1
|
Givian A, Azizan A, Jamshidi A, Mahmoudi M, Farhadi E. Iron metabolism in rheumatic diseases. J Transl Autoimmun 2025; 10:100267. [PMID: 39867458 PMCID: PMC11763848 DOI: 10.1016/j.jtauto.2025.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Iron is a crucial element for living organism in terms of oxygen transport, hematopoiesis, enzymatic activity, mitochondrial respiratory chain function and also immune system function. The human being has evolved a mechanism to regulate body iron. In some rheumatic diseases such as rheumatoid arthritis (RA), systemic lupus erythematous (SLE), systemic sclerosis (SSc), ankylosing spondylitis (AS), and gout, this balanced iron regulation is impaired. Altered iron homeostasis can contribute to disease progression through ROS production, fibrosis, inflammation, abnormal bone homeostasis, NETosis and cell senescence. In this review, we have focused on the iron metabolism in rheumatic disease and its role in disease progression.
Collapse
Affiliation(s)
- Aliakbar Givian
- Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Amin Azizan
- Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Li S, Cai X, Guo J, Li X, Li W, Liu Y, Qi M. Cell communication and relevant signaling pathways in osteogenesis-angiogenesis coupling. Bone Res 2025; 13:45. [PMID: 40195313 PMCID: PMC11977258 DOI: 10.1038/s41413-025-00417-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Osteogenesis is the process of bone formation mediated by the osteoblasts, participating in various bone-related physiological processes including bone development, bone homeostasis and fracture healing. It exhibits temporal and spatial interconnectivity with angiogenesis, constructed by multiple forms of cell communication occurring between bone and vascular endothelial cells. Molecular regulation among different cell types is crucial for coordinating osteogenesis and angiogenesis to facilitate bone remodeling, fracture healing, and other bone-related processes. The transmission of signaling molecules and the activation of their corresponding signal pathways are indispensable for various forms of cell communication. This communication acts as a "bridge" in coupling osteogenesis to angiogenesis. This article reviews the modes and processes of cell communication in osteogenesis-angiogenesis coupling over the past decade, mainly focusing on interactions among bone-related cells and vascular endothelial cells to provide insights into the mechanism of cell communication of osteogenesis-angiogenesis coupling in different bone-related contexts. Moreover, clinical relevance and applications are also introduced in this review.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xinjia Cai
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiahe Guo
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaolu Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wen Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Mengchun Qi
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
3
|
Jia Y, Li R, Li Y, Kachler K, Meng X, Gießl A, Qin Y, Zhang F, Liu N, Andreev D, Schett G, Bozec A. Melanoma bone metastasis-induced osteocyte ferroptosis via the HIF1α-HMOX1 axis. Bone Res 2025; 13:9. [PMID: 39814705 PMCID: PMC11735842 DOI: 10.1038/s41413-024-00384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 01/30/2025] Open
Abstract
Osteocytes are the main cells in mineralized bone tissue. Elevated osteocyte apoptosis has been observed in lytic bone lesions of patients with multiple myeloma. However, their precise contribution to bone metastasis remains unclear. Here, we investigated the pathogenic mechanisms driving melanoma-induced osteocyte death. Both in vivo models and in vitro assays were combined with untargeted RNA sequencing approaches to explore the pathways governing melanoma-induced osteocyte death. We could show that ferroptosis is the primary mechanism behind osteocyte death in the context of melanoma bone metastasis. HMOX1 was identified as a crucial regulatory factor in this process, directly involved in inducing ferroptosis and affecting osteocyte viability. We uncover a non-canonical pathway that involves excessive autophagy-mediated ferritin degradation, highlighting the complex relationship between autophagy and ferroptosis in melanoma-induced osteocyte death. In addition, HIF1α pathway was shown as an upstream regulator, providing a potential target for modulating HMOX1 expression and influencing autophagy-dependent ferroptosis. In conclusion, our study provides insight into the pathogenic mechanisms of osteocyte death induced by melanoma bone metastasis, with a specific focus on ferroptosis and its regulation. This would enhance our comprehension of melanoma-induced osteocyte death.
Collapse
Affiliation(s)
- Yewei Jia
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rui Li
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixuan Li
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katerina Kachler
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xianyi Meng
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Gießl
- Department of Opthalmology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yi Qin
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Fulin Zhang
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ning Liu
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Darja Andreev
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Technische Universität Dresden (TUD), Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
4
|
Mohanakrishnan V, Sivaraj KK, Jeong HW, Bovay E, Dharmalingam B, Bixel MG, Dinh VV, Petkova M, Paredes Ugarte I, Kuo YT, Gurusamy M, Raftrey B, Chu NTL, Das S, Rios Coronado PE, Stehling M, Sävendahl L, Chagin AS, Mäkinen T, Red-Horse K, Adams RH. Specialized post-arterial capillaries facilitate adult bone remodelling. Nat Cell Biol 2024; 26:2020-2034. [PMID: 39528700 PMCID: PMC11628402 DOI: 10.1038/s41556-024-01545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
The vasculature of the skeletal system is crucial for bone formation, homoeostasis and fracture repair, yet the diversity and specialization of bone-associated vessels remain poorly understood. Here we identify a specialized type of post-arterial capillary, termed type R, involved in bone remodelling. Type R capillaries emerge during adolescence around trabecular bone, possess a distinct morphology and molecular profile, and are associated with osteoprogenitors and bone-resorbing osteoclasts. Endothelial cell-specific overexpression of the transcription factor DACH1 in postnatal mice induces a strong increase in arteries and type R capillaries, leading to local metabolic changes and enabling trabecular bone formation in normally highly hypoxic areas of the diaphysis. Indicating potential clinical relevance of type R capillaries, these vessels respond to anti-osteoporosis treatments and emerge during ageing inside porous structures that are known to weaken compact bone. Our work outlines fundamental principles of vessel specialization in the developing, adult and ageing skeletal system.
Collapse
Affiliation(s)
- Vishal Mohanakrishnan
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Kishor K Sivaraj
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Single Cell Multi-Omics Laboratory, Münster, Germany
| | - Esther Bovay
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | | | - M Gabriele Bixel
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Van Vuong Dinh
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Milena Petkova
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Isidora Paredes Ugarte
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Yi-Tong Kuo
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Malarvizhi Gurusamy
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Brian Raftrey
- Department of Biology, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Nelson Tsz Long Chu
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Soumyashree Das
- Department of Biology, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Pamela E Rios Coronado
- Department of Biology, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Martin Stehling
- Max Planck Institute for Molecular Biomedicine, Flow Cytometry Unit, Münster, Germany
| | - Lars Sävendahl
- Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
- Wihuri Research Institute, Helsinki, Finland
- Translational Cancer Medicine Program and Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany.
| |
Collapse
|
5
|
Jucht AE, Scholz CC. PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions. Pflugers Arch 2024; 476:1307-1337. [PMID: 38509356 PMCID: PMC11310289 DOI: 10.1007/s00424-024-02944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.
Collapse
Affiliation(s)
- Agnieszka E Jucht
- Institute of Physiology, University of Zurich, Zurich, 8057, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475, Greifswald, Germany.
| |
Collapse
|
6
|
Lee SY, Kim SJ, Park KH, Lee G, Oh Y, Ryu JH, Huh YH. Differential but complementary roles of HIF-1α and HIF-2α in the regulation of bone homeostasis. Commun Biol 2024; 7:892. [PMID: 39039245 PMCID: PMC11263705 DOI: 10.1038/s42003-024-06581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Bone is a highly dynamic tissue undergoing continuous formation and resorption. Here, we investigated differential but complementary roles of hypoxia-inducible factor (HIF)-1α and HIF-2α in regulating bone remodeling. Using RNA-seq analysis, we identified that specific genes involved in regulating osteoblast differentiation were similarly but slightly differently governed by HIF-1α and HIF-2α. We found that increased HIF-1α expression inhibited osteoblast differentiation via inhibiting RUNX2 function by upregulation of Twist2, confirmed using Hif1a conditional knockout (KO) mouse. Ectopic expression of HIF-1α via adenovirus transduction resulted in the increased expression and activity of RANKL, while knockdown of Hif1a expression via siRNA or osteoblast-specific depletion of Hif1a in conditional KO mice had no discernible effect on osteoblast-mediated osteoclast activation. The unexpected outcome was elucidated by the upregulation of HIF-2α upon Hif1a overexpression, providing evidence that Hif2a is a transcriptional target of HIF-1α in regulating RANKL expression, verified through an experiment of HIF-2α knockdown after HIF-1α overexpression. The above results were validated in an ovariectomized- and aging-induced osteoporosis model using Hif1a conditional KO mice. Our findings conclude that HIF-1α plays an important role in regulating bone homeostasis by controlling osteoblast differentiation, and in influencing osteoclast formation through the regulation of RANKL secretion via HIF-2α modulation.
Collapse
Affiliation(s)
- Sun Young Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Su-Jin Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ka Hyon Park
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Gyuseok Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Youngsoo Oh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Je-Hwang Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Yun Hyun Huh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
7
|
Welte-Jzyk C, Plümer V, Schumann S, Pautz A, Erbe C. Effect of the antirheumatic medication methotrexate (MTX) on biomechanical compressed human periodontal ligament fibroblasts (hPDLFs). BMC Oral Health 2024; 24:329. [PMID: 38475789 DOI: 10.1186/s12903-024-04092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the in vitro effect of the antirheumatic drug methotrexate (MTX) on biomechanically compressed human periodontal ligament fibroblasts (hPDLFs), focusing on the expression of interleukin 6 (IL-6), as its upregulation is relevant to orthodontic tooth movement. METHODS Human PDLFs were subjected to pressure and simultaneously treated with MTX. Cell proliferation, viability and morphology were studied, as was the gene and protein expression of IL-6. RESULTS Compared with that in untreated fibroblasts, IL-6 mRNA expression in mechanically compressed ligament fibroblasts was increased (two to sixfold; ****p < 0.0001). Under compression, hPDLFs exhibited a significantly more expanded shape with an increase of cell extensions. MTX with and without pressure did not affect IL-6 mRNA expression or the morphology of hPDLFs. CONCLUSION MTX has no effect on IL-6 expression in compressed ligament fibroblasts.
Collapse
Affiliation(s)
- Claudia Welte-Jzyk
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany.
| | - Vera Plümer
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - Christina Erbe
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
| |
Collapse
|
8
|
Knowles HJ, Vasilyeva A, Sheth M, Pattinson O, May J, Rumney RMH, Hulley PA, Richards DB, Carugo D, Evans ND, Stride E. Use of oxygen-loaded nanobubbles to improve tissue oxygenation: Bone-relevant mechanisms of action and effects on osteoclast differentiation. Biomaterials 2024; 305:122448. [PMID: 38218121 DOI: 10.1016/j.biomaterials.2023.122448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
Gas-loaded nanobubbles have potential as a method of oxygen delivery to increase tumour oxygenation and therapeutically alleviate tumour hypoxia. However, the mechanism(s) whereby oxygen-loaded nanobubbles increase tumour oxygenation are unknown; with their calculated oxygen-carrying capacity being insufficient to explain this effect. Intra-tumoural hypoxia is a prime therapeutic target, at least partly due to hypoxia-dependent stimulation of the formation and function of bone-resorbing osteoclasts which establish metastatic cells in bone. This study aims to investigate potential mechanism(s) of oxygen delivery and in particular the possible use of oxygen-loaded nanobubbles in preventing bone metastasis via effects on osteoclasts. Lecithin-based nanobubbles preferentially interacted with phagocytic cells (monocytes, osteoclasts) via a combination of lipid transfer, clathrin-dependent endocytosis and phagocytosis. This interaction caused general suppression of osteoclast differentiation via inhibition of cell fusion. Additionally, repeat exposure to oxygen-loaded nanobubbles inhibited osteoclast formation to a greater extent than nitrogen-loaded nanobubbles. This gas-dependent effect was driven by differential effects on the fusion of mononuclear precursor cells to form pre-osteoclasts, partly due to elevated potentiation of RANKL-induced ROS by nitrogen-loaded nanobubbles. Our findings suggest that oxygen-loaded nanobubbles could represent a promising therapeutic strategy for cancer therapy; reducing osteoclast formation and therefore bone metastasis via preferential interaction with monocytes/macrophages within the tumour and bone microenvironment, in addition to known effects of directly improving tumour oxygenation.
Collapse
Affiliation(s)
- Helen J Knowles
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alexandra Vasilyeva
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Mihir Sheth
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Oliver Pattinson
- Bone and Joint Research Group, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Jonathan May
- Bone and Joint Research Group, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Philippa A Hulley
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Duncan B Richards
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Dario Carugo
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Nicholas D Evans
- Bone and Joint Research Group, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Eleanor Stride
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Zhang YT, Xu LJ, Li L. EGLN1: A Biomarker of Poor Prognosis of Cervical Cancer and a Target of Treatment. Genet Test Mol Biomarkers 2024; 28:10-21. [PMID: 38294357 DOI: 10.1089/gtmb.2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Objective: To conduct bioinformatics analysis on the prognostic effect, mechanism of action, and drug sensitivity of Egl-9 family hypoxia-inducible factor 1 (EGLN1) expression on cervical cancer. Methods: Bioinformatics were obtained from Gene Expression Profiling Interactive Analysis (GEPIA), Tumor Immune Estimation Resource (TIMER), and the human cancer metastasis database (HCMDB), and the effect of EGLN1 expression level on the prognosis of cervical cancer was comprehensively analyzed. The protein-protein interaction network was constructed by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), and the possible mechanism of EGLN1 affecting the prognosis of cervical cancer was discussed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In addition, Gene Set Cancer Analysis (GSCALite) was used to predict sensitive drugs online. Results: The higher the expression level of EGLN1, the shorter the tumor-free survival time and overall survival time of cervical cancer. The higher the stage of cervical cancer, the higher the expression level of EGLN1. The expression of EGLN1 affects the degree of immune infiltration, the variation of somatic copy number, and the level of N6-methyladenosine (m6A) modification in cervical cancer. COX regression model suggested that EGLN1 was an independent prognostic factor of cervical cancer. Conclusions: The high expression of EGLN1 in cervical cancer is an independent risk factor for the prognosis of cervical cancer, which affects the prognosis of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) through different signal pathways. It is expected to be used to predict the sensitive anticancer drugs for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Yi-Ting Zhang
- Department of Gynecology, The First People's Hospital of Zhaoqing, Zhaoqing, P.R. China
| | - Lin-Jing Xu
- Department of Gynecology, The First People's Hospital of Zhaoqing, Zhaoqing, P.R. China
| | - Ling Li
- Department of Gynecology, The First People's Hospital of Zhaoqing, Zhaoqing, P.R. China
| |
Collapse
|
10
|
Shan C, Xia Y, Wu Z, Zhao J. HIF-1α and periodontitis: Novel insights linking host-environment interplay to periodontal phenotypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:50-78. [PMID: 37769974 DOI: 10.1016/j.pbiomolbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Periodontitis, the sixth most prevalent epidemic disease globally, profoundly impacts oral aesthetics and masticatory functionality. Hypoxia-inducible factor-1α (HIF-1α), an oxygen-dependent transcriptional activator, has emerged as a pivotal regulator in periodontal tissue and alveolar bone metabolism, exerts critical functions in angiogenesis, erythropoiesis, energy metabolism, and cell fate determination. Numerous essential phenotypes regulated by HIF are intricately associated with bone metabolism in periodontal tissues. Extensive investigations have highlighted the central role of HIF and its downstream target genes and pathways in the coupling of angiogenesis and osteogenesis. Within this concise perspective, we comprehensively review the cellular phenotypic alterations and microenvironmental dynamics linking HIF to periodontitis. We analyze current research on the HIF pathway, elucidating its impact on bone repair and regeneration, while unraveling the involved cellular and molecular mechanisms. Furthermore, we briefly discuss the potential application of targeted interventions aimed at HIF in the field of bone tissue regeneration engineering. This review expands our biological understanding of the intricate relationship between the HIF gene and bone angiogenesis in periodontitis and offers valuable insights for the development of innovative therapies to expedite bone repair and regeneration.
Collapse
Affiliation(s)
- Chao Shan
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - YuNing Xia
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Zeyu Wu
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Jin Zhao
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China; Xinjiang Uygur Autonomous Region Institute of Stomatology, Ürümqi, China.
| |
Collapse
|
11
|
Nugraha AP, Ernawati DS, Narmada IB, Bramantoro T, Riawan W, Situmorang PC, Nam HY. RANK-RANKL-OPG expression after gingival mesenchymal stem cell hypoxia preconditioned application in an orthodontic tooth movement animal model. J Oral Biol Craniofac Res 2023; 13:781-790. [PMID: 38028229 PMCID: PMC10661597 DOI: 10.1016/j.jobcr.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/17/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Background The expression of receptor activator of Nuclear Factor Kappa Beta (RANK) and its ligand (RANKL), as well as osteoprotegrin (OPG), in the alveolar bone (AB), may improve bone remodeling during orthodontic tooth movement (OTM). It is hypothesized that hypoxia-preconditioned gingival mesenchymal stem cells (GMSC) may be more effective than normoxia-preconditioned GMSC in this regard. This study aims to investigate the expression of RANK, RANKL, and OPG in the compression and tension sides of AB after allogeneic administration of GMSC that were normoxia or hypoxia-preconditioned in rabbits (Oryctolagus cuniculus) undergoing OTM. Methods Twenty-four healthy young male rabbits were divided into two groups: T1, which underwent OTM and received normoxia-preconditioned GMSC, and T2, which underwent OTM and received hypoxia-preconditioned GMSC. A ligature wire was attached to the mandibular first molar and connected to a 50 g/mm2 closed coil spring, exerting force on the central incisor and left mandibular molar of the experimental animals. After 24 h of OTM, either normoxia- or hypoxia-preconditioned GMSC were injected into the gingiva of the samples in a single dose of 20 μl of phosphate-buffered saline (PBS). All samples were sacrificed on days 7, 14, and 28, and immunohistochemistry was performed to analyze the expression of RANK, RANKL, and OPG on the tension and compression sides. Results The expressions of RANK-RANKL-OPG in the alveolar bone of the compression and tension sides were significantly different during the 14-day period of OTM following allogeneic administration of GMSC that were normoxia or hypoxia-preconditioned (p < 0.05). Conclusion The expression of RANK-RANKL was significantly increased on the compression side of the alveolar bone during OTM after the administration of hypoxia-preconditioned allogeneic GMSC but not on the tension side. Conversely, RANKL-OPG expression was enhanced on the tension side but not on the compression side, as observed through immunohistochemical analysis in vivo.
Collapse
Affiliation(s)
- Alexander Patera Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ida Bagus Narmada
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Taufan Bramantoro
- Department of Dental Public Health, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Wibi Riawan
- Department of Biomolecular Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Putri Cahaya Situmorang
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Sumatera Utara, Medan, Indonesia
| | - Hui Yin Nam
- Nanotechnology and Catalysis Research Center (NANOCAT), Universiti Malaya, Kuala Lumpur, Malaysia
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Daponte V, Tonelli F, Masiero C, Syx D, Exbrayat-Héritier C, Biggiogera M, Willaert A, Rossi A, Coucke PJ, Ruggiero F, Forlino A. Cell differentiation and matrix organization are differentially affected during bone formation in osteogenesis imperfecta zebrafish models with different genetic defects impacting collagen type I structure. Matrix Biol 2023; 121:105-126. [PMID: 37336269 DOI: 10.1016/j.matbio.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Osteogenesis imperfecta (OI) is a family of rare heritable skeletal disorders associated with dominant mutations in the collagen type I encoding genes and recessive defects in proteins involved in collagen type I synthesis and processing and in osteoblast differentiation and activity. Historically, it was believed that the OI bone phenotype was only caused by abnormal collagen type I fibrils in the extracellular matrix, but more recently it became clear that the altered bone cell homeostasis, due to mutant collagen retention, plays a relevant role in modulating disease severity in most of the OI forms and it is correlated to impaired bone cell differentiation. Despite in vitro evidence, in vivo data are missing. To better understand the physiopathology of OI, we used two zebrafish models: Chihuahua (Chi/+), carrying a dominant p.G736D substitution in the α1 chain of collagen type I, and the recessive p3h1-/-, lacking prolyl 3-hydroxylase (P3h1) enzyme. Both models share the delay of collagen type I folding, resulting in its overmodification and partial intracellular retention. The regeneration of the bony caudal fin of Chi/+ and p3h1-/- was employed to investigate the impact of abnormal collagen synthesis on bone cell differentiation. Reduced regenerative ability was evident in both models, but it was associated to impaired osteoblast differentiation and osteoblastogenesis/adipogenesis switch only in Chi/+. On the contrary, reduced osteoclast number and activity were found in both models during regeneration. The dominant OI model showed a more detrimental effect in the extracellular matrix organization. Interestingly, the chemical chaperone 4-phenylbutyrate (4-PBA), known to reduce cellular stress and increase collagen secretion, improved bone formation only in p3h1-/- by favoring caudal fin growth without affecting bone cell markers expression. Taken together, our in vivo data proved the negative impact of structurally abnormal collagen type I on bone formation but revealed a gene mutation-specific effect on bone cell differentiation and matrix organization in OI. These, together with the distinct ability to respond to the chaperone treatment, underline the need for precision medicine approaches to properly treat the disease.
Collapse
Affiliation(s)
- Valentina Daponte
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Cecilia Masiero
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Delfien Syx
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Chloé Exbrayat-Héritier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Paul J Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| |
Collapse
|
13
|
Pinto-Cardoso R, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Could hypoxia rehabilitate the osteochondral diseased interface? Lessons from the interplay of hypoxia and purinergic signals elsewhere. Biochem Pharmacol 2023:115646. [PMID: 37321413 DOI: 10.1016/j.bcp.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The osteochondral unit comprises the articular cartilage (90%), subchondral bone (5%) and calcified cartilage (5%). All cells present at the osteochondral unit that is ultimately responsible for matrix production and osteochondral homeostasis, such as chondrocytes, osteoblasts, osteoclasts and osteocytes, can release adenine and/or uracil nucleotides to the local microenvironment. Nucleotides are released by these cells either constitutively or upon plasma membrane damage, mechanical stress or hypoxia conditions. Once in the extracellular space, endogenously released nucleotides can activate membrane-bound purinoceptors. Activation of these receptors is fine-tuning regulated by nucleotides' breakdown by enzymes of the ecto-nucleotidase cascade. Depending on the pathophysiological conditions, both the avascular cartilage and the subchondral bone subsist to significant changes in oxygen tension, which has a tremendous impact on tissue homeostasis. Cell stress due to hypoxic conditions directly influences the expression and activity of several purinergic signalling players, namely nucleotide release channels (e.g. Cx43), NTPDase enzymes and purinoceptors. This review gathers experimental evidence concerning the interplay between hypoxia and the purinergic signalling cascade contributing to osteochondral unit homeostasis. Reporting deviations to this relationship resulting from pathological alterations of articular joints may ultimately unravel novel therapeutic targets for osteochondral rehabilitation. At this point, one can only hypothesize how hypoxia mimetic conditions can be beneficial to the ex vivo expansion and differentiation of osteo- and chondro-progenitors for auto-transplantation and tissue regenerative purposes.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
14
|
Wang J, Zhao B, Che J, Shang P. Hypoxia Pathway in Osteoporosis: Laboratory Data for Clinical Prospects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3129. [PMID: 36833823 PMCID: PMC9963321 DOI: 10.3390/ijerph20043129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 05/29/2023]
Abstract
The hypoxia pathway not only regulates the organism to adapt to the special environment, such as short-term hypoxia in the plateau under normal physiological conditions, but also plays an important role in the occurrence and development of various diseases such as cancer, cardiovascular diseases, osteoporosis. Bone, as a special organ of the body, is in a relatively low oxygen environment, in which the expression of hypoxia-inducible factor (HIF)-related molecules maintains the necessary conditions for bone development. Osteoporosis disease with iron overload endangers individuals, families and society, and bone homeostasis disorder is linked to some extent with hypoxia pathway abnormality, so it is urgent to clarify the hypoxia pathway in osteoporosis to guide clinical medication efficiently. Based on this background, using the keywords "hypoxia/HIF, osteoporosis, osteoblasts, osteoclasts, osteocytes, iron/iron metabolism", a matching search was carried out through the Pubmed and Web Of Science databases, then the papers related to this review were screened, summarized and sorted. This review summarizes the relationship and regulation between the hypoxia pathway and osteoporosis (also including osteoblasts, osteoclasts, osteocytes) by arranging the references on the latest research progress, introduces briefly the application of hyperbaric oxygen therapy in osteoporosis symptoms (mechanical stimulation induces skeletal response to hypoxic signal activation), hypoxic-related drugs used in iron accumulation/osteoporosis model study, and also puts forward the prospects of future research.
Collapse
Affiliation(s)
- Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Bin Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jingmin Che
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Peng Shang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China
| |
Collapse
|
15
|
Tang YY, Wang DC, Wang YQ, Huang AF, Xu WD. Emerging role of hypoxia-inducible factor-1α in inflammatory autoimmune diseases: A comprehensive review. Front Immunol 2023; 13:1073971. [PMID: 36761171 PMCID: PMC9905447 DOI: 10.3389/fimmu.2022.1073971] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a primary metabolic sensor, and is expressed in different immune cells, such as macrophage, dendritic cell, neutrophil, T cell, and non-immune cells, for instance, synovial fibroblast, and islet β cell. HIF-1α signaling regulates cellular metabolism, triggering the release of inflammatory cytokines and inflammatory cells proliferation. It is known that microenvironment hypoxia, vascular proliferation, and impaired immunological balance are present in autoimmune diseases. To date, HIF-1α is recognized to be overexpressed in several inflammatory autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis, and function of HIF-1α is dysregulated in these diseases. In this review, we narrate the signaling pathway of HIF-1α and the possible immunopathological roles of HIF-1α in autoimmune diseases. The collected information will provide a theoretical basis for the familiarization and development of new clinical trials and treatment based on HIF-1α and inflammatory autoimmune disorders in the future.
Collapse
Affiliation(s)
- Yang-Yang Tang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - You-Qiang Wang
- Department of Laboratory Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China,*Correspondence: Wang-Dong Xu,
| |
Collapse
|
16
|
Abstract
Despite advancement in therapeutic options, Non-Small Cell lung cancer (NSCLC) remains a lethal disease mostly due to late diagnosis at metastatic phase and drug resistance. Bone is one of the more frequent sites for NSCLC metastatization. A defined subset of cancer stem cells (CSCs) that possess motile properties, mesenchymal features and tumor initiation potential are defined as metastasis initiating cells (MICs). A better understanding of the mechanisms supporting MIC dissemination and interaction with bone microenvironment is fundamental to design novel rational therapeutic option for long lasting efficient treatment of NSCLC. In this review we will summarize findings about bone metastatic process initiated by NSCLC MICs. We will review how MICs can reach bone and interact with its microenvironment that supports their extravasation, seeding, dormancy/proliferation. The role of different cell types inside the bone metastatic niche, such as endothelial cells, bone cells, hematopoietic stem cells and immune cells will be discussed in regards of their impact in dictating the success of metastasis establishment by MICs. Finally, novel therapeutic options to target NSCLC MIC-induced bone metastases, increasing the survival of patients, will be presented.
Collapse
|
17
|
Cottone L, Ligammari L, Lee HM, Knowles HJ, Henderson S, Bianco S, Davies C, Strauss S, Amary F, Leite AP, Tirabosco R, Haendler K, Schultze JL, Herrero J, O’Donnell P, Grigoriadis AE, Salomoni P, Flanagan AM. Aberrant paracrine signalling for bone remodelling underlies the mutant histone-driven giant cell tumour of bone. Cell Death Differ 2022; 29:2459-2471. [PMID: 36138226 PMCID: PMC9750984 DOI: 10.1038/s41418-022-01031-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/31/2023] Open
Abstract
Oncohistones represent compelling evidence for a causative role of epigenetic perturbations in cancer. Giant cell tumours of bone (GCTs) are characterised by a mutated histone H3.3 as the sole genetic driver present in bone-forming osteoprogenitor cells but absent from abnormally large bone-resorbing osteoclasts which represent the hallmark of these neoplasms. While these striking features imply a pathogenic interaction between mesenchymal and myelomonocytic lineages during GCT development, the underlying mechanisms remain unknown. We show that the changes in the transcriptome and epigenome in the mesenchymal cells caused by the H3.3-G34W mutation contribute to increase osteoclast recruitment in part via reduced expression of the TGFβ-like soluble factor, SCUBE3. Transcriptional changes in SCUBE3 are associated with altered histone marks and H3.3G34W enrichment at its enhancer regions. In turn, osteoclasts secrete unregulated amounts of SEMA4D which enhances proliferation of mutated osteoprogenitors arresting their maturation. These findings provide a mechanism by which GCTs undergo differentiation in response to denosumab, a drug that depletes the tumour of osteoclasts. In contrast, hTERT alterations, commonly found in malignant GCT, result in the histone-mutated neoplastic cells being independent of osteoclasts for their proliferation, predicting unresponsiveness to denosumab. We provide a mechanism for the initiation of GCT, the basis of which is dysfunctional cross-talk between bone-forming and bone-resorbing cells. The findings highlight the role of tumour/microenvironment bidirectional interactions in tumorigenesis and how this is exploited in the treatment of GCT.
Collapse
Affiliation(s)
- Lucia Cottone
- grid.83440.3b0000000121901201Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT UK
| | - Lorena Ligammari
- grid.83440.3b0000000121901201Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT UK
| | - Hang-Mao Lee
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Helen J. Knowles
- grid.4991.50000 0004 1936 8948Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Stephen Henderson
- grid.83440.3b0000000121901201Bill Lyons Informatics Centre (BLIC), UCL Cancer Institute, University College London, London, WC1E 6BT UK
| | - Sara Bianco
- grid.83440.3b0000000121901201Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT UK ,grid.83440.3b0000000121901201Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6BT UK
| | - Christopher Davies
- grid.83440.3b0000000121901201Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT UK ,grid.416177.20000 0004 0417 7890Department of Histopathology, Royal National Orthopaedic Hospital, Middlesex, Stanmore, HA7 4LP UK
| | - Sandra Strauss
- grid.439749.40000 0004 0612 2754London Sarcoma Service, University College London Hospitals Foundation Trust, London, WC1E 6DD UK
| | - Fernanda Amary
- grid.416177.20000 0004 0417 7890Department of Histopathology, Royal National Orthopaedic Hospital, Middlesex, Stanmore, HA7 4LP UK
| | - Ana Paula Leite
- grid.83440.3b0000000121901201Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT UK ,grid.83440.3b0000000121901201Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6BT UK
| | - Roberto Tirabosco
- grid.416177.20000 0004 0417 7890Department of Histopathology, Royal National Orthopaedic Hospital, Middlesex, Stanmore, HA7 4LP UK
| | - Kristian Haendler
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany ,grid.10388.320000 0001 2240 3300Platform for Single Cell Genomics and Epigenomics (PRECISE) at the DZNE and the University of Bonn, 53127 Bonn, Germany ,grid.4562.50000 0001 0057 2672Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Joachim L. Schultze
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany ,grid.10388.320000 0001 2240 3300Platform for Single Cell Genomics and Epigenomics (PRECISE) at the DZNE and the University of Bonn, 53127 Bonn, Germany ,grid.10388.320000 0001 2240 3300Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Javier Herrero
- grid.83440.3b0000000121901201Bill Lyons Informatics Centre (BLIC), UCL Cancer Institute, University College London, London, WC1E 6BT UK
| | - Paul O’Donnell
- grid.416177.20000 0004 0417 7890Department of Radiology, Royal National Orthopaedic Hospital, Middlesex, Stanmore, HA7 4LP UK
| | - Agamemnon E. Grigoriadis
- grid.239826.40000 0004 0391 895XCentre for Craniofacial and Regenerative Biology, King’s College London, Guy’s Hospital, London, SE1 9RT UK
| | - Paolo Salomoni
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany ,grid.83440.3b0000000121901201Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6BT UK
| | - Adrienne M. Flanagan
- grid.83440.3b0000000121901201Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT UK ,grid.416177.20000 0004 0417 7890Department of Histopathology, Royal National Orthopaedic Hospital, Middlesex, Stanmore, HA7 4LP UK
| |
Collapse
|
18
|
Babu LK, Ghosh D. Looking at Mountains: Role of Sustained Hypoxia in Regulating Bone Mineral Homeostasis in Relation to Wnt Pathway and Estrogen. Clin Rev Bone Miner Metab 2022. [DOI: 10.1007/s12018-022-09283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Chen W, Wu P, Yu F, Luo G, Qing L, Tang J. HIF-1α Regulates Bone Homeostasis and Angiogenesis, Participating in the Occurrence of Bone Metabolic Diseases. Cells 2022; 11:cells11223552. [PMID: 36428981 PMCID: PMC9688488 DOI: 10.3390/cells11223552] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the physiological condition, the skeletal system's bone resorption and formation are in dynamic balance, called bone homeostasis. However, bone homeostasis is destroyed under pathological conditions, leading to the occurrence of bone metabolism diseases. The expression of hypoxia-inducible factor-1α (HIF-1α) is regulated by oxygen concentration. It affects energy metabolism, which plays a vital role in preventing bone metabolic diseases. This review focuses on the HIF-1α pathway and describes in detail the possible mechanism of its involvement in the regulation of bone homeostasis and angiogenesis, as well as the current experimental studies on the use of HIF-1α in the prevention of bone metabolic diseases. HIF-1α/RANKL/Notch1 pathway bidirectionally regulates the differentiation of macrophages into osteoclasts under different conditions. In addition, HIF-1α is also regulated by many factors, including hypoxia, cofactor activity, non-coding RNA, trace elements, etc. As a pivotal pathway for coupling angiogenesis and osteogenesis, HIF-1α has been widely studied in bone metabolic diseases such as bone defect, osteoporosis, osteonecrosis of the femoral head, fracture, and nonunion. The wide application of biomaterials in bone metabolism also provides a reasonable basis for the experimental study of HIF-1α in preventing bone metabolic diseases.
Collapse
|
20
|
Wang D, Liu L, Qu Z, Zhang B, Gao X, Huang W, Feng M, Gong Y, Kong L, Wang Y, Yan L. Hypoxia-inducible factor 1α enhances RANKL-induced osteoclast differentiation by upregulating the MAPK pathway. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1227. [PMID: 36544674 PMCID: PMC9761153 DOI: 10.21037/atm-22-4603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022]
Abstract
Background Hypoxia (low-oxygen tension) and excessive osteoclast activation are common conditions in many bone loss diseases, such as osteoporosis, rheumatoid arthritis (RA), and pathologic fractures. Hypoxia-inducible factor 1 alpha (HIF1α) regulates cellular responses to hypoxic conditions. However, it is not yet known how HIF1α directly affects osteoclast differentiation and activation. This study sought to. explore the effects of HIF1α on osteoclast differentiation and it's molecular mechanisms. Methods L-mimosine, a prolyl hydroxylase (PHDs) domain inhibitor, was used to stabilize HIF1α in normoxia. In the presence of receptor activator of nuclear factor-kB (NF-kB) ligand (RANKL), RAW264.7 cells were cultured and stimulated by treatment with L-mimosine at several doses to maintain various levels of intracellular HIF1α. The multi-nucleated cells were assessed by a tartrate-resistant acid phosphatase (TRAP) and F-actin ring staining assays. The osteoclast-specific genes, such as Cathepsin K, β3-Integrin, TRAP, c-Fos, nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), and matrix metallo-proteinase 9 (MMP9), were analyzed by real time-polymerase chain reaction (RT-PCR). The expression of relevant proteins was analyzed by Western blot. Results L-mimosine increased the content of intracellular HIF1α in a dose-dependent manner, which in turn promoted RANKL-induced osteoclast formation and relevant protein expression by upregulating the mitogen-activated protein kinase (MAPK) pathways. Conclusions Our findings suggest that HIF1α directly increases the osteoclast differentiation of RANKL-mediated RAW264.7 cells in vitro by upregulating the MAPK pathways.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China;,School of Medicine, Yanan University, Yanan, China
| | - Lin Liu
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China
| | - Zechao Qu
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China;,School of Medicine, Yanan University, Yanan, China
| | - Bo Zhang
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China;,School of Medicine, Yanan University, Yanan, China
| | - Xiangcheng Gao
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China;,School of Medicine, Yanan University, Yanan, China
| | - Wangli Huang
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China;,School of Medicine, Yanan University, Yanan, China
| | - Mingzhe Feng
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China;,School of Medicine, Yanan University, Yanan, China
| | - Yining Gong
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China
| | - Lingbo Kong
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China
| | - Yanjun Wang
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China
| | - Liang Yan
- Department of Orthopedic Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University, School of Medicine, Xi’an, China
| |
Collapse
|
21
|
Analysis of Bone Histomorphometry in Rat and Guinea Pig Animal Models Subject to Hypoxia. Int J Mol Sci 2022; 23:ijms232112742. [DOI: 10.3390/ijms232112742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Hypoxia may be associated with alterations in bone remodeling, but the published results are contradictory. The aim of this study was to characterize the bone morphometry changes subject to hypoxia for a better understanding of the bone response to hypoxia and its possible clinical consequences on the bone metabolism. This study analyzed the bone morphometry parameters by micro-computed tomography (μCT) in rat and guinea pig normobaric hypoxia models. Adult male and female Wistar rats were exposed to chronic hypoxia for 7 and 15 days. Additionally, adult male guinea pigs were exposed to chronic hypoxia for 15 days. The results showed that rats exposed to chronic constant and intermittent hypoxic conditions had a worse trabecular and cortical bone health than control rats (under a normoxic condition). Rats under chronic constant hypoxia were associated with a more deteriorated cortical tibia thickness, trabecular femur and tibia bone volume over the total volume (BV/TV), tibia trabecular number (Tb.N), and trabecular femur and tibia bone mineral density (BMD). In the case of chronic intermittent hypoxia, rats subjected to intermittent hypoxia had a lower cortical femur tissue mineral density (TMD), lower trabecular tibia BV/TV, and lower trabecular thickness (Tb.Th) of the tibia and lower tibia Tb.N. The results also showed that obese rats under a hypoxic condition had worse values for the femur and tibia BV/TV, tibia trabecular separation (Tb.Sp), femur and tibia Tb.N, and BMD for the femur and tibia than normoweight rats under a hypoxic condition. In conclusion, hypoxia and obesity may modify bone remodeling, and thus bone microarchitecture, and they might lead to reductions in the bone strength and therefore increase the risk of fragility fracture.
Collapse
|
22
|
Hu L, Liu R, Zhang L. Advance in bone destruction participated by JAK/STAT in rheumatoid arthritis and therapeutic effect of JAK/STAT inhibitors. Int Immunopharmacol 2022; 111:109095. [PMID: 35926270 DOI: 10.1016/j.intimp.2022.109095] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 01/06/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic joint inflammation and bone erosion. The bones in the human body are constantly undergoing bone remodeling throughout their lives, which is the process of bone resorption by osteoclasts to damaged bone tissue and new bone formation by osteoblasts. Osteoblasts (OBs) are the main functional cells in bone formation, responsible for the synthesis, secretion and mineralization of the bone matrix. On the contrary, osteoclasts (OCs) mediate bone breakdown during natural bone turnover, but excessive breakdown occurs in RA. Under the condition of RA inflammation, many molecules, such as IL-1β, IL-6, TNF-α, IL-17 and hypoxia-inducible factor-1α (HIF-1α) are produced that could mediate bone loss. Studies have shown that cytokines mainly promote the formation of OCs and play a role in bone resorption by stimulating OBs to express receptor activator of NF-κB ligand (RANKL). JAK/STAT plays a crucial role in the process of bone destruction. And JAK/STAT pathway mediates the RANKL/receptor activator of NF-κB (RANK)/osteoprotegerin (OPG) axis. Tofacitinib, Baricitinib, Peficitinib and Filgotinib are now being used in patients with moderate to severe RA, as well as in patients with RA who have an inadequate response to methotrexate therapy and bone destruction. Currently, Tofacitiniband Baritinib areapprovedfor thetreatmentof moderate-to-severely active RA. JAK inhibitors have been reported to have better efficacy and lower adverse effects compared with methotrexate and adalimumab. In addition, two JAK inhibitors are currently in development: the JAK1 selective Upadacitinib, and the JAK3 selective inhibitor Decernotinib. In addition to the above JAK inhibitors, some small molecular compounds inhibit bone destruction by inhibiting the Phosphorylation of STAT3. In this paper, the research progress of bone destruction participated by JAK/ STAT in rheumatoid arthritis and therapeutic effect of JAK/STAT inhibitors were reviewed.
Collapse
Affiliation(s)
- Ling Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Ruijin Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
23
|
Hirata H, Kamohara A, Murayama M, Nishioka K, Honda H, Urano Y, Soejima H, Oki S, Kukita T, Kawano S, Mawatari M, Kukita A. A novel role of helix-loop-helix transcriptional factor Bhlhe40 in osteoclast activation. J Cell Physiol 2022; 237:3912-3926. [PMID: 35908202 DOI: 10.1002/jcp.30844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022]
Abstract
The basic helix-loop-helix transcriptional factor, Bhlhe40 has been shown as a crucial regulator of immune response, tumorigenesis, and circadian rhythms. We identified Bhlhe40 as a possible regulator of osteoclast differentiation and function by shRNA library screening and found that Bhlhe40 was required for osteoclast activation. Bhlhe40 expression was induced in bone marrow macrophages (BMMs) by RANKL, whereas the expression of its homolog Bhlhe41 was decreased in osteoclastogenesis. μCT analysis of tibias revealed that Bhlhe40 knockout (KO) mice exhibited increased bone volume phenotype. Bone morphometric analysis showed that osteoclast number and bone resorption were decreased in Bhlhe40 KO mice, whereas significant differences in the osteoblast parameters were not seen between wild-type (WT) and Bhlhe40 KO mice. In vitro culture of BMMs showed that Bhlhe40 deficiency did not cause difference in osteoclast formation. In contrast, bone resorption activity of Bhlhe40 KO osteoclasts was markedly reduced in comparison with that of WT osteoclasts. Analysis of potential target genes of Bhlhe40 using data-mining platform ChIP-Atlas (http://chip-atlas.org) revealed that predicted target genes of Bhlhe40 were related to proton transport and intracellular vesicle acidification. We then analyzed the expression of proton pump, the vacuolar (V)-ATPases which are responsible for bone resorption. The expression of V-ATPases V1c1 and V0a3 was suppressed in Bhlhe40 KO osteoclasts. In addition, Lysosensor yellow/blue DND 160 staining demonstrated that vesicular acidification was attenuated in vesicles of Bhlhe40 KO osteoclasts. Furthermore, analysis with pH-sensitive fluorescent probe showed that proton secretion was markedly suppressed in Bhlhe40 KO osteoclasts compared to that in WT osteoclasts. Our findings suggest that Bhlhe40 plays a novel important role in the regulation of acid production in osteoclastic bone resorption.
Collapse
Affiliation(s)
- Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Asana Kamohara
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan.,Department of Oral & Maxillofacial Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenichi Nishioka
- Department of Internal Medicine, Musashimurayama Hospital, Tokyo, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuteru Urano
- Department of Chemical Biology & Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Chemistry & Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics & Epigenetics, Department of Biomolecular Science, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshio Kukita
- Department of Molecular Cell Biology & Oral Anatomy, Kyushu University, Fukuoka, Japan
| | - Shunsuke Kawano
- Research Center of Arthroplasty, Faculty of Medicine, Saga University, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Akiko Kukita
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan.,Research Center of Arthroplasty, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
24
|
Usategui-Martín R, Rigual R, Ruiz-Mambrilla M, Fernández-Gómez JM, Dueñas A, Pérez-Castrillón JL. Molecular Mechanisms Involved in Hypoxia-Induced Alterations in Bone Remodeling. Int J Mol Sci 2022; 23:ijms23063233. [PMID: 35328654 PMCID: PMC8953213 DOI: 10.3390/ijms23063233] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
Bone is crucial for the support of muscles and the protection of vital organs, and as a reservoir of calcium and phosphorus. Bone is one of the most metabolically active tissues and is continuously renewed to adapt to the changes required for healthy functioning. To maintain normal cellular and physiological bone functions sufficient oxygen is required, as evidence has shown that hypoxia may influence bone health. In this scenario, this review aimed to analyze the molecular mechanisms involved in hypoxia-induced bone remodeling alterations and their possible clinical consequences. Hypoxia has been associated with reduced bone formation and reduced osteoblast matrix mineralization due to the hypoxia environment inhibiting osteoblast differentiation. A hypoxic environment is involved with increased osteoclastogenesis and increased bone resorptive capacity of the osteoclasts. Clinical studies, although with contradictory results, have shown that hypoxia can modify bone remodeling.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- IOBA, University of Valladolid, 47011 Valladolid, Spain
- Correspondence: (R.U.-M.); (J.L.P.-C.)
| | - Ricardo Rigual
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- IBGM, University of Valladolid, 47003 Valladolid, Spain
| | - Marta Ruiz-Mambrilla
- Department of Surgery, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
| | - José-María Fernández-Gómez
- Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
| | - Antonio Dueñas
- Department of Medicine, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- Department of Toxicology, Río Hortega University Hospital, 47012 Valladolid, Spain
| | - José Luis Pérez-Castrillón
- Department of Medicine, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- Department of Internal Medicine, Río Hortega University Hospital, 47012 Valladolid, Spain
- Correspondence: (R.U.-M.); (J.L.P.-C.)
| |
Collapse
|
25
|
Abstract
BACKGROUND Cyanotic CHD is one of many disorders in paediatrics that influence the health of children in different clinical aspects. One of the fundamental aspects that may be affected is bone mineral density. OBJECTIVES The aim of our study is to assess bone mineral density in children with congenital cyanotic heart disease of different anatomical diagnoses. DESIGN/METHODS Cross-sectional, observational study included 39 patients (20 males) with congenital cyanotic heart disease of different anatomical diagnoses following with the cardiology clinic in Mansoura University children's hospital. All patients were subjected to anthropometric measures, oxygen saturation assessment, and lumber bone mineral density using dual-energy X-ray absorptiometry. RESULTS Six patients (15.4%) out of the 39 included patients showed bone mineral density reduction, 13 patients (33.3%) showed bone mineral density with Z-score between -1 and -2, while 20 patients (51.3%) showed bone mineral density with Z-score more than -1. CONCLUSION Low bone mineral density can be found in children with cyanotic CHD, making it important to consider bone mineral density assessment and early treatment if needed to avoid further complications.
Collapse
|
26
|
Impacts of Hypoxia on Osteoclast Formation and Activity: Systematic Review. Int J Mol Sci 2021; 22:ijms221810146. [PMID: 34576310 PMCID: PMC8467526 DOI: 10.3390/ijms221810146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 01/28/2023] Open
Abstract
Hypoxia is evident in several bone diseases which are characterized by excessive bone resorption by osteoclasts, the bone-resorbing cells. The effects of hypoxia on osteoclast formation and activities are widely studied but remain inconclusive. This systematic review discusses the studies reporting the effect of hypoxia on osteoclast differentiation and activity. A literature search for relevant studies was conducted through SCOPUS and PUBMED MEDLINE search engines. The inclusion criteria were original research articles presenting data demonstrating the effect of hypoxia or low oxygen on osteoclast formation and activity. A total of 286 studies were identified from the search, whereby 20 studies were included in this review, consisting of four in vivo studies and 16 in vitro studies. In total, 12 out of 14 studies reporting the effect of hypoxia on osteoclast activity indicated higher bone resorption under hypoxic conditions, 14 studies reported that hypoxia resulted in more osteoclasts, one study found that the number remained unchanged, and five studies indicated that the number decreased. In summary, examination of the relevant literature suggests differences in findings between studies, hence the impact of hypoxia on osteoclasts remains debatable, even though there is more evidence to suggest it promotes osteoclast differentiation and activity.
Collapse
|
27
|
Kirschneck C, Straßmair N, Cieplik F, Paddenberg E, Jantsch J, Proff P, Schröder A. Myeloid HIF1α Is Involved in the Extent of Orthodontically Induced Tooth Movement. Biomedicines 2021; 9:biomedicines9070796. [PMID: 34356859 PMCID: PMC8301336 DOI: 10.3390/biomedicines9070796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
During orthodontic tooth movement, transcription factor hypoxia-inducible factor 1α (HIF1α) is stabilised in the periodontal ligament. While HIF1α in periodontal ligament fibroblasts can be stabilised by mechanical compression, in macrophages pressure application alone is not sufficient to stabilise HIF1α. The present study was conducted to investigate the role of myeloid HIF1α during orthodontic tooth movement. Orthodontic tooth movement was performed in wildtype and Hif1αΔmyel mice lacking HIF1α expression in myeloid cells. Subsequently, µCT images were obtained to determine periodontal bone loss, extent of orthodontic tooth movement and bone density. RNA was isolated from the periodontal ligament of the control side and the orthodontically treated side, and the expression of genes involved in bone remodelling was investigated. The extent of tooth movement was increased in Hif1αΔmyel mice. This may be due to the lower bone density of the Hif1αΔmyel mice. Deletion of myeloid Hif1α was associated with increased expression of Ctsk and Acp5, while both Rankl and its decoy receptor Opg were increased. HIF1α from myeloid cells thus appears to play a regulatory role in orthodontic tooth movement.
Collapse
Affiliation(s)
- Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, D-93053 Regensburg, Germany; (N.S.); (E.P.); (P.P.); (A.S.)
- Correspondence: ; Tel.: +49-941-944-6093
| | - Nadine Straßmair
- Department of Orthodontics, University Medical Centre of Regensburg, D-93053 Regensburg, Germany; (N.S.); (E.P.); (P.P.); (A.S.)
| | - Fabian Cieplik
- Department of Operative Dentistry and Periodontology, University Medical Centre of Regensburg, D-93053 Regensburg, Germany;
| | - Eva Paddenberg
- Department of Orthodontics, University Medical Centre of Regensburg, D-93053 Regensburg, Germany; (N.S.); (E.P.); (P.P.); (A.S.)
| | - Jonathan Jantsch
- Institute of Microbiology and Hygiene, University Medical Centre of Regensburg, D-93053 Regensburg, Germany;
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, D-93053 Regensburg, Germany; (N.S.); (E.P.); (P.P.); (A.S.)
| | - Agnes Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, D-93053 Regensburg, Germany; (N.S.); (E.P.); (P.P.); (A.S.)
| |
Collapse
|
28
|
Da W, Tao L, Zhu Y. The Role of Osteoclast Energy Metabolism in the Occurrence and Development of Osteoporosis. Front Endocrinol (Lausanne) 2021; 12:675385. [PMID: 34054735 PMCID: PMC8150001 DOI: 10.3389/fendo.2021.675385] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, the mechanism underlying bone metabolic disorders based on energy metabolism has been heavily researched. Bone resorption by osteoclasts plays an important role in the occurrence and development of osteoporosis. However, the mechanism underlying the osteoclast energy metabolism disorder that interferes with bone homeostasis has not been determined. Bone resorption by osteoclasts is a process that consumes large amounts of adenosine triphosphate (ATP) produced by glycolysis and oxidative phosphorylation. In addition to glucose, fatty acids and amino acids can also be used as substrates to produce energy through oxidative phosphorylation. In this review, we summarize and analyze the energy-based phenotypic changes, epigenetic regulation, and coupling with systemic energy metabolism of osteoclasts during the development and progression of osteoporosis. At the same time, we propose a hypothesis, the compensatory recovery mechanism (involving the balance between osteoclast survival and functional activation), which may provide a new approach for the treatment of osteoporosis.
Collapse
Affiliation(s)
| | - Lin Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Wu JQ, Mao LB, Liu LF, Li YM, Wu J, Yao J, Zhang FH, Liu TY, Yuan L. Identification of key genes and pathways of BMP-9-induced osteogenic differentiation of mesenchymal stem cells by integrated bioinformatics analysis. J Orthop Surg Res 2021; 16:273. [PMID: 33879213 PMCID: PMC8059242 DOI: 10.1186/s13018-021-02390-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
Background The purpose of present study was to identify the differentially expressed genes (DEGs) associated with BMP-9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) by using bioinformatics methods. Methods Gene expression profiles of BMP-9-induced MSCs were compared between with GFP-induced MSCs and BMP-9-induced MSCs. GSE48882 containing two groups of gene expression profiles, 3 GFP-induced MSC samples and 3 from BMP-9-induced MSCs, was downloaded from the Gene Expression Omnibus (GEO) database. Then, DEGs were clustered based on functions and signaling pathways with significant enrichment analysis. Pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated that the identified DEGs were potentially involved in cytoplasm, nucleus, and extracellular exosome signaling pathway. Results A total of 1967 DEGs (1029 upregulated and 938 downregulated) were identified from GSE48882 datasets. R/Bioconductor package limma was used to identify the DEGs. Further analysis revealed that there were 35 common DEGs observed between the samples. GO function and KEGG pathway enrichment analysis, among which endoplasmic reticulum, protein export, RNA transport, and apoptosis was the most significant dysregulated pathway. The result of protein-protein interaction (PPI) network modules demonstrated that the Hspa5, P4hb, Sec61a1, Smarca2, Pdia3, Dnajc3, Hyou1, Smad7, Derl1, and Surf4 were the high-degree hub nodes. Conclusion Taken above, using integrated bioinformatical analysis, we have identified DEGs candidate genes and pathways in BMP-9 induced MSCs, which could improve our understanding of the key genes and pathways for BMP-9-induced osteogenic of MSCs.
Collapse
Affiliation(s)
- Jia-Qi Wu
- Rehabilitation Department, Jingjiang People's Hospital, No.28, Zhongzhou road, Jingjiang, Taizhou, 214500, Jiangsu Province, China
| | - Lin-Bo Mao
- Rehabilitation Department, Jingjiang People's Hospital, No.28, Zhongzhou road, Jingjiang, Taizhou, 214500, Jiangsu Province, China.
| | - Ling-Feng Liu
- Rehabilitation Department, Jingjiang People's Hospital, No.28, Zhongzhou road, Jingjiang, Taizhou, 214500, Jiangsu Province, China
| | - Yong-Mei Li
- Rehabilitation Department, Jingjiang People's Hospital, No.28, Zhongzhou road, Jingjiang, Taizhou, 214500, Jiangsu Province, China
| | - Jian Wu
- Institute Office, Jingjiang People's Hospital, Jingjiang, China
| | - Jiao Yao
- Rehabilitation Department, Jingjiang People's Hospital, No.28, Zhongzhou road, Jingjiang, Taizhou, 214500, Jiangsu Province, China
| | - Feng-Huan Zhang
- Rehabilitation Department, Jingjiang People's Hospital, No.28, Zhongzhou road, Jingjiang, Taizhou, 214500, Jiangsu Province, China
| | - Ting-Yu Liu
- Rehabilitation Department, Jingjiang People's Hospital, No.28, Zhongzhou road, Jingjiang, Taizhou, 214500, Jiangsu Province, China
| | - Ling Yuan
- Rehabilitation Department, Jingjiang People's Hospital, No.28, Zhongzhou road, Jingjiang, Taizhou, 214500, Jiangsu Province, China
| |
Collapse
|
30
|
Meng X, Wielockx B, Rauner M, Bozec A. Hypoxia-Inducible Factors Regulate Osteoclasts in Health and Disease. Front Cell Dev Biol 2021; 9:658893. [PMID: 33816509 PMCID: PMC8014084 DOI: 10.3389/fcell.2021.658893] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) have become key transcriptional regulators of metabolism, angiogenesis, erythropoiesis, proliferation, inflammation and metastases. HIFs are tightly regulated by the tissue microenvironment. Under the influence of the hypoxic milieu, HIF proteins allow the tissue to adapt its response. This is especially critical for bone, as it constitutes a highly hypoxic environment. As such, bone structure and turnover are strongly influenced by the modulation of oxygen availability and HIFs. Both, bone forming osteoblasts and bone resorbing osteoclasts are targeted by HIFs and modulators of oxygen tension. Experimental and clinical data have delineated the importance of HIF responses in different osteoclast-mediated pathologies. This review will focus on the influence of HIF expression on the regulation of osteoclasts in homeostasis as well as during inflammatory and malignant bone diseases.
Collapse
Affiliation(s)
- Xianyi Meng
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nurnberg (FAU) and Universitatsklinikum Erlangen, Erlangen, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine 3 - Division of Molecular Bone Biology, Medical Faculty of the Technische Universität Dresden, Dresden, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nurnberg (FAU) and Universitatsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
31
|
Camacho-Cardenosa M, Quesada-Gómez JM, Camacho-Cardenosa A, Leal A, Dorado G, Torrecillas-Baena B, Casado-Díaz A. Effects of normobaric cyclic hypoxia exposure on mesenchymal stem-cell differentiation-pilot study on bone parameters in elderly. World J Stem Cells 2020; 12:1667-1690. [PMID: 33505607 PMCID: PMC7789125 DOI: 10.4252/wjsc.v12.i12.1667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) of bone marrow are the progenitor of osteoblasts and adipocytes. MSC tend to differentiate into adipocytes, instead of osteoblasts, with aging. This favors the loss of bone mass and development of osteoporosis. Hypoxia induces hypoxia inducible factor 1α gene encoding transcription factor, which regulates the expression of genes related to energy metabolism and angiogenesis. That allows a better adaptation to low O2 conditions. Sustained hypoxia has negative effects on bone metabolism, favoring bone resorption. Yet, surprisingly, cyclic hypoxia (CH), short times of hypoxia followed by long times in normoxia, can modulate MSC differentiation and improve bone health in aging. AIM To evaluate the CH effect on MSC differentiation, and whether it improves bone mineral density in elderly. METHODS MSC cultures were induced to differentiate into osteoblasts or adipocytes, in CH (3% O2 for 1, 2 or 4 h, 4 d a week). Extracellular-matrix mineralization and lipid-droplet formation were studied in MSC induced to differentiate into osteoblast or adipocytes, respectively. In addition, gene expression of marker genes, for osteogenesis or adipogenesis, have been quantified by quantitative real time polymerase chain reaction. The in vivo studies with elderly (> 75 years old; n = 10) were carried out in a hypoxia chamber, simulating an altitude of 2500 m above sea level, or in normoxia, for 18 wk (36 CH sessions of 16 min each). Percentages of fat mass and bone mineral density from whole body, trunk and right proximal femur (femoral, femoral neck and trochanter) were assessed, using dual-energy X-ray absorptiometry. RESULTS CH (4 h of hypoxic exposure) inhibited extracellular matrix mineralization and lipid-droplet formation in MSC induced to differentiate into osteoblasts or adipocytes, respectively. However, both parameters were not significantly affected by the other shorter hypoxia times assessed. The longest periods of hypoxia downregulated the expression of genes related to extracellular matrix formation, in MSC induced to differentiate into osteoblasts. Interestingly, osteocalcin (associated to energy metabolism) was upregulated. Vascular endothelial growth factor an expression and low-density lipoprotein receptor related protein 5/6/dickkopf Wnt signaling pathway inhibitor 1 (associated to Wnt/β-catenin pathway activation) increased in osteoblasts. Yet, they decreased in adipocytes after CH treatments, mainly with the longest hypoxia times. However, the same CH treatments increased the osteoprotegerin/receptor activator for nuclear factor kappa B ligand ratio in both cell types. An increase in total bone mineral density was observed in elderly people exposed to CH, but not in specific regions. The percentage of fat did not vary between groups. CONCLUSION CH may have positive effects on bone health in the elderly, due to its possible inhibitory effect on bone resorption, by increasing the osteoprotegerin / receptor activator for nuclear factor kappa B ligand ratio.
Collapse
Affiliation(s)
| | - José Manuel Quesada-Gómez
- CIBER De Fragilidad Y Envejecimiento Saludable (CIBERFES), Unidad De Gestión Clínica De Endocrinología Y Nutrición, Instituto Maimónides De Investigación Biomédica De Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | | | - Alejo Leal
- Servicio de Traumatología, Hospital de Cáceres, Cáceres 10004, Spain
| | - Gabriel Dorado
- Departamento Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba-CIBERFES, 14071 Córdoba, Spain
| | - Bárbara Torrecillas-Baena
- CIBER De Fragilidad Y Envejecimiento Saludable (CIBERFES), Unidad De Gestión Clínica De Endocrinología Y Nutrición, Instituto Maimónides De Investigación Biomédica De Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Antonio Casado-Díaz
- CIBER De Fragilidad Y Envejecimiento Saludable (CIBERFES), Unidad De Gestión Clínica De Endocrinología Y Nutrición, Instituto Maimónides De Investigación Biomédica De Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| |
Collapse
|
32
|
Distinct roles for the hypoxia-inducible transcription factors HIF-1α and HIF-2α in human osteoclast formation and function. Sci Rep 2020; 10:21072. [PMID: 33273561 PMCID: PMC7713367 DOI: 10.1038/s41598-020-78003-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/19/2020] [Indexed: 01/04/2023] Open
Abstract
Bone homeostasis is maintained by a balance between osteoblast-mediated bone formation and osteoclast-driven bone resorption. Hypoxia modulates this relationship partially via direct and indirect effects of the hypoxia-inducible factor-1 alpha (HIF-1α) transcription factor on osteoclast formation and bone resorption. Little data is available on the role(s) of the HIF-2α isoform of HIF in osteoclast biology. Here we describe induction of HIF-1α and HIF-2α during the differentiation of human CD14+ monocytes into osteoclasts. Knockdown of HIF-1α did not affect osteoclast differentiation but prevented the increase in bone resorption that occurs under hypoxic conditions. HIF-2α knockdown did not affect bone resorption but moderately inhibited osteoclast formation. Growth of osteoclasts in 3D gels reversed the effect of HIF-2α knockdown; HIF-2α siRNA increasing osteoclast formation in 3D. Glycolysis is the main HIF-regulated pathway that drives bone resorption. HIF knockdown only affected glucose uptake and bone resorption in hypoxic conditions. Inhibition of glycolysis with 2-deoxy-d-glucose (2-DG) reduced osteoclast formation and activity under both basal and hypoxic conditions, emphasising the importance of glycolytic metabolism in osteoclast biology. In summary, HIF-1α and HIF-2α play different but overlapping roles in osteoclast biology, highlighting the importance of the HIF pathway as a potential therapeutic target in osteolytic disease.
Collapse
|
33
|
Todd VM, Johnson RW. Hypoxia in bone metastasis and osteolysis. Cancer Lett 2020; 489:144-154. [PMID: 32561416 PMCID: PMC7429356 DOI: 10.1016/j.canlet.2020.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
Hypoxia is a common feature in tumors, driving pathways that promote epithelial-to-mesenchymal transition, invasion, and metastasis. Clinically, high levels of hypoxia-inducible factor (HIF) expression and stabilization at the primary site in many cancer types is associated with poor patient outcomes. Experimental evidence suggests that HIF signaling in the primary tumor promotes their dissemination to the bone, as well as the release of factors such as LOX that act distantly on the bone to stimulate osteolysis and form a pre-metastatic niche. Additionally, the bone itself is a generally hypoxic organ, fueling the activation of HIF signaling in bone resident cells, promoting tumor cell homing to the bone as well as osteoclastogenesis. The hypoxic microenvironment of the bone also stimulates the vicious cycle of tumor-induced bone destruction, further fueling tumor cell growth and osteolysis. Furthermore, hypoxia appears to regulate key tumor dormancy factors. Thus, hypoxia acts both on the tumor cells as well as the metastatic site to promote tumor cell metastasis.
Collapse
Affiliation(s)
- Vera M Todd
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachelle W Johnson
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
34
|
O'Donnell L, Hill EC, Anderson ASA, Edgar HJH. Cribra orbitalia and porotic hyperostosis are associated with respiratory infections in a contemporary mortality sample from New Mexico. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:721-733. [PMID: 32869279 DOI: 10.1002/ajpa.24131] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Cribra orbitalia (CO) and porotic hyperostosis (PH) are porous cranial lesions (PCLs) classically associated with iron-deficiency anemia in bioarchaeological contexts. However, recent studies indicate a need to reassess the interpretation of PCLs. This study addresses the potential health correlates of PCLs in a contemporary sample by examining relationships between the known cause of death (COD) and PCL presence/absence. METHODS This study includes a sample of 461 juvenile individuals (6 months to 15 years of age) who underwent examination at the University of New Mexico's Office of the Medical Investigator between 2011 and 2019. The information available for each individual includes their sex, age at death, and their COD and manner of death. RESULTS Odds ratio of having CO (OR = 3.92, p < .01) or PH (OR = 2.86, p = .02) lesions are increased in individuals with respiratory infections. Individuals with heart conditions have increased odds of having CO (OR = 3.52, p = .03) lesions, but not PH. CONCLUSION Individuals with respiratory infection are more likely to have CO and/or PH. CO appears to have a greater range of health correlates than PH does, as indicated by the heart condition results. However, individuals with congenital heart defects are at higher risk for respiratory infections, so bony alterations in cases of heart conditions may be due to respiratory illness. Since respiratory infection remains a leading cause of mortality today, CO and PH in bioarchaeological contexts should be considered as potential indicators of respiratory infections in the past.
Collapse
Affiliation(s)
- Lexi O'Donnell
- Department of Sociology and Anthropology, University of Mississippi, Oxford, Mississippi, USA
| | - Ethan C Hill
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Heather J H Edgar
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA.,Office of the Medical Investigator, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
35
|
Pierrevelcin M, Fuchs Q, Lhermitte B, Messé M, Guérin E, Weingertner N, Martin S, Lelong-Rebel I, Nazon C, Dontenwill M, Entz-Werlé N. Focus on Hypoxia-Related Pathways in Pediatric Osteosarcomas and Their Druggability. Cells 2020; 9:cells9091998. [PMID: 32878021 PMCID: PMC7564372 DOI: 10.3390/cells9091998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma is the most frequent primary bone tumor diagnosed during adolescence and young adulthood. It is associated with the worst outcomes in the case of poor response to chemotherapy and in metastatic disease. While no molecular biomarkers are clearly and currently associated with those worse situations, the study of pathways involved in the high level of tumor necrosis and in the immune/metabolic intra-tumor environment seems to be a way to understand these resistant and progressive osteosarcomas. In this review, we provide an updated overview of the role of hypoxia in osteosarcoma oncogenesis, progression and during treatment. We describe the role of normoxic/hypoxic environment in normal tissues, bones and osteosarcomas to understand their role and to estimate their druggability. We focus particularly on the role of intra-tumor hypoxia in osteosarcoma cell resistance to treatments and its impact in its endogenous immune component. Together, these previously published observations conduct us to present potential perspectives on the use of therapies targeting hypoxia pathways. These therapies could afford new treatment approaches in this bone cancer. Nevertheless, to study the osteosarcoma cell druggability, we now need specific in vitro models closely mimicking the tumor, its intra-tumor hypoxia and the immune microenvironment to more accurately predict treatment efficacy and be complementary to mouse models.
Collapse
Affiliation(s)
- Marina Pierrevelcin
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
| | - Quentin Fuchs
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
| | - Benoit Lhermitte
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
- Pathology Department, University Hospital of Strasbourg, 67098 Strasbourg, France;
| | - Melissa Messé
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
| | - Eric Guérin
- Oncobiology, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67098 Strasbourg, France;
| | - Noelle Weingertner
- Pathology Department, University Hospital of Strasbourg, 67098 Strasbourg, France;
| | - Sophie Martin
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
| | - Isabelle Lelong-Rebel
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
| | - Charlotte Nazon
- Pediatric Oncohematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France;
| | - Monique Dontenwill
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
| | - Natacha Entz-Werlé
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
- Pediatric Oncohematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France;
- Correspondence: ; Tel.: +33-3-8812-8396; Fax: +33-3-8812-8092
| |
Collapse
|
36
|
Damara FA, Ramdhani AN, Channel IC. Letter to the editor regarding: "Low bone mineral density in adults with complex congenital heart disease". Int J Cardiol 2020; 322:168. [PMID: 32805326 DOI: 10.1016/j.ijcard.2020.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/12/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Fachreza Aryo Damara
- Dr Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Jl. Pasteur No.38, Bandung, West Java 40161, Indonesia.
| | - Alfya Nandika Ramdhani
- Dr Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Jl. Pasteur No.38, Bandung, West Java 40161, Indonesia.
| | - Ivan Christian Channel
- Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung Sumedang No.KM 21, Sumedang, West Java 45363, Indonesia.
| |
Collapse
|
37
|
Hulley PA, Papadimitriou-Olivgeri I, Knowles HJ. Osteoblast-Osteoclast Coculture Amplifies Inhibitory Effects of FG-4592 on Human Osteoclastogenesis and Reduces Bone Resorption. JBMR Plus 2020; 4:e10370. [PMID: 32666021 PMCID: PMC7340438 DOI: 10.1002/jbm4.10370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
The link between bone and blood vessels is regulated by hypoxia and the hypoxia‐inducible transcription factor, HIF, which drives both osteogenesis and angiogenesis. The recent clinical approval of PHD enzyme inhibitors, which stabilize HIF protein, introduces the potential for a new clinical strategy to treat osteolytic conditions such as osteoporosis, osteonecrosis, and skeletal fracture and nonunion. However, bone‐resorbing osteoclasts also play a central role in bone remodeling and pathological osteolysis, and HIF promotes osteoclast activation and bone loss in vitro. It is therefore likely that the result of PHD enzyme inhibition in vivo would be mediated by a balance between increased bone formation and increased bone resorption. It is essential that we improve our understanding of the effects of HIF on osteoclast formation and function and consider the potential contribution of inhibitory interactions with other musculoskeletal cells. The PHD enzyme inhibitor FG‐4592 stabilized HIF protein and stimulated osteoclast‐mediated bone resorption, but inhibited differentiation of human CD14+ monocytes into osteoclasts. Formation of osteoclasts in a more physiologically relevant 3D collagen gel did not affect the sensitivity of osteoclastogenesis to FG‐4592, but increased sensitivity to reduced concentrations of RANKL. Coculture with osteoblasts amplified inhibition of osteoclastogenesis by FG‐4592, whether the osteoblasts were proliferating, differentiating, or in the presence of exogenous M‐CSF and RANKL. Osteoblast coculture dampened the ability of high concentrations of FG‐4592 to increase bone resorption. These data provide support for the therapeutic use of PHD enzyme inhibitors to improve bone formation and/or reduce bone loss for the treatment of osteolytic pathologies and indicate that FG‐4592 might act in vivo to inhibit the formation and activity of the osteoclasts that drive osteolysis. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Philippa A Hulley
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences University of Oxford Oxford UK
| | - Ioanna Papadimitriou-Olivgeri
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences University of Oxford Oxford UK.,Department of Anatomy Histology & Embryology University of Patras Patras Greece
| | - Helen J Knowles
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences University of Oxford Oxford UK
| |
Collapse
|
38
|
Hannah SS, McFadden S, McNeilly A, McClean C. "Take My Bone Away?" Hypoxia and bone: A narrative review. J Cell Physiol 2020; 236:721-740. [PMID: 32643217 DOI: 10.1002/jcp.29921] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
To maintain normal cellular and physiological function, sufficient oxygen is required. Recently, evidence has suggested that hypoxia, either pathological or environmental, may influence bone health. It appears that bone cells are distinctly responsive to hypoxic stimuli; for better or worse, this is still yet to be elucidated. Hypoxia has been shown to offer potentially therapeutic effects for bone by inducing an osteogenic-angiogenic response, although, others have noted excessive osteoclastic bone resorption instead. Much evidence suggests that the hypoxic-inducible pathway is integral in mediating the changes in bone metabolism. Furthermore, many factors associated with hypoxia including changes in energy metabolism, acid-base balance and the increased generation of reactive oxygen species, are known to influence bone metabolism. This review aims to examine some of the putative mechanisms responsible for hypoxic-induced alterations of bone metabolism, with regard to osteoclasts and osteoblasts, both positive and negative.
Collapse
Affiliation(s)
- Scott S Hannah
- Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - Sonyia McFadden
- Institute of Nursing and Health Research, Ulster University, Newtownabbey, Antrim, UK
| | - Andrea McNeilly
- Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - Conor McClean
- Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| |
Collapse
|
39
|
Ponzetti M, Rucci N. Switching Homes: How Cancer Moves to Bone. Int J Mol Sci 2020; 21:E4124. [PMID: 32527062 PMCID: PMC7313057 DOI: 10.3390/ijms21114124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Bone metastases (BM) are a very common complication of the most prevalent human cancers. BM are extremely painful and may be life-threatening when associated with hypercalcaemia. BM can lead to kidney failure and cardiac arrhythmias and arrest, but why and how do cancer cells decide to "switch homes" and move to bone? In this review, we will present what answers science has provided so far, with focus on the molecular mechanisms and cellular aspects of well-established findings, such as the concept of "vicious cycle" and "osteolytic" vs. "osteosclerotic" bone metastases; as well as on novel concepts, such as cellular dormancy and extracellular vesicles. At the molecular level, we will focus on hypoxia-associated factors and angiogenesis, the Wnt pathway, parathyroid hormone-related peptide (PTHrP) and chemokines. At the supramolecular/cellular level, we will discuss tumour dormancy, id est the mechanisms through which a small contingent of tumour cells coming from the primary site may be kept dormant in the endosteal niche for many years. Finally, we will present a potential role for the multimolecular mediators known as extracellular vesicles in determining bone-tropism and establishing a premetastatic niche by influencing the bone microenvironment.
Collapse
Affiliation(s)
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
40
|
Kelly MJ, Igari K, Yamanouchi D. Osteoclast-Like Cells in Aneurysmal Disease Exhibit an Enhanced Proteolytic Phenotype. Int J Mol Sci 2019; 20:ijms20194689. [PMID: 31546645 PMCID: PMC6801460 DOI: 10.3390/ijms20194689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is among the top 20 causes of death in the United States. Surgical repair is the gold standard for AAA treatment, therefore, there is a need for non-invasive therapeutic interventions. Aneurysms are more closely associated with the osteoclast-like catabolic degradation of the artery, rather than the osteoblast-like anabolic processes of arterial calcification. We have reported the presence of osteoclast-like cells (OLCs) in human and mouse aneurysmal tissues. The aim of this study was to examine OLCs from aneurysmal tissues as a source of degenerative proteases. Aneurysmal and control tissues from humans, and from the mouse CaPO4 and angiotensin II (AngII) disease models, were analyzed via flow cytometry and immunofluorescence for the expression of osteoclast markers. We found higher expression of the osteoclast markers tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinase-9 (MMP-9), and cathepsin K, and the signaling molecule, hypoxia-inducible factor-1α (HIF-1α), in aneurysmal tissue compared to controls. Aneurysmal tissues also contained more OLCs than controls. Additionally, more OLCs from aneurysms express HIF-1α, and produce more MMP-9 and cathepsin K, than myeloid cells from the same tissue. These data indicate that OLCs are a significant source of proteases known to be involved in aortic degradation, in which the HIF-1α signaling pathway may play an important role. Our findings suggest that OLCs may be an attractive target for non-surgical suppression of aneurysm formation due to their expression of degradative proteases.
Collapse
Affiliation(s)
- Matthew J Kelly
- Division of Vascular Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Kimihiro Igari
- Division of Vascular Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Division of Vascular and Endovascular Surgery, Department of Surgery, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan.
| | - Dai Yamanouchi
- Division of Vascular Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
41
|
The Adenosine A 2B Receptor Drives Osteoclast-Mediated Bone Resorption in Hypoxic Microenvironments. Cells 2019; 8:cells8060624. [PMID: 31234425 PMCID: PMC6628620 DOI: 10.3390/cells8060624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoclast-mediated bone destruction is amplified in the hypoxic synovial microenvironment of rheumatoid arthritis (RA). This increased bone resorption is driven by the hypoxia-inducible transcription factor HIF. We identified hypoxic induction of the HIF-regulated adenosine A2B receptor in primary human osteoclasts (mRNA, 3.8-fold increase, p < 0.01) and sought to identify the role(s) of purinergic signaling via this receptor in the bone resorption process. Primary human osteoclasts were differentiated from CD14+ monocytes and exposed to hypoxia (2% O2) and A2B receptor inhibitors (MRS1754, PSB603). The hypoxic increase in bone resorption was prevented by the inhibition of the A2B receptor, at least partly by the attenuation of glycolytic and mitochondrial metabolism via inhibition of HIF. A2B receptor inhibition also reduced osteoclastogenesis in hypoxia by inhibiting early cell fusion (day 3–4, p < 0.05). The A2B receptor is only functional in hypoxic or inflammatory environments when the extracellular concentrations of adenosine (1.6-fold increase, p < 0.05) are sufficient to activate the receptor. Inhibition of the A2B receptor under normoxic conditions therefore did not affect any parameter tested. Reciprocal positive regulation of HIF and the A2B receptor in a hypoxic microenvironment thus enhances glycolytic and mitochondrial metabolism in osteoclasts to drive increased bone resorption. A2B receptor inhibition could potentially prevent the pathological osteolysis associated with hypoxic diseases such as rheumatoid arthritis.
Collapse
|
42
|
Corso PFCDL, Meger MN, Petean IBF, Souza JFD, Brancher JA, da Silva LAB, Rebelatto NLB, Kluppel LE, Sousa-Neto MD, Küchler EC, Scariot R. Examination of OPG, RANK, RANKL and HIF1A polymorphisms in temporomandibular joint ankylosis patients. J Craniomaxillofac Surg 2019; 47:766-770. [DOI: 10.1016/j.jcms.2019.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 01/14/2019] [Indexed: 02/05/2023] Open
|
43
|
Zhang X, Chen D, Zheng J, Deng L, Chen Z, Ling J, Wu L. Effect of microRNA-21 on hypoxia-inducible factor-1α in orthodontic tooth movement and human periodontal ligament cells under hypoxia. Exp Ther Med 2019; 17:2830-2836. [PMID: 30930976 DOI: 10.3892/etm.2019.7248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Orthodontic tooth movement can lead to temporary hypoxia of periodontal tissues. Periodontal ligament cells (PDLCs) react to hypoxia, releasing various biological factors to promote periodontal tissue reconstruction. Hypoxia-inducible factor-1α (HIF-1α) is one of the most sensitive factors involved in the response to hypoxia. HIF-1α has been identified to be involved in osteogenic and osteoclast differentiation in vitro; however, few studies have investigated the expression of HIF-1α in the periodontal ligament (PDL) during orthodontic movement in vivo. In a previous study, microRNA-21 (miR-21) was demonstrated to be highly expressed in a rat model of orthodontic tooth movement. Additionally, miR-21 can increase the expression of HIF-1α in certain tumor cell types and is involved in tumor bioactivities. In the present study, HIF-1α exhibited expression patterns in a similar way to miR-21 in PDL samples from a rat model of orthodontic tooth movement, with expression initially increased and followed by a decrease over time. Furthermore, human PDLCs were exposed to a hypoxic environment in vitro, which induced significant upregulation of HIF-1α and miR-21 expression. Furthermore, miR-21 mimics increased HIF-1α expression and promoted osteogenic differentiation, indicated by upregulated expression of the osteogenic markers osteopontin, runt-related gene-2 and alkaline phosphatase. miR-21 inhibitors suppressed HIF-1α expression and downregulated the osteogenic markers. In conclusion, the results revealed that miR-21 has a positive effect on HIF-1α expression in PDLCs under hypoxia and has important roles in osteogenic differentiation during orthodontic tooth movement. These findings provide a theoretical basis by which to promote tissue reconstruction during orthodontic tooth movement.
Collapse
Affiliation(s)
- Xueqin Zhang
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Dongru Chen
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jinxuan Zheng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Lidi Deng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zhengyuan Chen
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Liping Wu
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
44
|
Ma Z, Yu R, Zhao J, Sun L, Jian L, Li C, Liu X. Constant hypoxia inhibits osteoclast differentiation and bone resorption by regulating phosphorylation of JNK and IκBα. Inflamm Res 2019; 68:157-166. [PMID: 30604211 DOI: 10.1007/s00011-018-1209-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/19/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteoclasts are responsible for the bone loss in rheumatoid arthritis (RA). Hypoxia has been suggested to play key roles in pathological bone loss. However, the current understanding of the effects of hypoxia on osteoclastogenesis is controversial. Effects of hypoxia on both the formation and function of osteoclasts requires examination. In the current study, we aimed to explore the effect of hypoxia on osteoclast differentiation and the underlying mechanisms. METHODS RAW264.7 cells and murine bone-marrow-derived monocytes were used to induce osteoclastogenesis in the presence of macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa B ligand (RANKL). Hypoxic conditions were maintained in a hypoxic chamber at 5% CO2 and 1% O2, balanced with N2. Osteoclasts were detected by tartrate-resistant acid phosphatase (TRAP) staining. A bone resorption assay was carried out in vitro using bone slices. RT-PCR was conducted to detect osteoclast markers and transcription factors. The phosphorylation of nuclear factor-κBα (IκBα), c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK), and p38 was detected by western blotting. Mann-Whitney U test or Student's t test was used to compare differences between the two groups. RESULTS TRAP staining and the bone resorption assay revealed that hypoxia-restrained osteoclast differentiation and bone resorption. Expression of osteoclast markers including cathepsin K, RANK, and TRAP decreased during osteoclast differentiation under hypoxic conditions (all P < 0.05). Hypoxia at 1% O2 did not affect cell viability, whereas it dramatically abated RANKL-dependent phosphorylation of the JNK-mitogen-activated protein kinases (MAPK) and IκBα pathways. Moreover, the expression of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) was inhibited under hypoxic conditions (all P < 0.05). CONCLUSIONS These results suggest that constant hypoxia at 1% O2 significantly restrains osteoclast formation and resorbing function without affecting cell viability. Constant hypoxia might inhibit RANKL-induced osteoclastogenesis by regulating NFATc1 expression via interfering the phosphorylation of JNK and IκBα.
Collapse
Affiliation(s)
- Zhenzhen Ma
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Ruohan Yu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Leilei Jian
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Changhong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China.
| | - Xiangyuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
45
|
Balogh E, Paragh G, Jeney V. Influence of Iron on Bone Homeostasis. Pharmaceuticals (Basel) 2018; 11:ph11040107. [PMID: 30340370 PMCID: PMC6316285 DOI: 10.3390/ph11040107] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Bone homeostasis is a complex process, wherein osteoclasts resorb bone and osteoblasts produce new bone tissue. For the maintenance of skeletal integrity, this sequence has to be tightly regulated and orchestrated. Iron overload as well as iron deficiency disrupt the delicate balance between bone destruction and production, via influencing osteoclast and osteoblast differentiation as well as activity. Iron overload as well as iron deficiency are accompanied by weakened bones, suggesting that balanced bone homeostasis requires optimal-not too low, not too high-iron levels. The goal of this review is to summarize our current knowledge about how imbalanced iron influence skeletal health. Better understanding of this complex process may help the development of novel therapeutic approaches to deal with the pathologic effects of altered iron levels on bone.
Collapse
Affiliation(s)
- Enikő Balogh
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| | - György Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| | - Viktória Jeney
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| |
Collapse
|
46
|
Abstract
Osteoclasts are defined as cells capable of excavating 3-dimensional resorption pits in bone and other mineralised tissues. They are derived from the differentiation/fusion of promonocytic precursors, and are usually large, multinucleated cells. In common with other cells from this myeloid lineage such as macrophages and dendritic cells, they are adapted to function in hypoxic, acidic environments. The process of bone resorption is rapid and is presumably highly energy-intensive, since osteoclasts must actively extrude protons to dissolve hydroxyapatite mineral, whilst secreting cathepsin K to degrade collagen, as well as maintaining a high degree of motility. Osteoclasts are well known to contain abundant mitochondria but they are also able to rely on glycolytic (anaerobic) metabolism to generate the ATP needed to power their activity. Their primary extracellular energy source appears to be glucose. Excessive accumulation of mitochondrial reactive oxygen species in osteoclasts during extended periods of high activity in oxygen-poor environments may promote apoptosis and help to limit bone resorption - a trajectory that could be termed "live fast, die young". In general, however, the metabolism of osteoclasts remains a poorly-investigated area, not least because of the technical challenges of studying actively resorbing cells in appropriate conditions.
Collapse
Affiliation(s)
- Timothy R Arnett
- Department of Cell & Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
47
|
Gorissen B, de Bruin A, Miranda-Bedate A, Korthagen N, Wolschrijn C, de Vries TJ, van Weeren R, Tryfonidou MA. Hypoxia negatively affects senescence in osteoclasts and delays osteoclastogenesis. J Cell Physiol 2018; 234:414-426. [PMID: 29932209 PMCID: PMC6220985 DOI: 10.1002/jcp.26511] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
Abstract
Cellular senescence, that is, the withdrawal from the cell cycle, combined with the acquirement of the senescence associated secretory phenotype has important roles during health and disease and is essential for tissue remodeling during embryonic development. Osteoclasts are multinucleated cells, responsible for bone resorption, and cell cycle arrest during osteoclastogenesis is well recognized. Therefore, the aim of this study was to investigate whether these cells should be considered senescent and to assess the influence of hypoxia on their potential senescence status. Osteoclastogenesis and bone resorption capacity of osteoclasts, cultured from CD14+ monocytes, were evaluated in two oxygen concentrations, normoxia (21% O2) and hypoxia (5% O2). Osteoclasts were profiled by using specific staining for proliferation and senescence markers, qPCR of a number of osteoclast and senescence‐related genes and a bone resorption assay. Results show that during in vitro osteoclastogenesis, osteoclasts heterogeneously obtain a senescent phenotype. Furthermore, osteoclastogenesis was delayed at hypoxic compared to normoxic conditions, without negatively affecting the bone resorption capacity. It is concluded that osteoclasts can be considered senescent, although senescence is not uniformly present in the osteoclast population. Hypoxia negatively affects the expression of some senescence markers. Based on the direct relationship between senescence and osteoclastogenesis, it is tempting to hypothesize that contents of the so‐called senescence associated secretory phenotype (SASP) not only play a functional role in matrix resorption, but also may regulate osteoclastogenesis.
Collapse
Affiliation(s)
- Ben Gorissen
- Department of Pathobiology, Anatomy and Physiology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alain de Bruin
- Dutch Molecular Pathology Centre, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alberto Miranda-Bedate
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicoline Korthagen
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Claudia Wolschrijn
- Department of Pathobiology, Anatomy and Physiology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Teun J de Vries
- Department of Periodontology,, Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
48
|
Kubatzky KF, Uhle F, Eigenbrod T. From macrophage to osteoclast - How metabolism determines function and activity. Cytokine 2018; 112:102-115. [PMID: 29914791 DOI: 10.1016/j.cyto.2018.06.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 12/13/2022]
Abstract
Osteoclasts are specialised cells that resorb bone and develop from the monocyte/macrophage lineage. While there is a wealth of information on the regulation of macrophage function through metabolic activity, the connection between osteoclast differentiation and metabolism is less well understood. Recent data show that mitochondria participate in switching macrophages from an inflammatory phenotype towards differentiation into osteoclasts. Additionally, it was found that reactive oxygen species (ROS) actively take place in osteoclast differentiation by acting as secondary signalling molecules. Bone resorption is an energy demanding process and differentiating osteoclasts triggers the biogenesis of mitochondria. In addition, the activity of specific OXPHOS components of macrophages and osteoclasts is differentially regulated. This review summarises our knowledge on macrophage-mediated inflammation, its impact on a cell's metabolic activity and its effect on osteoclast differentiation.
Collapse
Affiliation(s)
- Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Florian Uhle
- Klinik für Anaesthesiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Tatjana Eigenbrod
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
49
|
Li J, Li Y, Peng X, Li B, Yuan X, chen Y. Emodin attenuates titanium particle-induced osteolysis and RANKL-mediated osteoclastogenesis through the suppression of IKK phosphorylation. Mol Immunol 2018; 96:8-18. [PMID: 29455094 DOI: 10.1016/j.molimm.2018.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/07/2018] [Indexed: 12/15/2022]
|
50
|
Sha Y, Yang L, Lv Y. ERK1/2 and Akt phosphorylation were essential for MGF E peptide regulating cell morphology and mobility but not proangiogenic capacity of BMSCs under severe hypoxia. Cell Biochem Funct 2018; 36:155-165. [DOI: 10.1002/cbf.3327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/04/2018] [Accepted: 01/22/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Yongqiang Sha
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College; Chongqing University; Chongqing China
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College; Chongqing University; Chongqing China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College; Chongqing University; Chongqing China
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College; Chongqing University; Chongqing China
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College; Chongqing University; Chongqing China
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College; Chongqing University; Chongqing China
| |
Collapse
|