1
|
Ito S, Graf DB, Katsumata Y, Moorleghen JJ, Zhang C, Li Y, LeMaire SA, Shen YH, Lu HS, Daugherty A, Sawada H. Smooth muscle cells and fibroblasts in the ascending aorta exhibit minor differences between embryonic origins in angiotensin II-driven transcriptional alterations. Sci Rep 2025; 15:16617. [PMID: 40360730 PMCID: PMC12075595 DOI: 10.1038/s41598-025-99862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Thoracic aortopathy is influenced by angiotensin II (AngII) and exhibits regional heterogeneity with the ascending aorta being particularly susceptible. In this region, smooth muscle cells (SMCs) and selected fibroblasts originate from the second heart field (SHF) and cardiac neural crest (CNC). While our previous study revealed a critical role of SHF-derived cells in AngII-mediated aortopathy, the contribution of CNC-derived cells remains unclear. To investigate lineage-specific responses to AngII, Mef2c-Cre R26RmT/mG mice were infused with AngII. Ascending aortas were harvested at baseline or after 3 days of infusion, representing the prepathological phase. Cells were sorted based on their embryonic origins and single-cell RNA sequencing was performed. Transcriptomic analysis revealed significant changes in both SHF- and nSHF-derived SMCs following short-term AngII infusion, although differences between the origins were modest. Similarly, fibroblast transcriptomes exhibited notable changes, yet lineage-specific differences remained modest, except for a newly identified fibroblast subpopulation where extracellular matrix-related genes such as Eln and Col3a1 were downregulated in SHF-derived fibroblasts compared to nSHF-derived fibroblasts. These findings suggest that while fibroblasts in the new subcluster exhibit lineage-specific extracellular matrix-related differences, overall transcriptomic variations between SHF- and nSHF-derived cells in response to AngII remain modest during the prepathological phase of AngII-induced thoracic aortopathy.
Collapse
Affiliation(s)
- Sohei Ito
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, 741 South Limestone, BBSRB, Lexington, KY, 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - David B Graf
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, 741 South Limestone, BBSRB, Lexington, KY, 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, College of Medicine, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jessica J Moorleghen
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, 741 South Limestone, BBSRB, Lexington, KY, 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Cardiothoracic Surgery, Geisinger, Danville, PA, USA
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Hong S Lu
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, 741 South Limestone, BBSRB, Lexington, KY, 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, 741 South Limestone, BBSRB, Lexington, KY, 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, 741 South Limestone, BBSRB, Lexington, KY, 40536, USA.
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Zhu Z, Liu H, Feng L, Lu L, Zhu J, Liang Q, Lan Z, Ye Y, Wang S, Chen A, Yan J. Loss of ADAMTS5 promotes vascular calcification via versican/integrin β1/FAK signal. Atherosclerosis 2025; 404:119190. [PMID: 40215897 DOI: 10.1016/j.atherosclerosis.2025.119190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/29/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
INTRODUCTION Extracellular matrix (ECM) proteases have been closely linked to the pathogenesis of vascular calcification. A disintegrin and metalloprotease with thrombospondin motifs-5 (ADAMTS5) is an ECM-degrading enzyme involved in ECM remodeling. Versican, a critical ECM component in the arteries, can be proteolytically cleaved by ADAMTS5 and activates integrin β1. However, whether ADAMTS5 is involved in the regulation of the pathogenesis of vascular calcification remains unclear. This study investigates the regulatory role of ADAMTS5 in vascular calcification and its mechanistic link to versican-integrin β1/FAK signaling. METHODS AND RESULTS Western blot, immunofluorescence, and immunohistochemistry analysis revealed that ADAMTS5 expression was significantly downregulated in rat and human vascular smooth muscle cells (VSMCs), as well as in rat and human arteries during vascular calcification. In addition, both pharmacological inhibition of ADAMTS5 and knockdown of ADAMTS5 by siRNA significantly aggravated mineral deposition in rat and human VSMCs under osteogenic conditions. Moreover, adenovirus-mediated ADAMTS5 overexpression markedly attenuated calcification of VSMCs and aortic calcification in rats with chronic kidney disease. Furthermore, inhibition of ADAMTS5 promoted aortic calcification in VitD3-overloaded mice. Mechanistically, overexpression of ADAMTS5 significantly reduced versican protein levels, and inhibited integrin β1 and FAK phosphorylation in rat VSMCs, but increased versikine protein levels. Moreover, either knockdown of versican or pharmacological inhibition of FAK phosphorylation repressed VSMC calcification mediated by loss of ADAMTS5. CONCLUSIONS We have demonstrated for the first time that ADAMTS5 deficiency promotes versican accumulation and activates integrin β1/FAK signaling. These findings suggest ADAMTS5 as a potential therapeutic target for vascular calcification.
Collapse
MESH Headings
- Animals
- Versicans/metabolism
- Humans
- ADAMTS5 Protein/genetics
- ADAMTS5 Protein/metabolism
- ADAMTS5 Protein/deficiency
- Signal Transduction
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Vascular Calcification/enzymology
- Vascular Calcification/pathology
- Vascular Calcification/genetics
- Integrin beta1/metabolism
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Male
- Cells, Cultured
- Disease Models, Animal
- Focal Adhesion Kinase 1/metabolism
- Mice, Inbred C57BL
- Rats, Sprague-Dawley
- Rats
- Phosphorylation
- Mice
- Aortic Diseases/enzymology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
Collapse
Affiliation(s)
- Zhenyu Zhu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, 510280, PR China; Department of Cardiology, Tongde Hospital of Zhejiang Province, PR China
| | - Hao Liu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, PR China
| | - Liyun Feng
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, 510280, PR China
| | - Lihe Lu
- Department of Pathophysiolgy, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Jiahui Zhu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, 510280, PR China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, PR China
| | - Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, 510280, PR China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, 510280, PR China
| | - Siyi Wang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, 510280, PR China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, 510280, PR China.
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, 510280, PR China.
| |
Collapse
|
3
|
Daugherty A, Milewicz DM, Dichek DA, Ghaghada KB, Humphrey JD, LeMaire SA, Li Y, Mallat Z, Saeys Y, Sawada H, Shen YH, Suzuki T, Zhou (周桢) Z. Recommendations for Design, Execution, and Reporting of Studies on Experimental Thoracic Aortopathy in Preclinical Models. Arterioscler Thromb Vasc Biol 2025; 45:609-631. [PMID: 40079138 PMCID: PMC12018150 DOI: 10.1161/atvbaha.124.320259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
There is a recent dramatic increase in research on thoracic aortic diseases that includes aneurysms, dissections, and rupture. Experimental studies predominantly use mice in which aortopathy is induced by chemical interventions, genetic manipulations, or both. Many parameters should be deliberated in experimental design in concert with multiple considerations when providing dimensional data and characterization of aortic tissues. The purpose of this review is to provide recommendations on guidance in (1) the selection of a mouse model and experimental conditions for the study, (2) parameters for standardizing detection and measurements of aortic diseases, (3) meaningful interpretation of characteristics of diseased aortic tissue, and (4) reporting standards that include rigor and transparency.
Collapse
Affiliation(s)
- Alan Daugherty
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David A. Dichek
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ketan B. Ghaghada
- Department of Radiology, Texas Children’s Hospital, and Department of Radiology, Baylor College of Medicine Houston, TX, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Scott A. LeMaire
- Heart & Vascular Institute, Geisinger Health System, Danville, PA, USA
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ziad Mallat
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; Unversité de Paris, Inserm U970, Paris Cardiovascular Research Centre, Paris, France
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Department of Applied Mathematics, Computer Science and Statistics, Ghent University Ghent, Belgium
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Toru Suzuki
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester, UK and Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zhen Zhou (周桢)
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
4
|
Campello Jorge CA, Marway PS, Tjahjadi NS, Knauer HA, Patel HJ, Hofmann Bowman M, Eagle K, Burris NS. Growth Rate Assessed by Vascular Deformation Mapping Predicts Type B Aortic Dissection in Marfan Syndrome. J Am Heart Assoc 2025; 14:e039179. [PMID: 40008501 DOI: 10.1161/jaha.124.039179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Patients with Marfan syndrome (MFS) are at a high risk of type B aortic dissection (TBAD). Aortic growth and elongation have been suggested as risk factors for TBAD. Vascular deformation mapping is an image analysis technique for mapping 3-dimensional aortic growth on routine computed tomography angiography (CTA) scans. We aimed to use vascular deformation mapping to examine the value of aortic growth rate in the descending thoracic aorta, among other imaging biomarkers, to identify the factors associated with risk of TBAD in MFS. METHODS Computed tomography angiography scans spanning 2004 to 2023 from adult patients with MFS with native descending thoracic aorta were analyzed by vascular deformation mapping. Other measurements included multilevel thoracoabdominal aortic diameters and the length of the descending thoracic aorta by centerline analysis. RESULTS Among the 105 patients with MFS analyzed, 63.8% were men, with median age of 40 (range, 18-73) years and a median surveillance interval of 5.3 (range, 2.0-18.3) years. During surveillance, 12 (11.4%) patients developed TBAD. Patients with TBAD had a higher radial growth rate (0.63 versus 0.23 mm/year; P<0.001) and elongation rate (2.4 versus 0.5 mm/year; P<0.001), on univariate and multivariable analysis, but predissection descending aortic diameter was not significantly different. Predictors of growth rate included younger age, higher baseline maximal diameter of the descending thoracic aorta, smoking history, and warfarin use. CONCLUSIONS Radial growth and elongation rates of the descending thoracic aorta were independent predictors of TBAD occurrence in MFS. TBAD often occurred at nonaneurysmal diameters (<4.0 cm). These findings emphasize the role of growth over absolute diameter in risk stratification for TBAD in MFS.
Collapse
Affiliation(s)
| | | | | | | | - Himanshu J Patel
- Department of Cardiac Surgery University of Michigan Ann Arbor MI USA
| | - Marion Hofmann Bowman
- Division of Cardiovascular Medicine, Department of Internal Medicine University of Michigan Ann Arbor MI USA
| | - Kim Eagle
- Division of Cardiovascular Medicine, Department of Internal Medicine University of Michigan Ann Arbor MI USA
| | - Nicholas S Burris
- Department of Radiology University of Michigan Ann Arbor MI USA
- Division of Radiology University of Wisconsin-Madison Madison WI USA
| |
Collapse
|
5
|
Ito S, Graf DB, Katsumata Y, Moorleghen JJ, Zhang C, Li Y, LeMaire SA, Shen YH, Lu HS, Daugherty A, Sawada H. Smooth Muscle Cells and Fibroblasts in the Proximal Thoracic Aorta Exhibit Minor Differences Between Embryonic Origins in Angiotensin II-driven Transcriptional Alterations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.610985. [PMID: 39896657 PMCID: PMC11785212 DOI: 10.1101/2025.01.23.610985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Background Thoracic aortopathy is influenced by angiotensin II (AngII) and exhibits regional heterogeneity with the proximal region of the thoracic aorta being susceptible. Smooth muscle cells (SMCs) and selected fibroblasts in this region are derived from two embryonic origins: second heart field (SHF) and cardiac neural crest (CNC). While our previous study revealed a critical role of SHF-derived cells in AngII-mediated aortopathy formation, the contribution of CNC-derived cells remains unclear. Methods Mef2c-Cre R26R mT/mG mice were infused with AngII (1,000 ng/kg/min). Proximal thoracic aortas were harvested at baseline or after 3 days of infusion, representing the prepathological phase. Cells were sorted by origins using mGFP (SHF-derived) and mTomato (other origins, nSHF-derived) signals, respectively. After sorting cells by origin, single-cell RNA sequencing was performed and analyzed. Results Short-term AngII infusion induced significant transcriptomic changes in both SHF- and nSHF-derived SMCs, but differences between origins were modest. Fibroblast transcriptomes also underwent notable changes by AngII infusion, but differences between SHF and nSHF origins remained modest. Interestingly, AngII infusion resulted in the emergence of a new fibroblast sub-population. Several molecules related to the extracellular matrix, such as Eln and Col3a1 , were downregulated in SHF-derived fibroblasts compared to nSHF-derived fibroblasts in the new subcluster. Conclusion Fibroblasts in the new subcluster exhibited lineage-specific differences in extracellular matrix-related genes; however, overall transcriptomic differences between origins in SMCs and fibroblasts in response to AngII were modest in the pre-pathological phase of AngII-induced thoracic aortopathy. GRAPHIC ABSTRACT
Collapse
|
6
|
Wang M, McGraw KR, Monticone RE, Pintus G. Unraveling Elastic Fiber-Derived Signaling in Arterial Aging and Related Arterial Diseases. Biomolecules 2025; 15:153. [PMID: 40001457 PMCID: PMC11853455 DOI: 10.3390/biom15020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Arterial stiffening is a significant risk factor for the development of cardiovascular diseases, including hypertension, atherosclerosis, and arteriopathy. The destruction of elastic fibers, accompanied by vascular inflammatory remodeling, is a key process in the progression of arterial stiffening and related pathologies. In young, healthy arteries, intact elastic fibers create a resilient microenvironment that maintains the quiescence of arterial cells. However, with advancing age, these elastic fibers undergo post-translational modifications, such as oxidation, glycosylation, and calcification, leading to their eventual degeneration. This degeneration results in the release of degraded peptides and the formation of an inflammatory, stiffened niche. Elastic fiber degeneration profoundly impacts the proinflammatory phenotypes and behaviors of various arterial cells, including endothelial cells, smooth muscle cells, macrophages, fibroblasts, and mast cells. Notably, the degraded elastic fibers release elastin-derived peptides (EDPs), which act as potent inflammatory molecules. EDPs activate various arterial cellular processes, including inflammatory secretion, cell migration, proliferation, and calcification, by interacting with the elastin receptor complex (ERC). These elastin-related cellular events are commonly observed with aging and in diseased arteries. These findings suggest that the degeneration of the elastic fiber meshwork is a primary event driving arterial inflammation, stiffening, and adverse remodeling with advancing age. Therefore, preserving elastic fibers and blocking the EDP/ERC signaling pathways may offer promising therapeutic strategies for mitigating age-related arterial remodeling and related arterial diseases.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.R.M.)
| | - Kimberly R. McGraw
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.R.M.)
| | - Robert E. Monticone
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.R.M.)
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
- Department of Medical Laboratory Sciences, College of Health Sciences, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Galante N, Bedeschi MF, Beltrami B, Bailo P, Silva Palomino LA, Piccinini A. Reviewing hereditary connective tissue disorders: Proposals of harmonic medicolegal assessments. Int J Legal Med 2024; 138:2507-2522. [PMID: 39008115 PMCID: PMC11490457 DOI: 10.1007/s00414-024-03290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Hereditary connective tissue disorders (HCTDs) are a heterogeneous group of inherited diseases. These disorders show genetic mutations with loss of function of primary components of connective tissue, such as collagen and elastic fibers. There are more than 200 conditions that involve hereditary connective tissue disorders, while the most known are Marfan syndrome, Osteogenesis Imperfecta, and Ehlers-Danlos syndromes. These disorders need continuous updates, multidisciplinary skills, and specific methodologic evaluations sharing many medicolegal issues. Marfan syndrome and Ehlers-Danlos syndromes show a high risk of early sudden death. As a consequence of this, postmortem genetic testing can identify novel genotype-phenotype correlations which help the clinicians to assess personalized cardiovascular screening programs among the ill subjects. Genetic testing is also essential to identify children suffering from Osteogenesis Imperfecta, especially when a physical abuse is clinically suspected. However, this is a well-known clinical problem even though there are still challenges to interpret genetic data and variants of unknown significance due to the current extensive use of new genetic/genomic techniques. Additionally, the more significant applications and complexities of genomic testing raise novel responsibilities on the clinicians, geneticists, and forensic practitioners as well, increasing potential liability and medical malpractice claims. This systematic review provides a detailed overview on how multidisciplinary skills belonging to clinicians, medicolegal consultants, radiologists, and geneticists can cooperate to manage HCTDs from autopsy or clinical findings to genetic testing. Thus, technical aspects need to be addressed to the medicolegal community since there is no consensus works or guidelines which specifically discuss these issues.
Collapse
Affiliation(s)
- Nicola Galante
- Section of Legal Medicine of Milan, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy.
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy.
| | | | - Benedetta Beltrami
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Medical Genetic Unit, Milan, Italy
| | - Paolo Bailo
- Section of Legal Medicine of Milan, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy
| | | | - Andrea Piccinini
- Section of Legal Medicine of Milan, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy
| |
Collapse
|
8
|
Campello Jorge CA, Marway PS, Tjahjadi NS, Knauer HA, Patel HJ, Bowman MH, Eagle K, Burris NS. Growth Rate Assessed by Vascular Deformation Mapping predicts Type B Aortic Dissection in Marfan Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.10.24315133. [PMID: 39417112 PMCID: PMC11483026 DOI: 10.1101/2024.10.10.24315133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Patients with Marfan syndrome (MFS) are at a high risk of type B dissection (TBAD). Aortic growth and elongation have been suggested as risk factors for TBAD. Vascular deformation mapping (VDM) is an image analysis technique for mapping 3D aortic growth on rouine computed tomography angiography (CTA) scans. We aimed to use VDM to examine the value of aortic growth rate in the descending thoracic aorta (DescAo), among other imaging biomarkers, to identify the factors associated with risk of TBAD in MFS. Methods and Results CTA scans spanning 2004-2023 from adult MFS patients with native DescAo were analyzed by VDM. Other measurements included multi-level thoracoabdominal aortic diameters and the length of the DescAo by centerline analysis.Among the 105 MFS patients analyzed, 63.8% were male, with median age of 40 years (range 18-73) and a median surveillance interval of 5.3 years (range 2.0-18.3). During surveillance, 12 (11.4%) patients developed TBAD. Patients with TBAD had higher radial growth rate (0.63 vs. 0.23 mm/year; p < 0.001) and elongation rate (2.4 vs. 0.5 mm/year; p < 0.001), on univariate and multivariable analysis, but pre-dissection descending aortic diameter was not significantly different. Predictors of growth rate included younger age, higher baseline maximal diameter of the DescAo, smoking history and warfarin use. Conclusions Radial growth and elongation rates of the DescAo were independent predictors of TBAD occurrence in MFS. TBAD often occurred in at non-aneurysmal diameters (<4.0 cm). These findings emphasize the role of growth over absolute diameter in risk stratification for TBAD in MFS.
Collapse
Affiliation(s)
| | | | | | - Heather A Knauer
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Himanshu J Patel
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan
| | - Marion Hofmann Bowman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kim Eagle
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
9
|
Komuro A, Son BK, Nanao-Hamai M, Song Z, Ogawa S, Akishita M. Effects of a high-phosphate diet on vascular calcification and abdominal aortic aneurysm in mice. Geriatr Gerontol Int 2024; 24:973-981. [PMID: 39139097 DOI: 10.1111/ggi.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
AIM Vascular aging is an important risk factor for cardiovascular diseases, including abdominal aortic aneurysm (AAA) and pathological aortic dilatation, playing a critical role in the morbidity and mortality of older adults. Vascular calcification, a phenotype of vascular aging, is frequently associated with AAA. However, this association remains unclear owing to the lack of animal models. This study investigated the effects of a high-phosphate diet (HPD), a prominent trigger of vascular calcification in AAA. METHODS Eight-week-old male mice were fed either a normal diet (ND; Ca 1.18%/P 1.07% = 1.10) or an HPD (Ca 1.23%/P 1.65% = 0.75) for 4 weeks. Subsequently, AAA was induced using CaCl2 application and angiotensin II (AngII) infusion for 4 weeks. RESULTS The HPD resulted in more pronounced AAA formation than did the ND. Importantly, vascular calcification was observed only in the aorta of the HPD mice. Enhanced Runt-related transcription factor 2 expression and apoptosis (downregulation of growth arrest-specific gene 6/pAkt survival pathway), two major mechanisms of vascular calcification, were also observed. Furthermore, increased IL-6 and F4/80 expression was observed in the aorta of HPD mice. In RAW264.7 cells, inorganic phosphate enhanced IL-6 and IL-1β expression under AngII priming. Ferric citrate, a phosphate binder, significantly inhibited HPD-induced AAA formation. CONCLUSIONS These findings suggest that HPD induces vascular calcification and AAA formation, possibly through inflammation. This murine model suggests that vascular calcification induced by phosphate burden may be a therapeutic target for vascular diseases, including AAA. Geriatr Gerontol Int 2024; 24: 973-981.
Collapse
Grants
- 22K11697 Ministry of Education, Culture, Sports, Science, and Teis the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 23H02811 Ministry of Education, Culture, Sports, Science, and Teis the Ministry of Education, Culture, Sports, Science, and Technology of Japan
Collapse
Affiliation(s)
- Aya Komuro
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Bo-Kyung Son
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Gerontology, The University of Tokyo, Tokyo, Japan
- Institute for Future Initiatives, The University of Tokyo, Tokyo, Japan
| | - Michiko Nanao-Hamai
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Zehan Song
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sumito Ogawa
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Akishita
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Tehlivets O, Almer G, Brunner MS, Lechleitner M, Sommer G, Kolb D, Leitinger G, Diwoky C, Wolinski H, Habisch H, Opriessnig P, Bogoni F, Pernitsch D, Kavertseva M, Bourgeois B, Kukilo J, Tehlivets YG, Schwarz AN, Züllig T, Bubalo V, Schauer S, Groselj-Strele A, Hoefler G, Rechberger GN, Herrmann M, Eller K, Rosenkranz AR, Madl T, Frank S, Holzapfel GA, Kratky D, Mangge H, Hörl G. Homocysteine contributes to atherogenic transformation of the aorta in rabbits in the absence of hypercholesterolemia. Biomed Pharmacother 2024; 178:117244. [PMID: 39116783 DOI: 10.1016/j.biopha.2024.117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Atherosclerosis, the leading cause of cardiovascular disease, cannot be sufficiently explained by established risk factors, including cholesterol. Elevated plasma homocysteine (Hcy) is an independent risk factor for atherosclerosis and is closely linked to cardiovascular mortality. However, its role in atherosclerosis has not been fully clarified yet. We have previously shown that rabbits fed a diet deficient in B vitamins and choline (VCDD), which are required for Hcy degradation, exhibit an accumulation of macrophages and lipids in the aorta, aortic stiffening and disorganization of aortic collagen in the absence of hypercholesterolemia, and an aggravation of atherosclerosis in its presence. In the current study, plasma Hcy levels were increased by intravenous injections of Hcy into balloon-injured rabbits fed VCDD (VCDD+Hcy) in the absence of hypercholesterolemia. While this treatment did not lead to thickening of aortic wall, intravenous injections of Hcy into rabbits fed VCDD led to massive accumulation of VLDL-triglycerides as well as significant impairment of vascular reactivity of the aorta compared to VCDD alone. In the aorta intravenous Hcy injections into VCDD-fed rabbits led to fragmentation of aortic elastin, accumulation of elastin-specific electron-dense inclusions, collagen disorganization, lipid degradation, and autophagolysosome formation. Furthermore, rabbits from the VCDD+Hcy group exhibited a massive decrease of total protein methylated arginine in blood cells and decreased creatine in blood cells, serum and liver compared to rabbits from the VCDD group. Altogether, we conclude that Hcy contributes to atherogenic transformation of the aorta not only in the presence but also in the absence of hypercholesterolemia.
Collapse
Affiliation(s)
- Oksana Tehlivets
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria.
| | - Gunter Almer
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus S Brunner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Dagmar Kolb
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria; Center for Medical Research, Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Clemens Diwoky
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hansjörg Habisch
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Peter Opriessnig
- Division of General Neurology, Department of Neurology, Medical University of Graz, Graz, Austria; Division of Pediatric Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Francesca Bogoni
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Dominique Pernitsch
- Center for Medical Research, Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Maria Kavertseva
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Benjamin Bourgeois
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Jelena Kukilo
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Yuriy G Tehlivets
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andreas N Schwarz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Vladimir Bubalo
- Division of Biomedical Research, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrea Groselj-Strele
- Center for Medical Research, Computational Bioanalytics, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Markus Herrmann
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Medical University of Graz, Graz, Austria
| | | | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gerd Hörl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| |
Collapse
|
11
|
Cao L, Zhang H, Niu Z, Ma T, Guo W. Aortic mineralization triggers the risk of acute type B aortic dissection. Atherosclerosis 2024; 395:118519. [PMID: 38944894 DOI: 10.1016/j.atherosclerosis.2024.118519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND AND AIMS The role of aortic mineralization in the pathogenesis of acute type B aortic dissection (TBAD) is unclear. Whether thoracic aortic calcification (TAC) and circulating alkaline phosphatase (ALP) activity are associated with acute TBAD risk remains elusive. METHODS Observational and Mendelian randomization (MR) studies were conducted sequentially. Using propensity score matching (1:1) by age and sex, patients with acute TBAD (n = 125) were compared with control patients (n = 125). Qualitative (score) and quantitative (volume) analyses of the TAC burden on different thoracic aortic segments were conducted using non-enhanced computed tomography. Univariate and multivariate analyses were used to identify significant independent risk factors for TBAD and TAC burden, respectively. MR was finally used to determine the causal relationship between elevated ALP activity and TBAD risk. RESULTS The qualitative and quantitative analyses revealed that TAC burden was significantly higher in the TBAD group, except for in the ascending aortic segment (both p < 0.05). Preoperative circulating ALP was significantly elevated in the TBAD group (p < 0.001). The elevated TAC burden score on the descending thoracic aortic segment (odds ratio [OR] 3.31, 95% confidence interval [CI] 1.31-8.37) and increased ALP activity (OR 1.03, 95% CI 1.01-1.06) was independently associated with TBAD risk. Interestingly, ALP was significantly positively associated with TAC burden, and MR analyses confirmed that ALP genetically predicted TBAD risk. CONCLUSIONS Elevated ALP may trigger TBAD risk via the increased volume of TAC. Aortic mineralization may not protect the aorta itself.
Collapse
Affiliation(s)
- Long Cao
- Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, 100853, China; Medical School of Chinese PLA, Beijing, China; Department of General Surgery, The 983rd Hospital of Joint Logistic Support Force of PLA, Tianjin, 300142, China
| | - Hongpeng Zhang
- Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zelin Niu
- Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, 100853, China; Medical School of Chinese PLA, Beijing, China
| | - Tianfeng Ma
- Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, 100853, China; Medical School of Chinese PLA, Beijing, China
| | - Wei Guo
- Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
12
|
Nash J, Debono S, Whittington B, Kaczynski J, Clark T, Macnaught G, Semple S, van Beek EJR, Tavares A, Dey D, Williams MC, Slomka PJ, Newby DE, Dweck MR, Fletcher AJ. Thoracic aortic microcalcification activity in combined positron emission tomography and magnetic resonance imaging. Eur J Nucl Med Mol Imaging 2024; 51:2260-2270. [PMID: 38456972 PMCID: PMC11178619 DOI: 10.1007/s00259-024-06670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION Non-invasive detection of pathological changes in thoracic aortic disease remains an unmet clinical need particularly for patients with congenital heart disease. Positron emission tomography combined with magnetic resonance imaging (PET-MRI) could provide a valuable low-radiation method of aortic surveillance in high-risk groups. Quantification of aortic microcalcification activity using sodium [18F]fluoride holds promise in the assessment of thoracic aortopathies. We sought to evaluate aortic sodium [18F]fluoride uptake in PET-MRI using three methods of attenuation correction compared to positron emission tomography computed tomography (PET-CT) in patients with bicuspid aortic valve, METHODS: Thirty asymptomatic patients under surveillance for bicuspid aortic valve disease underwent sodium [18F]fluoride PET-CT and PET-MRI of the ascending thoracic aorta during a single visit. PET-MRI data were reconstructed using three iterations of attenuation correction (Dixon, radial gradient recalled echo with two [RadialVIBE-2] or four [RadialVIBE-4] tissue segmentation). Images were qualitatively and quantitatively analysed for aortic sodium [18F]fluoride uptake on PET-CT and PET-MRI. RESULTS Aortic sodium [18F]fluoride uptake on PET-MRI was visually comparable with PET-CT using each reconstruction and total aortic standardised uptake values on PET-CT strongly correlated with each PET-MRI attenuation correction method (Dixon R = 0.70; RadialVIBE-2 R = 0.63; RadialVIBE-4 R = 0.64; p < 0.001 for all). Breathing related artefact between soft tissue and lung were detected using Dixon and RadialVIBE-4 but not RadialVIBE-2 reconstructions, with the presence of this artefact adjacent to the atria leading to variations in blood pool activity estimates. Consequently, quantitative agreements between radiotracer activity on PET-CT and PET-MRI were most consistent with RadialVIBE-2. CONCLUSION Ascending aortic microcalcification analysis in PET-MRI is feasible with comparable findings to PET-CT. RadialVIBE-2 tissue attenuation correction correlates best with the reference standard of PET-CT and is less susceptible to artefact. There remain challenges in segmenting tissue types in PET-MRI reconstructions, and improved attenuation correction methods are required.
Collapse
Affiliation(s)
- Jennifer Nash
- The University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Room SU.305, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Samuel Debono
- The University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Room SU.305, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Beth Whittington
- The University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Room SU.305, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Jakub Kaczynski
- The University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Room SU.305, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Tim Clark
- The University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Room SU.305, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Gillian Macnaught
- The University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Room SU.305, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Department of Medical Physics, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Scott Semple
- The University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Room SU.305, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Edinburgh Imaging Facility Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Edwin J R van Beek
- The University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Room SU.305, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Edinburgh Imaging Facility Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Adriana Tavares
- The University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Room SU.305, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Damini Dey
- Departments of Medicine, Division of Artificial Intelligence) and Biomedical Imaging Research Institute, Cedars-Sinai Medical Centre, Los Angeles, USA
| | - Michelle C Williams
- The University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Room SU.305, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Piotr J Slomka
- Departments of Medicine, Division of Artificial Intelligence) and Biomedical Imaging Research Institute, Cedars-Sinai Medical Centre, Los Angeles, USA
| | - David E Newby
- The University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Room SU.305, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Marc R Dweck
- The University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Room SU.305, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Alexander J Fletcher
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Ganizada BH, Veltrop RJA, Akbulut AC, Koenen RR, Accord R, Lorusso R, Maessen JG, Reesink K, Bidar E, Schurgers LJ. Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections. Basic Res Cardiol 2024; 119:371-395. [PMID: 38700707 PMCID: PMC11143007 DOI: 10.1007/s00395-024-01053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Ascending thoracic aortic aneurysm (ATAA) remains a significant medical concern, with its asymptomatic nature posing diagnostic and monitoring challenges, thereby increasing the risk of aortic wall dissection and rupture. Current management of aortic repair relies on an aortic diameter threshold. However, this approach underestimates the complexity of aortic wall disease due to important knowledge gaps in understanding its underlying pathologic mechanisms.Since traditional risk factors cannot explain the initiation and progression of ATAA leading to dissection, local vascular factors such as extracellular matrix (ECM) and vascular smooth muscle cells (VSMCs) might harbor targets for early diagnosis and intervention. Derived from diverse embryonic lineages, VSMCs exhibit varied responses to genetic abnormalities that regulate their contractility. The transition of VSMCs into different phenotypes is an adaptive response to stress stimuli such as hemodynamic changes resulting from cardiovascular disease, aging, lifestyle, and genetic predisposition. Upon longer exposure to stress stimuli, VSMC phenotypic switching can instigate pathologic remodeling that contributes to the pathogenesis of ATAA.This review aims to illuminate the current understanding of cellular and molecular characteristics associated with ATAA and dissection, emphasizing the need for a more nuanced comprehension of the impaired ECM-VSMC network.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Dissection/pathology
- Aortic Dissection/genetics
- Aortic Dissection/metabolism
- Animals
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Vascular Remodeling
- Extracellular Matrix/pathology
- Extracellular Matrix/metabolism
- Phenotype
Collapse
Affiliation(s)
- Berta H Ganizada
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rogier J A Veltrop
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Asim C Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Ryan Accord
- Department of Cardiothoracic Surgery, Center for Congenital Heart Disease, University Medical Center Groningen, Groningen, The Netherlands
| | - Roberto Lorusso
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Jos G Maessen
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Koen Reesink
- Department of Biomedical Engineering, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
14
|
Ivanova NG. A Sole Case of the FGF23 Gene Mutation c.202A>G (p.Thr68Ala) Associated with Multiple Severe Vascular Aneurysms and a Hyperphosphatemic Variant of Tumoral Calcinosis-A Case Report. Life (Basel) 2024; 14:613. [PMID: 38792634 PMCID: PMC11123361 DOI: 10.3390/life14050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Tumoral calcinosis is an extremely rare genetic disease caused by mutations in three genes, GALNT3, FGF23, and KL, which disrupt phosphorus metabolism. The hallmark of this condition is the formation of tumors in the soft tissues around the joints. Other phenotypic features of tumoral calcinosis are dental involvement and brain and vascular calcifications. The clinical case reported herein presents for the first time to the scientific community the c.202A>G (p.Thr68Ala) mutation of the FGF23 gene, associated with a hyperphosphatemic variant of tumoral calcinosis and multiple severe vascular aneurysms. A female patient underwent multiple surgeries for tumor formations in her soft tissues that first appeared at the age of 12 months. On this occurrence, the patient was found to have hyperphosphatemia, low phosphate clearance, increased tubular reabsorption with normal levels of total and ionized calcium, vitamin D3, and parathyroid hormone, and no effect of treatment with sevelamer hydrochloride and a low-phosphate diet. At the age of 39, the patient underwent imaging studies due to edema and a pulsating formation in the neck area, which revealed multiple vascular aneurysms with thrombosis, for which she received operative and interventional treatment. In this connection, and because of the established phosphorus metabolism disturbance, a genetic disease was suspected. The sequence analysis and deletion/duplication testing of the 358 genes performed on this occasion revealed that the woman was homozygous for a variant of the c.202A>G (p.Thr68Ala) mutation of the FGF23 gene. The established mutation is not present in population databases. The presented clinical case is the first and only one in the world to demonstrate the role of this type of FGF23 gene mutation in the development of a hyperphosphatemic variant of tumoral calcinosis characterized by aggressive formation of multiple vascular aneurysms.
Collapse
Affiliation(s)
- Nevena Georgieva Ivanova
- Department of Urology and General Medicine, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; ; Tel.: +35-98-8913-0416
- St Karidad MHAT, Karidad Medical Health Center, 4004 Plovdiv, Bulgaria
| |
Collapse
|
15
|
Li WZ, Liu S, Luo JL, Xia J. Pulmonary alveolar microlithiasis combined with gastric mucosal calcification: a case report. Front Med (Lausanne) 2024; 11:1357260. [PMID: 38784230 PMCID: PMC11114444 DOI: 10.3389/fmed.2024.1357260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Background Pulmonary alveolar microlithiasis (PAM) is a rare disease whose clinical and imaging manifestations are non-specific, characterized by the deposition of microliths, which primarily consist of calcium and phosphorus, within the alveoli. In the cases of PAM, patients combined with calcification of other organs such as gastric mucosal calcification are less common. Case presentation A 59-year-old woman was admitted to our hospital due to cough producing white, foamy sputum, accompanied by dyspnea and fever for 20 days. The CT scan showed diffuse ground-glass opacities and calcification of the gastric mucosa. Lung tissue biopsy revealed the presence of calcification and granulomatous foreign bodies in the interstitium and alveolar cavity. In the later stages, she developed painful skin petechiae. For this patient, the diagnosis of PAM, gastric mucosal calcification, and purpura fulminans was made. However, the genetic test results hinted that the patient and her son had a heterozygous mutation in the FBN1 gene, but her daughter's genetic test results were normal. Although the patient received anti-infection treatment, steroids, and oxygen therapy, her condition did not improve. Conclusion We reported a rare case of PAM combined with calcification of other organs and purpura fulminans. Treatment of steroids did not show any benefit. The causative mechanism and effective treatment of this disease remain unclear. More treatments need to be explored.
Collapse
Affiliation(s)
| | - Shuo Liu
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ji-Li Luo
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jing Xia
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
16
|
Siracusa C, Carino A, Carabetta N, Manica M, Sabatino J, Cianflone E, Leo I, Strangio A, Torella D, De Rosa S. Mechanisms of Cardiovascular Calcification and Experimental Models: Impact of Vitamin K Antagonists. J Clin Med 2024; 13:1405. [PMID: 38592207 PMCID: PMC10932386 DOI: 10.3390/jcm13051405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Cardiovascular calcification is a multifactorial and complex process involving an array of molecular mechanisms eventually leading to calcium deposition within the arterial walls. This process increases arterial stiffness, decreases elasticity, influences shear stress events and is related to an increased risk of morbidity and mortality associated with cardiovascular disease. In numerous in vivo and in vitro models, warfarin therapy has been shown to cause vascular calcification in the arterial wall. However, the exact mechanisms of calcification formation with warfarin remain largely unknown, although several molecular pathways have been identified. Circulating miRNA have been evaluated as biomarkers for a wide range of cardiovascular diseases, but their exact role in cardiovascular calcification is limited. This review aims to describe the current state-of-the-art research on the impact of warfarin treatment on the development of vascular calcification and to highlight potential molecular targets, including microRNA, within the implicated pathways.
Collapse
Affiliation(s)
- Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Annarita Carino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Marzia Manica
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| |
Collapse
|
17
|
Seeburun S, Wu S, Hemani D, Pham L, Ju D, Xie Y, Kata P, Li L. Insights into elastic fiber fragmentation: Mechanisms and treatment of aortic aneurysm in Marfan syndrome. Vascul Pharmacol 2023; 153:107215. [PMID: 37640090 PMCID: PMC10872825 DOI: 10.1016/j.vph.2023.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by mutations in fibrillin 1 (FBN1) gene. These mutations result in defects in the skeletal, ocular, and cardiovascular systems. Aortic aneurysm is the leading cause of premature mortality in untreated MFS patients. Elastic fiber fragmentation in the aortic vessel wall is a hallmark of MFS-associated aortic aneurysms. FBN1 mutations result in FBN1 fragments that also contribute to elastic fiber fragmentation. Although recent research has advanced our understanding of MFS, the contribution of elastic fiber fragmentation to the pathogenesis of aneurysm formation remains poorly understood. This review provides a comprehensive overview of the molecular mechanisms of elastic fiber fragmentation and its role in the pathogenesis of aortic aneurysm progression. Increased comprehension of elastic fragmentation has significant clinical implications for developing targeted interventions to block aneurysm progression, which would benefit not only individuals with Marfan syndrome but also other patients with aneurysms. Moreover, this review highlights an overlooked connection between inhibiting aneurysm and the restoration of elastic fibers in the vessel wall with various aneurysm inhibitors, including drugs and chemicals. Investigating the underlying molecular mechanisms could uncover innovative therapeutic strategies to inhibit elastin fragmentation and prevent the progression of aneurysms.
Collapse
Affiliation(s)
- Sheilabi Seeburun
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
| | - Shichao Wu
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
| | - Darshi Hemani
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit MI, USA
| | - Lucynda Pham
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit MI, USA
| | - Donghong Ju
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
- Department of Oncology, Wayne State University, Detroit MI, USA
| | - Youming Xie
- Department of Oncology, Wayne State University, Detroit MI, USA
| | - Priyaranjan Kata
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
| | - Li Li
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit MI, USA
| |
Collapse
|
18
|
Li X, Chan YT, Jiang Y. Development of an image processing software for quantification of histological calcification staining images. PLoS One 2023; 18:e0286626. [PMID: 37797053 PMCID: PMC10553316 DOI: 10.1371/journal.pone.0286626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/22/2023] [Indexed: 10/07/2023] Open
Abstract
Quantification of the histological staining images gives important insights in biomedical research. In wet lab, it is common to have some stains off the target to become unwanted noisy stains during the generation of histological staining images. The current tools designed for quantification of histological staining images do not consider such situations; instead, the stained region is identified based on assumptions that the background is pure and clean. The goal of this study is to develop a light software named Staining Quantification (SQ) tool which could handle the image quantification job with features for removing a large amount of unwanted stains blended or overlaid with Region of Interest (ROI) in complex scenarios. The core algorithm was based on the method of higher order statistics transformation, and local density filtering. Compared with two state-of-art thresholding methods (i.e. Otsu's method and Triclass thresholding method), the SQ tool outperformed in situations such as (1) images with weak positive signals and experimental caused dirty stains; (2) images with experimental counterstaining by multiple colors; (3) complicated histological structure of target tissues. The algorithm was developed in R4.0.2 with over a thousand in-house histological images containing Alizarin Red (AR) and Von Kossa (VK) staining, and was validated using external images. For the measurements of area and intensity in total and stained region, the average mean of difference in percentage between SQ and ImageJ were all less than 0.05. Using this as a criterion of successful image recognition, the success rate for all measurements in AR, VK and external validation batch were above 0.8. The test of Pearson's coefficient, difference between SQ and ImageJ, and difference of proportions between SQ and ImageJ were all significant at level of 0.05. Our results indicated that the SQ tool is well established for automatic histological staining image quantification.
Collapse
Affiliation(s)
- Xinrui Li
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Yau Tsz Chan
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Faculty of Medicine, Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Yangzi Jiang
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Faculty of Medicine, Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
- Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, and Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| |
Collapse
|
19
|
Hu Y, Cai Z, He B. Smooth Muscle Heterogeneity and Plasticity in Health and Aortic Aneurysmal Disease. Int J Mol Sci 2023; 24:11701. [PMID: 37511460 PMCID: PMC10380637 DOI: 10.3390/ijms241411701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aorta, which plays a critical role in the maintenance of aortic wall integrity. VSMCs have been suggested to have contractile and synthetic phenotypes and undergo phenotypic switching to contribute to the deteriorating aortic wall structure. Recently, the unprecedented heterogeneity and diversity of VSMCs and their complex relationship to aortic aneurysms (AAs) have been revealed by high-resolution research methods, such as lineage tracing and single-cell RNA sequencing. The aortic wall consists of VSMCs from different embryonic origins that respond unevenly to genetic defects that directly or indirectly regulate VSMC contractile phenotype. This difference predisposes to hereditary AAs in the aortic root and ascending aorta. Several VSMC phenotypes with different functions, for example, secreting VSMCs, proliferative VSMCs, mesenchymal stem cell-like VSMCs, immune-related VSMCs, proinflammatory VSMCs, senescent VSMCs, and stressed VSMCs are identified in non-hereditary AAs. The transformation of VSMCs into different phenotypes is an adaptive response to deleterious stimuli but can also trigger pathological remodeling that exacerbates the pathogenesis and development of AAs. This review is intended to contribute to the understanding of VSMC diversity in health and aneurysmal diseases. Papers that give an update on VSMC phenotype diversity in health and aneurysmal disease are summarized and recent insights on the role of VSMCs in AAs are discussed.
Collapse
Affiliation(s)
- Yunwen Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
20
|
Yang Y, Xie E, Liu Y, Peng Z, Yu C, Hua K, Yang X. Calcium promotes vascular smooth muscle cell phenotypic switching in Marfan syndrome. Biochem Biophys Res Commun 2023; 665:124-132. [PMID: 37156050 DOI: 10.1016/j.bbrc.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Fibrillin 1 (Fbn1) mutations cause Marfan syndrome (MFS), with aortic root dilatation, dissection, and rupture. Few studies reported the blood calcium and lipid profile of MFS, and the effect of vascular smooth muscle cell (VSMC) phenotypic switching on MFS aortic aneurysm is unclear. Here, we aimed to investigate the role of calcium-related VSMC phenotypic switching in MFS. We retrospectively collected MFS patients' clinical data, performed bioinformatics analysis to screen the enriched biological process in MFS patients and mice, and detected markers of VSMC phenotypic switching on Fbn1C1039G/+ mice and primary aortic vascular smooth muscle cells. We found that patients with MFS have elevated blood calcium levels and dyslipidemia. Furthermore, the calcium concentration levels were increased with age in MFS mice, accompanied by the promoted VSMC phenotypic switching, and SERCA2 contributed to maintaining the contractile phenotype of VSMCs. This study provides the first evidence that the increased calcium is associated with the promoted VSMC phenotype switching in MFS. SERCA may become a novel therapeutic target for suppressing aneurysm progression in MFS.
Collapse
Affiliation(s)
- Yunxiao Yang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Enzehua Xie
- Department of Cardiovascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100047, China
| | - Yuhua Liu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Zhan Peng
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Cuntao Yu
- Department of Cardiovascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100047, China.
| | - Kun Hua
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Xiubin Yang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
21
|
Cuevas RA, Wong R, Joolharzadeh P, Moorhead WJ, Chu CC, Callahan J, Crane A, Boufford CK, Parise AM, Parwal A, Behzadi P, St Hilaire C. Ecto-5'-nucleotidase (Nt5e/CD73)-mediated adenosine signaling attenuates TGFβ-2 induced elastin and cellular contraction. Am J Physiol Cell Physiol 2023; 324:C327-C338. [PMID: 36503240 PMCID: PMC9902218 DOI: 10.1152/ajpcell.00054.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Arterial calcification due to deficiency of CD73 (ACDC) is a rare genetic disease caused by a loss-of-function mutation in the NT5E gene encoding the ecto-5'-nucleotidase (cluster of differentiation 73, CD73) enzyme. Patients with ACDC develop vessel arteriomegaly, tortuosity, and vascular calcification in their lower extremity arteries. Histological analysis shows that patients with ACDC vessels exhibit fragmented elastin fibers similar to that seen in aneurysmal-like pathologies. It is known that alterations in transforming growth factor β (TGFβ) pathway signaling contribute to this elastin phenotype in several connective tissue diseases, as TGFβ regulates extracellular matrix (ECM) remodeling. Our study investigates whether CD73-derived adenosine modifies TGFβ signaling in vascular smooth muscle cells (SMCs). We show that Nt5e-/- SMCs have elevated contractile markers and elastin gene expression compared with Nt5e+/+ SMCs. Ecto-5'-nucleotidase (Nt5e)-deficient SMCs exhibit increased TGFβ-2 and activation of small mothers against decapentaplegic (SMAD) signaling, elevated elastin transcript and protein, and potentiate SMC contraction. These effects were diminished when the A2b adenosine receptor was activated. Our results identify a novel link between adenosine and TGFβ signaling, where adenosine signaling via the A2b adenosine receptor attenuates TGFβ signaling to regulate SMC homeostasis. We discuss how disruption in adenosine signaling is implicated in ACDC vessel tortuosity and could potentially contribute to other aneurysmal pathogenesis.
Collapse
Affiliation(s)
- Rolando A Cuevas
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ryan Wong
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pouya Joolharzadeh
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William J Moorhead
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Claire C Chu
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jack Callahan
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alex Crane
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Camille K Boufford
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Angelina M Parise
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aneesha Parwal
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Parya Behzadi
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Moghiseh M, Searle E, Dixit D, Kim J, Dong YC, Cormode DP, Butler A, Gieseg SP. Spectral Photon-Counting CT Imaging of Gold Nanoparticle Labelled Monocytes for Detection of Atherosclerosis: A Preclinical Study. Diagnostics (Basel) 2023; 13:diagnostics13030499. [PMID: 36766602 PMCID: PMC9914700 DOI: 10.3390/diagnostics13030499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
A key process in the development of atherosclerotic plaques is the recruitment of monocytes into the artery wall. Using spectral photon-counting computed tomography we examine whether monocyte deposition within the artery wall of ApoE-/- mouse can be detected. Primary mouse monocytes were labelled by incubating them with 15 nm gold nanoparticles coated with 11-mercaptoundecanoic acid The monocyte uptake of the particle was confirmed by electron microscopy of the cells before injection into 6-week-old apolipoprotein E deficient (ApoE-/-) mouse that had been fed with the Western diet for 10 weeks. Four days following injection, the mouse was sacrificed and imaged using a MARS spectral photon counting computed tomography scanner with a spectral range of 7 to 120 KeV with five energy bins. Imaging analysis showed the presence of X-ray dense material within the mouse aortic arch which was consistent with the spectral characteristic of gold rather than calcium. The imaging is interpreted as showing the deposition of gold nanoparticles containing monocytes within the mouse aorta. The results of our study determined that spectral photon-counting computed tomography could provide quantitative information about gold nanoparticles labelled monocytes in voxels of 90 × 90 × 90 µm3. The imaging was consistent with previous micro-CT and electron microscopy of mice using the same nanoparticles. This study demonstrates that spectral photon-counting computed tomography, using a MARS small bore scanner, can detect a fundamental atherogenic process within mouse models of atherogenesis. The present study demonstrates the feasibility of spectral photon-counting computed tomography as an emerging molecular imaging modality to detect atherosclerotic disease.
Collapse
Affiliation(s)
- Mahdieh Moghiseh
- Department of Radiology, University of Otago, Christchurch 9016, New Zealand
- MARS Bioimaging Ltd., Christchurch 8041, New Zealand
- Correspondence: (M.M.); (S.P.G.)
| | - Emily Searle
- MARS Bioimaging Ltd., Christchurch 8041, New Zealand
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- Department of Physics and Astronomy, University of Canterbury, Christchurch 8041, New Zealand
| | - Devyani Dixit
- MARS Bioimaging Ltd., Christchurch 8041, New Zealand
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Johoon Kim
- Departments of Radiology, Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuxi C. Dong
- Departments of Radiology, Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David P. Cormode
- Departments of Radiology, Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anthony Butler
- Department of Radiology, University of Otago, Christchurch 9016, New Zealand
- MARS Bioimaging Ltd., Christchurch 8041, New Zealand
- Department of Physics and Astronomy, University of Canterbury, Christchurch 8041, New Zealand
- European Organization for Nuclear Research (CERN), 1211 Meyrin, Switzerland
| | - Steven P. Gieseg
- Department of Radiology, University of Otago, Christchurch 9016, New Zealand
- MARS Bioimaging Ltd., Christchurch 8041, New Zealand
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- European Organization for Nuclear Research (CERN), 1211 Meyrin, Switzerland
- Correspondence: (M.M.); (S.P.G.)
| | | |
Collapse
|
23
|
Mieremet A, van der Stoel M, Li S, Coskun E, van Krimpen T, Huveneers S, de Waard V. Endothelial dysfunction in Marfan syndrome mice is restored by resveratrol. Sci Rep 2022; 12:22504. [PMID: 36577770 PMCID: PMC9797556 DOI: 10.1038/s41598-022-26662-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Patients with Marfan syndrome (MFS) develop thoracic aortic aneurysms as the aorta presents excessive elastin breaks, fibrosis, and vascular smooth muscle cell (vSMC) death due to mutations in the FBN1 gene. Despite elaborate vSMC to aortic endothelial cell (EC) signaling, the contribution of ECs to the development of aortic pathology remains largely unresolved. The aim of this study is to investigate the EC properties in Fbn1C1041G/+ MFS mice. Using en face immunofluorescence confocal microscopy, we showed that EC alignment with blood flow was reduced, EC roundness was increased, individual EC surface area was larger, and EC junctional linearity was decreased in aortae of Fbn1C1041G/+ MFS mice. This modified EC phenotype was most prominent in the ascending aorta and occurred before aortic dilatation. To reverse EC morphology, we performed treatment with resveratrol. This restored EC blood flow alignment, junctional linearity, phospho-eNOS expression, and improved the structural integrity of the internal elastic lamina of Fbn1C1041G/+ mice. In conclusion, these experiments identify the involvement of ECs and underlying internal elastic lamina in MFS aortic pathology, which could act as potential target for future MFS pharmacotherapies.
Collapse
Affiliation(s)
- Arnout Mieremet
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
| | - Miesje van der Stoel
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Siyu Li
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
| | - Evrim Coskun
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
| | - Tsveta van Krimpen
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Ito S, Lu HS, Daugherty A, Sawada H. Embryonic Heterogeneity of Smooth Muscle Cells in the Complex Mechanisms of Thoracic Aortic Aneurysms. Genes (Basel) 2022; 13:genes13091618. [PMID: 36140786 PMCID: PMC9498804 DOI: 10.3390/genes13091618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Smooth muscle cells (SMCs) are the major cell type of the aortic wall and play a pivotal role in the pathophysiology of thoracic aortic aneurysms (TAAs). TAAs occur in a region-specific manner with the proximal region being a common location. In this region, SMCs are derived embryonically from either the cardiac neural crest or the second heart field. These cells of distinct origins reside in specific locations and exhibit different biological behaviors in the complex mechanism of TAAs. The purpose of this review is to enhance understanding of the embryonic heterogeneity of SMCs in the proximal thoracic aorta and their functions in TAAs.
Collapse
Affiliation(s)
- Sohei Ito
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Hong S. Lu
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-(859)-218-1705
| |
Collapse
|
25
|
Fletcher AJ, Nash J, Syed MB, Macaskill MG, Tavares AA, Walker N, Salcudean H, Leipsic JA, Lim KH, Madine J, Wallace W, Field M, Newby DE, Bouchareb R, Seidman MA, Akhtar R, Sellers SL. Microcalcification and Thoracic Aortopathy: A Window Into Disease Severity. Arterioscler Thromb Vasc Biol 2022; 42:1048-1059. [PMID: 35770666 PMCID: PMC9311465 DOI: 10.1161/atvbaha.122.317111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Patients with thoracic aortopathy are at increased risk of catastrophic aortic dissection, carrying with it substantial mortality and morbidity. Although granular medial calcinosis (medial microcalcification) has been associated with thoracic aortopathy, its relationship to disease severity has yet to be established. METHODS One hundred one thoracic aortic specimens were collected from 57 patients with thoracic aortopathy and 18 control subjects. Standardized histopathologic scores, immunohistochemistry, and nanoindentation (tissue elastic modulus) were compared with the extent of microcalcification on von Kossa histology and 18F-sodium fluoride autoradiography. RESULTS Microcalcification content was higher in thoracic aortopathy samples with mild (n=28; 6.17 [2.71-10.39]; P≤0.00010) or moderate histopathologic degeneration (n=30; 3.74 [0.87-11.80]; P<0.042) compared with control samples (n=18; 0.79 [0.36-1.90]). Alkaline phosphatase (n=26; P=0.0019) and OPN (osteopontin; n=26; P=0.0045) staining were increased in tissue with early aortopathy. Increasingly severe histopathologic degeneration was related to reduced microcalcification (n=82; Spearman ρ, -0.51; P<0.0001)-a process closely linked with elastin loss (n=82; Spearman ρ, -0.43; P<0.0001) and lower tissue elastic modulus (n=28; Spearman ρ, 0.43; P=0.026).18F-sodium fluoride autoradiography demonstrated good correlation with histologically quantified microcalcification (n=66; r=0.76; P<0.001) and identified areas of focal weakness in vivo. CONCLUSIONS Medial microcalcification is a marker of aortopathy, although progression to severe aortopathy is associated with loss of both elastin fibers and microcalcification.18F-sodium fluoride positron emission tomography quantifies medial microcalcification and is a feasible noninvasive imaging modality for identifying aortic wall disruption with major translational promise.
Collapse
Affiliation(s)
- Alexander J. Fletcher
- British Heart Foundation Centre for Cardiovascular Science (A.J.F., J.N., M.B.J.S., N.W., D.E.N.), University of Edinburgh, United Kingdom.,Department of Child Health, University of Glasgow, School of Medicine and Dentistry, United Kingdom (A.J.F.)
| | - Jennifer Nash
- British Heart Foundation Centre for Cardiovascular Science (A.J.F., J.N., M.B.J.S., N.W., D.E.N.), University of Edinburgh, United Kingdom
| | - Maaz B.J. Syed
- British Heart Foundation Centre for Cardiovascular Science (A.J.F., J.N., M.B.J.S., N.W., D.E.N.), University of Edinburgh, United Kingdom
| | - Mark G. Macaskill
- Edinburgh Imaging Facility, Queens Medical Research Institute (M.G.M., A.A.S.T.), University of Edinburgh, United Kingdom
| | - Adriana A.S. Tavares
- Edinburgh Imaging Facility, Queens Medical Research Institute (M.G.M., A.A.S.T.), University of Edinburgh, United Kingdom
| | - Niki Walker
- British Heart Foundation Centre for Cardiovascular Science (A.J.F., J.N., M.B.J.S., N.W., D.E.N.), University of Edinburgh, United Kingdom.,Scottish Adult Congenital Cardiology Service, Golden Jubilee National Hospital, Clydebank, Glasgow, United Kingdom (N.W.)
| | - Hannah Salcudean
- Department of Radiology, Division of Cardiology, Cardiovascular Translational Lab at the Centre for Heart Lung Innovation, St. Paul’s Hospital and University of British Columbia, Vancouver, Canada (H.S., J.A.L., S.L.S.)
| | - Jonathon A. Leipsic
- Department of Radiology, Division of Cardiology, Cardiovascular Translational Lab at the Centre for Heart Lung Innovation, St. Paul’s Hospital and University of British Columbia, Vancouver, Canada (H.S., J.A.L., S.L.S.)
| | - Kelvin H.H. Lim
- Department of Cardiothoracic Surgery, Royal Infirmary of Edinburgh, United Kingdom (K.H.H.L.)
| | - Jillian Madine
- Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences (J.M., M.F., R.A.), University of Liverpool, United Kingdom.,Liverpool Centre for Cardiovascular Sciences (J.M.), University of Liverpool, United Kingdom
| | - William Wallace
- Division of Pathology (W.W.), University of Edinburgh, United Kingdom
| | - Mark Field
- Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences (J.M., M.F., R.A.), University of Liverpool, United Kingdom.,Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital (LCCS), United Kingdom (M.F.)
| | - David E. Newby
- British Heart Foundation Centre for Cardiovascular Science (A.J.F., J.N., M.B.J.S., N.W., D.E.N.), University of Edinburgh, United Kingdom
| | - Rihab Bouchareb
- Department of Medicine, Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY (R.B.)
| | - Michael A. Seidman
- Department of Laboratory Medicine and Pathobiology, Toronto General Hospital, Canada (M.A.S.)
| | - Riaz Akhtar
- Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences (J.M., M.F., R.A.), University of Liverpool, United Kingdom.,Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, United Kingdom (R.A.)
| | - Stephanie L. Sellers
- Department of Radiology, Division of Cardiology, Cardiovascular Translational Lab at the Centre for Heart Lung Innovation, St. Paul’s Hospital and University of British Columbia, Vancouver, Canada (H.S., J.A.L., S.L.S.)
| |
Collapse
|
26
|
Syed MBJ, Fletcher AJ, Debono S, Forsythe RO, Williams MC, Dweck MR, Shah ASV, Macaskill MG, Tavares A, Denvir MA, Lim K, Wallace WA, Kaczynski J, Clark T, Sellers SL, Masson N, Falah O, Chalmers RTA, Tambyraja AL, van Beek EJR, Newby DE. 18F-Sodium Fluoride Positron Emission Tomography and Computed Tomography in Acute Aortic Syndrome. JACC Cardiovasc Imaging 2022; 15:1291-1304. [PMID: 35798405 DOI: 10.1016/j.jcmg.2022.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acute aortic syndrome is associated with aortic medial degeneration. 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) detects microscopic tissue calcification as a marker of disease activity. OBJECTIVES In a proof-of-concept study, this investigation aimed to establish whether 18F-NaF PET combined with computed tomography (CT) angiography could identify aortic medial disease activity in patients with acute aortic syndrome. METHODS Patients with aortic dissection or intramural hematomas and control subjects underwent 18F-NaF PET/CT angiography of the aorta. Aortic 18F-NaF uptake was measured at the most diseased segment, and the maximum value was corrected for background blood pool activity (maximum tissue-to-background ratio [TBRmax]). Radiotracer uptake was compared with change in aortic size and major adverse aortic events (aortic rupture, aorta-related death, or aortic repair) over 45 ± 13 months. RESULTS Aortic 18F-NaF uptake co-localized with histologically defined regions of microcalcification and elastin disruption. Compared with control subjects, patients with acute aortic syndrome had increased 18F-NaF uptake (TBRmax: 1.36 ± 0.39 [n = 20] vs 2.02 ± 0.42 [n = 47] respectively; P < 0.001) with enhanced uptake at the site of intimal disruption (+27.5%; P < 0.001). 18F-NaF uptake in the false lumen was associated with aortic growth (+7.1 mm/year; P = 0.011), and uptake in the outer aortic wall was associated with major adverse aortic events (HR: 8.5 [95% CI: 1.4-50.4]; P = 0.019). CONCLUSIONS In patients with acute aortic syndrome, 18F-NaF uptake was enhanced at sites of disease activity and was associated with aortic growth and clinical events. 18F-NaF PET/CT holds promise as a noninvasive marker of disease severity and future risk in patients with acute aortic syndrome. (18F Sodium Fluoride PET/CT in Acute Aortic Syndrome [FAASt]; NCT03647566).
Collapse
Affiliation(s)
- Maaz B J Syed
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| | - Alexander J Fletcher
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Samuel Debono
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel O Forsythe
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Michelle C Williams
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Anoop S V Shah
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark G Macaskill
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana Tavares
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin A Denvir
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Kelvin Lim
- Department of Cardiothoracic Surgery, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| | - William A Wallace
- Department of Pathology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jakub Kaczynski
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Tim Clark
- Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh. Edinburgh, United Kingdom
| | - Stephanie L Sellers
- Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, British Colombia, Canada
| | - Neil Masson
- Department of Radiology, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| | - Orwa Falah
- The Edinburgh Vascular Service, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| | - Roderick T A Chalmers
- The Edinburgh Vascular Service, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| | - Andrew L Tambyraja
- The Edinburgh Vascular Service, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| | - Edwin J R van Beek
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh. Edinburgh, United Kingdom
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Lin S, Morgant MC, Marín-Castrillón DM, Walker PM, Glélé LSA, Boucher A, Presles B, Bouchot O, Lalande A. Aortic local biomechanical properties in ascending aortic aneurysms. Acta Biomater 2022; 149:40-50. [PMID: 35714897 DOI: 10.1016/j.actbio.2022.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/01/2022]
Abstract
Ascending aortic aneurysm (AsAA) is a high-risk cardiovascular disease with an increased incidence over years. In this study, we compare different risk factors based on the pre-failure behavior (from a biomechanical point of view) obtained ex-vivo from an equi-biaxial tensile test. A total of 100 patients (63 ± 12 years, 72 males) with AsAA replacement, were recruited. Equi-biaxial tensile tests of AsAA walls were performed on freshly sampled aortic wall tissue after ascending aortic replacement. The aneurysmal aortic walls were divided into four quadrants (medial, anterior, lateral, and posterior) and two directions (longitudinal and circumferential) were considered. The stiffness was represented by the maximum Young Modulus (MYM). Based on patient information, the following subgroups were considered: age, gender, hypertension, obesity, dyslipidemia, diabetes, smoking history, aortic insufficiency, aortic stenosis, coronary artery disease, aortic diameter and aortic valve type. In general, when the aortic diameter increased, the aortic wall became thicker. In terms of the MYM, the longitudinal direction was significantly higher than that in the circumferential direction. In the multivariant analysis, the impact factors of age (p = 0.07), smoking (p = 0.05), diabetes (p = 0.03), aortic stenosis (p = 0.02), coronary artery disease (p < 10-3), and aortic diameters (p = 0.02) were significantly influencing the MYM. There was no significant MYM difference when the patients presented arterial hypertension, dyslipidemia, obesity, or bicuspid aortic valve. To conclude, the pre-failure aortic stiffness is multi-factorial, according to our population of 100 patients with AsAA. STATEMENT OF SIGNIFICANCE: : Our research on the topic of "Aortic local biomechanical properties in case of ascending aortic aneurysms" is about the biomechanical properties on one hundred aortic samples according to the aortic wall quadrants and the direction. More than ten factors and risks which may impact ascending aortic aneurysms have been studied. According to our knowledge, so far, this article involved the largest population on this topic. It will be our pleasure to share this information with all the readers.
Collapse
Affiliation(s)
- Siyu Lin
- ImViA laboratory, University of Burgundy, Dijon, France.
| | - Marie Catherine Morgant
- ImViA laboratory, University of Burgundy, Dijon, France; Department of Cardio-Vascular and Thoracic Surgery, University Hospital of Dijon, Dijon, France
| | | | - Paul M Walker
- ImViA laboratory, University of Burgundy, Dijon, France; Department of Medical Imaging, University Hospital of Dijon, Dijon, France
| | | | | | | | - Olivier Bouchot
- ImViA laboratory, University of Burgundy, Dijon, France; Department of Cardio-Vascular and Thoracic Surgery, University Hospital of Dijon, Dijon, France
| | - Alain Lalande
- ImViA laboratory, University of Burgundy, Dijon, France; Department of Medical Imaging, University Hospital of Dijon, Dijon, France
| |
Collapse
|
28
|
Minderhoud SCS, Fletcher AJ, MacNaught G, Cadet S, Korteland SA, Kardys I, Rizopoulos D, Slomka P, Newby DE, Roos-Hesselink JW, Walker NL, Semple S, Hirsch A, Dweck MR, Wentzel JJ. Vascular biomechanics and molecular disease activity in the thoracic aorta: a novel imaging method. Eur Heart J Cardiovasc Imaging 2022; 23:1698-1707. [PMID: 35666823 PMCID: PMC9671295 DOI: 10.1093/ehjci/jeac090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
AIMS The influence haemodynamics have on vessel wall pathobiology in aortic disease is incomplete. This aim of this study was to develop a repeatable method for assessing the relationship between aortic wall shear stress (WSS) and disease activity by fusing 4D flow cardiovascular magnetic resonance (CMR) with hybrid positron emission tomography (PET). METHODS AND RESULTS As part of an ongoing clinical trial, patients with bicuspid aortic valve (BAV) were prospectively imaged with both 18F-sodium fluoride (18F-NaF) PET, a marker of calcification activity, and 4D flow CMR. We developed novel software allowing accurate 3D co-registration and high-resolution comparison of aortic peak systolic WSS and 18F-NaF PET uptake (maximum tissue-to-background ratio). Intra-observer repeatability of both measurements was determined using Bland-Altman plots and intra-class correlation coefficients (ICCs). The relationship between localized WSS and 18F-NaF uptake was analysed using linear mixed-effect models. Twenty-three patients with BAV (median age 50 [44-55] years, 22% female) were included. Intra-observer repeatability for WSS (ICC = 0.92) and 18F-NaF (ICC = 0.91) measurements obtained within 1.4 ± 0.6 cm2 regions of interest was excellent. On multivariable analysis, 18F-NaF PET uptake was independently and negatively associated with WSS as well as diastolic blood pressure (both P < 0.05), adjusted for age. CONCLUSION Fused assessment of WSS and 18F-NaF PET uptake is feasible and repeatable, demonstrating a clear association between these two factors. This high spatial resolution approach has major potential to advance our understanding of the relationship between vascular haemodynamics and disease activity.
Collapse
Affiliation(s)
| | | | - Gillian MacNaught
- Edinburgh Imaging Facility, Queens Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Sebastien Cadet
- Department of Imaging (Division of Nuclear Cardiology), Cedars-Sinai Medical Centre, CA 90048 Los Angeles, CA, USA
| | - Suze-Anne Korteland
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Isabella Kardys
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Dimitris Rizopoulos
- Department of Biostatistics, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Piotr Slomka
- Department of Imaging (Division of Nuclear Cardiology), Cedars-Sinai Medical Centre, CA 90048 Los Angeles, CA, USA
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Jolien W Roos-Hesselink
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Niki L Walker
- Scottish Adult Congenital Cardiac Service, Golden Jubilee National Hospital, G81 4DY Clydebank, UK
| | - Scott Semple
- Edinburgh Imaging Facility, Queens Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Alexander Hirsch
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | | | | |
Collapse
|
29
|
Rastogi V, Stefens SJM, Houwaart J, Verhagen HJM, de Bruin JL, van der Pluijm I, Essers J. Molecular Imaging of Aortic Aneurysm and Its Translational Power for Clinical Risk Assessment. Front Med (Lausanne) 2022; 9:814123. [PMID: 35492343 PMCID: PMC9051391 DOI: 10.3389/fmed.2022.814123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/21/2022] [Indexed: 01/03/2023] Open
Abstract
Aortic aneurysms (AAs) are dilations of the aorta, that are often fatal upon rupture. Diagnostic radiological techniques such as ultrasound (US), magnetic resonance imaging (MRI), and computed tomography (CT) are currently used in clinical practice for early diagnosis as well as clinical follow-up for preemptive surgery of AA and prevention of rupture. However, the contemporary imaging-based risk prediction of aneurysm enlargement or life-threatening aneurysm-rupture remains limited as these are restricted to visual parameters which fail to provide a personalized risk assessment. Therefore, new insights into early diagnostic approaches to detect AA and therefore to prevent aneurysm-rupture are crucial. Multiple new techniques are developed to obtain a more accurate understanding of the biological processes and pathological alterations at a (micro)structural and molecular level of aortic degeneration. Advanced anatomical imaging combined with molecular imaging, such as molecular MRI, or positron emission tomography (PET)/CT provides novel diagnostic approaches for in vivo visualization of targeted biomarkers. This will aid in the understanding of aortic aneurysm disease pathogenesis and insight into the pathways involved, and will thus facilitate early diagnostic analysis of aneurysmal disease. In this study, we reviewed these molecular imaging modalities and their association with aneurysm growth and/or rupture risk and their limitations. Furthermore, we outline recent pre-clinical and clinical developments in molecular imaging of AA and provide future perspectives based on the advancements made within the field. Within the vastness of pre-clinical markers that have been studied in mice, molecular imaging targets such as elastin/collagen, albumin, matrix metalloproteinases and immune cells demonstrate promising results regarding rupture risk assessment within the pre-clinical setting. Subsequently, these markers hold potential as a future diagnosticum of clinical AA assessment. However currently, clinical translation of molecular imaging is still at the onset. Future human trials are required to assess the effectivity of potentially viable molecular markers with various imaging modalities for clinical rupture risk assessment.
Collapse
Affiliation(s)
- Vinamr Rastogi
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sanne J. M. Stefens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Judith Houwaart
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hence J. M. Verhagen
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jorg L. de Bruin
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ingrid van der Pluijm
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen Essers
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Jeroen Essers
| |
Collapse
|
30
|
Sawada H, Katsumata Y, Higashi H, Zhang C, Li Y, Morgan S, Lee LH, Singh SA, Chen JZ, Franklin MK, Moorleghen JJ, Howatt DA, Rateri DL, Shen YH, LeMaire SA, Aikawa M, Majesky MW, Lu HS, Daugherty A. Second Heart Field-derived Cells Contribute to Angiotensin II-mediated Ascending Aortopathies. Circulation 2022; 145:987-1001. [PMID: 35143327 PMCID: PMC9008740 DOI: 10.1161/circulationaha.121.058173] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The ascending aorta is a common location for aneurysm and dissection. This aortic region is populated by a mosaic of medial and adventitial cells that are embryonically derived from either the second heart field (SHF) or the cardiac neural crest. SHF-derived cells populate areas that coincide with the spatial specificity of thoracic aortopathies. The purpose of this study was to determine whether and how SHF-derived cells contribute to ascending aortopathies. Methods: Ascending aortic pathologies were examined in patients with sporadic thoracic aortopathies and angiotensin II (AngII)-infused mice. Ascending aortas without overt pathology from AngII-infused mice were subjected to mass spectrometry assisted proteomics, and molecular features of SHF-derived cells were determined by single cell transcriptomic analyses. Genetic deletion of either low-density lipoprotein receptor-related protein 1 (Lrp1) or transforming growth factor-β receptor 2 (Tgfbr2) in SHF-derived cells was conducted to examine the impact of SHF-derived cells on vascular integrity. Results: Pathologies in human ascending aortic aneurysmal tissues were predominant in outer medial layers and adventitia. This gradient was mimicked in mouse aortas following AngII infusion that was coincident with the distribution of SHF-derived cells. Proteomics indicated that brief AngII infusion, prior to overt pathology, evoked downregulation of SMC proteins and differential expression of extracellular matrix proteins, including several LRP1 ligands. LRP1 deletion in SHF-derived cells augmented AngII-induced ascending aortic aneurysm and rupture. Single cell transcriptomic analysis revealed that brief AngII infusion decreased Lrp1 and Tgfbr2 mRNA abundance in SHF-derived cells and induced a unique fibroblast population with low abundance of Tgfbr2 mRNA. SHF-specific Tgfbr2 deletion led to embryonic lethality at E12.5 with dilatation of the outflow tract and retroperitoneal hemorrhage. Integration of proteomic and single cell transcriptomics results identified plasminogen activator inhibitor 1 (PAI1) as the most increased protein in SHF-derived SMCs and fibroblasts during AngII infusion. Immunostaining revealed a transmural gradient of PAI1 in both ascending aortas of AngII-infused mice and human ascending aneurysmal aortas that mimicked the gradient of medial and adventitial pathologies. Conclusions: SHF-derived cells exert a critical role in maintaining vascular integrity through LRP1 and TGF-β signaling associated with increases of aortic PAI1.
Collapse
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY; Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX
| | - Stephanie Morgan
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Lang H Lee
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jeff Z Chen
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Michael K Franklin
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY
| | - Jessica J Moorleghen
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY
| | - Deborah A Howatt
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY
| | - Debra L Rateri
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mark W Majesky
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA; Department of Pediatrics, University of Washington, Seattle, WA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA
| | - Hong S Lu
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY; Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY; Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
31
|
Mechanobiology of the arterial tissue from the aortic root to the diaphragm. Med Eng Phys 2021; 96:64-70. [PMID: 34565554 DOI: 10.1016/j.medengphy.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/26/2023]
Abstract
Arterial tissue microstructure and its mechanical properties directly correlate with cardiovascular diseases such as atherosclerosis and aneurysm. Experienced hemodynamic loads are the primary factor of arterial tissue remodeling. By virtue of altering hemodynamic loads along the arterial tree, respective structure-function relations will be region-dependent. Since, there is limited experimental evidence on these structure-function homeostases, the current study, aims to report microstructural and mechanical alterations along the aorta from the aortic root up to the diaphragm, where intense hemodynamic alterations take place. The ascending, arch, and descending parts of the same cadaveric aortas were investigated by histomechanical examinations. Anatomical landmarks were labeled on the specimens, and then biaxial tensile tests were conducted on samples from each region. Furthermore, area fractions of elastin and collagen were measured on stained sections of the tissue. Also, a fragmentation index of elastin tissue is proposed for quantitative measurement of ECM integrity, which correlates with the nature of experienced hemodynamic loads. For the ascending aorta and the aortic arch, different values for mechanical properties and fragmentation index are observed even in a specific cross-section of the artery. It is primarily due to the complex loading regimes and curved geometry. Conversely, microstructural and mechanical features along the descending aorta exhibited minimal variations, and hence, smooth blood flow and pressure waves are expected in this region, which is well-documented in the literature. Both of the microstructural and mechanical features of the aorta vary along the arterial tree depending on the hemodynamic and geometric complexities they incur and may shed light on the initiation of cardiovascular diseases.
Collapse
|
32
|
Lanzer P, Hannan FM, Lanzer JD, Janzen J, Raggi P, Furniss D, Schuchardt M, Thakker R, Fok PW, Saez-Rodriguez J, Millan A, Sato Y, Ferraresi R, Virmani R, St Hilaire C. Medial Arterial Calcification: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 78:1145-1165. [PMID: 34503684 PMCID: PMC8439554 DOI: 10.1016/j.jacc.2021.06.049] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 01/07/2023]
Abstract
Medial arterial calcification (MAC) is a chronic systemic vascular disorder distinct from atherosclerosis that is frequently but not always associated with diabetes mellitus, chronic kidney disease, and aging. MAC is also a part of more complex phenotypes in numerous less common diseases. The hallmarks of MAC include disseminated and progressive precipitation of calcium phosphate within the medial layer, a prolonged and clinically silent course, and compromise of hemodynamics associated with chronic limb-threatening ischemia. MAC increases the risk of complications during vascular interventions and mitigates their outcomes. With the exception of rare monogenetic defects affecting adenosine triphosphate metabolism, MAC pathogenesis remains unknown, and causal therapy is not available. Implementation of genetics and omics-based approaches in research recognizing the critical importance of calcium phosphate thermodynamics holds promise to unravel MAC molecular pathogenesis and to provide guidance for therapy. The current state of knowledge concerning MAC is reviewed, and future perspectives are outlined.
Collapse
Affiliation(s)
- Peter Lanzer
- Middle German Heart Center-Bitterfeld, Bitterfeld-Wolfen Health Care Center, Bitterfeld, Germany.
| | - Fadil M Hannan
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Jan D Lanzer
- Institute for Computational Biomedicine, Bioquant, Faculty of Medicine, Heidelberg University, Heidelberg, Germany; Department of Internal Medicine II, Heidelberg University Hospital, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Heidelberg, Germany
| | | | - Paolo Raggi
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dominic Furniss
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Mirjam Schuchardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Rajesh Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Pak-Wing Fok
- Department of Mathematical Sciences, University of Delaware, Newark, Delaware, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Angel Millan
- Institute of Materials Science, University of Zaragoza, Zaragoza, Spain
| | - Yu Sato
- CVPath Institute, Gaithersburg, Maryland, USA
| | | | | | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Deleeuw V, De Clercq A, De Backer J, Sips P. An Overview of Investigational and Experimental Drug Treatment Strategies for Marfan Syndrome. J Exp Pharmacol 2021; 13:755-779. [PMID: 34408505 PMCID: PMC8366784 DOI: 10.2147/jep.s265271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Marfan syndrome (MFS) is a heritable connective tissue disorder caused by pathogenic variants in the gene coding for the extracellular matrix protein fibrillin-1. While the disease affects multiple organ systems, the most life-threatening manifestations are aortic aneurysms leading to dissection and rupture. Other cardiovascular complications, including mitral valve prolapse, primary cardiomyopathy, and arrhythmia, also occur more frequently in patients with MFS. The standard medical care relies on cardiovascular imaging at regular intervals, along with pharmacological treatment with β-adrenergic receptor blockers aimed at reducing the aortic growth rate. When aortic dilatation reaches a threshold associated with increased risk of dissection, prophylactic surgical aortic replacement is performed. Although current clinical management has significantly improved the life expectancy of patients with MFS, no cure is available and fatal complications still occur, underscoring the need for new treatment options. In recent years, preclinical studies have identified a number of potentially promising therapeutic targets. Nevertheless, the translation of these results into clinical practice has remained challenging. In this review, we present an overview of the currently available knowledge regarding the underlying pathophysiological processes associated with MFS cardiovascular pathology. We then summarize the treatment options that have been developed based on this knowledge and are currently in different stages of preclinical or clinical development, provide a critical review of the limitations of current studies and highlight potential opportunities for future research.
Collapse
Affiliation(s)
- Violette Deleeuw
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Adelbert De Clercq
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Julie De Backer
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, 9000, Belgium
| | - Patrick Sips
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
34
|
Yanagisawa H, Yokoyama U. Extracellular matrix-mediated remodeling and mechanotransduction in large vessels during development and disease. Cell Signal 2021; 86:110104. [PMID: 34339854 DOI: 10.1016/j.cellsig.2021.110104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/08/2023]
Abstract
The vascular extracellular matrix (ECM) is synthesized and secreted during embryogenesis and facilitates the growth and remodeling of large vessels. Proper interactions between the ECM and vascular cells are pivotal for building the vasculature required for postnatal dynamic circulation. The ECM serves as a structural component by maintaining the integrity of the vessel wall while also regulating intercellular signaling, which involves cytokines and growth factors. The major ECM component in large vessels is elastic fibers, which include elastin and microfibrils. Elastin is predominantly synthesized by vascular smooth muscle cells (SMCs) and uses microfibrils as a scaffold to lay down and assemble cross-linked elastin. The absence of elastin causes developmental defects that result in the subendothelial proliferation of SMCs and inward remodeling of the vessel wall. Notably, elastic fiber formation is attenuated in the ductus arteriosus and umbilical arteries. These two vessels function during embryogenesis and close after birth via cellular proliferation, migration, and matrix accumulation. In dynamic postnatal mechano-environments, the elastic fibers in large vessels also serve an essential role in proper signal transduction as a component of elastin-contractile units. Disrupted mechanotransduction in SMCs leads to pathological conditions such as aortic aneurysms that exhibit outward remodeling. This review discusses the importance of the ECM-mainly the elastic fiber matrix-in large vessels during developmental remodeling and under pathological conditions. By dissecting the role of the ECM in large vessels, we aim to provide insights into the role of ECM-mediated signal transduction that can provide a basis for seeking new targets for intervention in vascular diseases.
Collapse
Affiliation(s)
- Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
35
|
Burgess KA, Herrick AL, Watson REB. Systemic sclerosis skin is a primed microenvironment for soft tissue calcification-a hypothesis. Rheumatology (Oxford) 2021; 60:2517-2527. [PMID: 33585894 DOI: 10.1093/rheumatology/keab156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022] Open
Abstract
Calcinosis cutis, defined as sub-epidermal deposition of calcium salts, is a major clinical problem in patients with SSc, affecting 20-40% of patients. A number of recognized factors associated with calcinosis have been identified, including disease duration, digital ischaemia and acro-osteolysis. Yet, to date, the pathogenesis of SSc-related calcinosis remains unknown, and currently there is no effective disease-modifying pharmacotherapy. Following onset of SSc, there are marked changes in the extracellular matrix (ECM) of the skin, notably a breakdown in the microfibrillar network and accumulation of type I collagen. Our hypothesis is that these pathological changes reflect a changing cellular phenotype and result in a primed microenvironment for soft tissue calcification, with SSc fibroblasts adopting a pro-osteogenic profile, and specific driving forces promoting tissue mineralization. Considering the role of the ECM in disease progression may help elucidate the mechanism(s) behind SSc-related calcinosis and inform the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Kyle A Burgess
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester, UK
| | - Ariane L Herrick
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel E B Watson
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
36
|
Adeva-Andany MM, Adeva-Contreras L, Fernández-Fernández C, González-Lucán M, Funcasta-Calderón R. Elastic tissue disruption is a major pathogenic factor to human vascular disease. Mol Biol Rep 2021; 48:4865-4878. [PMID: 34129188 DOI: 10.1007/s11033-021-06478-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/05/2021] [Indexed: 01/15/2023]
Abstract
Elastic fibers are essential components of the arterial extracellular matrix. They consist of the protein elastin and an array of microfibrils that support the protein and connect it to the surrounding matrix. The elastin gene encodes tropoelastin, a protein that requires extensive cross-linking to become elastin. Tropoelastin is expressed throughout human life, but its expression levels decrease with age, suggesting that the potential to synthesize elastin persists during lifetime although declines with aging. The initial abnormality documented in human atherosclerosis is fragmentation and loss of the elastic network in the medial layer of the arterial wall, suggesting an imbalance between elastic fiber injury and restoration. Damaged elastic structures are not adequately repaired by synthesis of new elastic elements. Progressive collagen accumulation follows medial elastic fiber disruption and fibrous plaques are formed, but advanced atherosclerosis lesions do not develop in the absence of prior elastic injury. Aging is associated with arterial extracellular matrix anomalies that evoke those present in early atherosclerosis. The reduction of elastic fibers with subsequent collagen accumulation leads to arterial stiffening and intima-media thickening, which are independent predictors of incident hypertension in prospective community-based studies. Arterial stiffening precedes the development of hypertension. The fundamental role of the vascular elastic network to arterial structure and function is emphasized by congenital disorders caused by mutations that disrupt normal elastic fiber production. Molecular changes in the genes coding tropoelastin, lysyl oxidase (tropoelastin cross-linking), and elastin-associated microfibrils, including fibrillin-1, fibulin-4, and fibulin-5 produce severe vascular injury due to absence of functional elastin.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain.
| | | | - Carlos Fernández-Fernández
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| | - Manuel González-Lucán
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| | - Raquel Funcasta-Calderón
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| |
Collapse
|
37
|
Kim SH, Monticone RE, McGraw KR, Wang M. Age-associated proinflammatory elastic fiber remodeling in large arteries. Mech Ageing Dev 2021; 196:111490. [PMID: 33839189 PMCID: PMC8154723 DOI: 10.1016/j.mad.2021.111490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Elastic fibers are the main components of the extracellular matrix of the large arterial wall. Elastic fiber remodeling is an intricate process of synthesis and degradation of the core elastin protein and microfibrils accompanied by the assembly and disassembly of accessory proteins. Age-related morphological, structural, and functional proinflammatory remodeling within the elastic fiber has a profound effect upon the integrity, elasticity, calcification, amyloidosis, and stiffness of the large arterial wall. An age-associated increase in arterial stiffness is a major risk factor for the pathogenesis of diseases of the large arteries such as hypertensive and atherosclerotic vasculopathy. This mini review is an update on the key molecular, cellular, functional, and structural mechanisms of elastic fiber proinflammatory remodeling in large arteries with aging. Targeting structural and functional integrity of the elastic fiber may be an effective approach to impede proinflammatory arterial remodeling with advancing age.
Collapse
Affiliation(s)
- Soo Hyuk Kim
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Robert E Monticone
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Kimberly R McGraw
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
38
|
Millán Á, Lanzer P, Sorribas V. The Thermodynamics of Medial Vascular Calcification. Front Cell Dev Biol 2021; 9:633465. [PMID: 33937234 PMCID: PMC8080379 DOI: 10.3389/fcell.2021.633465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Medial vascular calcification (MVC) is a degenerative process that involves the deposition of calcium in the arteries, with a high prevalence in chronic kidney disease (CKD), diabetes, and aging. Calcification is the process of precipitation largely of calcium phosphate, governed by the laws of thermodynamics that should be acknowledged in studies of this disease. Amorphous calcium phosphate (ACP) is the key constituent of early calcifications, mainly composed of Ca2+ and PO4 3- ions, which over time transform into hydroxyapatite (HAP) crystals. The supersaturation of ACP related to Ca2+ and PO4 3- activities establishes the risk of MVC, which can be modulated by the presence of promoter and inhibitor biomolecules. According to the thermodynamic parameters, the process of MVC implies: (i) an increase in Ca2+ and PO4 3- activities (rather than concentrations) exceeding the solubility product at the precipitating sites in the media; (ii) focally impaired equilibrium between promoter and inhibitor biomolecules; and (iii) the progression of HAP crystallization associated with nominal irreversibility of the process, even when the levels of Ca2+ and PO4 3- ions return to normal. Thus, physical-chemical processes in the media are fundamental to understanding MVC and represent the most critical factor for treatments' considerations. Any pathogenetical proposal must therefore comply with the laws of thermodynamics and their expression within the medial layer.
Collapse
Affiliation(s)
- Ángel Millán
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Peter Lanzer
- Division of Cardiovascular Disease, Department of Internal Medicine, Health Care Center Bitterfeld, Bitterfeld-Wolfen gGmbH, Bitterfeld-Wolfen, Germany
| | - Víctor Sorribas
- Molecular Toxicology Group, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
39
|
Altered Vascular Extracellular Matrix in the Pathogenesis of Atherosclerosis. J Cardiovasc Transl Res 2021; 14:647-660. [PMID: 33420681 DOI: 10.1007/s12265-020-10091-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease continues to grow as a massive global health burden, with coronary artery disease being one of its most lethal varieties. The pathogenesis of atherosclerosis induces changes in the blood vessel and its extracellular matrix (ECM) in each vascular layer. The alteration of the ECM homeostasis has significant modulatory effects on the inflammatory response, the proliferation and migration of vascular smooth muscle cells, neointimal formation, and vascular fibrosis seen in atherosclerosis. In this literature review, the role of the ECM, the multitude of components, and alterations to these components in the pathogenesis of atherosclerosis are discussed with a focus on versatile cellular phenotypes in the structure of blood vessel. An understanding of the various effects of ECM alterations opens up a plethora of therapeutic options that would mitigate the substantial health toll of atherosclerosis on the global population.
Collapse
|
40
|
Seike Y, Matsuda H, Ishibashi-Ueda H, Morisaki H, Morisaki T, Minatoya K, Ogino H. Surgical Outcome and Histological Differences between Individuals with TGFBR1 and TGFBR2 Mutations in Loeys-Dietz Syndrome. Ann Thorac Cardiovasc Surg 2021; 27:56-63. [PMID: 33408307 PMCID: PMC8043025 DOI: 10.5761/atcs.oa.20-00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To identify differences in surgical outcomes between patients with transforming growth factor-beta receptor (TGFBR) 1 and TGFBR2 mutations in Loeys-Dietz syndrome (LDS). METHODS In all, 22 LDS patients between 1998 and 2015 were divided into the two groups: TGFBR1 (n = 11) and TGFBR2 mutation (n = 11). RESULTS The freedom from aortic reoperation was similar between the two groups (p = 0.19, log-rank). In the subanalysis, the freedom from aortic reoperation was lower in female patients with TGFBR2 mutations (n = 6) than in other patients (p = 0.08). The freedom from aortic dissection (AD) after the initial surgery was also lower in female patients with TGFBR2 mutation than in other patients (p = 0.025). All patients with TGFBR2 mutations revealed grade III cystic medial necrosis (CMN), whereas 67% of patients with TGFBR1 mutations showed CMN (p = 0.033) and only one patient had grade III (p <0.001). CONCLUSION LDS patients with TGFBR2 mutations had higher grade of CMN than those of TGFBR1 mutations. In particular, in female patients with TGFBR2 mutations, AD after the initial surgery and reoperation were more frequent than those of other LDS patients.
Collapse
Affiliation(s)
- Yoshimasa Seike
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan.,Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hitoshi Matsuda
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan.,Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hatsue Ishibashi-Ueda
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hiroko Morisaki
- Department of Medical Genetics, Sakakibara Heart Institute, Fuchu, Tokyo, Japan
| | - Takayuki Morisaki
- Department of Molecular Pathology, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Hitoshi Ogino
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
41
|
Abstract
Degenerative changes in the aorta are commonly observed in both dogs and humans, and those changes that occur with age morphologically overlap with those observed in genetic or degenerative diseases. Therefore, recognition of age-related aortic changes is important for diagnosticians, as such histologic findings should be distinguished from lesions of specific diseases. The aortas from 37 dogs without clinical cardiovascular disease ranging in age from 2 months to 15 years were divided into 3 cohorts to assess age-relatedness, and evaluated histologically using standardized nomenclature and diagnostic criteria adapted and modified from the human literature. We found that the histopathologic severity scores for intimal thickening, translamellar medial fibrosis, loss of smooth muscle cell nuclei, and medial microcalcification were higher in older dogs, whereas the scores for both intralamellar and translamellar mucoid extracellular matrix accumulation ("cystic medial necrosis") were not different among age groups. Dogs with translamellar medial fibrosis and aortic medial microcalcification were significantly older compared with dogs without these findings, while the presence of aortic medial chondro-osseous metaplasia was not related to age. Taken together, we demonstrate a range of age-related aortic histologic changes in dogs without clinical cardiovascular disease and suggest that integration of signalment and clinical data can aid in the differentiation of such findings from non-age-related disease processes.
Collapse
Affiliation(s)
- Ching Yang
- 70728The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
42
|
Borrás T, Cowley DO, Asokan P, Pandya K. Generation of a Matrix Gla (Mgp) floxed mouse, followed by conditional knockout, uncovers a new Mgp function in the eye. Sci Rep 2020; 10:18583. [PMID: 33122788 PMCID: PMC7596545 DOI: 10.1038/s41598-020-75031-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023] Open
Abstract
The ability to ablate a gene in a given tissue by generating a conditional knockout (cKO) is crucial for determining its function in the targeted tissue. Such tissue-specific ablation is even more critical when the gene's conventional knockout (KO) is lethal, which precludes studying the consequences of its deletion in other tissues. Therefore, here we describe a successful strategy that generated a Matrix Gla floxed mouse (Mgp.floxed) by the CRISPR/Cas9 system, that subsequently allowed the generation of cKOs by local viral delivery of the Cre-recombinase enzyme. MGP is a well-established inhibitor of calcification gene, highly expressed in arteries' smooth muscle cells and chondrocytes. MGP is also one of the most abundant genes in the trabecular meshwork, the eye tissue responsible for maintenance of intraocular pressure (IOP) and development of Glaucoma. Our strategy entailed one-step injection of two gRNAs, Cas9 protein and a long-single-stranded-circular DNA donor vector (lsscDNA, 6.7 kb) containing two loxP sites in cis and 900-700 bp 5'/3' homology arms. Ocular intracameral injection of Mgp.floxed mice with a Cre-adenovirus, led to an Mgp.TMcKO mouse which developed elevated IOP. Our study discovered a new role for the Mgp gene as a keeper of physiological IOP in the eye.
Collapse
Affiliation(s)
- Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, 4109C Neuroscience Research Building CB 7041, 115 Mason Farm Road, Chapel Hill, NC, 27599-7041, USA.
| | - Dale O Cowley
- Animal Models Core, University of North Carolina, Chapel Hill, NC, USA
| | - Priyadarsini Asokan
- Department of Ophthalmology, University of North Carolina School of Medicine, 4109C Neuroscience Research Building CB 7041, 115 Mason Farm Road, Chapel Hill, NC, 27599-7041, USA
| | - Kumar Pandya
- Animal Models Core, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
43
|
Matsumoto T, Uto K, Oda H, Isaka T, Nagashima Y, Kanzaki M. Pleural changes in patients with pneumothoraces and Marfan syndrome. J Thorac Dis 2020; 12:4877-4882. [PMID: 33145061 PMCID: PMC7578464 DOI: 10.21037/jtd-20-926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Patients with Marfan syndrome (MFS) often develop pneumothorax, but the features of pneumothorax in the context of MFS have not been well described in the literature. We clarified the clinical and histopathological characteristics of this condition in these patients. Methods Patients with MFS were selected from among all patients who underwent surgery for pneumothorax, between December 1991 and January 2015, in our hospital. We studied the histopathological characteristics of the resected lungs as well as the clinical features of the selected patients, including surgical findings and postoperative recurrence status. Results There were 966 operations underwent pneumothorax-related surgeries in our hospital. A total of 16 operations (1.66%) were performed on patients with MFS in 11 cases. In this study, 9 patients (6 men, 3 women) were included. Clinically, 7 patients (77.8%) had bilateral pneumothoraces and 4 (44.4%) exhibited postoperative recurrent pneumothoraces. Pathologically, the resected pulmonary bullae exhibited blood vessel cystic medial degeneration (55.6% of cases), calcification (55.6% of cases), and demonstrated elastic fiber fragmentation and degeneration (all cases). Conclusions As in few previous reports, many patients with MFS develop bilateral or postoperative recurrent pneumothoraces. In many patients, characteristic changes in the pulmonary bullae, possibly caused by degenerated elastic fibers, were observed.
Collapse
Affiliation(s)
- Takako Matsumoto
- Department of Thoracic Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenta Uto
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideaki Oda
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Tamami Isaka
- Department of Thoracic Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masato Kanzaki
- Department of Thoracic Surgery, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
44
|
The Role of Genetics in Risk Stratification of Thoracic Aortic Aneurysm Dissection. HEARTS 2020. [DOI: 10.3390/hearts1020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thoracic aortic aneurysms are prevalent in the Western population and are often caused by genetic defects. If undetected, aneurysms can dissect or rupture, which are events associated with a high mortality rate. Hitherto no cure exists other than elective surgery if aneurysm dimensions reach a certain threshold. In the past decades, genotype-phenotype associations have emerged that enable clinicians to start stratifying patients according to risk for dissection. Nonetheless, risk assessment is—to this day—confounded by the lack of full comprehension of underlying genetics and modifying genetic risk factors that complicate the yet established genotype-phenotype correlations. Further research that focuses on identifying these additional risk markers is crucial.
Collapse
|
45
|
Abstract
Inherited thoracic aortopathies denote a group of congenital conditions that predispose to disease of the thoracic aorta. Aortic wall weakness and abnormal aortic hemodynamic profiles predispose these patients to dilatation of the thoracic aorta, which is generally silent but can precipitate aortic dissection or rupture with devastating and often fatal consequences. Current strategies to assess the future risk of aortic dissection or rupture are based primarily on monitoring aortic diameter. However, diameter alone is a poor predictor of risk, with many patients experiencing dissection or rupture below current intervention thresholds. Developing tools that improve the risk assessment of those with aortopathy is internationally regarded as a research priority. A robust understanding of the molecular pathways that lead to aortic wall weakness is required to identify biomarkers and therapeutic targets that could improve patient management. Here, we summarize the current understanding of the genetically determined mechanisms underlying inherited aortopathies and critically appraise the available blood biomarkers, imaging techniques, and therapeutic targets that have shown promise for improving the management of patients with these important and potentially fatal conditions.
Collapse
Affiliation(s)
- Alexander J. Fletcher
- University of Edinburgh Centre for Cardiovascular Science, Royal Infirmary of Edinburgh, United Kingdom (A.J.F., M.B.J.S., D.E.N., N.L.W.)
| | - Maaz B.J. Syed
- University of Edinburgh Centre for Cardiovascular Science, Royal Infirmary of Edinburgh, United Kingdom (A.J.F., M.B.J.S., D.E.N., N.L.W.)
| | - Timothy J. Aitman
- Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, United Kingdom (T.J.A.)
| | - David E. Newby
- University of Edinburgh Centre for Cardiovascular Science, Royal Infirmary of Edinburgh, United Kingdom (A.J.F., M.B.J.S., D.E.N., N.L.W.)
| | - Niki L. Walker
- University of Edinburgh Centre for Cardiovascular Science, Royal Infirmary of Edinburgh, United Kingdom (A.J.F., M.B.J.S., D.E.N., N.L.W.)
- Scottish Adult Congenital Heart Disease Service, Golden Jubilee National Hospital, Clydebank, Glasgow, United Kingdom (N.L.W.)
| |
Collapse
|
46
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
47
|
Targeting vascular smooth muscle cell dysfunction with xanthine derivative KMUP-3 inhibits abdominal aortic aneurysm in mice. Atherosclerosis 2020; 297:16-24. [PMID: 32059119 DOI: 10.1016/j.atherosclerosis.2020.01.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIMS Inflammation, oxidative stress, matrix degradation, medial calcification and vascular smooth muscle cell (VSMC) loss are prominent features in abdominal aortic aneurysm (AAA). VSMC phenotypic switch to a proinflammatory state and VSMC apoptosis could be targetable mechanisms implicated in the pathogenesis of AAA formation. Herein, we investigated the hypothesis that a xanthine derivative (KMUP-3) might suppress AAA through inhibition of VSMC phenotypic switch and apoptosis. METHODS In vitro, VSMC calcification was induced using β-glycerophosphate. In vivo, AAA was induced using angiotensin II (1000 ng/kg per minute) infusion for 4 weeks in apolipoprotein E-deficient mice. RESULTS As determined by alizarin red S staining and calcium content measurements, KMUP-3 suppressed VSMC calcification. During VSMC calcification, KMUP-3 inhibited mTOR and β-catenin upregulation, essential for VSMC phenotypic switch, while it enhanced AMP-activated protein kinase (AMPK) activation that protects against VSMC phenotypic switch. Moreover, KMUP-3 attenuated VSMC apoptosis with an increased Bcl-2/Bax ratio and reduced activated caspase-3 expression. During AAA formation, treatment with KMUP-3 inhibited phosphorylated mTOR expression and increased phosphorylated AMPK expression in the medial layer. In addition, KMUP-3 treatment suppressed aortic dilatation together with reduction in proinflammatory cytokines and infiltrating macrophages, attenuation of medial VSMC apoptosis and mitigation of reactive oxygen species generation, matrix-degrading proteinase activities, elastin breakdown and vascular calcification. CONCLUSIONS Treatment with KMUP-3 inhibits aneurysm growth possibly through its interference with signaling pathways involved in VSMC phenotypic switch and apoptosis. These findings provide a proof-of-concept validation for VSMC dysfunction as a potential therapeutic target in AAA.
Collapse
|
48
|
Joolharzadeh P, St Hilaire C. CD73 (Cluster of Differentiation 73) and the Differences Between Mice and Humans. Arterioscler Thromb Vasc Biol 2020; 39:339-348. [PMID: 30676071 DOI: 10.1161/atvbaha.118.311579] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As vascular disease is complex and the various manifestations are influenced by differences in vascular bed architecture, exposure to shear and mechanical forces, cell types involved, and inflammatory responses, in vivo models are necessary to recapitulate the complex physiology and dynamic cellular interactions during pathogenesis. Murine knockout models are commonly used tools for investigators to study the role of a specific gene or pathway in multifaceted disease traits. Although valuable, these models are not perfect, and this is particularly true in regard to CD73 (cluster of differentiation 73), the extracellular enzyme that generates adenosine from AMP. At baseline, CD73-deficient mice do not present with an overt phenotype, whereas CD73-deficient humans present with the complex phenotype of vascular calcification, arteriomegaly and tortuosity, and calcification in small joints. In this review, we highlight the differences between the mouse and human systems and discuss the potential to leverage findings in mice to inform us on the human conditions.
Collapse
Affiliation(s)
- Pouya Joolharzadeh
- From the Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, PA; and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| | - Cynthia St Hilaire
- From the Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, PA; and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| |
Collapse
|
49
|
Tingting T, Wenjing F, Qian Z, Hengquan W, Simin Z, Zhisheng J, Shunlin Q. The TGF-β pathway plays a key role in aortic aneurysms. Clin Chim Acta 2019; 501:222-228. [PMID: 31707165 DOI: 10.1016/j.cca.2019.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Aortic dissection and aortic aneurysms are currently among the most high-risk cardiovascular diseases due to their rapid onset and high mortality. Although aneurysm research has been extensive, the pathogenesis remains unknown. Studies have found that the TGF-β/Smad pathway and aneurysm formation appear linked. For example, the TGF-β signaling pathway was significantly activated in aneurysm development and aortic dissection. Aneurysms are not, however, mitigated following knockdown of TGF-β signaling pathway-related genes. Incidence and mortality rate of ruptured thoracic aneurysms increase with the down-regulation of the classical TGF-β signaling pathway. In this review, we summarize recent findings and evaluate the differential role of classical and non-classical TGF-β pathways on aortic aneurysm. It is postulated that the TGF-β signaling pathway is necessary to maintain vascular function, but over-activation will promote aneurysms whereas over-inhibition will lead to bypass pathway over-activation and promote aneurysm occurrence.
Collapse
Affiliation(s)
- Tang Tingting
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Fan Wenjing
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China; Emergency Department, The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zeng Qian
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Wan Hengquan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhao Simin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Jiang Zhisheng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Qu Shunlin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
50
|
Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res 2019. [PMID: 29514202 PMCID: PMC5852633 DOI: 10.1093/cvr/cvy010] [Citation(s) in RCA: 702] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vascular calcification is associated with a significant increase in all-cause mortality and atherosclerotic plaque rupture. Calcification has been determined to be an active process driven in part by vascular smooth muscle cell (VSMC) transdifferentiation within the vascular wall. Historically, VSMC phenotype switching has been viewed as binary, with the cells able to adopt a physiological contractile phenotype or an alternate ‘synthetic’ phenotype in response to injury. More recent work, including lineage tracing has however revealed that VSMCs are able to adopt a number of phenotypes, including calcific (osteogenic, chondrocytic, and osteoclastic), adipogenic, and macrophagic phenotypes. Whilst the mechanisms that drive VSMC differentiation are still being elucidated it is becoming clear that medial calcification may differ in several ways from the intimal calcification seen in atherosclerotic lesions, including risk factors and specific drivers for VSMC phenotype changes and calcification. This article aims to compare and contrast the role of VSMCs in driving calcification in both atherosclerosis and in the vessel media focusing on the major drivers of calcification, including aging, uraemia, mechanical stress, oxidative stress, and inflammation. The review also discusses novel findings that have also brought attention to specific pro- and anti-calcifying proteins, extracellular vesicles, mitochondrial dysfunction, and a uraemic milieu as major determinants of vascular calcification.
Collapse
Affiliation(s)
- Andrew L Durham
- Division of Cardiology, James Black Centre, Kings College London, Denmark Hill, London, SE5 9NU, UK
| | - Mei Y Speer
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Marta Scatena
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Catherine M Shanahan
- Division of Cardiology, James Black Centre, Kings College London, Denmark Hill, London, SE5 9NU, UK
| |
Collapse
|