1
|
Tan Y, Yang YG, Zhang X, Zhao L, Wang X, Liu W. Tumor cell-derived osteopontin promotes tumor fibrosis indirectly via tumor-associated macrophages. J Transl Med 2025; 23:432. [PMID: 40217301 PMCID: PMC11992893 DOI: 10.1186/s12967-025-06444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND High fibrosis of the tumor microenvironment (TME) not only impedes the effective infiltration of T cells but also serves as a physical barrier to inhibit the penetration of chemotherapy drugs. Triple-negative breast cancer (TNBC) is characterized by significant infiltration of tumor-associated macrophages (TAMs) and high fibrosis. However, the mechanism of high fibrosis in such tumors is still under debate. METHODS We first investigated the correlation between tumor-derived osteopontin (OPN) and tumor fibrosis as well as TAM enrichment using a tumor model characterized by OPN genetic inactivation or overexpression. We further compared the effects of macrophage depletion on tumor fibrosis in mice bearing TNBC tumors (4T1WT or 4T1Spp1 - KO). To elucidate the mechanism by which TAMs promote tumor fibrosis, we evaluated their potential to recruit cancer-associated fibroblasts (CAFs) through in vitro migration assays and compared the production of transforming growth factor-beta 1 (TGFβ1) among different TAM subpopulations. RESULTS Our study revealed that OPN secretion by tumor cells correlates positively with both tumor fibrosis and TAM enrichment. Specifically, within the enriched TAM population, Ly6C+CD206- TAMs recruit CAFs via CCL5 secretion, while Ly6C-CD206high TAMs secrete TGFβ1 to activate CAFs. Blocking the tumor cell-derived OPN can effectively prevent tumor fibrosis. CONCLUSIONS This study shows that tumor-derived OPN primarily drives TAM enrichment in mouse cancer model, indirectly promoting tumor fibrosis through Ly6C+CD206-/low and Ly6C-CD206high TAMs. Our findings have potential application in preventing tumors from excessive fibrosis and enhancing the efficacy of immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Yuying Tan
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
- Echocardiography Department, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Xiaoying Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Lei Zhao
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Xiaocong Wang
- Echocardiography Department, The First Hospital of Jilin University, Changchun, China.
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Ziogas DC, Theocharopoulos C, Aravantinou K, Boukouris AE, Stefanou D, Anastasopoulou A, Lialios PP, Lyrarakis G, Gogas H. Clinical benefit of immune checkpoint inhibitors in elderly cancer patients: Current evidence from immunosenescence pathophysiology to clinical trial results. Crit Rev Oncol Hematol 2025; 208:104635. [PMID: 39889861 DOI: 10.1016/j.critrevonc.2025.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
The age-related decline in immunity appears to be associated not only with cancer development but also with differential responses to immune checkpoint inhibitors (ICIs). Despite their increasing utility across various malignancies and therapeutic settings, limited data -derived primarily from subgroup analyses of randomized controlled trials (RCTs), pooled meta-analyses, and retrospective studies- are available on the effects of aging on their efficacy and toxicity. Immunosenescence, characterized by the progressive decline of the function of the immune system, and inflammaging, a state of persistent low-grade sterile inflammation, may influence ICI outcomes. Additionally, the incidence, severity, and subtypes of immune-related adverse events (irAEs) may differ between older and younger individuals due to loss of immunotolerance. In the current review, starting from a a comprehensive discussion of the pathophysiology of immunosenescence, we proceed to critically review age-related retrospective and randomized evidence supporting FDA-approved ICIs. We highlight similarities or differences across age groups and the clinical benefit of ICIs in elderly versus younger cancer patients. The optimal integration of ICIs in geriatric oncology necessitates greater inclusion of this patient demographic in RCTs along with real-world data in order to acquire robust data which will guide evidence-based treatment decisions for this population.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Charalampos Theocharopoulos
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Katerina Aravantinou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Aristeidis E Boukouris
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Dimitra Stefanou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Amalia Anastasopoulou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Panagiotis-Petros Lialios
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - George Lyrarakis
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| |
Collapse
|
3
|
Ishihara N, Koma YI, Omori M, Komatsu S, Torigoe R, Yokoo H, Nakanishi T, Yamanaka K, Azumi Y, Tsukamoto S, Kodama T, Nishio M, Shigeoka M, Yokozaki H, Fukumoto T. Chemokine (C-C Motif) Ligand 2/CCR2/Extracellular Signal-Regulated Kinase Signal Induced through Cancer Cell-Macrophage Interaction Contributes to Hepatocellular Carcinoma Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:589-608. [PMID: 39756577 DOI: 10.1016/j.ajpath.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Tumor-infiltrating macrophages, known as tumor-associated macrophages, play a crucial role in the tumor microenvironment. Herein, immunohistochemistry revealed that intratumoral CD68-positive macrophages are associated with poor prognosis and clinicopathologic factors in patients with hepatocellular carcinoma (HCC). Subsequently, an indirect co-culture system involving HCC cells and peripheral blood-derived macrophages was developed. cDNA microarray analysis revealed that chemokine (C-C motif) ligand 2 (CCL2) was highly expressed in HCC cells co-cultured with macrophages. CCL2 neutralization suppressed proliferation, migration, and phosphorylation of extracellular signal-regulated kinase (Erk) in HCC cells and macrophages enhanced through co-culture. In contrast, recombinant human CCL2 (rhCCL2) addition facilitated these malignant phenotypes and increased Erk phosphorylation levels in HCC cells and macrophages. The primary CCL2 receptor, CCR2, was expressed in HCC cells and macrophages and was up-regulated in co-cultured HCC cells. CCR2 inhibition suppressed malignant phenotypes and reduced phosphorylated levels of Erk enhanced by rhCCL2. Additionally, the inhibition of Erk signal suppressed rhCCL2-enhanced malignant phenotypes. Moreover, serum CCL2 levels were higher in patients with HCC than those in healthy donors. On the basis of immunohistochemistry, CCL2-positive cases with high CCR2 expression and phosphorylated Erk-positive cases exhibited poor survival outcomes. Therefore, CCL2 up-regulation through interactions between HCC cells and macrophages contributed to HCC progression, making the CCL2/CCR2/Erk signal a potential target for HCC treatment.
Collapse
Affiliation(s)
- Nobuaki Ishihara
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Masaki Omori
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shohei Komatsu
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rikuya Torigoe
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Yokoo
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Nakanishi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keitaro Yamanaka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuki Azumi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Fukumoto
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
4
|
Maggi E, Landolina N, Munari E, Mariotti FR, Tumino N, Vacca P, Azzarone B, Moretta L. T cells in the microenvironment of solid pediatric tumors: the case of neuroblastoma. Front Immunol 2025; 16:1544137. [PMID: 40092980 PMCID: PMC11906424 DOI: 10.3389/fimmu.2025.1544137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Neuroblastoma (NB) is an immunologically "cold" tumor with poor or no inflamed substrates as most of solid pediatric tumors (SPT). Consistent data indicate that NB tumor microenvironment (TME) is dominated by myeloid cells, with little (but variable) T cell infiltration. The obstacles to lymphocyte infiltration and to their anti-tumor activity are due to different tumor immune evasion strategies, including loss of HLA Class I molecules, high expression of immune checkpoint molecular ligands leading to exhaustion of T effector (and NK) cells, induction of T regulatory, myeloid and stromal cells and secretion of immunosuppressive mediators. In odds with adult solid tumors, NB displays weak immunogenicity caused by intrinsic low mutational burden and scant expression of neoepitopes in the context of MHC-class I antigens which, in turn, are particularly poorly expressed on NB cells, thus inducing low anti-tumor T cell responses. In addition, NB is generated from embryonal cells and is the result of transcriptional abnormalities and not of the accumulation of genetic mutations over time, thus further explaining the low immunogenicity. The poor expression of immunogenic molecules on tumor cells is associated with the high production of immunosuppressive factors which further downregulate lymphocyte infiltration and activity, thus explaining the limited efficacy of new drugs in NB, as immune checkpoint inhibitors. This review is focused on examining the role of T effector and regulatory cells infiltrating TME of NB, taking into account their repertoire, phenotype, function, plasticity and, importantly, predictive value for defining novel targets for therapy.
Collapse
Affiliation(s)
- Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Enrico Munari
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | | | - Nicola Tumino
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Ren F, Meng L, Zheng S, Cui J, Song S, Li X, Wang D, Li X, Liu Q, Bu W, Sun H. Myeloid cell-derived apCAFs promote HNSCC progression by regulating proportion of CD4 + and CD8 + T cells. J Exp Clin Cancer Res 2025; 44:33. [PMID: 39891284 PMCID: PMC11783918 DOI: 10.1186/s13046-025-03290-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
It is well-known that cancer-associated fibroblasts (CAFs) are involved in the desmoplastic responses in Head and Neck Squamous Cell Carcinoma (HNSCC). CAFs are pivotal in the tumor microenvironment (TME) molding, and exert a profound influence on tumor development. The origin and roles of CAFs, however, are still unclear in the HNSCC, especially antigen-presenting cancer-associated fibroblasts (apCAFs). Our current study tried to explore the origin, mechanism, and function of the apCAFs in the HNSCC. Data from single-cell transcriptomics elucidated the presence of apCAFs in the HNSCC. Leveraging cell trajectory and Cellchat analysis along with robust lineage-tracing assays revealed that apCAFs were primarily derived from myeloid cells. This transdifferentiation was propelled by the macrophage migration inhibitory factor (MIF), which was secreted by tumor cells and activated the JAK/STAT3 signaling pathway. Analysis of the TCGA database has revealed that markers of apCAFs were inversely correlated with survival rates in patients with HNSCC. In vivo experiments have demonstrated that apCAFs could facilitate tumor progression. Furthermore, apCAFs could modulate ratio of CD4+ T cells/CD8+ T cells, such as higher ratio of CD4+ T cells/CD8+ T cells could promote tumor progression. Most importantly, data from in vivo assays revealed that inhibitors of MIF and p-STAT3 could significantly inhibit the OSCC growth. Therefore, our findings show potential innovative therapeutic approaches for the HNSCC.Significance: ApCAFs derived from myeloid cells promote the progression of HNSCC by increasing the ratio of CD4+/CD8+ cells, indicating potential novel targets to be used to treat the human HNSCC.
Collapse
Affiliation(s)
- Feilong Ren
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Lin Meng
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shize Zheng
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Jiasen Cui
- School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Shaoyi Song
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Xing Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Dandan Wang
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Xing Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Qilin Liu
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Wenhuan Bu
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory Oral Biomedical Engineering, Jilin University, Changchun, 130021, China.
| | - Hongchen Sun
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Lv K, He T. Cancer-associated fibroblasts: heterogeneity, tumorigenicity and therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:70. [PMID: 39680287 PMCID: PMC11649616 DOI: 10.1186/s43556-024-00233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Cancer, characterized by its immune evasion, active metabolism, and heightened proliferation, comprises both stroma and cells. Although the research has always focused on parenchymal cells, the non-parenchymal components must not be overlooked. Targeting cancer parenchymal cells has proven to be a formidable challenge, yielding limited success on a broad scale. The tumor microenvironment(TME), a critical niche for cancer cell survival, presents a novel way for cancer treatment. Cancer-associated fibroblast (CAF), as a main component of TME, is a dynamically evolving, dual-functioning stromal cell. Furthermore, their biological activities span the entire spectrum of tumor development, metastasis, drug resistance, and prognosis. A thorough understanding of CAFs functions and therapeutic advances holds significant clinical implications. In this review, we underscore the heterogeneity of CAFs by elaborating on their origins, types and function. Most importantly, by elucidating the direct or indirect crosstalk between CAFs and immune cells, the extracellular matrix, and cancer cells, we emphasize the tumorigenicity of CAFs in cancer. Finally, we highlight the challenges encountered in the exploration of CAFs and list targeted therapies for CAF, which have implications for clinical treatment.
Collapse
Affiliation(s)
- Keke Lv
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Tianlin He
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
7
|
Wang H, Qi L, Han H, Li X, Han M, Xing L, Li L, Jiang H. Nanomedicine regulating PSC-mediated intercellular crosstalk: Mechanisms and therapeutic strategies. Acta Pharm Sin B 2024; 14:4756-4775. [PMID: 39664424 PMCID: PMC11628839 DOI: 10.1016/j.apsb.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 12/13/2024] Open
Abstract
Pancreatic fibrosis (PF) is primarily distinguished by the stimulation of pancreatic stellate cells (PSCs) and excessive extracellular matrix deposition, which is the main barrier impeding drug delivery and distribution. Recently, nanomedicine, with efficient, targeted, and controllable drug release characteristics, has demonstrated enormous advantages in the regression of pancreas fibrotic diseases. Notably, paracrine signals from parenchymal and immune cells such as pancreatic acinar cells, islet cells, pancreatic cancer cells, and immune cells can directly or indirectly modulate PSC differentiation and activation. The intercellular crosstalk between PSCs and these cells has been a critical event involved in fibrogenesis. However, the connections between PSCs and other pancreatic cells during the progression of diseases have yet to be discussed. Herein, we summarize intercellular crosstalk in the activation of PSCs and its contribution to the development of common pancreatic diseases, including pancreatitis, pancreatic cancer, and diabetes. Then, we also examine the latest treatment strategies of nanomedicine and potential targets for PSCs crosstalk in fibrosis, thereby offering innovative insights for the design of antifibrotic nanomedicine. Ultimately, the enhanced understanding of PF will facilitate the development of more precise intervention strategies and foster individually tailored therapeutic approaches for pancreatic diseases.
Collapse
Affiliation(s)
- Hui Wang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Han Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xuena Li
- College of Pharmacy, Yanbian University, Yanji 133000, China
| | - Mengmeng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing 210009, China
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hulin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Mistretta KS, Coburn JM. Three-dimensional silk fibroin scaffolded co-culture of human neuroblastoma and innate immune cells. Exp Cell Res 2024; 443:114289. [PMID: 39433171 DOI: 10.1016/j.yexcr.2024.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Neuroblastoma (NB) is the most common pediatric extracranial solid tumor. It accounts for 50 % of cancers diagnosed in infants less than 1 year old, and 10 % of all pediatric cancer deaths in the United States. High-risk patients have a less than 50 % 5-year survival rate with current treatment strategies. The complex tumor microenvironment of NB makes the development of treatment strategies for high-risk patients challenging. There is increasing evidence that intratumoral immune suppression plays an important role in the progression and invasion of NB tumors. Few three-dimensional (3D) cancer models include components of the innate immune system. This work develops a preclinical 3D NB-immune co-culture model using SK-N-AS NB cells, NK-92 natural killer cells, and THP-1 derived macrophages, co-cultured on porous 3D silk scaffolds to provide tumor architecture. Conditioned media and indirect co-culturing showed changes in SK-N-AS gene expression associated with immunoregulatory signaling, and changes in NK-92 gene expression that are associated with reduced cytotoxicity. This motivated the development of a 3D direct co-culture system in which NB cells were seeded prior to immune cells to allow incorporation and deposition of extracellular matrix within the construct. Immune cells were then incorporated into the model to achieve direct co-culture with SK-N-AS cells. Changes in THP-1 macrophage polarization toward a more M2-like phenotype were observed in 3D direct co-culture, as well as altered NK-92 cell protein secretion and cytotoxic activity. Preliminary testing of immunotherapeutics within the model was conducted on both NB-macrophage and NB-NK co-cultures, but the model demonstrated limited response to immunotherapeutics. This work lays the foundation for building high-throughput therapeutic screening models for the improved treatment NB and other solid tumors.
Collapse
Affiliation(s)
- Katelyn S Mistretta
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|
9
|
Ghebremedhin A, Athavale D, Zhang Y, Yao X, Balch C, Song S. Tumor-Associated Macrophages as Major Immunosuppressive Cells in the Tumor Microenvironment. Cancers (Basel) 2024; 16:3410. [PMID: 39410029 PMCID: PMC11475569 DOI: 10.3390/cancers16193410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Within the tumor microenvironment, myeloid cells constitute a dynamic immune population characterized by a heterogeneous phenotype and diverse functional activities. In this review, we consider recent literature shedding light on the increasingly complex biology of M2-like immunosuppressive tumor-associated macrophages (TAMs), including their contribution to tumor cell invasion and metastasis, stromal remodeling (fibrosis and matrix degradation), and immune suppressive functions, in the tumor microenvironment (TME). This review also delves into the intricate signaling mechanisms underlying the polarization of diverse macrophage phenotypes, and their plasticity. We also review the development of promising therapeutic approaches to target these populations in cancers. The expanding knowledge of distinct subsets of immunosuppressive TAMs, and their contributions to tumorigenesis and metastasis, has sparked significant interest among researchers regarding the therapeutic potential of TAM depletion or phenotypic modulation.
Collapse
Affiliation(s)
| | - Dipti Athavale
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
| | - Yanting Zhang
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
- Department Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ 08103, USA
| | - Xiaodan Yao
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
| | - Curt Balch
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
- Department Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ 08103, USA
| | - Shumei Song
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
- Department Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ 08103, USA
- MD Anderson Cancer Center at Cooper, Cooper University Hospital, 2 Cooper Plaza, Camden, NJ 08103, USA
- Departments of Surgery, Cooper University Hospital, 1 Cooper Plaza, Camden, NJ 08103, USA
| |
Collapse
|
10
|
Yang L, Huang K, Cao L, Ma Y, Li S, Zhou J, Zhao Z, Wang S. Molecular profiling of core immune-escape genes highlights TNFAIP3 as an immune-related prognostic biomarker in neuroblastoma. Inflamm Res 2024; 73:1529-1545. [PMID: 39028490 DOI: 10.1007/s00011-024-01914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most prevalent and deadliest pediatric solid tumor. With of over 50% of high-risk neuroblastoma cases relapse, the imperative for novel drug targets and therapeutic strategies is accentuated. In neuroblastoma, the existence of tumor-associated macrophages (TAMs) correlates with an unfavorable patient prognosis. However, the clinical relevance and prognostic implications of regulatory genes linked to TAMs infiltration in neuroblastoma remain unclear, and further study is required. METHODS We conducted a comprehensive analysis utilizing transcriptome expression profiles from three primary datasets associated with neuroblastoma (GSE45547, GSE49710, TARGET) to identify hub genes implicated in immune evasion within neuroblastoma. Subsequently, we utilized single-cell RNA sequencing analysis on 17 clinical neuroblastoma samples to investigate the expression and distribution of these hub genes, leading to the identification of TNFAIP3. The above three public databases were merged to allowed for the validation of TNFAIP3's molecular functions through GO and KEGG analysis. Furthermore, we assessed TNFAIP3's correlation with immune infiltration and its potential immunotherapeutic impact by multiple algorithms. Our single-cell transcriptome data revealed the role of TNFAIP3 in macrophage polarization. Finally, preliminary experimental verifications to confirm the biological functions of TNFAIP3-mediated TAMs in NB. RESULTS A total of 6 genes related to immune evasion were screened and we found that TNFAIP3 exhibited notably higher expression in macrophages than other immune cell types, based on the scRNA-sequencing data. GO and KEGG analysis showed that low expression of TNFAIP3 significantly correlated with the activation of multiple oncogenic pathways as well as immune-related pathways. Then validation affirmed that individuals within the TNFAIP3 high-expression cohort could potentially derive greater advantages from immunotherapeutic interventions, alongside exhibiting heightened immune responsiveness. Deciphering the pseudotime trajectory of macrophages, we revealed the potential of TNFAIP3 in inducing the polarization of macrophages towards the M1 phenotype. Finally, we confirmed that patients in the TNFAIP3 high expression group might benefit more from immunotherapy or chemotherapy as substantiated by RT-qPCR and immunofluorescence examinations. Moreover, the role of TNFAIP3 in macrophage polarization was validated. Preliminary experiment showed that TNFAIP3-mediated TAMs inhibit the proliferation, migration and invasion capabilities of NB cells. CONCLUSIONS Our results suggest that TNFAIP3 was first identified as a promising biomarker for immunotherapy and potential molecular target in NB. Besides, the presence of TNFAIP3 within TAMs may offer a novel therapeutic strategy for NB.
Collapse
Affiliation(s)
- Linyu Yang
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Huang
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lijian Cao
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Ma
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Suwen Li
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jianwu Zhou
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenzhen Zhao
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Wang
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Zhang JY, Su YH, Wang X, Yao X, Du JZ. Recent Progress on Nanomedicine-Mediated Repolarization of Tumor-Associated Macrophages for Cancer Immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2001. [PMID: 39425549 DOI: 10.1002/wnan.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/07/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute the largest number of immune cells in the tumor microenvironment (TME). They play an essential role in promoting tumor progression and metastasis, which makes them a potential therapeutic target for cancer treatment. TAMs are usually divided into two categories: pro-tumoral M2-like TAMs and antitumoral M1 phenotypes at either extreme. The reprogramming of M2-like TAMs toward a tumoricidal M1 phenotype is of particular interest for the restoration of antitumor immunity in cancer immunotherapy. Notably, nanomedicines have shown great potential for cancer therapy due to their unique structures and properties. This review will briefly describe the biological features and roles of TAMs in tumor, and then discuss recent advances in nanomedicine-mediated repolarization of TAMs for cancer immunotherapy. Finally, perspectives on nanomedicine-mediated repolarization of TAMs for effective cancer immunotherapy are also presented.
Collapse
Affiliation(s)
- Jing-Yang Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Yun-He Su
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Xu Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Xueqing Yao
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Stephan A, Suhrmann JH, Skowron MA, Che Y, Poschmann G, Petzsch P, Kresbach C, Wruck W, Pongratanakul P, Adjaye J, Stühler K, Köhrer K, Schüller U, Nettersheim D. Molecular and epigenetic ex vivo profiling of testis cancer-associated fibroblasts and their interaction with germ cell tumor cells and macrophages. Matrix Biol 2024; 132:10-23. [PMID: 38851302 DOI: 10.1016/j.matbio.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Germ cell tumors (GCT) are the most common solid tumors in young men of age 15 - 40. In previous studies, we profiled the interaction of GCT cells with cells of the tumor microenvironment (TM), which showed that especially the 3D interaction of fibroblasts (FB) or macrophages with GCT cells influenced the growth behavior and cisplatin response as well as the transcriptome and secretome of the tumor cells, suggesting that the crosstalk of these cells with GCT cells is crucial for tumor progression and therapy outcome. In this study, we shed light on the mechanisms of activation of cancer-associated fibroblasts (CAF) in the GCT setting and their effects on GCT cells lines and the monocyte cell line THP-1. Ex vivo cultures of GCT-derived CAF were established and characterized molecularly and epigenetically by performing DNA methylation arrays, RNA sequencing, and mass spectrometry-based secretome analysis. We demonstrated that the activation state of CAF is influenced by their former prevailing tumor environment in which they have resided. Hereby, we postulate that seminoma (SE) and embryonal carcinoma (EC) activate CAF, while teratoma (TER) play only a minor role in CAF formation. In turn, CAF influence proliferation and the expression of cisplatin sensitivity-related factors in GCT cells lines as well as polarization of in vitro-induced macrophages by the identified effector molecules IGFBP1, LGALS3BP, LYVE1, and PTX3. Our data suggests that the vital interaction of CAF with GCT cells and with macrophages has a huge influence on shaping the extracellular matrix as well as on recruitment of immune cells to the TM. In conclusion, therapeutically interfering with CAF and / or macrophages in addition to the standard therapy might slow-down progression of GCT and re-shaping of the TM to a tumor-promoting environment. Significance: The interaction of CAF with GCT and macrophages considerably influences the microenvironment. Thus, therapeutically interfering with CAF might slow-down progression of GCT and re-shaping of the microenvironment to a tumor-promoting environment.
Collapse
Affiliation(s)
- Alexa Stephan
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan-Henrik Suhrmann
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Margaretha A Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yue Che
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory (MPL), Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Catena Kresbach
- Institute of Neuropathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Wasco Wruck
- Institute for Stem cell Research and Regenerative Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Pailin Pongratanakul
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem cell Research and Regenerative Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen, Bonn, Cologne, Düsseldorf (CIO ABCD), Germany.
| |
Collapse
|
13
|
WANG ZHENGYI, ZHOU LIANG, WU XIAOYING. Influencing factors and solution strategies of chimeric antigen receptor T-cell therapy (CAR-T) cell immunotherapy. Oncol Res 2024; 32:1479-1516. [PMID: 39220130 PMCID: PMC11361912 DOI: 10.32604/or.2024.048564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor T-cesll therapy (CAR-T) has achieved groundbreaking advancements in clinical application, ushering in a new era for innovative cancer treatment. However, the challenges associated with implementing this novel targeted cell therapy are increasingly significant. Particularly in the clinical management of solid tumors, obstacles such as the immunosuppressive effects of the tumor microenvironment, limited local tumor infiltration capability of CAR-T cells, heterogeneity of tumor targeting antigens, uncertainties surrounding CAR-T quality, control, and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy. These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach. In this paper, we comprehensively analyze recent preclinical and clinical reports on CAR-T therapy while summarizing crucial factors influencing its efficacy. Furthermore, we aim to identify existing solution strategies and explore their current research status. Through this review article, our objective is to broaden perspectives for further exploration into CAR-T therapy strategies and their clinical applications.
Collapse
Affiliation(s)
- ZHENGYI WANG
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - LIANG ZHOU
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - XIAOYING WU
- Ministry of Education and Training, Chengdu Second People’s Hospital, Chengdu, China
| |
Collapse
|
14
|
Mao C, Poimenidou M, Craig BT. Current Knowledge and Perspectives of Immunotherapies for Neuroblastoma. Cancers (Basel) 2024; 16:2865. [PMID: 39199637 PMCID: PMC11353182 DOI: 10.3390/cancers16162865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Neuroblastoma (NBL) cells highly express disialoganglioside GD2, which is restricted and weakly expressed in selected healthy cells, making it a desirable target of immunotherapy. Over the past two decades, application of dinutuximab, an anti-GD2 monoclonal antibody (mAb), has been one of the few new therapies to substantially improve outcomes to current levels. Given the persistent challenge of relapse and therapeutic resistance, there is an urgent need for new effective and tolerable treatment options for high-risk NBL. Recent breakthroughs in immune checkpoint inhibitor (ICI) therapeutics have not translated into high-risk NBL, like many other major pediatric solid tumors. Given the suppressed tumor microenvironment (TME), single ICIs like anti-CTLA4 and anti-PD1 have not demonstrated significant antitumor response rates. Meanwhile, emerging studies are reporting novel advancements in GD2-based therapies, targeted therapies, nanomedicines, and other immunotherapies such as adoptive transfer of natural killer (NK) cells and chimeric antigen receptors (CARs), and these hold interesting promise for the future of high-risk NBL patient care. Herein, we summarize the current state of the art in NBL therapeutic options and highlight the unique challenges posed by NBL that have limited the successful adoption of immune-modifying therapies. Through this review, we aim to direct the field's attention to opportunities that may benefit from a combination immunotherapy strategy.
Collapse
Affiliation(s)
- Chenkai Mao
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Maria Poimenidou
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Brian T. Craig
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| |
Collapse
|
15
|
Fu Y, Guo X, Sun L, Cui T, Wu C, Wang J, Liu Y, Liu L. Exploring the role of the immune microenvironment in hepatocellular carcinoma: Implications for immunotherapy and drug resistance. eLife 2024; 13:e95009. [PMID: 39146202 PMCID: PMC11326777 DOI: 10.7554/elife.95009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.
Collapse
Affiliation(s)
- Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Xinyu Guo
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| |
Collapse
|
16
|
Louault K, Blavier L, Lee MH, Kennedy RJ, Fernandez GE, Pawel BR, Asgharzadeh S, DeClerck YA. Nuclear factor-κB activation by transforming growth factor-β1 drives tumour microenvironment-mediated drug resistance in neuroblastoma. Br J Cancer 2024; 131:90-100. [PMID: 38806726 PMCID: PMC11231159 DOI: 10.1038/s41416-024-02686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Intrinsic and extrinsic factors in the tumour microenvironment (TME) contribute to therapeutic resistance. Here we demonstrate that transforming growth factor (TGF)-β1 produced in the TME increased drug resistance of neuroblastoma (NB) cells. METHODS Human NB cell lines were tested in vitro for their sensitivity to Doxorubicin (DOX) and Etoposide (ETOP) in the presence of tumour-associated macrophages (TAM) and mesenchymal stromal cells/cancer-associated fibroblasts (MSC/CAF). These experiments were validated in xenotransplanted and primary tumour samples. RESULTS Drug resistance was associated with an increased expression of efflux transporter and anti-apoptotic proteins. Upregulation was dependent on activation of nuclear factor (NF)-κB by TGF-β-activated kinase (TAK1) and SMAD2. Resistance was reversed upon pharmacologic and genetic inhibitions of NF-κB, and TAK1/SMAD2. Interleukin-6, leukaemia inhibitory factor and oncostatin M were upregulated by this TGF-β/TAK1/NF-κB/SMAD2 signalling pathway contributing to drug resistance via an autocrine loop activating STAT3. An analysis of xenotransplanted NB tumours revealed an increased presence of phospho (p)-NF-κB in tumours co-injected with MSC/CAF and TAM, and these tumours failed to respond to Etoposide but responded if treated with a TGF-βR1/ALK5 inhibitor. Nuclear p-NF-κB was increased in patient-derived tumours rich in TME cells. CONCLUSIONS The data provides a novel insight into a targetable mechanism of environment-mediated drug resistance.
Collapse
Affiliation(s)
- Kévin Louault
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children's Hospital Los Angeles and the University of Southern California, Los Angeles, CA, 90027, USA
| | - Laurence Blavier
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children's Hospital Los Angeles and the University of Southern California, Los Angeles, CA, 90027, USA
| | - Men-Hua Lee
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children's Hospital Los Angeles and the University of Southern California, Los Angeles, CA, 90027, USA
| | - Rebekah J Kennedy
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children's Hospital Los Angeles and the University of Southern California, Los Angeles, CA, 90027, USA
| | - G Esteban Fernandez
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Bruce R Pawel
- Department of Pathology, and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shahab Asgharzadeh
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children's Hospital Los Angeles and the University of Southern California, Los Angeles, CA, 90027, USA
- Department of Pathology, and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yves A DeClerck
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children's Hospital Los Angeles and the University of Southern California, Los Angeles, CA, 90027, USA.
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
17
|
Pathania AS. Immune Microenvironment in Childhood Cancers: Characteristics and Therapeutic Challenges. Cancers (Basel) 2024; 16:2201. [PMID: 38927907 PMCID: PMC11201451 DOI: 10.3390/cancers16122201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The tumor immune microenvironment is pivotal in cancer initiation, advancement, and regulation. Its molecular and cellular composition is critical throughout the disease, as it can influence the balance between suppressive and cytotoxic immune responses within the tumor's vicinity. Studies on the tumor immune microenvironment have enriched our understanding of the intricate interplay between tumors and their immunological surroundings in various human cancers. These studies illuminate the role of significant components of the immune microenvironment, which have not been extensively explored in pediatric tumors before and may influence the responsiveness or resistance to therapeutic agents. Our deepening understanding of the pediatric tumor immune microenvironment is helping to overcome challenges related to the effectiveness of existing therapeutic strategies, including immunotherapies. Although in the early stages, targeted therapies that modulate the tumor immune microenvironment of pediatric solid tumors hold promise for improved outcomes. Focusing on various aspects of tumor immune biology in pediatric patients presents a therapeutic opportunity that could improve treatment outcomes. This review offers a comprehensive examination of recent literature concerning profiling the immune microenvironment in various pediatric tumors. It seeks to condense research findings on characterizing the immune microenvironment in pediatric tumors and its impact on tumor development, metastasis, and response to therapeutic modalities. It covers the immune microenvironment's role in tumor development, interactions with tumor cells, and its impact on the tumor's response to immunotherapy. The review also discusses challenges targeting the immune microenvironment for pediatric cancer therapies.
Collapse
Affiliation(s)
- Anup Singh Pathania
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
18
|
Du M, Sun L, Guo J, Lv H. Macrophages and tumor-associated macrophages in the senescent microenvironment: From immunosuppressive TME to targeted tumor therapy. Pharmacol Res 2024; 204:107198. [PMID: 38692466 DOI: 10.1016/j.phrs.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
In-depth studies of the tumor microenvironment (TME) have helped to elucidate its cancer-promoting mechanisms and inherent characteristics. Cellular senescence, which acts as a response to injury and can the release of senescence-associated secretory phenotypes (SASPs). These SASPs release various cytokines, chemokines, and growth factors, remodeling the TME. This continual development of a senescent environment could be associated with chronic inflammation and immunosuppressive TME. Additionally, SASPs could influence the phenotype and function of macrophages, leading to the recruitment of tumor-associated macrophages (TAMs). This contributes to tumor proliferation and metastasis in the senescent microenvironment, working in tandem with immune regulation, angiogenesis, and therapeutic resistance. This comprehensive review covers the evolving nature of the senescent microenvironment, macrophages, and TAMs in tumor development. We also explored the links between chronic inflammation, immunosuppressive TME, cellular senescence, and macrophages. Moreover, we compiled various tumor-specific treatment strategies centered on cellular senescence and the current challenges in cellular senescence research. This study aimed to clarify the mechanism of macrophages and the senescent microenvironment in tumor progression and advance the development of targeted tumor therapies.
Collapse
Affiliation(s)
- Ming Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Lu Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jinshuai Guo
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Huina Lv
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
19
|
Polychronopoulos PA, Bedoya-Reina OC, Johnsen JI. The Neuroblastoma Microenvironment, Heterogeneity and Immunotherapeutic Approaches. Cancers (Basel) 2024; 16:1863. [PMID: 38791942 PMCID: PMC11119056 DOI: 10.3390/cancers16101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroblastoma is a peripheral nervous system tumor that almost exclusively occurs in young children. Although intensified treatment modalities have led to increased patient survival, the prognosis for patients with high-risk disease is still around 50%, signifying neuroblastoma as a leading cause of cancer-related deaths in children. Neuroblastoma is an embryonal tumor and is shaped by its origin from cells within the neural crest. Hence, neuroblastoma usually presents with a low mutational burden and is, in the majority of cases, driven by epigenetically deregulated transcription networks. The recent development of Omic techniques has given us detailed knowledge of neuroblastoma evolution, heterogeneity, and plasticity, as well as intra- and intercellular molecular communication networks within the neuroblastoma microenvironment. Here, we discuss the potential of these recent discoveries with emphasis on new treatment modalities, including immunotherapies which hold promise for better future treatment regimens.
Collapse
Affiliation(s)
- Panagiotis Alkinoos Polychronopoulos
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
| | - Oscar C. Bedoya-Reina
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
| |
Collapse
|
20
|
Kundu M, Butti R, Panda VK, Malhotra D, Das S, Mitra T, Kapse P, Gosavi SW, Kundu GC. Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer. Mol Cancer 2024; 23:92. [PMID: 38715072 PMCID: PMC11075356 DOI: 10.1186/s12943-024-01990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
- Department of Pharmaceutical Technology, Brainware University, West Bengal, 700125, India
| | - Ramesh Butti
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Venketesh K Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Sumit Das
- National Centre for Cell Sciences, Savitribai Phule Pune University Campus, Pune, 411007, India
| | - Tandrima Mitra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Prachi Kapse
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Suresh W Gosavi
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Gopal C Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India.
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
21
|
Chen Y, Zhang F, Zhang B, Trojanowicz B, Hämmerle M, Kleeff J, Sunami Y. Periostin is associated with prognosis and immune cell infiltration in pancreatic adenocarcinoma based on integrated bioinformatics analysis. Cancer Rep (Hoboken) 2024; 7:e1990. [PMID: 38389400 PMCID: PMC10884618 DOI: 10.1002/cnr2.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/13/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most aggressive human malignancies. Previous research has shown that periostin (POSTN) promotes pancreatic cancer cell proliferation, migration, and invasion. Further, POSTN is involved in tumor microenvironment remodeling during tumor progression. However, the relationship between POSTN expression, immune cell infiltration, and the efficacy of immunotherapy in pancreatic cancer is unclear. METHODS We conducted a comprehensive evaluation of POSTN differential expression, examining mRNA and protein levels. To gather data, we utilized various databases including gene expression profiling interactive analysis 2 (GEPIA2), gene expression omnibus (GEO), and the human protein atlas (HPA). To investigate the correlation between POSTN expression and clinical characteristics, we analyzed data from the Kaplan-Meier plotter database and clinical data sourced from the cancer genome atlas (TCGA). Furthermore, we performed gene ontology (GO) analysis, Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and gene set enrichment analysis (GSEA). Additionally, we explored the relationship between POSTN expression and immune cell infiltration, as well as the immunophenoscore (IPS), by leveraging the cancer immunome atlas (TCIA) database. Lastly, we examined the tumor mutational burden (TMB) in pancreatic cancer in relation to POSTN expression. RESULTS When compared with healthy pancreatic tissues, pancreatic cancer tissues displayed significantly higher levels of POSTN, which was indicative of a worse prognosis. POSTN expression was closely associated with extracellular matrix (ECM) organization, ECM-receptor interaction, and focal adhesion by GO, KEGG pathway, and GSEA analyses. Higher expression of POSTN was associated with increased infiltration of M2 macrophages. Additionally, increased IPS was linked to lower POSTN expression. IPS scores for CTLA4, PD-1/PDL1, and CTLA4/PD-1/PDL1 immune checkpoint inhibitors were also higher in the POSTN-low expression group, suggesting that lower expression of POSTN is associated with a better outcome with checkpoint inhibitor treatment. CONCLUSION POSTN is related to pancreatic cancer prognosis, and may influence immune cell infiltration. High expression of POSTN is predicted to correlate with lower sensitivity to immunotherapy with checkpoint inhibitors in pancreatic cancer.
Collapse
Affiliation(s)
- Yijun Chen
- Department of Visceral, Vascular and Endocrine SurgeryMartin‐Luther‐University Halle‐Wittenberg, University Medical Center HalleHalle (Saale)Germany
| | - Fengyu Zhang
- School of Biomedical Engineering and TechnologyTianjin Medical UniversityTianjinChina
| | - Bolin Zhang
- Department of Visceral, Vascular and Endocrine SurgeryMartin‐Luther‐University Halle‐Wittenberg, University Medical Center HalleHalle (Saale)Germany
| | - Bogusz Trojanowicz
- Department of Visceral, Vascular and Endocrine SurgeryMartin‐Luther‐University Halle‐Wittenberg, University Medical Center HalleHalle (Saale)Germany
| | - Monika Hämmerle
- Institute of Pathology, Martin‐Luther‐University Halle‐WittenbergUniversity Medical Center HalleHalle (Saale)Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine SurgeryMartin‐Luther‐University Halle‐Wittenberg, University Medical Center HalleHalle (Saale)Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine SurgeryMartin‐Luther‐University Halle‐Wittenberg, University Medical Center HalleHalle (Saale)Germany
| |
Collapse
|
22
|
Ma J, Chen Z, Li Q, Wang L, Chen J, Yang X, Yang C, Quan Z. RARRES2 is involved in the "lock-and-key" interactions between osteosarcoma stem cells and tumor-associated macrophages. Sci Rep 2024; 14:2267. [PMID: 38280909 PMCID: PMC10821905 DOI: 10.1038/s41598-024-52738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
Osteosarcoma (OS) is a type of tumor. Osteosarcoma stem cells (OSCs) are responsible for drug resistance, recurrence, and immunosuppression in OS. We aimed to determine the heterogeneity of OSCs and the immunosuppression mechanisms underlying the interactions between OSCs and tumor-associated macrophages (TAMs). The cell components, trajectory changes, and cell communication profiles of OS cells were analyzed by transcriptomics at the single-cell level. The intercellular communication patterns of OSCs were verified, and the role of the cell hub genes was revealed. Hub geneS are genes that play important roles in regulating certain biological processes; they are often defined as the genes with the strongest regulatory effect on differentially expressed gene sets. Moreover, various cellular components of the OS microenvironment were identified. Malignant cells were grouped, and OSCs were identified. Further regrouping and communication analysis revealed that the genes in the stemness maintenance and differentiation subgroups were involved in communication with macrophages. Key receptor-ligand pairs and target gene sets for cell communication were obtained. Transcriptome data analysis revealed the key gene RARRES2, which is involved in intercellular communication between OSCs and TAMs. In vitro studies confirmed that macrophages promote RARRES2-mediated stemness maintenance in OSCs via the TAM-secreted cytokine insulin-like growth factor 1. Patient studies confirmed that RARRES2 could be a biomarker of OS. OSCs are highly heterogeneous, and different subgroups are responsible for proliferation and communication with other cells. The IGF-RARRES2 axis plays a key role in maintaining OSC stemness through communication with TAMs.
Collapse
Affiliation(s)
- Jingjin Ma
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhiyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qiaochu Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Jiaxing Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chaohua Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhengxue Quan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
23
|
Cen X, Li M, Yao A, Zheng Y, Lai W. Immune infiltration and clinical significance analyses of the cancer-associated fibroblast-related signature in skin cutaneous melanoma. J Gene Med 2024; 26:e3614. [PMID: 37847069 DOI: 10.1002/jgm.3614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/14/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is one of the most aggressive cancers with high mortality rates. Cancer-associated fibroblasts (CAFs) play essential roles in tumor growth, metastasis and the establishment of a pro-tumor microenvironment. This study aimed to establish a CAF-related signature for providing a new perspective for indicating prognosis and guiding therapeutic regimens of SKCM patients. METHODS In this study, the CAF-related genes were screened out based on melanoma-associated fibroblast markers identified from single-cell transcriptome analysis in the Gene Expression Omnibus (GEO) database and a CAF-related module identified from weighted gene co-expression analysis using The Cancer Genome Atlas (TCGA) dataset. We extracted these gene expression data of SKCM samples from TCGA and constructed a prognostic CAF-related signature. The prediction abilities of the signature for survival prognosis, tumor immune landscape and responses to chemo-/immunotherapies were evaluated in the TCGA-SKCM cohort. RESULTS We suggested that CAFs were significantly involved in the clinical outcomes of SKCM. A 10-gene CAF-related model was constructed, and the high-CAF risk group exhibited immunosuppressive features and worse prognosis. Patients with high CAF score were more likely to not respond to immune checkpoint inhibitors but were more sensitive to some chemotherapeutic agents, suggesting a potential approach of chemotherapy/anti-CAF combination treatment to improve the SKCM patient response rate of current immunotherapies. CONCLUSIONS The CAF-related risk score could serve as a robust prognostic indicator and personal assessment of this score could uncover the degree of immunosuppression and provide treatment strategies to improve outcomes in clinical decision-making in SKCM patients.
Collapse
Affiliation(s)
- Xintao Cen
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengna Li
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Amin Yao
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Zheng
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Lai
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Kang X, Huang Y, Wang H, Jadhav S, Yue Z, Tiwari AK, Babu RJ. Tumor-Associated Macrophage Targeting of Nanomedicines in Cancer Therapy. Pharmaceutics 2023; 16:61. [PMID: 38258072 PMCID: PMC10819517 DOI: 10.3390/pharmaceutics16010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The tumor microenvironment (TME) is pivotal in tumor growth and metastasis, aligning with the "Seed and Soil" theory. Within the TME, tumor-associated macrophages (TAMs) play a central role, profoundly influencing tumor progression. Strategies targeting TAMs have surfaced as potential therapeutic avenues, encompassing interventions to block TAM recruitment, eliminate TAMs, reprogram M2 TAMs, or bolster their phagocytic capabilities via specific pathways. Nanomaterials including inorganic materials, organic materials for small molecules and large molecules stand at the forefront, presenting significant opportunities for precise targeting and modulation of TAMs to enhance therapeutic efficacy in cancer treatment. This review provides an overview of the progress in designing nanoparticles for interacting with and influencing the TAMs as a significant strategy in cancer therapy. This comprehensive review presents the role of TAMs in the TME and various targeting strategies as a promising frontier in the ever-evolving field of cancer therapy. The current trends and challenges associated with TAM-based therapy in cancer are presented.
Collapse
Affiliation(s)
- Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA;
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangzhou 528400, China;
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Sanika Jadhav
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA;
| | - Zongliang Yue
- Department of Health Outcome and Research Policy, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas of Medical Sciences, Little Rock, AR 72205, USA;
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
25
|
Stip MC, Teeuwen L, Dierselhuis MP, Leusen JHW, Krijgsman D. Targeting the myeloid microenvironment in neuroblastoma. J Exp Clin Cancer Res 2023; 42:337. [PMID: 38087370 PMCID: PMC10716967 DOI: 10.1186/s13046-023-02913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Myeloid cells (granulocytes and monocytes/macrophages) play an important role in neuroblastoma. By inducing a complex immunosuppressive network, myeloid cells pose a challenge for the adaptive immune system to eliminate tumor cells, especially in high-risk neuroblastoma. This review first summarizes the pro- and anti-tumorigenic functions of myeloid cells, including granulocytes, monocytes, macrophages, and myeloid-derived suppressor cells (MDSC) during the development and progression of neuroblastoma. Secondly, we discuss how myeloid cells are engaged in the current treatment regimen and explore novel strategies to target these cells in neuroblastoma. These strategies include: (1) engaging myeloid cells as effector cells, (2) ablating myeloid cells or blocking the recruitment of myeloid cells to the tumor microenvironment and (3) reprogramming myeloid cells. Here we describe that despite their immunosuppressive traits, tumor-associated myeloid cells can still be engaged as effector cells, which is clear in anti-GD2 immunotherapy. However, their full potential is not yet reached, and myeloid cell engagement can be enhanced, for example by targeting the CD47/SIRPα axis. Though depletion of myeloid cells or blocking myeloid cell infiltration has been proven effective, this strategy also depletes possible effector cells for immunotherapy from the tumor microenvironment. Therefore, reprogramming of suppressive myeloid cells might be the optimal strategy, which reverses immunosuppressive traits, preserves myeloid cells as effectors of immunotherapy, and subsequently reactivates tumor-infiltrating T cells.
Collapse
Affiliation(s)
- Marjolein C Stip
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Loes Teeuwen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
26
|
Kennedy PT, Zannoupa D, Son MH, Dahal LN, Woolley JF. Neuroblastoma: an ongoing cold front for cancer immunotherapy. J Immunother Cancer 2023; 11:e007798. [PMID: 37993280 PMCID: PMC10668262 DOI: 10.1136/jitc-2023-007798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/24/2023] Open
Abstract
Neuroblastoma is the most frequent extracranial childhood tumour but effective treatment with current immunotherapies is challenging due to its immunosuppressive microenvironment. Efforts to date have focused on using immunotherapy to increase tumour immunogenicity and enhance anticancer immune responses, including anti-GD2 antibodies; immune checkpoint inhibitors; drugs which enhance macrophage and natural killer T (NKT) cell function; modulation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway; and engineering neuroblastoma-targeting chimeric-antigen receptor-T cells. Some of these strategies have strong preclinical foundation and are being tested clinically, although none have demonstrated notable success in treating paediatric neuroblastoma to date. Recently, approaches to overcome heterogeneity of neuroblastoma tumours and treatment resistance are being explored. These include rational combination strategies with the aim of achieving synergy, such as dual targeting of GD2 and tumour-associated macrophages or natural killer cells; GD2 and the B7-H3 immune checkpoint; GD2 and enhancer of zeste-2 methyltransferase inhibitors. Such combination strategies provide opportunities to overcome primary resistance to and maximize the benefits of immunotherapy in neuroblastoma.
Collapse
Affiliation(s)
- Paul T Kennedy
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Demetra Zannoupa
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Meong Hi Son
- Department of Pediatrics, Samsung Medical Center, Gangnam-gu, Seoul, Korea (the Republic of)
| | - Lekh N Dahal
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - John F Woolley
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| |
Collapse
|
27
|
Gao D, Fang L, Liu C, Yang M, Yu X, Wang L, Zhang W, Sun C, Zhuang J. Microenvironmental regulation in tumor progression: Interactions between cancer-associated fibroblasts and immune cells. Biomed Pharmacother 2023; 167:115622. [PMID: 37783155 DOI: 10.1016/j.biopha.2023.115622] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
The tumor microenvironment (TME), the "soil" on which tumor cells grow, has an important role in regulating the proliferation and metastasis of tumor cells as well as their response to treatment. Cancer-associated fibroblasts (CAFs), as the most abundant stromal cells of the TME, can not only directly alter the immunosuppressive effect of the TME through their own metabolism, but also influence the aggregation and function of immune cells by secreting a large number of cytokines and chemokines, reducing the body's immune surveillance of tumor cells and making them more prone to immune escape. Our study provides a comprehensive review of fibroblast chemotaxis, malignant transformation, metabolic characteristics, and interactions with immune cells. In addition, the current small molecule drugs targeting CAFs have been summarized, including both natural small molecules and targeted drugs for current clinical therapeutic applications. A complete review of the role of fibroblasts in TME from an immune perspective is presented, which has important implications in improving the efficiency of immunotherapy by targeting fibroblasts.
Collapse
Affiliation(s)
- Dandan Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Liguang Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Mengrui Yang
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
28
|
Jahangiri L. Neuroblastoma Interaction with the Tumour Microenvironment and Its Implications for Treatment and Disease Progression. Curr Oncol 2023; 30:9116-9140. [PMID: 37887559 PMCID: PMC10605583 DOI: 10.3390/curroncol30100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Neuroblastoma, a paediatric malignancy of the peripheral nervous system, displays a wide range of clinical outcomes, including regression to fatality despite extensive treatment. Neuroblastoma tumours display a complex interplay with their surrounding environment, known as the tumour microenvironment, which may affect disease progression and patient prognosis. This study aimed to dissect the ways in which neuroblastoma biology, treatment, prognosis, progression, and relapse are linked with the extracellular matrix, the dichotomous identities of neuroblastoma, various regulatory proteins and RNA, and extracellular vesicles within the backdrop of the tumour microenvironment. In addition, other aspects, such as immune cell infiltration, therapeutic options including monoclonal antibodies and small molecule inhibitors; and the ways in which these may affect disease progression and immunosuppression within the context of the neuroblastoma tumour microenvironment, are addressed. Such studies may shed light on useful therapeutic targets within the tumour microenvironment that may benefit groups of NB patients. Ultimately, a detailed understanding of these aspects will enable the neuroblastoma scientific community to improve treatment options, patient outcomes, and quality of life.
Collapse
Affiliation(s)
- Leila Jahangiri
- School of Science and Technology, Nottingham Trent University, Clifton Site, Nottingham NG11 8NS, UK;
- Division of Cellular and Molecular Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
29
|
Xu Y, Li W, Lin S, Liu B, Wu P, Li L. Fibroblast diversity and plasticity in the tumor microenvironment: roles in immunity and relevant therapies. Cell Commun Signal 2023; 21:234. [PMID: 37723510 PMCID: PMC10506315 DOI: 10.1186/s12964-023-01204-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 09/20/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), enriched in the tumor stroma, have received increasing attention because of their multifaceted effects on tumorigenesis, development, metastasis, and treatment resistance in malignancies. CAFs contributed to suppressive microenvironment via different mechanisms, while CAFs also exerted some antitumor effects. Therefore, CAFs have been considered promising therapeutic targets for their remarkable roles in malignant tumors. However, patients with malignancies failed to benefit from current CAFs-targeted drugs in many clinical trials, which suggests that further in-depth investigation into CAFs is necessary. Here, we summarize and outline the heterogeneity and plasticity of CAFs mainly by exploring their origin and activation, highlighting the regulation of CAFs in the tumor microenvironment during tumor evolution, as well as the critical roles performed by CAFs in tumor immunity. In addition, we summarize the current immunotherapies targeting CAFs, and conclude with a brief overview of some prospects for the future of CAFs research in the end. Video Abstract.
Collapse
Affiliation(s)
- Yashi Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binghan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Li Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
30
|
Vucur M, Ghallab A, Schneider AT, Adili A, Cheng M, Castoldi M, Singer MT, Büttner V, Keysberg LS, Küsgens L, Kohlhepp M, Görg B, Gallage S, Barragan Avila JE, Unger K, Kordes C, Leblond AL, Albrecht W, Loosen SH, Lohr C, Jördens MS, Babler A, Hayat S, Schumacher D, Koenen MT, Govaere O, Boekschoten MV, Jörs S, Villacorta-Martin C, Mazzaferro V, Llovet JM, Weiskirchen R, Kather JN, Starlinger P, Trauner M, Luedde M, Heij LR, Neumann UP, Keitel V, Bode JG, Schneider RK, Tacke F, Levkau B, Lammers T, Fluegen G, Alexandrov T, Collins AL, Nelson G, Oakley F, Mann DA, Roderburg C, Longerich T, Weber A, Villanueva A, Samson AL, Murphy JM, Kramann R, Geisler F, Costa IG, Hengstler JG, Heikenwalder M, Luedde T. Sublethal necroptosis signaling promotes inflammation and liver cancer. Immunity 2023; 56:1578-1595.e8. [PMID: 37329888 DOI: 10.1016/j.immuni.2023.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/30/2022] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-κB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1. This triggered hepatic cell proliferation as well as activation of procarcinogenic monocyte-derived macrophage cell clusters, contributing to hepatocarcinogenesis. In contrast, necrosome activation in hepatocytes with inactive NF-κB-signaling caused an accelerated execution of necroptosis, limiting alarmin release, and thereby preventing inflammation and hepatocarcinogenesis. Consistently, intratumoral NF-κB-necroptosis signatures were associated with poor prognosis in human hepatocarcinogenesis. Therefore, pharmacological reprogramming between these distinct forms of necroptosis may represent a promising strategy against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany.
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University Dortmund, Dortmund, Germany; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Anne T Schneider
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Arlind Adili
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Mirco Castoldi
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Michael T Singer
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Veronika Büttner
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Leonie S Keysberg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Lena Küsgens
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Marlene Kohlhepp
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Boris Görg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Suchira Gallage
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany; The M3 Research Institute, Eberhard Karls University, Tübingen, Germany
| | - Jose Efren Barragan Avila
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claus Kordes
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Anne-Laure Leblond
- Department for pathology and molecular pathology, Zürich University Hospital, Zürich, Switzerland
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University Dortmund, Dortmund, Germany
| | - Sven H Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Markus S Jördens
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Anne Babler
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - David Schumacher
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Maria T Koenen
- Department of Medicine, Rhein-Maas-Klinikum, Würselen, Germany
| | - Olivier Govaere
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Simone Jörs
- Second Department of Internal Medicine, Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Carlos Villacorta-Martin
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, University of Milan, Milan, Italy
| | - Josep M Llovet
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Translational Research Laboratory, Barcelona-Clínic Liver Cancer Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Liver Unit, CIBEREHD, Hospital Clínic, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Patrick Starlinger
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mark Luedde
- Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lara R Heij
- Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Ulf P Neumann
- Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany; Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Medical Faculty of Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Rebekka K Schneider
- Department of Cell Biology, Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Dusseldorf, Heinrich Heine University, Dusseldorf, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Georg Fluegen
- Department of Surgery (A), University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University, Dusseldorf, Germany
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Amy L Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Glyn Nelson
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Achim Weber
- Department for pathology and molecular pathology, Zürich University Hospital, Zürich, Switzerland
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andre L Samson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Fabian Geisler
- Second Department of Internal Medicine, Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University Dortmund, Dortmund, Germany
| | - Mathias Heikenwalder
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany; The M3 Research Institute, Eberhard Karls University, Tübingen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany.
| |
Collapse
|
31
|
Fetahu IS, Esser-Skala W, Dnyansagar R, Sindelar S, Rifatbegovic F, Bileck A, Skos L, Bozsaky E, Lazic D, Shaw L, Tötzl M, Tarlungeanu D, Bernkopf M, Rados M, Weninger W, Tomazou EM, Bock C, Gerner C, Ladenstein R, Farlik M, Fortelny N, Taschner-Mandl S. Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis. Nat Commun 2023; 14:3620. [PMID: 37365178 PMCID: PMC10293285 DOI: 10.1038/s41467-023-39210-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Metastasis is the major cause of cancer-related deaths. Neuroblastoma (NB), a childhood tumor has been molecularly defined at the primary cancer site, however, the bone marrow (BM) as the metastatic niche of NB is poorly characterized. Here we perform single-cell transcriptomic and epigenomic profiling of BM aspirates from 11 subjects spanning three major NB subtypes and compare these to five age-matched and metastasis-free BM, followed by in-depth single cell analyses of tissue diversity and cell-cell interactions, as well as functional validation. We show that cellular plasticity of NB tumor cells is conserved upon metastasis and tumor cell type composition is NB subtype-dependent. NB cells signal to the BM microenvironment, rewiring via macrophage mgration inhibitory factor and midkine signaling specifically monocytes, which exhibit M1 and M2 features, are marked by activation of pro- and anti-inflammatory programs, and express tumor-promoting factors, reminiscent of tumor-associated macrophages. The interactions and pathways characterized in our study provide the basis for therapeutic approaches that target tumor-to-microenvironment interactions.
Collapse
Affiliation(s)
- Irfete S Fetahu
- St. Anna Children's Cancer Research Institute, Vienna, Austria.
| | - Wolfgang Esser-Skala
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Rohit Dnyansagar
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Samuel Sindelar
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | - Andrea Bileck
- University of Vienna, Department of Analytical Chemistry, Faculty of Chemistry, Vienna, Austria
- Joint Metabolomics Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Lukas Skos
- University of Vienna, Department of Analytical Chemistry, Faculty of Chemistry, Vienna, Austria
| | - Eva Bozsaky
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Daria Lazic
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Lisa Shaw
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Marcus Tötzl
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - Marie Bernkopf
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Magdalena Rados
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Wolfgang Weninger
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Eleni M Tomazou
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Christopher Gerner
- University of Vienna, Department of Analytical Chemistry, Faculty of Chemistry, Vienna, Austria
- Joint Metabolomics Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Ruth Ladenstein
- St. Anna Children's Hospital and St. Anna Children's Cancer Research Institute, Department of Studies and Statistics for Integrated Research and Projects, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics, Vienna, Austria
| | - Matthias Farlik
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Nikolaus Fortelny
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
| | | |
Collapse
|
32
|
Bou-Dargham MJ, Sha L, Sarker DB, Krakora-Compagno MZ, Chen Z, Zhang J, Sang QXA. TCGA RNA-Seq and Tumor-Infiltrating Lymphocyte Imaging Data Reveal Cold Tumor Signatures of Invasive Ductal Carcinomas and Estrogen Receptor-Positive Human Breast Tumors. Int J Mol Sci 2023; 24:ijms24119355. [PMID: 37298307 DOI: 10.3390/ijms24119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Comparative studies of immune-active hot and immune-deserted cold tumors are critical for identifying therapeutic targets and strategies to improve immunotherapy outcomes in cancer patients. Tumors with high tumor-infiltrating lymphocytes (TILs) are likely to respond to immunotherapy. We used the human breast cancer RNA-seq data from the cancer genome atlas (TCGA) and classified them into hot and cold tumors based on their lymphocyte infiltration scores. We compared the immune profiles of hot and cold tumors, their corresponding normal tissue adjacent to the tumor (NAT), and normal breast tissues from healthy individuals from the Genotype-Tissue Expression (GTEx) database. Cold tumors showed a significantly lower effector T cells, lower levels of antigen presentation, higher pro-tumorigenic M2 macrophages, and higher expression of extracellular matrix (ECM) stiffness-associated genes. Hot/cold dichotomy was further tested using TIL maps and H&E whole-slide pathology images from the cancer imaging archive (TCIA). Analysis of both datasets revealed that infiltrating ductal carcinoma and estrogen receptor ER-positive tumors were significantly associated with cold features. However, only TIL map analysis indicated lobular carcinomas as cold tumors and triple-negative breast cancers (TNBC) as hot tumors. Thus, RNA-seq data may be clinically relevant to tumor immune signatures when the results are supported by pathological evidence.
Collapse
Affiliation(s)
- Mayassa J Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Linlin Sha
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Drishty B Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | | | - Zhui Chen
- Abbisko Therapeutics, Shanghai 200100, China
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
33
|
Yamashita S, Takasu C, Morine Y, Ishibashi H, Ikemoto T, Mori H, Yamada S, Oya T, Tsuneyama K, Shimada M. Characteristic submucosal alteration in biliary carcinogenesis of pancreaticobiliary maljunction with a focus on inflammasome activation. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2023; 30:462-472. [PMID: 36259178 DOI: 10.1002/jhbp.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 04/28/2023]
Abstract
BACKGROUND This study investigated submucosal alterations in biliary carcinogenesis of pancreaticobiliary maljunction (PBM). METHODS Thirty-three patients with PBM (including seven with gallbladder [GB] cancer), four with neither biliary tract cancer nor PBM who underwent pancreaticoduodenectomy (controls), and seven with chronic cholecystitis without PBM were enrolled. Protein expression of α-smooth muscle actin (αSMA), CD68, and CD204 in the GB lamina propria and that of NLRP3 and caspase 1 in the GB epithelium and lamina propria were examined. RESULTS Compared with the control and cholecystitis groups, αSMA expression was higher in the cancerous part (stroma) of the GB in patients with GB cancer + PBM and in the lamina propria of patients with PBM. The CD204/CD68 ratio in the lamina propria was higher in the PBM group than in the control and cholecystitis groups. NLRP3 and caspase 1 expression in both the lamina propria and epithelium was higher in the PBM than control group. In the PBM group, NLRP3- and caspase 1-positive cells in the lamina propria were located near the epithelium. CONCLUSION Activated fibroblasts and M2 macrophages in the GB lamina propria may be associated with biliary carcinogenesis of PBM, possibly through inflammasome activation.
Collapse
Affiliation(s)
- Shoko Yamashita
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
- Department of Pathology and Laboratory Medicine, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Chie Takasu
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Hiroki Ishibashi
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Hiroki Mori
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Shinichiro Yamada
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
| |
Collapse
|
34
|
Zhao B, Wu B, Feng N, Zhang X, Zhang X, Wei Y, Zhang W. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol Oncol 2023; 16:28. [PMID: 36945046 PMCID: PMC10032017 DOI: 10.1186/s13045-023-01426-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The tumor microenvironment (TME) has been extensively investigated; however, it is complex and remains unclear, especially in elderly patients. Senescence is a cellular response to a variety of stress signals, which is characterized by stable arrest of the cell cycle and major changes in cell morphology and physiology. To the best of our knowledge, senescence leads to consistent arrest of tumor cells and remodeling of the tumor-immune microenvironment (TIME) by activating a set of pleiotropic cytokines, chemokines, growth factors, and proteinases, which constitute the senescence-associated secretory phenotype (SASP). On the one hand, the SASP promotes antitumor immunity, which enhances treatment efficacy; on the other hand, the SASP increases immunosuppressive cell infiltration, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and N2 neutrophils, contributing to TIME suppression. Therefore, a deeper understanding of the regulation of the SASP and components contributing to robust antitumor immunity in elderly individuals with different cancer types and the available therapies is necessary to control tumor cell senescence and provide greater clinical benefits to patients. In this review, we summarize the key biological functions mediated by cytokines and intercellular interactions and significant components of the TME landscape, which influence the immunotherapy response in geriatric oncology. Furthermore, we summarize recent advances in clinical practices targeting TME components and discuss potential senescent TME targets.
Collapse
Affiliation(s)
- Binghao Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Bo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Nan Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
35
|
Zhang C, Fei Y, Wang H, Hu S, Liu C, Hu R, Du Q. CAFs orchestrates tumor immune microenvironment—A new target in cancer therapy? Front Pharmacol 2023; 14:1113378. [PMID: 37007004 PMCID: PMC10064291 DOI: 10.3389/fphar.2023.1113378] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
Cancer immunotherapy has opened a new landscape in cancer treatment, however, the poor specificity and resistance of most targeted therapeutics have limited their therapeutic efficacy. In recent years, the role of CAFs in immune regulation has been increasingly noted as more evidence has been uncovered regarding the link between cancer-associated fibroblasts (CAFs) and the evolutionary process of tumor progression. CAFs interact with immune cells to shape the tumor immune microenvironment (TIME) that favors malignant tumor progression, a crosstalk process that leads to the failure of cancer immunotherapies. In this review, we outline recent advances in the immunosuppressive function of CAFs, highlight the mechanisms of CAFs-immune cell interactions, and discuss current CAF-targeted therapeutic strategies for future study.
Collapse
Affiliation(s)
- Chunxue Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuxiang Fei
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hui Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Sheng Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Qianming Du, ; Rong Hu, ; Chao Liu,
| | - Rong Hu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu Nanjing, China
- *Correspondence: Qianming Du, ; Rong Hu, ; Chao Liu,
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Qianming Du, ; Rong Hu, ; Chao Liu,
| |
Collapse
|
36
|
Vitale C, Bottino C, Castriconi R. Monocyte and Macrophage in Neuroblastoma: Blocking Their Pro-Tumoral Functions and Strengthening Their Crosstalk with Natural Killer Cells. Cells 2023; 12:885. [PMID: 36980226 PMCID: PMC10047506 DOI: 10.3390/cells12060885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Over the past decade, immunotherapy has represented an enormous step forward in the fight against cancer. Immunotherapeutic approaches have increasingly become a fundamental part of the combined therapies currently adopted in the treatment of patients with high-risk (HR) neuroblastoma (NB). An increasing number of studies focus on the understanding of the immune landscape in NB and, since this tumor expresses low or null levels of MHC class I, on the development of new strategies aimed at enhancing innate immunity, especially Natural Killer (NK) cells and macrophages. There is growing evidence that, within the NB tumor microenvironment (TME), tumor-associated macrophages (TAMs), which mainly present an M2-like phenotype, have a crucial role in mediating NB development and immune evasion, and they have been correlated to poor clinical outcomes. Importantly, TAM can also impair the antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells upon the administration of anti-GD2 monoclonal antibodies (mAbs), the current standard immunotherapy for HR-NB patients. This review deals with the main mechanisms regulating the crosstalk among NB cells and TAMs or other cellular components of the TME, which support tumor development and induce drug resistance. Furthermore, we will address the most recent strategies aimed at limiting the number of pro-tumoral macrophages within the TME, reprogramming the TAMs functional state, thus enhancing NK cell functions. We also prospectively discuss new or unexplored aspects of human macrophage heterogeneity.
Collapse
Affiliation(s)
- Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
37
|
Cancer-Associated Fibroblasts Exposed to High-Dose Ionizing Radiation Promote M2 Polarization of Macrophages, Which Induce Radiosensitivity in Cervical Cancer. Cancers (Basel) 2023; 15:cancers15051620. [PMID: 36900416 PMCID: PMC10001412 DOI: 10.3390/cancers15051620] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023] Open
Abstract
Radiotherapy, including brachytherapy, is a major therapeutic regimen for cervical cancer. Radioresistance is a decisive factor in radiation treatment failure. Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) in the tumor microenvironment are critical factors in the curative effects of cancer therapies. However, the interactions between TAMs and CAFs in the context of ionizing radiation are not fully understood. This study was undertaken to investigate whether M2 macrophages induce radioresistance in cervical cancer and to explore the TAMs' phenotypic transformation after IR and its underlying mechanisms. The radioresistance of cervical cancer cells was enhanced after being co-cultured with M2 macrophages. TAMs tended to undergo M2 polarization after high-dose irradiation, which was strongly associated with CAFs in both mouse models and patients with cervical cancer. Additionally, cytokine and chemokine analysis was performed to find that high-dose irradiated CAFs promoted macrophage polarization towards the M2 phenotype through chemokine (C-C motif) ligand 2. Collectively, our results highlight the crucial role that high-dose irradiated CAFs play in the regulation of M2 phenotype polarization, which ultimately induces radioresistance in cervical cancer.
Collapse
|
38
|
A nomogram for the preoperative estimation of neuroblastoma risk despite inadequate biopsy information. Pediatr Surg Int 2023; 39:98. [PMID: 36725741 DOI: 10.1007/s00383-023-05370-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE If the preoperative pathological information is inadequate, a risk classification may not be able to be determined for some patients with neuroblastoma. Our objectives were to include imaging factors, serum biomarkers, and demographic factors in a nomogram to distinguish high-risk patients before surgical resection based on the COG classification. METHOD A total of 106 patients were included in the study. Of these, patients with clinicopathologically confirmed neuroblastoma at Tianjin Children's Hospital from January 2013 to November 2021 formed the training cohort (n = 82) for nomogram development, and those patients from January 2010 to December 2013 formed the validation cohort (n = 24) to confirm the model's performance. RESULT On multivariate analysis of the primary cohort, independent factors for high risk were the presence of distant metastasis (p = 0.004), lactate dehydrogenase (LDH) (p = 0.009), and tumor volume (p = 0.033), which were all selected into the nomogram. The calibration curve for probability showed good agreement between prediction by nomogram and actual observation. The C-index of the nomogram was 0.95 95% [0.916-0.99]. Application of the nomogram in the validation cohort still gave good discrimination and good calibration. CONCLUSION Three independent factors including the presence of distant metastasis, lactate dehydrogenase (LDH), and tumor volume are associated with high-risk neuroblastoma and selected into the nomogram. The novel nomogram has the flexibility to apply a clinically suitable cutoff to identify high-risk neuroblastoma patients despite inadequate preoperative pathological information. The nomogram can allow these patients to be offered suitable induction chemotherapy regimens and surgical plans. LEVELS OF EVIDENCE Level III.
Collapse
|
39
|
Sarkar M, Nguyen T, Gundre E, Ogunlusi O, El-Sobky M, Giri B, Sarkar TR. Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front Cell Dev Biol 2023; 11:1089068. [PMID: 36793444 PMCID: PMC9923123 DOI: 10.3389/fcell.2023.1089068] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Stromal heterogeneity of tumor microenvironment (TME) plays a crucial role in malignancy and therapeutic resistance. Cancer-associated fibroblasts (CAFs) are one of the major players in tumor stroma. The heterogeneous sources of origin and subsequent impacts of crosstalk with breast cancer cells flaunt serious challenges before current therapies to cure triple-negative breast cancer (TNBC) and other cancers. The positive and reciprocal feedback of CAFs to induce cancer cells dictates their mutual synergy in establishing malignancy. Their substantial role in creating a tumor-promoting niche has reduced the efficacy of several anti-cancer treatments, including radiation, chemotherapy, immunotherapy, and endocrine therapy. Over the years, there has been an emphasis on understanding CAF-induced therapeutic resistance in order to enhance cancer therapy results. CAFs, in the majority of cases, employ crosstalk, stromal management, and other strategies to generate resilience in surrounding tumor cells. This emphasizes the significance of developing novel strategies that target particular tumor-promoting CAF subpopulations, which will improve treatment sensitivity and impede tumor growth. In this review, we discuss the current understanding of the origin and heterogeneity of CAFs, their role in tumor progression, and altering the tumor response to therapeutic agents in breast cancer. In addition, we also discuss the potential and possible approaches for CAF-mediated therapies.
Collapse
Affiliation(s)
- Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tristan Nguyen
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Esheksha Gundre
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Olajumoke Ogunlusi
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Mohanad El-Sobky
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, English Bazar, India
| | - Tapasree Roy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
40
|
Li Q, Zhang L, Lang J, Tan Z, Feng Q, Zhu F, Liu G, Ying Z, Yu X, Feng H, Yi H, Wen Q, Jin T, Cheng K, Zhao X, Ge M. Lipid-Peptide-mRNA Nanoparticles Augment Radioiodine Uptake in Anaplastic Thyroid Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204334. [PMID: 36453580 PMCID: PMC9875617 DOI: 10.1002/advs.202204334] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Restoring sodium iodide symporter (NIS) expression and function remains a major challenge for radioiodine therapy in anaplastic thyroid cancer (ATC). For more efficient delivery of messenger RNA (mRNA) to manipulate protein expression, a lipid-peptide-mRNA (LPm) nanoparticle (NP) is developed. The LPm NP is prepared by using amphiphilic peptides to assemble a peptide core and which is then coated with cationic lipids. An amphiphilic chimeric peptide, consisting of nine arginine and hydrophobic segments (6 histidine, C18 or cholesterol), is synthesized for adsorption of mRNA encoding NIS in RNase-free conditions. In vitro studies show that LP(R9H6) m NP is most efficient at delivering mRNA and can increase NIS expression in ATC cells by more than 10-fold. After intratumoral injection of NIS mRNA formulated in optimized LPm NP, NIS expression in subcutaneous ATC tumor tissue increases significantly in nude mice, resulting in more iodine 131 (131 I) accumulation in the tumor, thereby significantly inhibiting tumor growth. Overall, this work designs three arginine-rich peptide nanoparticles, contributing to the choice of liposome cores for gene delivery. LPm NP can serve as a promising adjunctive therapy for patients with ATC by restoring iodine affinity and enhancing the therapeutic efficacy of radioactive iodine.
Collapse
Affiliation(s)
- Qinglin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Lizhuo Zhang
- Department of Head and Neck SurgeryCenter of Otolaryngology-head and neck surgeryZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiang310014China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Jiayan Lang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Zhuo Tan
- Department of Head and Neck SurgeryCenter of Otolaryngology-head and neck surgeryZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiang310014China
| | - Qingqing Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Fei Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Zhangguo Ying
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Xuefei Yu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - He Feng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Heqing Yi
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Qingliang Wen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Tiefeng Jin
- Department of Head and Neck SurgeryCenter of Otolaryngology-head and neck surgeryZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiang310014China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Minghua Ge
- Department of Head and Neck SurgeryCenter of Otolaryngology-head and neck surgeryZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiang310014China
| |
Collapse
|
41
|
Valind A, Verhoeven BM, Enoksson J, Karlsson J, Christensson G, Mañas A, Aaltonen K, Jansson C, Bexell D, Baryawno N, Gisselsson D, Hagerling C. Macrophage infiltration promotes regrowth in MYCN-amplified neuroblastoma after chemotherapy. Oncoimmunology 2023; 12:2184130. [PMID: 36875552 PMCID: PMC9980604 DOI: 10.1080/2162402x.2023.2184130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Despite aggressive treatment, the 5-year event-free survival rate for children with high-risk neuroblastoma is <50%. While most high-risk neuroblastoma patients initially respond to treatment, often with complete clinical remission, many eventually relapse with therapy-resistant tumors. Novel therapeutic alternatives that prevent the recurrence of therapy-resistant tumors are urgently needed. To understand the adaptation of neuroblastoma under therapy, we analyzed the transcriptomic landscape in 46 clinical tumor samples collected before (PRE) or after (POST) treatment from 22 neuroblastoma patients. RNA sequencing revealed that many of the top-upregulated biological processes in POST MYCN amplified (MNA+) tumors compared to PRE MNA+ tumors were immune-related, and there was a significant increase in numerous genes associated with macrophages. The infiltration of macrophages was corroborated by immunohistochemistry and spatial digital protein profiling. Moreover, POST MNA+ tumor cells were more immunogenic compared to PRE MNA+ tumor cells. To find support for the macrophage-induced outgrowth of certain subpopulations of immunogenic tumor cells following treatment, we examined the genetic landscape in multiple clinical PRE and POST tumor samples from nine neuroblastoma patients revealing a significant correlation between an increased amount of copy number aberrations (CNA) and macrophage infiltration in POST MNA+ tumor samples. Using an in vivo neuroblastoma patient-derived xenograft (PDX) chemotherapy model, we further show that inhibition of macrophage recruitment with anti-CSF1R treatment prevents the regrowth of MNA+ tumors following chemotherapy. Taken together, our work supports a therapeutic strategy for fighting the relapse of MNA+ neuroblastoma by targeting the immune microenvironment.
Collapse
Affiliation(s)
- Anders Valind
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Sweden Karolinska Institute, Lund, Sweden.,Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| | - Bronte Manouk Verhoeven
- Childhood Cancer Research Unit, Department of Women's and Children's Healthy, Karolinska Institute, Stockholm, Sweden
| | - Jens Enoksson
- Department of Pathology, Laboratory Medicine, Skåne University Hospital, Lund, Sweden
| | - Jenny Karlsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Sweden Karolinska Institute, Lund, Sweden
| | - Gustav Christensson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Sweden Karolinska Institute, Lund, Sweden
| | - Adriana Mañas
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristina Aaltonen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Caroline Jansson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Sweden Karolinska Institute, Lund, Sweden
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Healthy, Karolinska Institute, Stockholm, Sweden
| | - David Gisselsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Sweden Karolinska Institute, Lund, Sweden.,Department of Pathology, Laboratory Medicine, Skåne University Hospital, Lund, Sweden
| | - Catharina Hagerling
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Sweden Karolinska Institute, Lund, Sweden.,Department of Pathology, Laboratory Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
42
|
Neuroblastoma Tumor-Associated Mesenchymal Stromal Cells Regulate the Cytolytic Functions of NK Cells. Cancers (Basel) 2022; 15:cancers15010019. [PMID: 36612020 PMCID: PMC9818020 DOI: 10.3390/cancers15010019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Neuroblastoma tumor-associated mesenchymal stromal cells (NB-TA-MSC) have been extensively characterized for their pro-tumorigenic properties, while their immunosuppressive potential, especially against NK cells, has not been thoroughly investigated. Herein, we study the immune-regulatory potential of six primary young and senescent NB-TA-MSC on NK cell function. Young cells display a phenotype (CD105+/CD90+/CD73+/CD29+/CD146+) typical of MSC cells and, in addition, express high levels of immunomodulatory molecules (MHC-I, PDL-1 and PDL-2 and transcriptional-co-activator WWTR1), able to hinder NK cell activity. Notably, four of them express the neuroblastoma marker GD2, the most common target for NB immunotherapy. From a functional point of view, young NB-TA-MSC, contrary to the senescent ones, are resistant to activated NK cell-mediated lysis, but this behavior is overcome using anti-CD105 antibody TRC105 that activates antibody-dependent cell-mediated cytotoxicity. In addition, proliferating NB-TA-MSC, but not the senescent ones, after six days of co-culture, inhibit proliferation, expression of activating receptors and cytolytic activity of freshly isolated NK. Inhibitors of the soluble immunosuppressive factors L-kynurenine and prostaglandin E2 efficiently counteract this latter effect. Our data highlight the presence of phenotypically heterogeneous NB-TA-MSC displaying potent immunoregulatory properties towards NK cells, whose inhibition could be mandatory to improve the antitumor efficacy of targeted immunotherapy.
Collapse
|
43
|
Louault K, Porras T, Lee MH, Muthugounder S, Kennedy RJ, Blavier L, Sarte E, Fernandez GE, Yang F, Pawel BR, Shimada H, Asgharzadeh S, DeClerck YA. Fibroblasts and macrophages cooperate to create a pro-tumorigenic and immune resistant environment via activation of TGF-β/IL-6 pathway in neuroblastoma. Oncoimmunology 2022; 11:2146860. [PMID: 36479153 PMCID: PMC9721439 DOI: 10.1080/2162402x.2022.2146860] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Tumor-associated macrophages (TAM) and cancer-associated fibroblasts (CAF) and their precursor mesenchymal stromal cells (MSC) are often detected together in tumors, but how they cooperate is not well understood. Here, we show that TAM and CAF are the most abundant nonmalignant cells and are present together in untreated human neuroblastoma (NB) tumors that are also poorly infiltrated with T and natural killer (NK) cells. We then show that MSC and CAF-MSC harvested from NB tumors protected human monocytes (MN) from spontaneous apoptosis in an interleukin (IL)-6 dependent mechanism. The interactions of MN and MSC with NB cells resulted in a significant induction or increase in the expression of several pro-tumorigenic cytokines/chemokines (TGF-β1, MCP-1, IL-6, IL-8, and IL-4) but not of anti-tumorigenic cytokines (TNF-α, IL-12) by MN or MSC, while also inducing cytokine expression in quiescent NB cells. We then identified a TGF-β1/IL-6 pathway where TGF-β1 stimulated the expression of IL-6 in NB cells and MSC, promoting TAM survival. Evidence for the contribution of TAM and MSC to the activation of this pathway was then provided in xenotransplanted NB tumors and patients with primary tumors by demonstrating a direct correlation between the presence of CAF and p-SMAD2 and p-STAT3. The data highlight a new mechanism of interaction between TAM and CAF supporting their pro-tumorigenic function in cancer.
Collapse
Affiliation(s)
- Kevin Louault
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA
| | - Tania Porras
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA
| | - Meng-Hua Lee
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA
| | - Sakunthala Muthugounder
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA
| | - Rebekah J. Kennedy
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA
| | - Laurence Blavier
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA
| | - Emily Sarte
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA
| | - G. Esteban Fernandez
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Fusheng Yang
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Bruce R. Pawel
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Hiroyuki Shimada
- Departments of Pathology and Pediatrics, Stanford University, Stanford, CA, USA
| | - Shahab Asgharzadeh
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA,Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Yves A. DeClerck
- Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA, USA,Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA,CONTACT Yves A. DeClerck ; Cancer and Blood Diseases Institute, Department of Pediatrics, Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, CA90027, USA
| |
Collapse
|
44
|
Zafari R, Razi S, Rezaei N. The role of dendritic cells in neuroblastoma: Implications for immunotherapy. Immunobiology 2022; 227:152293. [DOI: 10.1016/j.imbio.2022.152293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2022]
|
45
|
Thiery J. Modulation of the antitumor immune response by cancer-associated fibroblasts: mechanisms and targeting strategies to hamper their immunosuppressive functions. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:598-629. [PMID: 36338519 PMCID: PMC9630350 DOI: 10.37349/etat.2022.00103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are highly heterogeneous players that shape the tumor microenvironment and influence tumor progression, metastasis formation, and response to conventional therapies. During the past years, some CAFs subsets have also been involved in the modulation of immune cell functions, affecting the efficacy of both innate and adaptive anti-tumor immune responses. Consequently, the implication of these stromal cells in the response to immunotherapeutic strategies raised major concerns. In this review, current knowledge of CAFs origins and heterogeneity in the tumor stroma, as well as their effects on several immune cell populations that explain their immunosuppressive capabilities are summarized. The current development of therapeutic strategies for targeting this population and their implication in the field of cancer immunotherapy is also highlighted.
Collapse
Affiliation(s)
- Jerome Thiery
- INSERM, UMR 1186, 94800 Villejuif, France
- Gustave Roussy Cancer Campus, 94805 Villejuif, France
- University Paris Saclay, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France
| |
Collapse
|
46
|
Gomez RL, Ibragimova S, Ramachandran R, Philpott A, Ali FR. Tumoral heterogeneity in neuroblastoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188805. [PMID: 36162542 DOI: 10.1016/j.bbcan.2022.188805] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/28/2022] [Accepted: 09/17/2022] [Indexed: 10/31/2022]
Abstract
Neuroblastoma is a solid, neuroendocrine tumor with divergent clinical behavior ranging from asymptomatic to fatal. The diverse clinical presentations of neuroblastoma are directly linked to the high intra- and inter-tumoral heterogeneity it presents. This heterogeneity is strongly associated with therapeutic resistance and continuous relapses, often leading to fatal outcomes. The development of successful risk assessment and tailored treatment strategies lies in evaluating the extent of heterogeneity via the accurate genetic and epigenetic profiling of distinct cell subpopulations present in the tumor. Recent studies have focused on understanding the molecular mechanisms that drive tumoral heterogeneity in pursuing better therapeutic and diagnostic approaches. This review describes the cellular, genetic, and epigenetic aspects of neuroblastoma heterogeneity. In addition, we summarize the recent findings on three crucial factors that can lead to heterogeneity in solid tumors: the inherent diversity of the progenitor cells, the presence of cancer stem cells, and the influence of the tumor microenvironment.
Collapse
Affiliation(s)
- Roshna Lawrence Gomez
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Shakhzada Ibragimova
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Revathy Ramachandran
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates.
| |
Collapse
|
47
|
Bartolucci D, Montemurro L, Raieli S, Lampis S, Pession A, Hrelia P, Tonelli R. MYCN Impact on High-Risk Neuroblastoma: From Diagnosis and Prognosis to Targeted Treatment. Cancers (Basel) 2022; 14:4421. [PMID: 36139583 PMCID: PMC9496712 DOI: 10.3390/cancers14184421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Among childhood cancers, neuroblastoma is the most diffuse solid tumor and the deadliest in children. While to date, the pathology has become progressively manageable with a significant increase in 5-year survival for its less aggressive form, high-risk neuroblastoma (HR-NB) remains a major issue with poor outcome and little survivability of patients. The staging system has also been improved to better fit patient needs and to administer therapies in a more focused manner in consideration of pathology features. New and improved therapies have been developed; nevertheless, low efficacy and high toxicity remain a staple feature of current high-risk neuroblastoma treatment. For this reason, more specific procedures are required, and new therapeutic targets are also needed for a precise medicine approach. In this scenario, MYCN is certainly one of the most interesting targets. Indeed, MYCN is one of the most relevant hallmarks of HR-NB, and many studies has been carried out in recent years to discover potent and specific inhibitors to block its activities and any related oncogenic function. N-Myc protein has been considered an undruggable target for a long time. Thus, many new indirect and direct approaches have been discovered and preclinically evaluated for the interaction with MYCN and its pathways; a few of the most promising approaches are nearing clinical application for the investigation in HR-NB.
Collapse
Affiliation(s)
| | - Luca Montemurro
- Pediatric Oncology and Hematology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | | | - Andrea Pession
- Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
48
|
Li Y, Tian R, Liu J, Li J, Tan H, Wu Q, Fu X. Deciphering the immune landscape dominated by cancer-associated fibroblasts to investigate their potential in indicating prognosis and guiding therapeutic regimens in high grade serous ovarian carcinoma. Front Immunol 2022; 13:940801. [PMID: 36119108 PMCID: PMC9478207 DOI: 10.3389/fimmu.2022.940801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Limited immunotherapeutic effect in high-grade serous ovarian carcinoma (HGSOC) propels exploration of the mechanics behind this resistance, which may be partly elucidated by investigating characters of cancer-associated fibroblasts (CAFs), a significant population in HGSOC involved in shaping tumor immune microenvironment. Herein, leveraging gene expression data of HGSOC samples from The Cancer Genome Atlas and Gene Expression Omnibus datasets, we suggested that CAFs detrimentally affected the outcomes of HGSOC patients. Subsequently, we performed weighted gene co-expression network analysis (WGCNA) to identify a CAFs-related module and screened out seven hub genes from this module, all of which were positively correlated with the infiltration of immunosuppressive macrophages. As one of the hub genes, the expression of fibrillin 1 (FBN1) and its relevance to CD206 were further verified by immunohistochemistry staining in HGSOC samples. Meanwhile, we extracted genes that correlated well with CAF signatures to construct a CAFscore. The capacity of the CAFscore as an independent prognostic factor was validated by Cox regression analyses, and its relevance to components as well as signals in the tumor immune microenvironment was also investigated. Under the evaluation by the CAFscore, HGSOC patients with relatively high CAFscore had worse outcomes, activated mesenchymal signaling pathways, and immune checkpoint blockade (ICB) resistance signatures, which was consistent with the fact that non-responders in anti-PD-1 treatment cohorts tended to have higher CAFscore. Besides, the possibility of CAFscore to guide the selection of sensitive chemotherapeutic agents was explored. In conclusion, individualized assessment of the CAFscore could uncover the extent of stroma activation and immunosuppression and inform therapeutic strategies to improve the benefit of therapies.
Collapse
Affiliation(s)
- Yimin Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruotong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Hong Tan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaodan Fu, ; ; Qihui Wu, ; Hong Tan,
| | - Qihui Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaodan Fu, ; ; Qihui Wu, ; Hong Tan,
| | - Xiaodan Fu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- *Correspondence: Xiaodan Fu, ; ; Qihui Wu, ; Hong Tan,
| |
Collapse
|
49
|
Zhu Y, Li X, Wang L, Hong X, Yang J. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:988295. [PMID: 36046791 PMCID: PMC9421293 DOI: 10.3389/fendo.2022.988295] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
It is notorious that cancer cells alter their metabolism to adjust to harsh environments of hypoxia and nutritional starvation. Metabolic reprogramming most often occurs in the tumor microenvironment (TME). TME is defined as the cellular environment in which the tumor resides. This includes surrounding blood vessels, fibroblasts, immune cells, signaling molecules and the extracellular matrix (ECM). It is increasingly recognized that cancer cells, fibroblasts and immune cells within TME can regulate tumor progression through metabolic reprogramming. As the most significant proportion of cells among all the stromal cells that constitute TME, cancer-associated fibroblasts (CAFs) are closely associated with tumorigenesis and progression. Multitudinous studies have shown that CAFs participate in and promote tumor metabolic reprogramming and exert regulatory effects via the dysregulation of metabolic pathways. Previous studies have demonstrated that curbing the substance exchange between CAFs and tumor cells can dramatically restrain tumor growth. Emerging studies suggest that CAFs within the TME have emerged as important determinants of metabolic reprogramming. Metabolic reprogramming also occurs in the metabolic pattern of immune cells. In the meanwhile, immune cell phenotype and functions are metabolically regulated. Notably, immune cell functions influenced by metabolic programs may ultimately lead to alterations in tumor immunity. Despite the fact that multiple previous researches have been devoted to studying the interplays between different cells in the tumor microenvironment, the complicated relationship between CAFs and immune cells and implications of metabolic reprogramming remains unknown and requires further investigation. In this review, we discuss our current comprehension of metabolic reprogramming of CAFs and immune cells (mainly glucose, amino acid, and lipid metabolism) and crosstalk between them that induces immune responses, and we also highlight their contributions to tumorigenesis and progression. Furthermore, we underscore potential therapeutic opportunities arising from metabolism dysregulation and metabolic crosstalk, focusing on strategies targeting CAFs and immune cell metabolic crosstalk in cancer immunotherapy.
Collapse
Affiliation(s)
- Yifei Zhu
- School of Medicine, Southeast University, Nanjing, China
| | - Xinyan Li
- School of Medicine, Southeast University, Nanjing, China
| | - Lei Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Xiwei Hong
- School of Medicine, Southeast University, Nanjing, China
| | - Jie Yang
- Department of General surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
50
|
Costa A, Thirant C, Kramdi A, Pierre-Eugène C, Louis-Brennetot C, Blanchard O, Surdez D, Gruel N, Lapouble E, Pierron G, Sitbon D, Brisse H, Gauthier A, Fréneaux P, Bohec M, Raynal V, Baulande S, Leclere R, Champenois G, Nicolas A, Meseure D, Bellini A, Marabelle A, Geoerger B, Mechta-Grigoriou F, Schleiermacher G, Menger L, Delattre O, Janoueix-Lerosey I. Single-cell transcriptomics reveals shared immunosuppressive landscapes of mouse and human neuroblastoma. J Immunother Cancer 2022; 10:jitc-2022-004807. [PMID: 36054452 PMCID: PMC9362821 DOI: 10.1136/jitc-2022-004807] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND High-risk neuroblastoma is a pediatric cancer with still a dismal prognosis, despite multimodal and intensive therapies. Tumor microenvironment represents a key component of the tumor ecosystem the complexity of which has to be accurately understood to define selective targeting opportunities, including immune-based therapies. METHODS We combined various approaches including single-cell transcriptomics to dissect the tumor microenvironment of both a transgenic mouse neuroblastoma model and a cohort of 10 biopsies from neuroblastoma patients, either at diagnosis or at relapse. Features of related cells were validated by multicolor flow cytometry and functional assays. RESULTS We show that the immune microenvironment of MYCN-driven mouse neuroblastoma is characterized by a low content of T cells, several phenotypes of macrophages and a population of cells expressing signatures of myeloid-derived suppressor cells (MDSCs) that are molecularly distinct from the various macrophage subsets. We document two cancer-associated fibroblasts (CAFs) subsets, one of which corresponding to CAF-S1, known to have immunosuppressive functions. Our data unravel a complex content in myeloid cells in patient tumors and further document a striking correspondence of the microenvironment populations between both mouse and human tumors. We show that mouse intratumor T cells exhibit increased expression of inhibitory receptors at the protein level. Consistently, T cells from patients are characterized by features of exhaustion, expressing inhibitory receptors and showing low expression of effector cytokines. We further functionally demonstrate that MDSCs isolated from mouse neuroblastoma have immunosuppressive properties, impairing the proliferation of T lymphocytes. CONCLUSIONS Our study demonstrates that neuroblastoma tumors have an immunocompromised microenvironment characterized by dysfunctional T cells and accumulation of immunosuppressive cells. Our work provides a new and precious data resource to better understand the neuroblastoma ecosystem and suggest novel therapeutic strategies, targeting both tumor cells and components of the microenvironment.
Collapse
Affiliation(s)
- Ana Costa
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Cécile Thirant
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Amira Kramdi
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Cécile Pierre-Eugène
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Caroline Louis-Brennetot
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Orphée Blanchard
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Didier Surdez
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Nadege Gruel
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,Department of Translational Research, Institut Curie, Paris, France
| | - Eve Lapouble
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Gaëlle Pierron
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Deborah Sitbon
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Hervé Brisse
- Department of Imaging, PSL Research University, Institut Curie, Paris, France
| | | | - Paul Fréneaux
- Department of Biopathology, Institut Curie, Paris, France
| | - Mylène Bohec
- Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Virginie Raynal
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Sylvain Baulande
- Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Renaud Leclere
- Department of Biopathology, Institut Curie, Paris, France
| | | | - Andre Nicolas
- Department of Biopathology, Institut Curie, Paris, France
| | - Didier Meseure
- Department of Biopathology, Institut Curie, Paris, France
| | - Angela Bellini
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France.,Department of Translational Research, Institut Curie, Paris, France.,Laboratory Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire "Gilles Thomas", Institut Curie, Paris, France
| | - Aurelien Marabelle
- Inserm U1015 & CIC1428, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - Birgit Geoerger
- Inserm U1015, Department of Pediatric and Adolescent Oncology, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Fatima Mechta-Grigoriou
- Inserm U830, Equipe labelisée LNCC, Stress and Cancer Laboratory, PSL Research University, Institut Curie Research Centre, Paris, France
| | - Gudrun Schleiermacher
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France.,Department of Translational Research, Institut Curie, Paris, France.,Laboratory Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire "Gilles Thomas", Institut Curie, Paris, France
| | - Laurie Menger
- Inserm U932, PSL Research University, Institut Curie, Paris, France
| | - Olivier Delattre
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Isabelle Janoueix-Lerosey
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France .,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| |
Collapse
|