1
|
Song J, Zeng J, Chen X, Wang J, Zhang Y, Gao Y, Wang R, Jiang N, Lin Y, Li R. Anti-neuroinflammatory agent rhein lysinate-based self-assembled injectable hydrogel loaded with ZL006 for promoting post-stroke functional recovery. Biomaterials 2025; 318:123124. [PMID: 39884131 DOI: 10.1016/j.biomaterials.2025.123124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/27/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
The therapeutic agent-based self-assembled hydrogel is gaining interest for biomedical applications, because it overcomes the poor biodegradability and low therapeutic agent loading of conventional polymer gelator-based hydrogel. Here, we present rhein lysinate (RHL), a therapeutic agent that self-assembles to form a stable hydrogel through the π-π stacking and hydrogen bonding interactions, while also exerting anti-neuroinflammatory effect. As a small molecular hydrogelator, RHL has significantly improved water solubility and enhanced self-assembly and gelation capabilities compared to the natural anthraquinone rhein. The relaxed gel-forming conditions enhance the practical application potential of self-assembled hydrogel of RHL (RHL gel). The RHL gel can be loaded with the bioactive agents such as 5-Fluorouracil, temozolomide, edaravone, and ZL006, mainly based on efficient stacking between aromatic rings in the bioactive agents and anthraquinone rings in the hydrogel network structure. The pre-gelled RHL gel and ZL006-loaded RHL gel (ZL006-RHL gel) exhibit shear-thinning behavior, flowing like a liquid under high shear stress during injection. Once this shear stress is removal within the body, they rapidly recover to the initial solid-like state. When a single dose of ZL006-RHL gel is administrated to stroke cavity in the subacute phase of stroke, RHL gel matrix effectively reduces post-stroke neuroinflammation, creates a favorable environment for ZL006 to enhance neuroplasticity, and confers a sustained and stable action to ZL006, leading to a long-lasting improvement of motor performance. This study may provide a valuable strategy for therapeutic intervention to promote post-stroke functional recovery, for which there are no clinically available drugs.
Collapse
Affiliation(s)
- Jiamei Song
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiaqi Zeng
- The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, China
| | - Xi Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiayu Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ying Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yuhao Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ruiqi Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Nan Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yuhui Lin
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Rui Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Xiong S, Sun M, Zhang Y, Kong PR, Gan L, Gao L, Xu K, Wu HY, Zhu DY, Lin YH, Li R, Luo CX. Astrocytic BEST1 can serve as a target for functional recovery after ischemic stroke. Mol Ther 2025:S1525-0016(25)00196-0. [PMID: 40119514 DOI: 10.1016/j.ymthe.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/23/2024] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
Solid evidence from animal experiments supported the concept of peri-infarct tonic inhibition. Related drug targets have the potential to be translated for clinical stroke treatment. Recently, we reported the contribution of neuronal bestrophin-1 (BEST1)-mediated glutamate release to acute ischemic damage exacerbation in rodents. Now, we found a switch of abnormal BEST1 expression and function from neurons to astrocytes in the peri-infarct cortex following astrocytic activation. Excessive GABA was released through astrocytic BEST1 channel during the subacute phase of stroke, leading to sustained tonic inhibition. Astrocyte-specific knockdown of BEST1 promoted motor functional recovery, depending on reduced tonic inhibition. Moreover, we prepared self-assembled nanoparticles encapsulating siBest1 (SNP-siBest1), which displayed high brain accumulation and long circulation and knocked down astrocytic BEST1 effectively and safely. Systemic treatment with SNP-siBest1 after ischemic stroke showed a therapeutic effect in mice. Therefore, BEST1 is a potential target for stroke therapy from acute to subacute phase, and selective BEST1 blockers beyond nanoparticles are worth developing.
Collapse
Affiliation(s)
- Shuai Xiong
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Meng Sun
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ying Zhang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Pei-Ran Kong
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lu Gan
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ling Gao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ke Xu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Rui Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
Hua Y, Li C, Zhang A, Wang Y, Xing Y, Tian Z, Hu J, Bai Y. Constraint-induced movement therapy combined with intermittent theta-burst stimulation improve synaptic plasticity by inhibiting neutrophils extracellular traps formation in ipsilateral primary motor cortex of stroke rats. Neurosci Lett 2025; 849:138134. [PMID: 39880071 DOI: 10.1016/j.neulet.2025.138134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/14/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
The effect of Constraint-induced movement therapy (CIMT) or Intermittent theta-burst stimulation (iTBS) alone is limited in improving motor function after a stroke. In this study, we explored the efficacy and possible mechanisms in combination of CIMT and iTBS through behavioral evaluation, RNA sequencing, Golgi staining, transmission electronic microscope (TEM), high-performance liquid chromatography (HPLC), western blotting (WB) and immunofluorescence. Firstly, we observed that combination therapy is safe and effective, and it can significantly reduce the number of immature dendritic spines and increase the number of functional dendritic spines, the amount of glutamate (Glu) and the expression of Glu1 receptor (Glu1R). Meanwhile, we have found a significant reduction in neutrophil extracellular traps (NETs) in the combination group, and correlation analysis showed that the number of NETs is negatively correlated with the number of functional dendritic spines and the expression of Glu1R. After Cl-amidine ((S) - N - (1-amino-5- (2-chloroacetamiprid) -1-oxopentan-2-yl) benzamide 2,2,2-trifluoroacetate salt, PAD4 inhibitors) application, combined therapy did not further improve motor function and the expression of Glu1R. Our results proved that CIMT combined with iTBS therapy is a better therapeutic intervention. It improved motor function and synaptic plasticity after a stroke by promoting the transformation of functional dendritic spines and the expression of Glu1R in the ipsilateral primary motor cortex. The reduction of NETs generation is one of the key targets within it.
Collapse
Affiliation(s)
- Yan Hua
- Department of Rehabilitation Medicine Huashan Hospital Fudan University Shanghai China
| | - Congqin Li
- Department of Rehabilitation Medicine Huashan Hospital Fudan University Shanghai China
| | - Anjing Zhang
- Department of Rehabilitation Medicine Huashan Hospital Fudan University Shanghai China
| | - Yuyuan Wang
- Department of Rehabilitation Medicine Huashan Hospital Fudan University Shanghai China
| | - Ying Xing
- Department of Rehabilitation Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Zhanzhuang Tian
- State Key Laboratory of Medical Neurobiology Department of Integrative Medicine and Neurobiology Brain Science Collaborative Innovation Center School of Basic Medical Sciences Institutes of Brain Science Fudan Institutes of Integrative Medicine Fudan University Shanghai China
| | - Jian Hu
- Department of Rehabilitation Medicine Huashan Hospital Fudan University Shanghai China.
| | - Yulong Bai
- Department of Rehabilitation Medicine Huashan Hospital Fudan University Shanghai China.
| |
Collapse
|
4
|
Lin YH, Wu F, Li TY, Lin L, Gao F, Zhu LJ, Xu XM, Chen MY, Hou YL, Zhang CJ, Wu HY, Chang L, Luo CX, Qin YJ, Zhu DY. Disrupting stroke-induced GAT-1-syntaxin1A interaction promotes functional recovery after stroke. Cell Rep Med 2024; 5:101789. [PMID: 39423810 PMCID: PMC11604526 DOI: 10.1016/j.xcrm.2024.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/08/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Although stroke is a frequent cause of permanent disability, our ability to promote stroke recovery is limited. Here, we design a small-molecule stroke recovery promoting agent that works by dissociating γ-aminobutyric acid (GABA) transporter 1 (GAT-1) from syntaxin1A (Synt1A), a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein. Stroke induces an increase in GAT-1-Synt1A interaction in the subacute phase, a critical period for functional recovery. Uncoupling GAT-1-Synt1A reverses stroke-induced GAT-1 dysfunction and cortical excitability decline and enhances synaptic GABAergic inhibition and consequently cortical oscillations and network plasticity by facilitating the assembly of the SNARE complex at the synapse. Based on the molecular mechanism of GAT-1 binding to Synt1A, we design GAT-1-Synt1A blockers. Among them, ZLQ-3 exhibits the greatest potency. Intranasal use of ZLQ-3-1, a glycosylation product of ZLQ-3, substantially lessens impairments of sensorimotor and cognitive functions in rodent models. This compound, or its analogs, may serve as a promoting agent for stroke recovery.
Collapse
Affiliation(s)
- Yu-Hui Lin
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Feng Wu
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ting-You Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Long Lin
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fan Gao
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiu-Mei Xu
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ming-Yu Chen
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ya-Lan Hou
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chang-Jing Zhang
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hai-Yin Wu
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lei Chang
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chun-Xia Luo
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ya-Juan Qin
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Dong-Ya Zhu
- Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
5
|
Gu Z, Li S, Liu J, Zhang X, Pang C, Ding L, Cao C. Protection of blood-brain barrier by endothelial DAPK1 deletion after stroke. Biochem Biophys Res Commun 2024; 724:150216. [PMID: 38851140 DOI: 10.1016/j.bbrc.2024.150216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Death-associated protein kinase (DAPK) 1 is a critical mediator for neuronal cell death in cerebral ischemia, but its role in blood-brain barrier (BBB) disruption is incompletely understood. Here, we found that endothelial-specific deletion of Dapk1 using Tie2 Cre protected the brain of Dapk1fl/fl mice against middle cerebral artery occlusion (MCAO), characterized by mitigated Evans blue dye (EBD) extravasation, reduced infarct size and improved behavior. In vitro experiments also indicated that DAPK1 deletion inhibited oxygen-glucose deprivation (OGD)-induced tight junction alteration between cerebral endothelial cells (CECs). Mechanistically, we revealed that DAPK1-DAPK3 interaction activated cytosolic phospholipase A2 (cPLA2) in OGD-stimulated CECs. Our results thus suggest that inhibition of endothelial DAPK1 specifically prevents BBB damage after stroke.
Collapse
Affiliation(s)
- Zhijiang Gu
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Shaoxun Li
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Jiyu Liu
- Huaian Clinical College of Xuzhou Medical University, Huaian, 223300, China
| | - Xiaotian Zhang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Cong Pang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Lianshu Ding
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China.
| | - Changchun Cao
- Department of Pharmacy, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China; Huaian Clinical College of Xuzhou Medical University, Huaian, 223300, China.
| |
Collapse
|
6
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Zheng H, Wu H, Wang D, Wang S, Ji D, Liu X, Gao G, Su X, Zhang Y, Ling Y. Research progress of prodrugs for the treatment of cerebral ischemia. Eur J Med Chem 2024; 272:116457. [PMID: 38704941 DOI: 10.1016/j.ejmech.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
It is well-known that pharmacotherapy plays a pivotal role in the treatment and prevention of cerebral ischemia. Nevertheless, existing drugs, including numerous natural products, encounter various challenges when applied in cerebral ischemia treatment. These challenges comprise poor brain absorption due to low blood-brain barrier (BBB) permeability, limited water solubility, inadequate bioavailability, poor stability, and rapid metabolism. To address these issues, researchers have turned to prodrug strategies, aiming to mitigate or eliminate the adverse properties of parent drug molecules. In vivo metabolism or enzymatic reactions convert prodrugs into active parent drugs, thereby augmenting BBB permeability, improving bioavailability and stability, and reducing toxicity to normal tissues, ultimately aiming to enhance treatment efficacy and safety. This comprehensive review delves into multiple effective prodrug strategies, providing a detailed description of representative prodrugs developed over the past two decades. It underscores the potential of prodrug approaches to improve the therapeutic outcomes of currently available drugs for cerebral ischemia. The publication of this review serves to enrich current research progress on prodrug strategies for the treatment and prevention of cerebral ischemia. Furthermore, it seeks to offer valuable insights for pharmaceutical chemists in this field, offer guidance for the development of drugs for cerebral ischemia, and provide patients with safer and more effective drug treatment options.
Collapse
Affiliation(s)
- Hongwei Zheng
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Hongmei Wu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Dezhi Wang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Sijia Wang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Dongliang Ji
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Xiao Liu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Ge Gao
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Xing Su
- Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China.
| | - Yanan Zhang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China.
| | - Yong Ling
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China.
| |
Collapse
|
8
|
Zhao L, Qu HL, Zhang Y, Wu X, Ji QX, Zhang Z, Li D. ZL006 mitigates anxiety-like behaviors induced by closed head injury through modulation of the neural circuit from the medial prefrontal cortex to amygdala. Cereb Cortex 2024; 34:bhae237. [PMID: 38850218 DOI: 10.1093/cercor/bhae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/17/2024] [Indexed: 06/10/2024] Open
Abstract
Closed head injury is a prevalent form of traumatic brain injury with poorly understood effects on cortical neural circuits. Given the emotional and behavioral impairments linked to closed head injury, it is vital to uncover brain functional deficits and their driving mechanisms. In this study, we employed a robust viral tracing technique to identify the alteration of the neural pathway connecting the medial prefrontal cortex to the basolateral amygdala, and we observed the disruptions in neuronal projections between the medial prefrontal cortex and the basolateral amygdala following closed head injury. Remarkably, our results highlight that ZL006, an inhibitor targeting PSD-95/nNOS interaction, stands out for its ability to selectively reverse these aberrations. Specifically, ZL006 effectively mitigates the disruptions in neuronal projections from the medial prefrontal cortex to basolateral amygdala induced by closed head injury. Furthermore, using chemogenetic approaches, we elucidate that activating the medial prefrontal cortex projections to the basolateral amygdala circuit produces anxiolytic effects, aligning with the therapeutic potential of ZL006. Additionally, ZL006 administration effectively mitigates astrocyte activation, leading to the restoration of medial prefrontal cortex glutamatergic neuron activity. Moreover, in the context of attenuating anxiety-like behaviors through ZL006 treatment, we observe a reduction in closed head injury-induced astrocyte engulfment, which may correlate with the observed decrease in dendritic spine density of medial prefrontal cortex glutamatergic neurons.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Orthopedic Surgery, Shenyang Fifth People's Hospital, No. 188 Xingshun Street, Tiexi District, Shenyang 110122, Liaoning Province, China
| | - Hui Ling Qu
- Department of Neurology, General Hospital of Northern Theater Command, NO. 83 Wenhua Road, Shenhe District, Shenyang 110122, Liaoning Province, China
| | - Yan Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, China
| | - Xin Wu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, China
| | - Qian Xin Ji
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, China
| | - Zhuo Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, China
| | - Dan Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, China
| |
Collapse
|
9
|
Merino‐Serrais P, Plaza‐Alonso S, Hellal F, Valero‐Freitag S, Kastanauskaite A, Plesnila N, DeFelipe J. Structural changes of CA1 pyramidal neurons after stroke in the contralesional hippocampus. Brain Pathol 2024; 34:e13222. [PMID: 38012061 PMCID: PMC11007010 DOI: 10.1111/bpa.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
Significant progress has been made with regard to understanding how the adult brain responds after a stroke. However, a large number of patients continue to suffer lifelong disabilities without adequate treatment. In the present study, we have analyzed possible microanatomical alterations in the contralesional hippocampus from the ischemic stroke mouse model tMCAo 12-14 weeks after transient middle cerebral artery occlusion. After individually injecting Lucifer yellow into pyramidal neurons from the CA1 field of the hippocampus, we performed a detailed three-dimensional analysis of the neuronal complexity, dendritic spine density, and morphology. We found that, in both apical (stratum radiatum) and basal (stratum oriens) arbors, CA1 pyramidal neurons in the contralesional hippocampus of tMCAo mice have a significantly higher neuronal complexity, as well as reduced spine density and alterations in spine volume and spine length. Our results show that when the ipsilateral hippocampus is dramatically damaged, the contralesional hippocampus exhibits several statistically significant selective alterations. However, these alterations are not as significant as expected, which may help to explain the recovery of hippocampal function after stroke. Further anatomical and physiological studies are necessary to better understand the modifications in the "intact" contralesional lesioned brain regions, which are probably fundamental to recover functions after stroke.
Collapse
Affiliation(s)
- Paula Merino‐Serrais
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología BiomédicaUniversidad Politécnica de MadridMadridSpain
- Departamento de Neurobiología Funcional y de SistemasInstituto Cajal, CSICMadridSpain
| | - Sergio Plaza‐Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología BiomédicaUniversidad Politécnica de MadridMadridSpain
- Departamento de Neurobiología Funcional y de SistemasInstituto Cajal, CSICMadridSpain
| | - Farida Hellal
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig‐Maximilians‐University Munich (LMU)MunichGermany
- iTERM, Helmholtz CenterMunichGermany
- Munich Cluster of Systems Neurology (Synergy)MunichGermany
| | - Susana Valero‐Freitag
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig‐Maximilians‐University Munich (LMU)MunichGermany
| | - Asta Kastanauskaite
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología BiomédicaUniversidad Politécnica de MadridMadridSpain
- Departamento de Neurobiología Funcional y de SistemasInstituto Cajal, CSICMadridSpain
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig‐Maximilians‐University Munich (LMU)MunichGermany
- Munich Cluster of Systems Neurology (Synergy)MunichGermany
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología BiomédicaUniversidad Politécnica de MadridMadridSpain
- Departamento de Neurobiología Funcional y de SistemasInstituto Cajal, CSICMadridSpain
- CIBER de Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
10
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
11
|
Zhu LJ, Li F, Zhu DY. nNOS and Neurological, Neuropsychiatric Disorders: A 20-Year Story. Neurosci Bull 2023; 39:1439-1453. [PMID: 37074530 PMCID: PMC10113738 DOI: 10.1007/s12264-023-01060-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/05/2023] [Indexed: 04/20/2023] Open
Abstract
In the central nervous system, nitric oxide (NO), a free gas with multitudinous bioactivities, is mainly produced from the oxidation of L-arginine by neuronal nitric oxide synthase (nNOS). In the past 20 years, the studies in our group and other laboratories have suggested a significant involvement of nNOS in a variety of neurological and neuropsychiatric disorders. In particular, the interactions between the PDZ domain of nNOS and its adaptor proteins, including post-synaptic density 95, the carboxy-terminal PDZ ligand of nNOS, and the serotonin transporter, significantly influence the subcellular localization and functions of nNOS in the brain. The nNOS-mediated protein-protein interactions provide new attractive targets and guide the discovery of therapeutic drugs for neurological and neuropsychiatric disorders. Here, we summarize the work on the roles of nNOS and its association with multiple adaptor proteins on neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
12
|
Xiong S, Xiao H, Sun M, Liu Y, Gao L, Xu K, Liang H, Jiang N, Lin Y, Chang L, Wu H, Zhu D, Luo C. Glutamate-releasing BEST1 channel is a new target for neuroprotection against ischemic stroke with wide time window. Acta Pharm Sin B 2023; 13:3008-3026. [PMID: 37521872 PMCID: PMC10372917 DOI: 10.1016/j.apsb.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 08/01/2023] Open
Abstract
Many efforts have been made to understand excitotoxicity and develop neuroprotectants for the therapy of ischemic stroke. The narrow treatment time window is still to be solved. Given that the ischemic core expanded over days, treatment with an extended time window is anticipated. Bestrophin 1 (BEST1) belongs to a bestrophin family of calcium-activated chloride channels. We revealed an increase in neuronal BEST1 expression and function within the peri-infarct from 8 to 48 h after ischemic stroke in mice. Interfering the protein expression or inhibiting the channel function of BEST1 by genetic manipulation displayed neuroprotective effects and improved motor functional deficits. Using electrophysiological recordings, we demonstrated that extrasynaptic glutamate release through BEST1 channel resulted in delayed excitotoxicity. Finally, we confirmed the therapeutic efficacy of pharmacological inhibition of BEST1 during 6-72 h post-ischemia in rodents. This delayed treatment prevented the expansion of infarct volume and the exacerbation of neurological functions. Our study identifies the glutamate-releasing BEST1 channel as a potential therapeutic target against ischemic stroke with a wide time window.
Collapse
Affiliation(s)
- Shuai Xiong
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hui Xiao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Meng Sun
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yunjie Liu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ling Gao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ke Xu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Haiying Liang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Nan Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuhui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Haiyin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Dongya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Chunxia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
13
|
Chen ZJ, Su CW, Xiong S, Li T, Liang HY, Lin YH, Chang L, Wu HY, Li F, Zhu DY, Luo CX. Enhanced AMPAR-dependent synaptic transmission by S-nitrosylation in the vmPFC contributes to chronic inflammatory pain-induced persistent anxiety in mice. Acta Pharmacol Sin 2023; 44:954-968. [PMID: 36460834 PMCID: PMC10104852 DOI: 10.1038/s41401-022-01024-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/02/2022] [Indexed: 12/04/2022]
Abstract
Chronic pain patients often have anxiety disorders, and some of them suffer from anxiety even after analgesic administration. In this study, we investigated the role of AMPAR-mediated synaptic transmission in the ventromedial prefrontal cortex (vmPFC) in chronic pain-induced persistent anxiety in mice and explored potential drug targets. Chronic inflammatory pain was induced in mice by bilateral injection of complete Freund's adjuvant (CFA) into the planta of the hind paws; anxiety-like behaviours were assessed with behavioural tests; S-nitrosylation and AMPAR-mediated synaptic transmission were examined using biochemical assays and electrophysiological recordings, respectively. We found that CFA induced persistent upregulation of AMPAR membrane expression and function in the vmPFC of anxious mice but not in the vmPFC of non-anxious mice. The anxious mice exhibited higher S-nitrosylation of stargazin (an AMPAR-interacting protein) in the vmPFC. Inhibition of S-nitrosylation by bilaterally infusing an exogenous stargazin (C302S) mutant into the vmPFC rescued the surface expression of GluA1 and AMPAR-mediated synaptic transmission as well as the anxiety-like behaviours in CFA-injected mice, even after ibuprofen treatment. Moreover, administration of ZL006, a small molecular inhibitor disrupting the interaction of nNOS and PSD-95 (20 mg·kg-1·d-1, for 5 days, i.p.), significantly reduced nitric oxide production and S-nitrosylation of AMPAR-interacting proteins in the vmPFC, resulting in anxiolytic-like effects in anxious mice after ibuprofen treatment. We conclude that S-nitrosylation is necessary for AMPAR trafficking and function in the vmPFC under chronic inflammatory pain-induced persistent anxiety conditions, and nNOS-PSD-95 inhibitors could be potential anxiolytics specific for chronic inflammatory pain-induced persistent anxiety after analgesic treatment.
Collapse
Affiliation(s)
- Zhi-Jin Chen
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Chun-Wan Su
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Shuai Xiong
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ting Li
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Hai-Ying Liang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- The First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Lin YH, Yang D, Ni HY, Xu XM, Wu F, Lin L, Chen J, Sun YY, Huang ZQ, Li SY, Jiang PL, Wu HY, Chang L, Hu B, Luo CX, Wu J, Zhu DY. Ketone bodies promote stroke recovery via GAT-1-dependent cortical network remodeling. Cell Rep 2023; 42:112294. [PMID: 36947544 DOI: 10.1016/j.celrep.2023.112294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 01/31/2023] [Accepted: 03/04/2023] [Indexed: 03/23/2023] Open
Abstract
Stroke is a leading cause of adult disability worldwide, and better drugs are needed to promote functional recovery after stroke. Growing evidence suggests the critical role of network excitability during the repair phase for stroke recovery. Here, we show that β-hydroxybutyrate (β-HB), an essential ketone body (KB) component, is positively correlated with improved outcomes in patients with stroke and promotes functional recovery in rodents with stroke during the repair phase. These beneficial effects of β-HB depend on HDAC2/HDAC3-GABA transporter 1 (GAT-1) signaling-mediated enhancement of excitability and phasic GABA inhibition in the peri-infarct cortex and structural and functional plasticity in the ipsilateral cortex, the contralateral cortex, and the corticospinal tract. Together with available clinical approaches to elevate KB levels, our results offer a clinically translatable means to promote stroke recovery. Furthermore, GAT-1 can serve as a pharmacological target for developing drugs to promote functional recovery after stroke.
Collapse
Affiliation(s)
- Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Di Yang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Huan-Yu Ni
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiu-Mei Xu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Long Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jie Chen
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Yan-Yu Sun
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Zhen-Quan Huang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Shi-Yi Li
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Pei-Lin Jiang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jin Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China.
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
15
|
Arenas YM, Martínez-García M, Llansola M, Felipo V. Enhanced BDNF and TrkB Activation Enhance GABA Neurotransmission in Cerebellum in Hyperammonemia. Int J Mol Sci 2022; 23:ijms231911770. [PMID: 36233065 PMCID: PMC9570361 DOI: 10.3390/ijms231911770] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Hyperammonemia is a main contributor to minimal hepatic encephalopathy (MHE) in cirrhotic patients. Hyperammonemic rats reproduce the motor incoordination of MHE patients, which is due to enhanced GABAergic neurotransmission in the cerebellum as a consequence of neuroinflammation. In hyperammonemic rats, neuroinflammation increases BDNF by activating the TNFR1–S1PR2–CCR2 pathway. (1) Identify mechanisms enhancing GABAergic neurotransmission in hyperammonemia; (2) assess the role of enhanced activation of TrkB; and (3) assess the role of the TNFR1–S1PR2–CCR2–BDNF pathway. In the cerebellum of hyperammonemic rats, increased BDNF levels enhance TrkB activation in Purkinje neurons, leading to increased GAD65, GAD67 and GABA levels. Enhanced TrkB activation also increases the membrane expression of the γ2, α2 and β3 subunits of GABAA receptors and of KCC2. Moreover, enhanced TrkB activation in activated astrocytes increases the membrane expression of GAT3 and NKCC1. These changes are reversed by blocking TrkB or the TNFR1–SP1PR2–CCL2–CCR2–BDNF–TrkB pathway. Hyperammonemia-induced neuroinflammation increases BDNF and TrkB activation, leading to increased synthesis and extracellular GABA, and the amount of GABAA receptors in the membrane and chloride gradient. These factors enhance GABAergic neurotransmission in the cerebellum. Blocking TrkB or the TNFR1–SP1PR2–CCL2–CCR2–BDNF–TrkB pathway would improve motor function in patients with hepatic encephalopathy and likely with other pathologies associated with neuroinflammation.
Collapse
|
16
|
Chen J, Jin J, Li K, Shi L, Wen X, Fang F. Progresses and Prospects of Neuroprotective Agents-Loaded Nanoparticles and Biomimetic Material in Ischemic Stroke. Front Cell Neurosci 2022; 16:868323. [PMID: 35480961 PMCID: PMC9035592 DOI: 10.3389/fncel.2022.868323] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Ischemic stroke remains the leading cause of death and disability, while the main mechanisms of dominant neurological damage in stroke contain excitotoxicity, oxidative stress, and inflammation. The clinical application of many neuroprotective agents is limited mainly due to their inability to cross the blood-brain barrier (BBB), short half-life and low bioavailability. These disadvantages can be better eliminated/reduced by nanoparticle as the carrier of these drugs. This review expounded the currently hot researched nanomedicines from the perspective of the mechanism of ischemic stroke. In addition, this review describes the bionic nanomedicine delivery strategies containing cells, cell membrane vesicles and exosomes that can effectively avoid the risk of clearance by the reticuloendothelial system. The potential challenges and application prospect for clinical translation of these delivery platforms were also discussed.
Collapse
Affiliation(s)
- Junfa Chen
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jing Jin
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Kaiqiang Li
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lin Shi
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xuehua Wen
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Xuehua Wen,
| | - Fuquan Fang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Fuquan Fang,
| |
Collapse
|
17
|
Merino-Serrais P, Plaza-Alonso S, Hellal F, Valero-Freitag S, Kastanauskaite A, Muñoz A, Plesnila N, DeFelipe J. Microanatomical study of pyramidal neurons in the contralesional somatosensory cortex after experimental ischemic stroke. Cereb Cortex 2022; 33:1074-1089. [PMID: 35353195 PMCID: PMC9930620 DOI: 10.1093/cercor/bhac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
At present, many studies support the notion that after stroke, remote regions connected to the infarcted area are also affected and may contribute to functional outcome. In the present study, we have analyzed possible microanatomical alterations in pyramidal neurons from the contralesional hemisphere after induced stroke. We performed intracellular injections of Lucifer yellow in pyramidal neurons from layer III in the somatosensory cortex of the contralesional hemisphere in an ischemic stroke mouse model. A detailed 3-dimensional analysis of the neuronal complexity and morphological alterations of dendritic spines was then performed. Our results demonstrate that pyramidal neurons from layer III in the somatosensory cortex of the contralesional hemisphere show selective changes in their dendritic arbors, namely, less dendritic complexity of the apical dendritic arbor-but no changes in the basal dendritic arbor. In addition, we found differences in spine morphology in both apical and basal dendrites comparing the contralesional hemisphere with the lesional hemisphere. Our results show that pyramidal neurons of remote areas connected to the infarct zone exhibit a series of selective changes in neuronal complexity and morphological distribution of dendritic spines, supporting the hypothesis that remote regions connected to the peri-infarcted area are also affected after stroke.
Collapse
Affiliation(s)
- Paula Merino-Serrais
- Corresponding author: Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcón, Madrid 28223/Instituto Cajal (CSIC), Avenida Doctor Arce, 37, Madrid 28002, Spain.
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain,Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
| | - Farida Hellal
- Institute for Stroke and Dementia Research (ISD), University of Munich, Munich 81337, Germany,iTERM, Helmholtz center, Munich 85764, Germany
| | - Susana Valero-Freitag
- Institute for Stroke and Dementia Research (ISD), University of Munich, Munich 81337, Germany
| | - Asta Kastanauskaite
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain,Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
| | - Alberto Muñoz
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain,Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain,Departamento de Biología Celular, Universidad Complutense, Madrid 28040, Spain
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University of Munich, Munich 81337, Germany,Munich Cluster of Systems Neurology (Synergy), Munich 85764, Germany
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain,Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. (CIBERNED), ISCIII, Madrid 28031, Spain
| |
Collapse
|
18
|
Gongcheng X, Congcong H, Jiahui Y, Wenhao L, Hui X, Xiangyang L, Zengyong L, Yonghui W, Daifa W. Effective brain network analysis in unilateral and bilateral upper limb exercise training in subjects with stroke. Med Phys 2022; 49:3333-3346. [PMID: 35262918 DOI: 10.1002/mp.15570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Knowing the patterns of brain activation that occur and networks involved under different interventions is important for motor recovery in subjects with stroke. This study aimed to study the patterns of brain activation and networks in two interventions, affected upper limb side and bilateral exercise training, using concurrent functional near-infrared spectroscopy (fNIRS) imaging. METHODS Thirty-two patients in the early subacute stage were randomly divided into two groups: unilateral and bilateral groups. The patients in the unilateral group underwent isokinetic muscle strength training on the affected upper limb side and patients in the bilateral group underwent bilateral upper limb training. Oxyhemoglobin and deoxyhemoglobin concentration changes (ΔHbO2 and ΔHbR, respectively) were recorded in the ipsilateral and contralateral prefrontal cortex (IPFC and CPFC, respectively) and ipsilateral and contralateral motor cortex (IMC and CMC, respectively) by fNIRS equipment in the resting state and training conditions. The phase information of a 0.01-0.08 Hz fNIRS signal was extracted by the wavelet transform method. Dynamic Bayesian inference was adopted to calculate the coupling strength and direction of effective connectivity. The network threshold was determined by surrogate signal method, the global (weighted clustering coefficient, global efficiency and small-worldness) and local (degree, betweenness centrality and local efficiency) network metrics were calculated. The degree of cerebral lateralization was also compared between the two groups. RESULTS The results of covariance analysis showed that, compared with bilateral training, the coupling effect of CMC→IMC was significantly enhanced (p = 0.03); also, the local efficiency of the IMC (p = 0.01), IPFC (p<0.001), and CPFC (p = 0.006) and the hemispheric autonomy index of IPFC (p = 0.007) were significantly increased in unilateral training. In addition, there was a significant positive correlation between the coupling intensity of the inter-hemispheric motor area and the shifted local efficiency. CONCLUSIONS The results indicated that unilateral upper limb training could more effectively promote the interaction and balance of bilateral motor hemispheres and help brain reorganization in the IMC and prefrontal cortex in stroke patients. The method provided in this study could be used to evaluate dynamic brain activation and network reorganization under different interventions, thus improving the strategy of rehabilitation intervention in a timely manner and resulting in better motor recovery. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xu Gongcheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China.,Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Huo Congcong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China
| | - Yin Jiahui
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Li Wenhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China
| | - Xie Hui
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China.,Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, China
| | - Li Xiangyang
- Nanchang Key Laboratory of Medical and Technology Research, Nanchang University, Nanchang, 330031, China
| | - Li Zengyong
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.,Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, China
| | - Wang Yonghui
- Department of physical medicine and rehabilitation, Qilu hospital, Shandong University, Jinan, 250061, China
| | - Wang Daifa
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100086, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
19
|
Huo Y, Feng X, Niu M, Wang L, Xie Y, Wang L, Ha J, Cheng X, Gao Z, Sun Y. Therapeutic time windows of compounds against NMDA receptors signaling pathways for ischemic stroke. J Neurosci Res 2021; 99:3204-3221. [PMID: 34676594 DOI: 10.1002/jnr.24937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
Much evidence has proved that excitotoxicity induced by excessive release of glutamate contributes largely to damage caused by ischemia. In view of the key role played by NMDA receptors in mediating excitotoxicity, compounds against NMDA receptors signaling pathways have become the most promising type of anti-stroke candidate compounds. However, the limited therapeutic time window for neuroprotection is a key factor preventing NMDA receptor-related compounds from showing efficacy in all clinical trials for ischemic stroke. In this perspective, the determination of therapeutic time windows of these kinds of compounds is useful in ensuring a therapeutic effect and accelerating clinical application. This mini-review discussed the therapeutic time windows of compounds against NMDA receptors signaling pathways, described related influence factors and the status of clinical studies. The purpose of this review is to look for compounds with wide therapeutic time windows and better clinical application prospect.
Collapse
Affiliation(s)
- Yuexiang Huo
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xue Feng
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Menghan Niu
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Le Wang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China.,Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, China
| | - Yinghua Xie
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Long Wang
- Department of Family and Consumer Sciences, California State University, Long Beach, CA, USA
| | - Jing Ha
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xiaokun Cheng
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| |
Collapse
|
20
|
Zhang Q, He L, Chen M, Yang H, Cao X, Liu X, Hao Q, Chen Z, Liu T, Wei XE, Rong L. PSD-93 mediates the crosstalk between neuron and microglia and facilitates acute ischemic stroke injury by binding to CX3CL1. J Neurochem 2021; 157:2145-2157. [PMID: 33599284 DOI: 10.1111/jnc.15324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022]
Abstract
Post-synaptic density 93 (PSD-93) mediates glutamate excitotoxicity induced by ischemic brain injury, which then induces microglial inflammatory response. However, the underlying mechanisms of how PSD-93 mediates the crosstalk between neurons and microglia in the post-synaptic dense region remain elusive. CX3 chemokine ligand 1 (CX3CL1) is a chemokine specifically expressed in neurons while its receptor CX3CR1 is highly expressed in microglia. In this study, we examined the interaction of PSD-93 and CX3CL1 in the crosstalk between neurons and microglia in acute ischemic stroke. We utilized male C57BL/6 mice to establish the middle cerebral artery occlusion model (MCAO) and designed a fusion small peptide Tat-CX3CL1 (357-395aa) to inhibit PSD-93 and CX3CL1 interaction. The combination peaks of PSD-93 and CX3CL1 at 6 hr after I/R were observed. The binding sites were located at the 420-535 amino acid sequence of PSD-93 and 357-395 amino acid sequence of CX3CL1. Tat-CX3CL1 (357-395aa) could inhibit the interaction of PSD-93 and CX3CL1 and inhibited the pro-inflammatory cytokine IL-1β and TNF-α expression and provided neuroprotection following reperfusion. Together, these data suggest that PSD-93 binds CX3CL1 to activate microglia and initiate neuroinflammation. Specific blockade of PSD-93-CX3CL1 interaction reduces I/R induced neuronal cell death, and provides a new therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Qingxiu Zhang
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lei He
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mo Chen
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Yang
- Department of Neurosurgery, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaowei Cao
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaomei Liu
- Department of Pathogenic Biology and Immunology, Lab of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Qi Hao
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhengwei Chen
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tengfei Liu
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiu-E Wei
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Liangqun Rong
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
21
|
Phosphofructokinase-1 Inhibition Promotes Neuronal Differentiation of Neural Stem Cells and Functional Recovery After Stroke. Neuroscience 2021; 459:27-38. [PMID: 33556456 DOI: 10.1016/j.neuroscience.2021.01.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Ischemic stroke is a major cause of long-term disability. Neuronal differentiation of neural stem cells (NSCs) is crucial for brain repair after stroke. However, the underlying mechanisms remain unclear. Here, the role and potential mechanisms of phosphofructokinase-1 (PFK-1), the rate-limiting enzyme of glycolysis, was investigated in stroke using middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation models. We found that stroke increased the PFK-1 expression of NSCs. However, PFK-1 inhibition promoted neuronal differentiation of NSCs and facilitated the dendritic maturation of newborn neurons in vitro and in vivo. Moreover, PFK-1 inhibition also improved the spatial memory performance of MCAO rats. Additionally, we proved that the effect of PFK-1 inhibition above might be achieved by promoting β-catenin nuclear translocation and activating its downstream signaling, independent of Wnt signaling. Thus, these observations reveal a critical role of PFK-1 in stroke, which may provide a novel target for regenerative repair after stroke.
Collapse
|
22
|
Lin Y, Yao M, Wu H, Wu F, Cao S, Ni H, Dong J, Yang D, Sun Y, Kou X, Li J, Xiao H, Chang L, Wu J, Liu Y, Luo C, Zhu D. Environmental enrichment implies GAT-1 as a potential therapeutic target for stroke recovery. Theranostics 2021; 11:3760-3780. [PMID: 33664860 PMCID: PMC7914370 DOI: 10.7150/thno.53316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022] Open
Abstract
Rationale: Stroke is a leading cause of adult disability worldwide, but no drug provides functional recovery during the repair phase. Accumulating evidence demonstrates that environmental enrichment (EE) promotes stroke recovery by enhancing network excitability. However, the complexities of utilizing EE in a clinical setting limit its translation. Methods: We used multifaceted approaches combining electrophysiology, chemogenetics, optogenetics, and floxed mice in a mouse photothrombotic stroke model to reveal the key target of EE-mediated stroke recovery. Results: EE reduced tonic gamma-aminobutyric acid (GABA) inhibition and facilitated phasic GABA inhibition in the peri-infarct cortex, thereby promoting network excitability and stroke recovery. These beneficial effects depended on GAT-1, a GABA transporter regulating both tonic and phasic GABA signaling, as EE positively regulated GAT-1 expression, trafficking, and function. Furthermore, GAT-1 was necessary for EE-induced network plasticity, including structural neuroplasticity, input synaptic strengthening in the peri-infarct cortex, output synaptic strengthening in the corticospinal tract, and sprouting of uninjured corticospinal axons across the midline into the territory of denervated spinal cord, and functional recovery from stroke. Moreover, restoration of GAT-1 function in the peri-infarct cortex by its overexpression showed similar beneficial effects on stroke recovery as EE exposure. Conclusion: GAT-1 is a key molecular substrate of the effects of EE on network excitability and consequent stroke recovery and can serve as a novel therapeutic target for stroke treatment during the repair phase.
Collapse
|
23
|
Gu Y, Zhu D. nNOS-mediated protein-protein interactions: promising targets for treating neurological and neuropsychiatric disorders. J Biomed Res 2020; 35:1-10. [PMID: 33402546 PMCID: PMC7874267 DOI: 10.7555/jbr.34.20200108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurological and neuropsychiatric disorders are one of the leading causes of disability worldwide and affect the health of billions of people. Nitric oxide (NO), a free gas with multitudinous bioactivities, is mainly produced from the oxidation of L-arginine by neuronal nitric oxide synthase (nNOS) in the brain. Inhibiting nNOS benefits a variety of neurological and neuropsychiatric disorders, including stroke, depression and anxiety disorders, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, chronic pain, and drug addiction. Due to critical roles of nNOS in learning and memory and synaptic plasticity, direct inhibition of nNOS may cause severe side effects. Importantly, interactions of several proteins, including post-synaptic density 95 (PSD-95), carboxy-terminal PDZ ligand of nNOS (CAPON) and serotonin transporter (SERT), with the PSD/Disc-large/ZO-1 homologous (PDZ) domain of nNOS have been demonstrated to influence the subcellular distribution and activity of the enzyme in the brain. Therefore, it will be a preferable means to interfere with nNOS-mediated protein-protein interactions (PPIs), which do not lead to undesirable effects. Herein, we summarize the current literatures on nNOS-mediated PPIs involved in neurological and neuropsychiatric disorders, and the discovery of drugs targeting the PPIs, which is expected to provide potential targets for developing novel drugs and new strategy for the treatment of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yuanyuan Gu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Institution of Stem Cell and Neuroregeneration, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
24
|
Arenas YM, Cabrera-Pastor A, Juciute N, Mora-Navarro E, Felipo V. Blocking glycine receptors reduces neuroinflammation and restores neurotransmission in cerebellum through ADAM17-TNFR1-NF-κβ pathway. J Neuroinflammation 2020; 17:269. [PMID: 32917219 PMCID: PMC7488331 DOI: 10.1186/s12974-020-01941-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chronic hyperammonemia induces neuroinflammation in cerebellum, with glial activation and enhanced activation of the TNFR1-NF-kB-glutaminase-glutamate-GABA pathway. Hyperammonemia also increases glycinergic neurotransmission. These alterations contribute to cognitive and motor impairment. Activation of glycine receptors is reduced by extracellular cGMP, which levels are reduced in cerebellum of hyperammonemic rats in vivo. We hypothesized that enhanced glycinergic neurotransmission in hyperammonemic rats (1) contributes to induce neuroinflammation and glutamatergic and GABAergic neurotransmission alterations; (2) is a consequence of the reduced extracellular cGMP levels. The aims were to assess, in cerebellum of hyperammonemic rats, (a) whether blocking glycine receptors with the antagonist strychnine reduces neuroinflammation; (b) the cellular localization of glycine receptor; (c) the effects of blocking glycine receptors on the TNFR1-NF-kB-glutaminase-glutamate-GABA pathway and microglia activation; (d) whether adding extracellular cGMP reproduces the effects of strychnine. METHODS We analyzed in freshly isolated cerebellar slices from control or hyperammonemic rats the effects of strychnine on activation of microglia and astrocytes, the content of TNFa and IL1b, the surface expression of ADAM17, TNFR1 and transporters, the phosphorylation levels of ERK, p38 and ADAM17. The cellular localization of glycine receptor was assessed by immunofluorescence. We analyzed the content of TNFa, IL1b, HMGB1, glutaminase, and the level of TNF-a mRNA and NF-κB in Purkinje neurons. Extracellular concentrations of glutamate and GABA were performed by in vivo microdialysis in cerebellum. We tested whether extracellular cGMP reproduces the effects of strychnine in ex vivo cerebellar slices. RESULTS Glycine receptors are expressed mainly in Purkinje cells. In hyperammonemic rats, enhanced glycinergic neurotransmission leads to reduced membrane expression of ADAM17, resulting in increased surface expression and activation of TNFR1 and of the associated NF-kB pathway. This increases the expression in Purkinje neurons of TNFa, IL-1b, HMGB1, and glutaminase. Increased glutaminase activity leads to increased extracellular glutamate, which increases extracellular GABA. Increased extracellular glutamate and HMGB1 potentiate microglial activation. Blocking glycine receptors with strychnine or extracellular cGMP completely prevents the above pathway in hyperammonemic rats. CONCLUSIONS Glycinergic neurotransmission modulates neuroinflammation. Enhanced glycinergic neurotransmission in hyperammonemia would be due to reduced extracellular cGMP. These results shed some light on possible new therapeutic target pathways for pathologies associated to neuroinflammation.
Collapse
Affiliation(s)
- Yaiza M Arenas
- Laboratory of Neurobiology, Príncipe Felipe Research Center Valencia, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Príncipe Felipe Research Center Valencia, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
- Laboratory of Neurological Impairment, Health Research Institute INCLIVA, 46010, Valencia, Spain.
| | - Nora Juciute
- Laboratory of Neurobiology, Príncipe Felipe Research Center Valencia, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Eloy Mora-Navarro
- Laboratory of Neurobiology, Príncipe Felipe Research Center Valencia, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Príncipe Felipe Research Center Valencia, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| |
Collapse
|
25
|
Li X, Li M, Tian L, Chen J, Liu R, Ning B. Reactive Astrogliosis: Implications in Spinal Cord Injury Progression and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9494352. [PMID: 32884625 PMCID: PMC7455824 DOI: 10.1155/2020/9494352] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/06/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
Astrocytes are the most populous glial cells in the central nervous system (CNS). They are essential to CNS physiology and play important roles in the maintenance of homeostasis, development of synaptic plasticity, and neuroprotection. Nevertheless, under the influence of certain factors, astrocytes may also exert detrimental effects through a process of reactive astrogliosis. Previous studies have shown that astrocytes have more than one type of polarization. Two types have been extensively researched. One is a damaging change that occurs under inflammation and has been termed A1 astrocyte, while the other is a restorative change that occurs under ischemic induction and was termed A2 astrocyte. Researchers are now increasingly paying attention to the role of astrocytes in spinal cord injury (SCI), degenerative diseases, chronic pain, neurological tumors, and other CNS disorders. In this review, we discuss (a) the characteristics of polarized astrocytes, (b) the relationship between astrocyte polarization and SCI, and (c) new implications of reactive astrogliosis for future SCI therapies.
Collapse
Affiliation(s)
- Xinyu Li
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Meng Li
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Lige Tian
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Jianan Chen
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Ronghan Liu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Bin Ning
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| |
Collapse
|
26
|
Lin YH, Yao MC, Wu HY, Dong J, Ni HY, Kou XL, Chang L, Luo CX, Zhu DY. HDAC2 (Histone deacetylase 2): A critical factor in environmental enrichment-mediated stroke recovery. J Neurochem 2020; 155:679-696. [PMID: 32415988 DOI: 10.1111/jnc.15043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/09/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022]
Abstract
Environmental enrichment (EE) is a generally accepted strategy to promote stroke recovery and its beneficial effect is positively correlated with neuroplasticity. However, the mechanisms underlying it remain elusive. Histone deacetylase 2 (HDAC2), a negative regulator of neuroplasticity, is up-regulated after stroke. Thus, we hypothesized that HDAC2 may participate in EE-mediated stroke recovery. In this study, focal stroke was induced by photothrombosis in male mice exposing to EE or standard housing (SH) conditions. Recombinant virus vectors, including Ad-HDAC2-Flag, AAV-CAG-EGFP-Cre, LV-shHDAC2, or their controls were microinjected into the motor cortex at 3 days before stroke. Grid-walking and cylinder tasks were conducted to assess motor function. Western blot and immunostaining were used to uncover the mechanisms underlying EE-mediated stroke recovery. We found that EE exposure reversed stroke-induced HDAC2 up-regulation, implicating HDAC2 in EE-mediated functional recovery. Importantly, EE-dependent stroke recovery was counteracted by over-expressing HDAC2, and HDAC2 knockdown promoted functional recovery from stroke to the similar extent as EE exposure. Moreover, the knockdown of HDAC2 epigenetically enhanced expressions of neurotrophins and neuroplasticity-related proteins, with similar effects as EE, and consequently, whole brain and corticospinal tract (CST) rewiring. Together, our findings indicate that HDAC2 is critical for EE-dependent functional restoration. Precisely targeting HDAC2 may mimic EE and serve as a novel therapeutic strategy for stroke recovery.
Collapse
Affiliation(s)
- Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Meng-Cheng Yao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jian Dong
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Huan-Yu Ni
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiao-Lin Kou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Ally A, Powell I, Ally MM, Chaitoff K, Nauli SM. Role of neuronal nitric oxide synthase on cardiovascular functions in physiological and pathophysiological states. Nitric Oxide 2020; 102:52-73. [PMID: 32590118 DOI: 10.1016/j.niox.2020.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/15/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
This review describes and summarizes the role of neuronal nitric oxide synthase (nNOS) on the central nervous system, particularly on brain regions such as the ventrolateral medulla (VLM) and the periaqueductal gray matter (PAG), and on blood vessels and the heart that are involved in the regulation and control of the cardiovascular system (CVS). Furthermore, we shall also review the functional aspects of nNOS during several physiological, pathophysiological, and clinical conditions such as exercise, pain, cerebral vascular accidents or stroke and hypertension. For example, during stroke, a cascade of molecular, neurochemical, and cellular changes occur that affect the nervous system as elicited by generation of free radicals and nitric oxide (NO) from vulnerable neurons, peroxide formation, superoxides, apoptosis, and the differential activation of three isoforms of nitric oxide synthases (NOSs), and can exert profound effects on the CVS. Neuronal NOS is one of the three isoforms of NOSs, the others being endothelial (eNOS) and inducible (iNOS) enzymes. Neuronal NOS is a critical homeostatic component of the CVS and plays an important role in regulation of different systems and disease process including nociception. The functional and physiological roles of NO and nNOS are described at the beginning of this review. We also elaborate the structure, gene, domain, and regulation of the nNOS protein. Both inhibitory and excitatory role of nNOS on the sympathetic autonomic nervous system (SANS) and parasympathetic autonomic nervous system (PANS) as mediated via different neurotransmitters/signal transduction processes will be explored, particularly its effects on the CVS. Because the VLM plays a crucial function in cardiovascular homeostatic mechanisms, the neuroanatomy and cardiovascular regulation of the VLM will be discussed in conjunction with the actions of nNOS. Thereafter, we shall discuss the up-to-date developments that are related to the interaction between nNOS and cardiovascular diseases such as hypertension and stroke. Finally, we shall focus on the role of nNOS, particularly within the PAG in cardiovascular regulation and neurotransmission during different types of pain stimulus. Overall, this review focuses on our current understanding of the nNOS protein, and provides further insights on how nNOS modulates, regulates, and controls cardiovascular function during both physiological activity such as exercise, and pathophysiological conditions such as stroke and hypertension.
Collapse
Affiliation(s)
- Ahmmed Ally
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA.
| | - Isabella Powell
- All American Institute of Medical Sciences, Black River, Jamaica
| | | | - Kevin Chaitoff
- Interventional Rehabilitation of South Florida, West Palm Beach, FL, USA
| | - Surya M Nauli
- Chapman University and University of California, Irvine, CA, USA.
| |
Collapse
|
28
|
nNOS-expressing neurons in the vmPFC transform pPVT-derived chronic pain signals into anxiety behaviors. Nat Commun 2020; 11:2501. [PMID: 32427844 PMCID: PMC7237711 DOI: 10.1038/s41467-020-16198-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 04/21/2020] [Indexed: 01/30/2023] Open
Abstract
Anxiety is common in patients suffering from chronic pain. Here, we report anxiety-like behaviors in mouse models of chronic pain and reveal that nNOS-expressing neurons in ventromedial prefrontal cortex (vmPFC) are essential for pain-induced anxiety but not algesia, using optogenetic and chemogenetic strategies. Additionally, we determined that excitatory projections from the posterior subregion of paraventricular thalamic nucleus (pPVT) provide a neuronal input that drives the activation of vmPFC nNOS-expressing neurons in our chronic pain models. Our results suggest that the pain signal becomes an anxiety signal after activation of vmPFC nNOS-expressing neurons, which causes subsequent release of nitric oxide (NO). Finally, we show that the downstream molecular mechanisms of NO likely involve enhanced glutamate transmission in vmPFC CaMKIIα-expressing neurons through S-nitrosylation-induced AMPAR trafficking. Overall, our data suggest that pPVT excitatory neurons drive chronic pain-induced anxiety through activation of vmPFC nNOS-expressing neurons, resulting in NO-mediated AMPAR trafficking in vmPFC pyramidal neurons. Chronic pain usually induces anxiety. Here, the authors report that vmPFC nNOS-expressing neurons are activated by excitatory inputs from pPVT during chronic pain and subsequently induce anxiety-like behaviors in mice through promoting AMPAR trafficking.
Collapse
|
29
|
Hu J, Li C, Hua Y, Liu P, Gao B, Wang Y, Bai Y. Constraint-induced movement therapy improves functional recovery after ischemic stroke and its impacts on synaptic plasticity in sensorimotor cortex and hippocampus. Brain Res Bull 2020; 160:8-23. [PMID: 32298779 DOI: 10.1016/j.brainresbull.2020.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2020] [Accepted: 04/06/2020] [Indexed: 01/28/2023]
Abstract
Constraint-induced movement therapy (CIMT) has proven to be an effective way to restore functional deficits following stroke in human and animal studies, but its underlying neural plasticity mechanism remains unknown. Accumulating evidence indicates that rehabilitation after stroke is closely associated with synaptic plasticity. We therefore investigated the impact of CIMT on synaptic plasticity in ipsilateral and contralateral brain of rats following stroke. Rats were subjected to 90 minutes of transient middle cerebral artery occlusion (MCAO). CIMT was performed from 7 days after stroke and lasted for two weeks. Modified Neurology Severity Score (mNSS) and the ladder rung walking task tests were conducted at 7,14 and 21 days after stroke. Golgi-Cox staining was used to observe the plasticity changes of dendrites and dendritic spines. The expression of glutamate receptors (GluR1, GluR2 and NR1) were examined by western blot. Our data suggest that the dendrites and dendritic spines are damaged to varying degrees in bilateral sensorimotor cortex and hippocampus after acute stroke. CIMT treatment enhances the plasticity of dendrites and dendritic spines in the ipsilateral and contralateral sensorimotor cortex, increases the expression of synaptic GluR2 in ipsilateral sensorimotor cortex, which may be mechanisms for CIMT to improve functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Peile Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beiyao Gao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuyuan Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Tao WY, Yu LJ, Jiang S, Cao X, Chen J, Bao XY, Li F, Xu Y, Zhu XL. Neuroprotective effects of ZL006 in Aβ 1-42-treated neuronal cells. Neural Regen Res 2020; 15:2296-2305. [PMID: 32594052 PMCID: PMC7749460 DOI: 10.4103/1673-5374.285006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Amyloid beta (Aβ)-induced neurotoxicity and oxidative stress plays an important role in the pathogenesis of Alzheimer’s disease (AD). ZL006 is shown to reduce over-produced nitric oxide and oxidative stress in ischemic stroke by interrupting the interaction of neuronal nitric oxide synthase and postsynaptic density protein 95. However, few studies are reported on the role of ZL006 in AD. To investigate whether ZL006 exerted neuroprotective effects in AD, we used Aβ1–42 to treat primary cortical neurons and N2a neuroblastoma cells as an in vitro model of AD. Cortical neurons were incubated with ZL006 or dimethyl sulfoxide for 2 hours and treated with Aβ1–42 or NH3•H2O for another 24 hours. The results of cell counting Kit-8 (CCK-8) assay and calcein-acetoxymethylester/propidium iodide staining showed that ZL006 pretreatment rescued the neuronal death induced by Aβ1–42. Fluorescence and western blot assay were used to detect oxidative stress and apoptosis-related proteins in each group of cells. Results showed that ZL006 pretreatment decreased neuronal apoptosis and oxidative stress induced by Aβ1–42. The results of CCK8 assay showed that inhibition of Akt or NF-E2-related factor 2 (Nrf2) in cortical neurons abolished the protective effects of ZL006. Moreover, similar results were also observed in N2a neuroblastoma cells. ZL006 inhibited N2a cell death and oxidative stress induced by Aβ1–42, while inhibition of Akt or Nrf2 abolished the protective effect of ZL006. These results demonstrated that ZL006 reduced Aβ1–42-induced neuronal damage and oxidative stress, and the mechanisms might be associated with the activation of Akt/Nrf2/heme oxygenase-1 signaling pathways.
Collapse
Affiliation(s)
- Wen-Yuan Tao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Lin-Jie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Su Jiang
- Taizhou People's Hospital, Taizhou, Jiangsu Province, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Xin-Yu Bao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Xiao-Lei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
31
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
32
|
Malaguarnera M, Llansola M, Balzano T, Gómez-Giménez B, Antúnez-Muñoz C, Martínez-Alarcón N, Mahdinia R, Felipo V. Bicuculline Reduces Neuroinflammation in Hippocampus and Improves Spatial Learning and Anxiety in Hyperammonemic Rats. Role of Glutamate Receptors. Front Pharmacol 2019; 10:132. [PMID: 30858801 PMCID: PMC6397886 DOI: 10.3389/fphar.2019.00132] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2019] [Indexed: 01/29/2023] Open
Abstract
Patients with liver cirrhosis may develop minimal hepatic encephalopathy (MHE) with mild cognitive impairment. Hyperammonemia is a main contributor to cognitive impairment in MHE, which is mediated by neuroinflammation. GABAergic neurotransmission is altered in hyperammonemic rats. We hypothesized that, in hyperammonemic rats, (a) enhanced GABAergic tone would contribute to induce neuroinflammation, which would be improved by reducing GABAergic tone by chronic bicuculline treatment; (b) this would improve spatial learning and memory impairment; and (c) modulation of glutamatergic neurotransmission would mediate this cognitive improvement. The aim of this work was to assess the above hypotheses. Bicuculline was administrated intraperitoneally once a day for 4 weeks to control and hyperammonemic rats. The effects of bicuculline on microglia and astrocyte activation, IL-1β content, on membrane expression of AMPA and NMDA glutamate receptors subunits in the hippocampus and on spatial learning and memory as well as anxiety were assessed. Treatment with bicuculline reduces astrocyte activation and IL-1β but not microglia activation in the hippocampus of hyperammonemic rats. Bicuculline reverses the changes in membrane expression of AMPA receptor subunits GluA1 and GluA2 and of the NR2B (but not NR1 and NR2A) subunit of NMDA receptors. Bicuculline improves spatial learning and working memory and decreases anxiety in hyperammonemic rats. In hyperammonemia, enhanced activation of GABAA receptors in the hippocampus contributes to some but not all aspects of neuroinflammation, to altered glutamatergic neurotransmission and to impairment of spatial learning and memory as well as anxiety, all of which are reversed by reducing activation of GABAA receptors with bicuculline.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| | - Tiziano Balzano
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| | - Belén Gómez-Giménez
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| | - Carles Antúnez-Muñoz
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| | - Núria Martínez-Alarcón
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| | - Rahebeh Mahdinia
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
- Faculty of Biology, Damghan University, Damghan, Iran
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| |
Collapse
|
33
|
Cai W, Wu S, Pan Z, Xiao J, Li F, Cao J, Zang W, Tao YX. Disrupting interaction of PSD-95 with nNOS attenuates hemorrhage-induced thalamic pain. Neuropharmacology 2018; 141:238-248. [PMID: 30193808 DOI: 10.1016/j.neuropharm.2018.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/15/2018] [Accepted: 09/03/2018] [Indexed: 12/28/2022]
Abstract
Hemorrhages occurring within the thalamus lead to a pain syndrome. Clinical treatment of thalamic pain is ineffective, at least in part, due to the elusive mechanisms that underlie the induction and maintenance of thalamic pain. The present study investigated the possible contribution of a protein-protein interaction between postsynaptic density protein 95 (PSD-95) and neuronal nitric oxide synthase (nNOS) to thalamic pain in mice. Thalamic hemorrhage was induced by microinjection of type IV collagenase into unilateral ventral posterior medial/lateral nuclei of the thalamus. Pain hypersensitivities, including mechanical allodynia, heat hyperalgesia, and cold allodynia, appeared at day 1 post-microinjection, reached a peak 5-7 days post-microinjection, and persisted for at least 28 days post-microinjection on the contralateral side. Systemic pre-treatment (but not post-treatment) of ZL006, a small molecule that disrupts PSD-95-nNOS interaction, alleviated these pain hypersensitivities. This effect is dose-dependent. Mechanistically, ZL006 blocked the hemorrhage-induced increase of binding of PSD-95 with nNOS and membrane translocation of nNOS in thalamic neurons. Our findings suggest that the protein-protein interaction between PSD-95 and nNOS in the thalamus plays a significant role in the induction of thalamic pain. This interaction may be a promising therapeutic target in the clinical management of hemorrhage-induced thalamic pain.
Collapse
Affiliation(s)
- Weihua Cai
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, 07103, NJ, USA; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 45001, Henan, China; Neuroscience Research Institute, College of Basic Medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, 07103, NJ, USA
| | - Zhiqiang Pan
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, 07103, NJ, USA
| | - Jifang Xiao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, 07103, NJ, USA
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 45001, Henan, China; Neuroscience Research Institute, College of Basic Medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 45001, Henan, China; Neuroscience Research Institute, College of Basic Medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, 07103, NJ, USA.
| |
Collapse
|
34
|
Pan G, Chen Z, Zheng H, Zhang Y, Xu H, Bu G, Zheng H, Li Y. Compensatory Mechanisms Modulate the Neuronal Excitability in a Kainic Acid-Induced Epilepsy Mouse Model. Front Neural Circuits 2018; 12:48. [PMID: 30008664 PMCID: PMC6034068 DOI: 10.3389/fncir.2018.00048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/05/2018] [Indexed: 01/28/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders affecting millions of people. Due to the complicated and unclear mechanisms of epilepsy, still a significant proportion of epilepsy patients remain poorly controlled. Epilepsy is characterized by convulsive seizures that are caused by increased excitability. In this study, by using kainic acid (KA)-induced epilepsy mice, we investigated the neuronal activities and revealed the neuronal compensatory mechanisms after KA-induced toxic hyperexcitability. The results indicate that both phasic inhibition induced by enhanced inhibitory synaptic activity and tonic inhibition mediated by activated astrocytes participate in the compensatory mechanisms. Compensatory mechanisms were already found in various neuronal disorders and were considered important in protecting nervous system from toxic hyperexcitability. This study hopefully will provide valuable clues in understanding the complex neuronal mechanisms of epilepsy, and exploring potential clinical treatment of the disease.
Collapse
Affiliation(s)
- Gaojie Pan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China
| | - Zhicai Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China
| | - Yunwu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China.,Neurodegenerative Disease Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA, United States
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, United States
| | - Yanfang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China
| |
Collapse
|
35
|
Bernhardt J, Zorowitz RD, Becker KJ, Keller E, Saposnik G, Strbian D, Dichgans M, Woo D, Reeves M, Thrift A, Kidwell CS, Olivot JM, Goyal M, Pierot L, Bennett DA, Howard G, Ford GA, Goldstein LB, Planas AM, Yenari MA, Greenberg SM, Pantoni L, Amin-Hanjani S, Tymianski M. Advances in Stroke 2017. Stroke 2018; 49:e174-e199. [DOI: 10.1161/strokeaha.118.021380] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Julie Bernhardt
- From the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia (J.B.)
| | - Richard D. Zorowitz
- MedStar National Rehabilitation Network and Department of Rehabilitation Medicine, Georgetown University School of Medicine, Washington, DC (R.D.Z.)
| | - Kyra J. Becker
- Department of Neurology, University of Washington, Seattle (K.J.B.)
| | - Emanuela Keller
- Division of Internal Medicine, University Hospital of Zurich, Switzerland (E.K.)
| | | | - Daniel Strbian
- Department of Neurology, Helsinki University Central Hospital, Finland (D.S.)
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Germany (M.D.)
- Munich Cluster for Systems Neurology (SyNergy), Germany (M.D.)
| | - Daniel Woo
- Department of Neurology, University of Cincinnati College of Medicine, OH (D.W.)
| | - Mathew Reeves
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing (M.R.)
| | - Amanda Thrift
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia (A.T.)
| | - Chelsea S. Kidwell
- Departments of Neurology and Medical Imaging, University of Arizona, Tucson (C.S.K.)
| | - Jean Marc Olivot
- Acute Stroke Unit, Toulouse Neuroimaging Center and Clinical Investigation Center, Toulouse University Hospital, France (J.M.O.)
| | - Mayank Goyal
- Department of Diagnostic and Interventional Neuroradiology, University of Calgary, AB, Canada (M.G.)
| | - Laurent Pierot
- Department of Neuroradiology, Hôpital Maison Blanche, CHU Reims, Reims Champagne-Ardenne University, France (L.P.)
| | - Derrick A. Bennett
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom (D.A.B.)
| | - George Howard
- Department of Biostatistics, Ryals School of Public Health, University of Alabama at Birmingham (G.H.)
| | - Gary A. Ford
- Oxford Academic Health Science Network, United Kingdom (G.A.F.)
| | | | - Anna M. Planas
- Department of Brain Ischemia and Neurodegeneration, Institute for Biomedical Research of Barcelona (IIBB), Consejo Superior de Investigaciones CIentíficas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.M.P.)
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco (M.A.Y.)
- San Francisco Veterans Affairs Medical Center, CA (M.A.Y.)
| | - Steven M. Greenberg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (S.M.G.)
| | - Leonardo Pantoni
- ‘L. Sacco’ Department of Biomedical and Clinical Sciences, University of Milan, Italy (L.P.)
| | | | - Michael Tymianski
- Departments of Surgery and Physiology, University of Toronto, ON, Canada (M.T.)
- Department of Surgery, University Health Network (Neurosurgery), Toronto, ON, Canada (M.T.)
- Krembil Research Institute, Toronto Western Hospital, ON, Canada (M.T.)
| |
Collapse
|
36
|
Hwang SN, Kim JC, Bhuiyan MIH, Kim JY, Yang JS, Yoon SH, Yoon KD, Kim SY. Black Rice ( Oryza sativa L., Poaceae) Extract Reduces Hippocampal Neuronal Cell Death Induced by Transient Global Cerebral Ischemia in Mice. Exp Neurobiol 2018; 27:129-138. [PMID: 29731679 PMCID: PMC5934544 DOI: 10.5607/en.2018.27.2.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/16/2022] Open
Abstract
Rice is the most commonly consumed grain in the world. Black rice has been suggested to contain various bioactive compounds including anthocyanin antioxidants. There is currently little information about the nutritional benefits of black rice on brain pathology. Here, we investigated the effects of black rice (Oryza sativa L., Poaceae) extract (BRE) on the hippocampal neuronal damage induced by ischemic insult. BRE (300 mg/kg) was orally administered to adult male C57BL/6 mice once a day for 21 days. Bilateral common carotid artery occlusion (BCCAO) was performed for 23 min on the 8th day of BRE or vehicle administration. Histological analyses conducted on the 22nd day of BRE or vehicle administration revealed that administering BRE profoundly attenuated neuronal cell death, inhibited reactive astrogliosis, and prevented loss of glutathione peroxidase expression in the hippocampus when compared to vehicle treatment. In addition, BRE considerably ameliorated BCCAO-induced memory impairment on the Morris water maze test from the 15th day to the 22nd day of BRE or vehicle administration. These results indicate that chronic administration of BRE is potentially beneficial in cerebral ischemia.
Collapse
Affiliation(s)
- Sun-Nyoung Hwang
- Department of Pharmacology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jae-Cheon Kim
- Department of Pharmacology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Mohammad Iqbal Hossain Bhuiyan
- Department of Pharmacology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Joo Youn Kim
- Department of Pharmacology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ji Seon Yang
- Department of Physiology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Shin Hee Yoon
- Department of Physiology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Kee Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| | - Seong Yun Kim
- Department of Pharmacology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
37
|
Sharma T, Siddiqi MI. In silico identification and design of potent peptide inhibitors against PDZ-3 domain of Postsynaptic Density Protein (PSD-95). J Biomol Struct Dyn 2018; 37:1241-1253. [PMID: 29557723 DOI: 10.1080/07391102.2018.1454851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Unique intrinsic properties of peptides like low toxicity, high biological activity, and specificity make them attractive therapeutic agents. PDZ-binding peptide inhibitors have been demonstrated for curing of Alzheimer, Parkinson, Dementia, and other central nervous system ailments. In this article, we report the successful use of an integrated computational protocol to analyze the structural basis of how peptides bind to the shallow groove of the third PDZ domain (PDZ-3) from the postsynaptic density (PSD-95) protein. This protocol employs careful and precise computational techniques for design of new strategy for predicting novel and potent peptides against PDZ protein. We attempted to generate a pharmacophore model using crystal structure of peptide inhibitor bound to the PDZ-3. A highly specific and sensitive generated pharmacophore model was used for screening virtual database generated using different combination of amino acid substitutions as well as decoy peptide database for its sensitivity and specificity. Identified hit peptides were further analyzed by docking studies, and their stability analyzed using solvated molecular dynamics. Quantum Mechanics/Molecular Mechanics (QM/MM) interaction energy and GMX-PBSA scoring schemes were used for ranking of stable peptides. Computational approach applied here generated encouraging results for identifying peptides against PDZ interaction model. The workflow can be further exercised as a virtual screening technique for reducing the search space for candidate target peptides against PDZ domains.
Collapse
Affiliation(s)
- Tanuj Sharma
- a Laboratory of Computational Biology and Bioinformatics, Division of Molecular and Structural Biology , CSIR-Central Drug Research Institute , Lucknow 226031 , India
| | - Mohammad Imran Siddiqi
- a Laboratory of Computational Biology and Bioinformatics, Division of Molecular and Structural Biology , CSIR-Central Drug Research Institute , Lucknow 226031 , India.,b Academy of Scientific and Innovative Research (AcSIR) , CSIR-Central Drug Research Institute , Campus, Lucknow 226031 , India
| |
Collapse
|