iowa College of Public Health, Iowa City, IA, United States
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8655, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo 108-8639, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Betsi A Young
- Kidney Research Institute and Division of Nephrology, University of Washington, Seattle, WA, United States
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Laboratory of Statistical Immunology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
| | - Gonzalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, An Arbor, MI, United States; Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States; Departments of Epidemiology and Health Services, University of Washington, Seattle, WA, United States
| | - Donna K Arnett
- College of Public Health, Dean's Office, University of Kentucky, Lexington, KY, United States
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Ida Yii-Der Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA United States
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - L Adrienne Cupples
- National Heart, Lung, and Blood Institute Framingham Heart Study, Framingham, MA, United States; Department of Biostatistics, Boston University, Boston, MA, United States
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Sharon Lr Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, United States; Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Steve T Turner
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ramachandran S Vasan
- Division of Preventive Medicine and Epidemiology and Cardiology, Boston University School of Medicine, Boston, MA, United States
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA United States
| | - Daniel Levy
- National Heart, Lung, and Blood Institute Framingham Heart Study, Framingham, MA, United States; National Heart, Lung and Blood Institute, Population Sciences Branch, Division of Intramural Research, Bethesda, MD, United States
| | - Holly J Kramer
- Department of Public Health Sciences and Medicine, Loyola University Chicago, Maywood, IL, United States; Division of Nephrology and Hypertension, Loyola University Chicago, Maywood, IL, United States
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Dan-Yu Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
13
|
Yin X, Ma F, Fan X, Zhao Q, Liu X, Yang Y. Knockdown of AMPKα2 impairs epithelial‑mesenchymal transition in rat renal tubular epithelial cells by downregulating ETS1 and RPS6KA1. Mol Med Rep 2020; 22:4619-4628. [PMID: 33173986 PMCID: PMC7646838 DOI: 10.3892/mmr.2020.11556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/25/2020] [Indexed: 11/07/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) serves an important regulatory role in obstructive nephropathy and renal fibrosis. As an intracellular energy sensor, AMP-activated protein kinase (AMPK) is essential in the process of EMT. The aim of the present study was to elucidate changes in the expression levels of AMPKα2 and which AMPKα2 genes play a role during EMT. TGF-β1 was used to induce EMT in normal rat renal tubular epithelial (NRK-52E) cells. The short hairpin AMPKα2 lentivirus was used to interfere with AMPKα2 expression levels in EMT-derived NRK-52E cells and AMPKα2 expression levels and EMT were detected. Differential gene expression levels following AMPKα2 knockdown in EMT-derived NRK-52E cells were assessed via gene microarray. Potential regulatory pathways were analyzed using ingenuity pathway analysis (IPA) and differentially expressed genes were partially verified by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. AMPKα2 was upregulated in TGF-β1-induced EMT-derived NRK-52E cells. EMT progression was significantly inhibited following downregulation of expression levels of AMPKα2 by shAMPKα2 lentivirus. A total of 1,588 differentially expressed genes were detected following AMPKα2 knockdown in NRK-52E cells in which EMT occurred. The ERK/MAPK pathway was significantly impaired following AMPKα2 knockdown, as indicated by IPA analysis. Furthermore, RT-qPCR and western blot results demonstrated that the expression levels of AMPKα2, v-ets erythroblastosis virus E26 oncogene homolog-1 (ETS1) and ribosomal protein S6 kinase A1 (RPS6KA1) were upregulated following EMT in NRK-52E cells, whereas the expression levels of ETS1 and RPS6KA1 were downregulated following AMPKα2 knockdown. It was concluded that AMPKα2 plays a key role in the regulation of rat renal tubular EMT, which may be achieved by modulating ETS1 and RPS6KA1 in the ERK/MAPK pathway.
Collapse
Affiliation(s)
- Xiaoming Yin
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Fujiang Ma
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xu Fan
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qi Zhao
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xin Liu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yi Yang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
14
|
Li Z, Guo H, Li J, Ma T, Zhou S, Zhang Z, Miao L, Cai L. Sulforaphane prevents type 2 diabetes-induced nephropathy via AMPK-mediated activation of lipid metabolic pathways and Nrf2 antioxidative function. Clin Sci (Lond) 2020; 134:2469-2487. [PMID: 32940670 DOI: 10.1042/cs20191088] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
Sulforaphane (SFN) prevents diabetic nephropathy (DN) in type 2 diabetes (T2D) by up-regulating nuclear factor (erythroid-derived 2)-like 2 (Nrf2). AMP-activated protein kinase (AMPK) can attenuate the pathogenesis of DN by improving renal lipotoxicity along with the activation of Nrf2-mediated antioxidative signaling. Therefore, we investigated whether AMPKα2, the central subunit of AMPK in energy metabolism, is required for SFN protection against DN in T2D, and whether potential cross-talk occurs between AMPKα2 and Nrf2. AMPKα2 knockout (Ampkα2-/-) mice and wildtype (WT) mice were fed a high-fat diet (HFD) or a normal diet (ND) to induce insulin resistance, followed by streptozotocin (STZ) injection to induce hyperglycemia, as a T2D model. Both T2D and control mice were treated with SFN or vehicle for 3 months. At the end of the 3-month treatment, all mice were maintained only on HFD or ND for an additional 3 months without SFN treatment. Mice were killed at sixth month after T2D onset. Twenty-four-hour urine albumin at third and sixth months was significantly increased as renal dysfunction, along with significant renal pathological changes and biochemical changes including renal hypertrophy, oxidative damage, inflammation, and fibrosis in WT T2D mice, which were prevented by SFN in certain contexts, but not in Ampkα2-/- T2D mice. SFN prevention of T2D-induced renal lipotoxicity was associated with AMPK-mediated activation of lipid metabolism and Nrf2-dependent antioxidative function in WT mice, but not in SFN-treated Ampkα2-/- mice. Therefore, SFN prevention of DN is AMPKα2-mediated activation of probably both lipid metabolism and Nrf2 via AMPK/AKT/glycogen synthase kinase (GSK)-3β/Src family tyrosine kinase (Fyn) pathways.
Collapse
Affiliation(s)
- Zhuo Li
- Pediatric Research Institute, Department of Pediatrics, Norton Children and University of Louisville School of Medicine, Louisville 40202, KY, U.S.A
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hua Guo
- Pediatric Research Institute, Department of Pediatrics, Norton Children and University of Louisville School of Medicine, Louisville 40202, KY, U.S.A
- Department of Immunology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jia Li
- Pediatric Research Institute, Department of Pediatrics, Norton Children and University of Louisville School of Medicine, Louisville 40202, KY, U.S.A
- Departments of Cardiology and Nephrology at The First Hospital of Jilin University, Changchun 130021, China
| | - Tianjiao Ma
- Pediatric Research Institute, Department of Pediatrics, Norton Children and University of Louisville School of Medicine, Louisville 40202, KY, U.S.A
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Shanshan Zhou
- Pediatric Research Institute, Department of Pediatrics, Norton Children and University of Louisville School of Medicine, Louisville 40202, KY, U.S.A
- Departments of Cardiology and Nephrology at The First Hospital of Jilin University, Changchun 130021, China
| | - Zhiguo Zhang
- Departments of Cardiology and Nephrology at The First Hospital of Jilin University, Changchun 130021, China
| | - Lining Miao
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, Norton Children and University of Louisville School of Medicine, Louisville 40202, KY, U.S.A
- Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville 40202, KY, U.S.A
| |
Collapse
|
15
|
Targeting AMP-activated protein kinase (AMPK) for treatment of autosomal dominant polycystic kidney disease. Cell Signal 2020; 73:109704. [DOI: 10.1016/j.cellsig.2020.109704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
|
16
|
Choy SW, Fraser SA, Katerelos M, Galic S, Kemp BE, Mount PF, Power DA. Absence of the β1 subunit of AMP-activated protein kinase reduces myofibroblast infiltration of the kidneys in early diabetes. Int J Exp Pathol 2019; 100:114-122. [PMID: 31025787 DOI: 10.1111/iep.12313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 01/23/2023] Open
Abstract
Activation of the heterotrimeric energy-sensing kinase AMP-activated protein kinase (AMPK) has been reported to improve experimental diabetic kidney disease. We examined the effect of type 1 diabetes in wild-type (WT) mice and mice lacking the β1 subunit of AMPK (AMPK β1-/- mice), which have reduced AMPK activity in kidneys and other organs. Diabetes was induced using streptozotocin (STZ) and the animals followed up for 4 weeks. Hyperglycaemia was more severe in diabetic AMPK β1-/- mice, despite the absence of any difference in serum levels of insulin, adiponectin and leptin. There was no change in AMPK activity in the kidneys of diabetic WT mice by AMPK activity assay, or phosphorylation of either the αT172 activation site on the α catalytic subunit of AMPK or the AMPK-specific phosphosite S79 on acetyl CoA carboxylase 1 (ACC1). Phosphorylation of the inhibitory αS485 site on the α subunit of AMPK was significantly increased in the WT diabetic mice compared to non-diabetic controls. Despite increased plasma glucose levels in the diabetic AMPK β1-/- mice, there were fewer myofibroblasts in the kidneys compared to diabetic WT mice, as evidenced by reduced α-smooth muscle actin (α-SMA) protein by Western blot, mRNA by qRT-PCR and fewer α-SMA-positive cells by immunohistochemical staining. Albuminuria was also reduced in the AMPK β1-/- mice. In contrast to previous studies, therefore, myofibroblasts were reduced in the kidneys of AMPK β1-/- diabetic mice compared to diabetic WT mice, despite increased circulating glucose, suggesting that AMPK can worsen renal fibrosis in type 1 diabetes.
Collapse
Affiliation(s)
- Suet-Wan Choy
- Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Nephrology, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Medicine, University of Melbourne, Austin Health and St. Vincent's Hospital, Heidelberg, Victoria, Australia
| | - Scott A Fraser
- Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia
| | - Marina Katerelos
- Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia
| | - Sandra Galic
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Bruce E Kemp
- Department of Medicine, University of Melbourne, Austin Health and St. Vincent's Hospital, Heidelberg, Victoria, Australia.,St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC, Australia
| | - Peter F Mount
- Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Nephrology, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Medicine, University of Melbourne, Austin Health and St. Vincent's Hospital, Heidelberg, Victoria, Australia
| | - David A Power
- Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Nephrology, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Medicine, University of Melbourne, Austin Health and St. Vincent's Hospital, Heidelberg, Victoria, Australia
| |
Collapse
|
17
|
Wang H, Deng G, Ai M, Xu Z, Mou T, Yu J, Liu H, Wang S, Li G. Hsp90ab1 stabilizes LRP5 to promote epithelial-mesenchymal transition via activating of AKT and Wnt/β-catenin signaling pathways in gastric cancer progression. Oncogene 2019; 38:1489-1507. [PMID: 30305727 PMCID: PMC6372478 DOI: 10.1038/s41388-018-0532-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022]
Abstract
Hsp90ab1 is upregulated in numerous solid tumors, which is thought to induce the angiogenesis and promote cancer metastasis. However, it's actions in gastric cancer (GC) has not been exhibited. In this study, Hsp90ab1 was demonstrated to be overexpressed and correlated with the poor prognosis, proliferation and invasion of GC. Ectopic expression of Hsp90ab1 promoted the proliferation and metastasis of GC cells both in vitro in cell line models of GC and in vivo using two different xenograft mouse models, while opposite effects were observed in Hsp90ab1 silenced cells. Moreover, the underlining molecular mechanism was explored by the co-immunoprecipitation, immunofluorescence, GST pull-down and in vitro ubiquitination assay. Namely, Hsp90ab1 exerted these functions via the interaction of LRP5 and inhibited ubiquitin-mediated degradation of LRP5, an indispensable coreceptor of the Wnt/β-catenin signaling pathway. In addition, the crosstalk between Hsp90ab1 and LRP5 contributed to the upregulation of multiple mesenchymal markers, which are also targets of Wnt/β-catenin. Collectively, this study uncovers the details of the Hsp90ab1-LRP5 axis, providing novel insights into the role and mechanism of invasion and metastasis in GC.
Collapse
Affiliation(s)
- Huanan Wang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Guangxu Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Meiling Ai
- Department of Pathology, Southern Medical University, Nanfang Hospital, Guangzhou, 510515, China
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510515, China
| | - Zhijun Xu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Tingyu Mou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Shuang Wang
- Department of Pathology, Southern Medical University, Nanfang Hospital, Guangzhou, 510515, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Cai C, Sang C, Du J, Jia H, Tu J, Wan Q, Bao B, Xie S, Huang Y, Li A, Li J, Yang K, Wang S, Lu Q. Knockout of tnni1b in zebrafish causes defects in atrioventricular valve development via the inhibition of the myocardial wnt signaling pathway. FASEB J 2018; 33:696-710. [PMID: 30044923 DOI: 10.1096/fj.201800481rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The proper development of atrioventricular (AV) valves is critical for heart morphogenesis and for the formation of the cardiac conduction system. Defects in AV valve development are the most common type of congenital heart defect. Cardiac troponin I ( ctnni), a structural and regulatory protein involved in cardiac muscle contraction, is a subunit of the troponin complex, but the functions and molecular mechanisms of ctnni during early heart development remain unclear. We created a knockout zebrafish model in which troponin I type 1b ( tnni1b) ( Tnni-HC, heart and craniofacial) was deleted using the clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat-associated protein system. In the homozygous mutant, the embryos showed severe pericardial edema, malformation of the heart tube, reduction of heart rate without contraction and with almost no blood flow, heart cavity congestion, and lack of an endocardial ring or valve leaflet, resulting in 88.8 ± 6.0% lethality at 7 d postfertilization. Deletion of tnni1b caused the abnormal expression of several markers involved in AV valve development, including bmp4, cspg2, has2, notch1b, spp1, and Alcam. Myocardial re-expression of tnni1b in mutants partially rescued the pericardial edema phenotype and AV canal (AVC) developmental defects. We further showed that tnni1b knockout in zebrafish and ctnni knockdown in rat h9c2 myocardial cells inhibited cardiac wnt signaling and that myocardial reactivation of wnt signaling partially rescued the abnormal expression of AVC markers caused by the tnni1b deletion. Taken together, our data suggest that tnni1b plays a vital role in zebrafish AV valve development by regulating the myocardial wnt signaling pathway.-Cai, C., Sang, C., Du, J., Jia, H., Tu, J., Wan, Q., Bao, B., Xie, S., Huang, Y., Li, A., Li, J., Yang, K., Wang, S., Lu, Q. Knockout of tnni1b in zebrafish causes defects in atrioventricular valve development via the inhibition of myocardial wnt signaling pathway.
Collapse
Affiliation(s)
- Chen Cai
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Caijun Sang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Du
- School Hospital, Huazhong University of Science and Technology, Wuhan, China; and
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi Tu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Wan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Binghao Bao
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shanglun Xie
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ao Li
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayu Li
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Yang
- Exercise Immunology Center, Wuhan Sports University, Wuhan, China
| | - Song Wang
- Exercise Immunology Center, Wuhan Sports University, Wuhan, China
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Jin H, Wang Y, Wang D, Zhang L. Effects of Qingshen Granules on the Oxidative Stress-NF/kB Signal Pathway in Unilateral Ureteral Obstruction Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4761925. [PMID: 29576795 PMCID: PMC5822778 DOI: 10.1155/2018/4761925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/09/2017] [Accepted: 12/17/2017] [Indexed: 12/25/2022]
Abstract
Background. The activation of NF-kappa B (NF/kB) signaling pathway plays an important role in the process of epithelial-mesenchymal transition (EMT) and renal interstitial fibrosis (RIF) in renal tubules. The process of oxidative stress reaction in kidney is via excessive reactive oxygen species (ROS) production to activate NF/kB signaling pathway. Qingshen Granule (QSG) is an effective Chinese formula utilized to treat chronic renal failure. Previous studies confirmed that QSG could inhibit RIF in unilateral ureteral obstruction (UUO) rats. In this study, we used UUO rats to investigate the effects of QSG on oxidative stress and the activation of NF/kB signaling. Seventy male Sprague-Dawley (SD) rats were randomly divided into a sham group, UUO model group, Qingshen Granules (QSG) high-dose, medium-dose, and low-dose groups, PDTC group, and candesartan group (10 rats in each group). Our study demonstrated that oxidative stress-NF/kB signal pathway contributed to the formation of UUO renal interstitial fibrosis. QSG may protect against RIF by inhibiting the oxidative stress-NF/kB signal pathway, reducing inflammation, and improving renal tubular EMT.
Collapse
Affiliation(s)
- Hua Jin
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Yiping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Dong Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| |
Collapse
|
20
|
Jiang S, Li T, Yang Z, Yi W, Di S, Sun Y, Wang D, Yang Y. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev 2017; 38:18-27. [PMID: 28709692 DOI: 10.1016/j.arr.2017.07.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/10/2023]
Abstract
Fibrosis is a common process characterized by excessive extracellular matrix (ECM) accumulation after inflammatory injury, which is also a crucial cause of aging. The process of fibrosis is involved in the pathogenesis of most diseases of the heart, liver, kidney, lung, and other organs/tissues. However, there are no effective therapies for this pathological alteration. Annually, fibrosis represents a huge financial burden for the USA and the world. 5'-AMP-activated protein kinase (AMPK) is a pivotal energy sensor that alleviates or delays the process of fibrogenesis. In this review, we first present basic background information on AMPK and fibrogenesis and describe the protective roles of AMPK in three fibrogenic phases. Second, we analyze the protective action of AMPK during fibrosis in myocardial, hepatic, renal, pulmonary, and other organs/tissues. Third, we present a comprehensive discussion of AMPK during fibrosis and draw a conclusion. This review highlights recent advances, vital for basic research and clinical drug design, in the regulation of AMPK during fibrosis.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
21
|
Matoba R, Morizane Y, Shiode Y, Hirano M, Doi S, Toshima S, Araki R, Hosogi M, Yonezawa T, Shiraga F. Suppressive effect of AMP-activated protein kinase on the epithelial-mesenchymal transition in retinal pigment epithelial cells. PLoS One 2017; 12:e0181481. [PMID: 28719670 PMCID: PMC5515442 DOI: 10.1371/journal.pone.0181481] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 06/30/2017] [Indexed: 01/28/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells plays a central role in the development of proliferative vitreoretinopathy (PVR). The purpose of this study was to investigate the effect of AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis, on the EMT in RPE cells. In this study, EMT-associated formation of cellular aggregates was induced by co-stimulation of cultured ARPE-19 cells with tumor necrosis factor (TNF)-α (10 ng/ml) and transforming growth factor (TGF)-β2 (5 ng/ml). 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), a potent activator of AMPK, significantly suppressed TNF-α and TGF-β2-induced cellular aggregate formation (p < 0.01). Dipyridamole almost completely reversed the suppressive effect of AICAR, whereas 5’-amino-5’-deoxyadenosine restored aggregate formation by approximately 50%. AICAR suppressed the downregulation of E-cadherin and the upregulation of fibronectin and α-smooth muscle actin by TNF-α and TGF-β2. The levels of matrix metalloproteinase (MMP)-2, MMP-9, interleukin-6, and vascular endothelial growth factor were significantly decreased by AICAR. Activation of the mitogen-activated protein kinase and mammalian target of rapamycin pathways, but not the Smad pathway, was inhibited by AICAR. These findings indicate that AICAR suppresses the EMT in RPE cells at least partially via activation of AMPK. AMPK is a potential target molecule for the prevention and treatment of PVR, so AICAR may be a promising candidate for PVR therapy.
Collapse
Affiliation(s)
- Ryo Matoba
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Morizane
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Yusuke Shiode
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masayuki Hirano
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichiro Doi
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Toshima
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryoichi Araki
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mika Hosogi
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fumio Shiraga
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
22
|
Feng Y, Wang S, Zhang Y, Xiao H. Metformin attenuates renal fibrosis in both AMPKα2-dependent and independent manners. Clin Exp Pharmacol Physiol 2017; 44:648-655. [PMID: 28273365 DOI: 10.1111/1440-1681.12748] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yenan Feng
- Institute of Vascular Medicine; Peking University Third Hospital; Beijing China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health; Beijing China
- Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing China
- Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| | - Shuaixing Wang
- Institute of Vascular Medicine; Peking University Third Hospital; Beijing China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health; Beijing China
- Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing China
- Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| | - Youyi Zhang
- Institute of Vascular Medicine; Peking University Third Hospital; Beijing China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health; Beijing China
- Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing China
- Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| | - Han Xiao
- Institute of Vascular Medicine; Peking University Third Hospital; Beijing China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health; Beijing China
- Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing China
- Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| |
Collapse
|
23
|
Abstract
The host defence against infection is an adaptive response in which several mechanisms are deployed to decrease the pathogen load, limit tissue injury and restore homeostasis. In the past few years new evidence has suggested that the ability of the immune system to limit the microbial burden - termed resistance - might not be the only defence mechanism. In fact, the capacity of the host to decrease its own susceptibility to inflammation- induced tissue damage - termed tolerance - might be as important as resistance in determining the outcome of the infection. Metabolic adaptations are central to the function of the cellular immune response. Coordinated reprogramming of metabolic signalling enables cells to execute resistance and tolerance pathways, withstand injury, steer tissue repair and promote organ recovery. During sepsis-induced acute kidney injury, early reprogramming of metabolism can determine the extent of organ dysfunction, progression to fibrosis, and the development of chronic kidney disease. Here we discuss the mechanisms of tolerance that act in the kidney during sepsis, with particular attention to the role of metabolic responses in coordinating these adaptive strategies. We suggest a novel conceptual model of the cellular and organic response to sepsis that might lead to new avenues for targeted, organ-protective therapies.
Collapse
|
24
|
Cheng J, Zhang T, Ji H, Tao K, Guo J, Wei W. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim Biophys Acta Rev Cancer 2016; 1866:232-251. [PMID: 27681874 DOI: 10.1016/j.bbcan.2016.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitously expressed metabolic sensor among various species. Specifically, cellular AMPK is phosphorylated and activated under certain stressful conditions, such as energy deprivation, in turn to activate diversified downstream substrates to modulate the adaptive changes and maintain metabolic homeostasis. Recently, emerging evidences have implicated the potential roles of AMPK signaling in tumor initiation and progression. Nevertheless, a comprehensive description on such topic is still in scarcity, especially in combination of its biochemical features with mouse modeling results to elucidate the physiological role of AMPK signaling in tumorigenesis. Hence, we performed this thorough review by summarizing the tumorigenic role of each component along the AMPK signaling, comprising of both its upstream and downstream effectors. Moreover, their functional interplay with the AMPK heterotrimer and exclusive efficacies in carcinogenesis were chiefly explained among genetically altered mice models. Importantly, the pharmaceutical investigations of AMPK relevant medications have also been highlighted. In summary, in this review, we not only elucidate the potential functions of AMPK signaling pathway in governing tumorigenesis, but also potentiate the future targeted strategy aiming for better treatment of aberrant metabolism-associated diseases, including cancer.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hongbin Ji
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, People's Republic of China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
25
|
Mount PF, Power DA. Balancing the energy equation for healthy kidneys. J Pathol 2015; 237:407-10. [PMID: 26296948 DOI: 10.1002/path.4600] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 01/18/2023]
Abstract
The high-energy requirement of the kidney and the importance of energy metabolism in renal physiology has been appreciated for decades, but only recently has there emerged a strong link between impaired renal energy metabolism and chronic kidney disease (CKD). The mechanisms underlying the association between changes in energy metabolism and progression of CKD, however, remain poorly understood. A new study from Qiu and colleagues reported in the Journal of Pathology has advanced this understanding by showing that, after renal injury, the energy sensor AMPK inhibits epithelial-mesenchymal transition and inflammation, processes important in the pathogenesis of CKD. Furthermore, this study identifies an interaction between AMPK and CK2β as an important mechanism in the anti-fibrotic effect. CK2β has previously been shown to interact with STK11 (also known as LKB1) to regulate cellular polarity. These findings are consistent with the known roles of the LKB1-AMPK pathway in sustaining cellular energy homeostasis and epithelial cell polarity, and add to growing evidence linking the suppression of energy metabolism to CKD. They emphasize the importance of energy metabolism in general and the LKB1-AMPK axis in particular as key investigational and therapeutic targets in the battle against CKD.
Collapse
Affiliation(s)
- Peter F Mount
- Department of Nephrology, Austin Health, Heidelberg, Melbourne, Australia.,Department of Medicine, University of Melbourne, Parkville, Melbourne, Australia.,Institute for Breathing and Sleep, Austin Health, Heidelberg, Melbourne, Australia
| | - David A Power
- Department of Nephrology, Austin Health, Heidelberg, Melbourne, Australia.,Department of Medicine, University of Melbourne, Parkville, Melbourne, Australia.,Institute for Breathing and Sleep, Austin Health, Heidelberg, Melbourne, Australia
| |
Collapse
|