1
|
Jin J, Ma L, Li L, Zhou X, Zhu S, Shen K, Xu Q, Jiang B, Gu Y, Ding Q, Qian H, Lv T, Song Y. Geranylgeranyl diphosphate synthase deficiency impairs efferocytosis and resolution of acute lung injury. Respir Res 2025; 26:189. [PMID: 40380222 PMCID: PMC12084987 DOI: 10.1186/s12931-025-03241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/16/2025] [Indexed: 05/19/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) are major causes of mortality of critically ill patients. Impaired macrophage-mediated clearance of apoptotic cells (efferocytosis) in ARDS contributes to prolonged inflammation, yet the underlying mechanisms remain unclear. In this study, we investigated the role of geranylgeranyl diphosphate synthase (GGPPS) in efferocytosis during lung injury resolution. We identified dynamic changes in GGPPS expression in lung macrophages and circulating monocytes throughout the progression and resolution phases of acute lung injury (ALI). Myeloid-specific GGPPS knockout mice exhibited prolonged lung inflammation, increased accumulation of apoptotic neutrophils, a higher number of recruited macrophages, and a reduced number of resident macrophages. Notably, recruited macrophages play a dominant role in efferocytosis compared to resident macrophages. GGPPS deficiency suppressed efferocytosis in both macrophage subsets in vivo and in vitro. Mechanistically, GGPPS knockout disrupted AXL signaling in recruited macrophages. Importantly, administration of geranylgeraniol (GGOH) rescued the delayed resolution of lung injury, restored efferocytosis, and increased the suppressed AXL expression in CKO mice. Collectively, this study identifies GGPPS as a key regulator of AXL-mediated efferocytosis in recruited macrophages, highlighting its potential as a therapeutic target to accelerate ARDS resolution.
Collapse
Affiliation(s)
- Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, #305, East Zhongshan Road, Nanjing, 210002, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing, 210002, China
| | - Lihong Ma
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, #305, East Zhongshan Road, Nanjing, 210002, China
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Wuxi, 214086, China
| | - Lulu Li
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing, 210002, China
| | - Xinyu Zhou
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing, 210002, China
| | - Kaikai Shen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Qiuli Xu
- Southeast University Medical College, Jinling Hospital, Nanjing, 210000, China
| | - Bei Jiang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Yanli Gu
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an, 223000, China
| | - Qianshan Ding
- Nanjing First Hospital, affiliated with Nanjing Medical University, Nanjing, 210006, China
| | - Hong Qian
- Department of Orthopaedic Surgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China.
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, #305, East Zhongshan Road, Nanjing, 210002, China.
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing, 210002, China.
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University, Nanjing, 210002, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, #305, East Zhongshan Road, Nanjing, 210002, China.
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing, 210002, China.
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
2
|
Carbone F, Després JP, Ioannidis JPA, Neeland IJ, Garruti G, Busetto L, Liberale L, Ministrini S, Vilahur G, Schindler TH, Macedo MP, Di Ciaula A, Krawczyk M, Geier A, Baffy G, Faienza MF, Farella I, Santoro N, Frühbeck G, Yárnoz-Esquiroz P, Gómez-Ambrosi J, Chávez-Manzanera E, Vázquez-Velázquez V, Oppert JM, Kiortsis DN, Sbraccia P, Zoccali C, Portincasa P, Montecucco F. Bridging the gap in obesity research: A consensus statement from the European Society for Clinical Investigation. Eur J Clin Invest 2025:e70059. [PMID: 40371883 DOI: 10.1111/eci.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/12/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Most forms of obesity are associated with chronic diseases that remain a global public health challenge. AIMS Despite significant advancements in understanding its pathophysiology, effective management of obesity is hindered by the persistence of knowledge gaps in epidemiology, phenotypic heterogeneity and policy implementation. MATERIALS AND METHODS This consensus statement by the European Society for Clinical Investigation identifies eight critical areas requiring urgent attention. Key gaps include insufficient long-term data on obesity trends, the inadequacy of body mass index (BMI) as a sole diagnostic measure, and insufficient recognition of phenotypic diversity in obesity-related cardiometabolic risks. Moreover, the socio-economic drivers of obesity and its transition across phenotypes remain poorly understood. RESULTS The syndemic nature of obesity, exacerbated by globalization and environmental changes, necessitates a holistic approach integrating global frameworks and community-level interventions. This statement advocates for leveraging emerging technologies, such as artificial intelligence, to refine predictive models and address phenotypic variability. It underscores the importance of collaborative efforts among scientists, policymakers, and stakeholders to create tailored interventions and enduring policies. DISCUSSION The consensus highlights the need for harmonizing anthropometric and biochemical markers, fostering inclusive public health narratives and combating stigma associated with obesity. By addressing these gaps, this initiative aims to advance research, improve prevention strategies and optimize care delivery for people living with obesity. CONCLUSION This collaborative effort marks a decisive step towards mitigating the obesity epidemic and its profound impact on global health systems. Ultimately, obesity should be considered as being largely the consequence of a socio-economic model not compatible with optimal human health.
Collapse
Affiliation(s)
- Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Jean-Pierre Després
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Québec, Canada
- VITAM - Centre de Recherche en santé Durable, Centre intégré Universitaire de santé et de Services Sociaux de la Capitale-Nationale, Québec, Québec, Canada
| | - John P A Ioannidis
- Department of Medicine, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Biomedical Science, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
| | - Ian J Neeland
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Cardiovascular Disease, Harrington Heart and Vascular Institute, Cleveland, Ohio, USA
| | - Gabriella Garruti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Luca Busetto
- Department of Medicine, University of Padua, Padua, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Cardiology Department, Luzerner Kantonspital, Lucerne, Switzerland
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | - Thomas H Schindler
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria Paula Macedo
- APDP - Diabetes Portugal, Education and Research Center, Lisbon, Portugal
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Agostino Di Ciaula
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Marcin Krawczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Andreas Geier
- Interdisciplinary Amyloidosis Center of Northern Bavaria, University Hospital of Würzburg, Würzburg, Germany
- Department of Internal Medicine II, Hepatology, University Hospital of Würzburg, Würzburg, Germany
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Ilaria Farella
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Nicola Santoro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Yárnoz-Esquiroz
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Chávez-Manzanera
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Jean-Michel Oppert
- Department of Nutrition, Pitié-Salpêtrière Hospital (AP-HP), Human Nutrition Research Center Ile-de-France (CRNH IdF), Sorbonne University, Paris, France
| | - Dimitrios N Kiortsis
- Atherothrombosis Research Centre, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| | - Piero Portincasa
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| |
Collapse
|
3
|
Zhang T, Wang Y, Nie X, Chen X, Jin Y, Sun L, Yang R, Wang J, Xu W, Song T, Xie W, Chen X, Li C, Zhou J, Wu S, Li Y, Li T. ENKD1 modulates innate immune responses through enhanced geranylgeranyl pyrophosphate synthase activity. Cell Rep 2025; 44:115397. [PMID: 40048432 DOI: 10.1016/j.celrep.2025.115397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/22/2024] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
Inflammation is a crucial element of immune responses, with pivotal roles in host defenses against pathogens. Comprehensive understanding of the molecular mechanisms underlying inflammation is imperative for developing effective strategies to combat infectious diseases. Here, we conducted a screening analysis and identified enkurin domain-containing protein 1 (ENKD1) as a promising regulator of inflammation. We observed that ENKD1 expression was significantly reduced on activation of multiple Toll-like receptor (TLR) molecules. Deletion of ENKD1 resulted in enhanced innate immune system activation and exacerbation of septic inflammation. Mechanistically, ENKD1 interacted with geranylgeranyl diphosphate synthase 1 (GGPS1) and modulated its enzymatic activity, thereby influencing geranylgeranyl diphosphate production. This interaction ultimately led to Ras-related C3 botulinum toxin substrate 1 (RAC1) inactivation and suppression of pro-inflammatory signaling pathways. Our findings establish ENKD1 as a critical regulator of innate immune cell activation, underscoring its significant role in septic inflammation.
Collapse
Affiliation(s)
- Tianyu Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Yixuan Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Xiaotong Nie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Xiangrong Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Yueyi Jin
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Lulu Sun
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Ruqian Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Jie Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Wenqing Xu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Ting Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Wei Xie
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Chaojun Li
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China; State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sijin Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| | - Yan Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China.
| | - Tianliang Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
4
|
Sharma J, Dey P. Differential modulation of the hepatocellular metabolome, cytoprotective and inflammatory responses due to endotoxemia and lipotoxicity. Mol Omics 2025; 21:152-163. [PMID: 39744997 DOI: 10.1039/d4mo00140k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The present work aimed to examine the primary mechanisms of liver damage, namely the impact of gut-derived endotoxins along the gut-liver axis and adipose-derived free fatty acids along the adipose-liver axis. These processes are known to play a significant role in the development of hepatic inflammation and steatosis. Although possible overlapping in the pathogenesis was expected, these processes have unique pathophysiological consequences. Therefore, we used HepG2 cells as a model system to investigate the impact of lipopolysaccharides (LPS) and free fatty acid (FFA; albumin conjugated palmitic acid) on the intracellular metabolome. Although both LPS and FFA triggered the expression of nuclear factor κB (NFκB)-dependent inflammation, only LPS treatment was able to trigger a Toll-like receptor 4 (TLR4) dependent response. The intracellular cytoprotective enzymatic levels (catalase, peroxidase, glutathione) were increased due to FFA but lowered due to LPS. The free-radical neutralizing efficacies of cell-free metabolites of FFA-treated cells were better than those of the LPS-treated ones. The use of untargeted metabolomics allowed for the identification of distinct metabolic pathway enrichments, providing further insights into the differential effects of LPS and FFA on the metabolism of hepatocytes. Collectively, the current study highlights the distinct impacts of endotoxemia and lipotoxicity on the metabolome of hepatocytes, hence offering valuable insights into hepatocellular function.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
5
|
Karim M, Prey J, Willer F, Leiner H, Yasser M, Dombrowski F, Ribback S. Hepatic Deletion of Carbohydrate Response Element Binding Protein Impairs Hepatocarcinogenesis in a High-Fat Diet-Induced Mouse Model. Int J Mol Sci 2025; 26:2246. [PMID: 40076869 PMCID: PMC11900174 DOI: 10.3390/ijms26052246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
The transcription factor carbohydrate response element binding protein (ChREBP) has emerged as a crucial regulator of hepatic glucose and lipid metabolism. The increased ChREBP activity involves the pro-oncogenic PI3K/AKT/mTOR signaling pathway that induces aberrant lipogenesis, thereby promoting hepatocellular carcinomas (HCC). However, the molecular pathogenesis of ChREBP-related hepatocarcinogenesis remains unexplored in the high-fat diet (HFD)-induced mouse model. Male C57BL/6J (WT) and liver-specific (L)-ChREBP-KO mice were maintained on either a HFD or a control diet for 12, 24, and 48 weeks, starting at the age of 4 weeks. At the end of the feeding period, mice were perfused, and liver tissues were formalin-fixed, paraffin-embedded, sectioned, and stained for histological and immunohistochemical analysis. Biochemical and gene expression analysis were conducted using serum and frozen liver tissue. Mice fed with HFD showed a significant increase (p < 0.05) in body weight from 8 weeks onwards compared to the control. WT and L-ChREBP-KO mice also demonstrated a significant increase (p < 0.05) in liver-to-body weight ratio in the 48-week HFD group. HFD mice exhibited a gradual rise in hepatic lipid accumulation over time, with 24-week mice showing a 20-30% increase in fat content, which further advanced to 80-100% fat accumulation at 48 weeks. Both dietary source and the increased expression of lipogenic pathways at transcriptional and protein levels induced steatosis and steatohepatitis in the HFD group. Moreover, WT mice on a HFD exhibited markedly higher inflammation compared to the L-ChREBP-KO mice. The enhanced lipogenesis, glycolysis, persistent inflammation, and activation of the AKT/mTOR pathway collectively resulted in significant metabolic disturbances, thereby promoting HCC development and progression in WT mice. In contrast, hepatic loss of ChREBP resulted in reduced hepatocyte proliferation in the HFD group, which significantly contributed to the impaired hepatocarcinogenesis and a reduced HCC occurrence in the L-ChREBP-KO mice. Our present study implicates that prolonged HFD feeding contributes to NAFLD/NASH, which in turn progresses to HCC development in WT mice. Collectively, hepatic ChREBP deletion ameliorates hepatic inflammation and metabolic alterations, thereby impairing NASH-driven hepatocarcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Silvia Ribback
- Institute of Pathology, University Medicine Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (M.K.); (J.P.); (F.W.); (M.Y.); (F.D.)
| |
Collapse
|
6
|
Sultana M, Islam MA, Khairnar R, Kumar S. A guide to pathophysiology, signaling pathways, and preclinical models of liver fibrosis. Mol Cell Endocrinol 2025; 598:112448. [PMID: 39755140 DOI: 10.1016/j.mce.2024.112448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Liver fibrosis is potentially a reversible form of liver disease that evolved from the early stage of liver scarring as a consequence of chronic liver injuries. Recurrent injuries in the liver without any appropriate medication cause the injuries to get intense and deeper, which gradually leads to the progression of irreversible cirrhosis or carcinoma. Unfortunately, there are no approved treatment strategies for reversing hepatic fibrosis, making it one of the significant risk factors for developing advanced liver disorders and liver disease-associated mortality. Consequently, the interpretation of the fundamental mechanisms, etiology, and pathogenesis is crucial for identifying the potential therapeutic target as well as evaluating novel anti-fibrotic therapy. However, despite innumerable research, the functional mechanism and disease characteristics are still obscure. To accelerate the understanding of underlying disease pathophysiology, molecular pathways and disease progression mechanism, it is crucial to mimic human liver disease through the formation of precise disease models. Although various in vitro and in vivo liver fibrotic models have emerged and developed already, a perfect clinical model replicating human liver diseases is yet to be established, which is one of the major challenges in discovering proper therapeutics. This review paper will shed light on pathophysiology, signaling pathways, preclinical models of liver fibrosis, and their limitations.
Collapse
Affiliation(s)
- Mehonaz Sultana
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Md Asrarul Islam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Rhema Khairnar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
7
|
Chen H, Yang J, Yang Q, Jia Y, Guo X. Protein prenylation in mechanotransduction: implications for disease and therapy. Trends Pharmacol Sci 2025; 46:163-179. [PMID: 39818521 DOI: 10.1016/j.tips.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
The process by which cells translate external mechanical cues into intracellular biochemical signals involves intricate mechanisms that remain unclear. In recent years, research into post-translational modifications (PTMs) has offered valuable insights into this field, spotlighting protein prenylation as a crucial mechanism in cellular mechanotransduction and various human diseases. Protein prenylation, which involves the covalent attachment of isoprenoid groups to specific substrate proteins, profoundly affects the functions of key mechanotransduction proteins such as Rho, Ras, and lamins. This review provides the first comprehensive examination of the connections between prenylation and mechanotransduction, exploring both the mechanistic details and its impact on mechanosensitive cellular behaviors. We further highlight recent evidence linking protein prenylation to diseases associated with disrupted mechanical homeostasis, and outline emerging targeted therapeutic strategies.
Collapse
Affiliation(s)
- Heng Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Yang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingzhen Yang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuanbo Jia
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an 710004, P.R. China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China.
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
8
|
Portincasa P, Khalil M, Mahdi L, Perniola V, Idone V, Graziani A, Baffy G, Di Ciaula A. Metabolic Dysfunction-Associated Steatotic Liver Disease: From Pathogenesis to Current Therapeutic Options. Int J Mol Sci 2024; 25:5640. [PMID: 38891828 PMCID: PMC11172019 DOI: 10.3390/ijms25115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The epidemiological burden of liver steatosis associated with metabolic diseases is continuously growing worldwide and in all age classes. This condition generates possible progression of liver damage (i.e., inflammation, fibrosis, cirrhosis, hepatocellular carcinoma) but also independently increases the risk of cardio-metabolic diseases and cancer. In recent years, the terminological evolution from "nonalcoholic fatty liver disease" (NAFLD) to "metabolic dysfunction-associated fatty liver disease" (MAFLD) and, finally, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been paralleled by increased knowledge of mechanisms linking local (i.e., hepatic) and systemic pathogenic pathways. As a consequence, the need for an appropriate classification of individual phenotypes has been oriented to the investigation of innovative therapeutic tools. Besides the well-known role for lifestyle change, a number of pharmacological approaches have been explored, ranging from antidiabetic drugs to agonists acting on the gut-liver axis and at a systemic level (mainly farnesoid X receptor (FXR) agonists, PPAR agonists, thyroid hormone receptor agonists), anti-fibrotic and anti-inflammatory agents. The intrinsically complex pathophysiological history of MASLD makes the selection of a single effective treatment a major challenge, so far. In this evolving scenario, the cooperation between different stakeholders (including subjects at risk, health professionals, and pharmaceutical industries) could significantly improve the management of disease and the implementation of primary and secondary prevention measures. The high healthcare burden associated with MASLD makes the search for new, effective, and safe drugs a major pressing need, together with an accurate characterization of individual phenotypes. Recent and promising advances indicate that we may soon enter the era of precise and personalized therapy for MASLD/MASH.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Perniola
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Idone
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
- Aboca S.p.a. Società Agricola, 52037 Sansepolcro, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| |
Collapse
|
9
|
Sun J, Yan L, Chen Y, Wang T, Ali W, Ma Y, Yuan Y, Gu J, Bian J, Liu Z, Zou H. TFAM-mediated intercellular lipid droplet transfer promotes cadmium-induced mice nonalcoholic fatty liver disease. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133151. [PMID: 38113736 DOI: 10.1016/j.jhazmat.2023.133151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Cadmium (Cd) is an important environmental pollutant. Herein, we discovered a new way of lipid accumulation, where lipid droplets can be transferred across cells. In this study, mice and AML12 cells were used to establish models of Cd poisoning. After Cd treatment, the level of TFAM was reduced, thereby regulating the reconstitution of the cytosolic actin filament network. MYH9 is a myosin involved in cell polarization, migration, and movement of helper organelles. Rab18 is a member of the Rab GTPase family, which localizes to lipid droplets and regulates lipid drop dynamics. In this study, we found that Cd increases the interaction between MYH9 and Rab18. However, TFAM overexpression alleviated the increase in Cd-induced interaction between MYH9 and Rab18, thereby reducing the transfer of intercellular lipid droplets and the accumulation of intracellular lipids. Through a co-culture system, we found that the transferred lipid droplets can act as a signal to form an inflammatory storm-like effect, and ACSL4 can act as an effector to transfer lipid droplets and promote lipid accumulation in surrounding cells. These results suggest that TFAM can be used as a new therapeutic target for Cd-induced lipid accumulation in the liver.
Collapse
Affiliation(s)
- Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou, China
| | - Lianqi Yan
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, Jiangsu, China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou, China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou, China.
| |
Collapse
|
10
|
Shi XY, Zheng XM, Liu HJ, Han X, Zhang L, Hu B, Li S. Rotundic acid improves nonalcoholic steatohepatitis in mice by regulating glycolysis and the TLR4/AP1 signaling pathway. Lipids Health Dis 2023; 22:214. [PMID: 38049817 PMCID: PMC10694891 DOI: 10.1186/s12944-023-01976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Steatosis and inflammation are the hallmarks of nonalcoholic steatohepatitis (NASH). Rotundic acid (RA) is among the key triterpenes of Ilicis Rotundae Cortex and has exhibited multipronged effects in terms of lowering the lipid content and alleviating inflammation. The study objective is to systematically evaluate the potential mechanisms through which RA affects the development and progression of NASH. METHODS Transcriptomic and proteomic analyses of primary hepatocytes isolated from the control, high-fat diet-induced NASH, and RA treatment groups were performed through Gene Ontology analysis and pathway enrichment. Hub genes were identified through network analysis. Integrative analysis revealed key RA-regulated pathways, which were verified by gene and protein expression studies and cell assays. RESULTS Hub genes were identified and enriched in the Toll-like receptor 4 (TLR4)/activator protein-1 (AP1) signaling pathway and glycolysis pathway. RA reversed glycolysis and attenuated the TLR4/AP1 pathway, thereby reducing lipid accumulation and inflammation. Additionally, lactate release in L-02 cells increased with NaAsO2-treated and significantly decreased with RA treatment, thus revealing that RA had a major impact on glycolysis. CONCLUSIONS RA is effective in lowering the lipid content and reducing inflammation in mice with NASH by ameliorating glycolysis and TLR4/AP1 pathways, which contributes to the existing knowledge and potentially sheds light on the development of therapeutic interventions for patients with NASH.
Collapse
Affiliation(s)
- Xing-Yang Shi
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xiao-Min Zheng
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Hui-Jie Liu
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xue Han
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Lei Zhang
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- NMPA Key Laboratory for Quality Control of Blood Products, Guangdong Institute for Drug Control, Guangzhou, 510663, PR China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510030, PR China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China.
| | - Shan Li
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
11
|
Zhang C, Sui Y, Liu S, Yang M. Molecular mechanisms of metabolic disease-associated hepatic inflammation in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. EXPLORATION OF DIGESTIVE DISEASES 2023:246-275. [DOI: https:/doi.org/10.37349/edd.2023.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/05/2023] [Indexed: 11/27/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide, with a progressive form of non-alcoholic steatohepatitis (NASH). It may progress to advanced liver diseases, including liver fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD/NASH is a comorbidity of many metabolic disorders such as obesity, insulin resistance, type 2 diabetes, cardiovascular disease, and chronic kidney disease. These metabolic diseases are often accompanied by systemic or extrahepatic inflammation, which plays an important role in the pathogenesis and treatment of NAFLD or NASH. Metabolites, such as short-chain fatty acids, impact the function, inflammation, and death of hepatocytes, the primary parenchymal cells in the liver tissue. Cholangiocytes, the epithelial cells that line the bile ducts, can differentiate into proliferative hepatocytes in chronic liver injury. In addition, hepatic non-parenchymal cells, including liver sinusoidal endothelial cells, hepatic stellate cells, and innate and adaptive immune cells, are involved in liver inflammation. Proteins such as fibroblast growth factors, acetyl-coenzyme A carboxylases, and nuclear factor erythroid 2-related factor 2 are involved in liver metabolism and inflammation, which are potential targets for NASH treatment. This review focuses on the effects of metabolic disease-induced extrahepatic inflammation, liver inflammation, and the cellular and molecular mechanisms of liver metabolism on the development and progression of NAFLD and NASH, as well as the associated treatments.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, Shanxi Province, China
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
12
|
Wulfridge P, Davidovich A, Salvador AC, Manno GC, Tryggvadottir R, Idrizi A, Huda MN, Bennett BJ, Adams LG, Hansen KD, Threadgill DW, Feinberg AP. Precision pharmacological reversal of strain-specific diet-induced metabolic syndrome in mice informed by epigenetic and transcriptional regulation. PLoS Genet 2023; 19:e1010997. [PMID: 37871105 PMCID: PMC10621921 DOI: 10.1371/journal.pgen.1010997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/02/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
Diet-related metabolic syndrome is the largest contributor to adverse health in the United States. However, the study of gene-environment interactions and their epigenomic and transcriptomic integration is complicated by the lack of environmental and genetic control in humans that is possible in mouse models. Here we exposed three mouse strains, C57BL/6J (BL6), A/J, and NOD/ShiLtJ (NOD), to a high-fat, high-carbohydrate diet, leading to varying degrees of metabolic syndrome. We then performed transcriptomic and genome-wide DNA methylation analyses for each strain and found overlapping but also highly divergent changes in gene expression and methylation upstream of the discordant metabolic phenotypes. Strain-specific pathway analysis of dietary effects revealed a dysregulation of cholesterol biosynthesis common to all three strains but distinct regulatory networks driving this dysregulation. This suggests a strategy for strain-specific targeted pharmacologic intervention of these upstream regulators informed by epigenetic and transcriptional regulation. As a pilot study, we administered the drug GW4064 to target one of these genotype-dependent networks, the farnesoid X receptor pathway, and found that GW4064 exerts strain-specific protection against dietary effects in BL6, as predicted by our transcriptomic analysis. Furthermore, GW4064 treatment induced inflammatory-related gene expression changes in NOD, indicating a strain-specific effect in its associated toxicities as well as its therapeutic efficacy. This pilot study demonstrates the potential efficacy of precision therapeutics for genotype-informed dietary metabolic intervention and a mouse platform for guiding this approach.
Collapse
Affiliation(s)
- Phillip Wulfridge
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Adam Davidovich
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anna C. Salvador
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, United States of America
- Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Gabrielle C. Manno
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Rakel Tryggvadottir
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - M. Nazmul Huda
- Department of Nutrition, University of California, Davis, California, United States of America
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, United States of America
| | - Brian J. Bennett
- Department of Nutrition, University of California, Davis, California, United States of America
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Kasper D. Hansen
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - David W. Threadgill
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, United States of America
- Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
13
|
He K, Liu M, Wang Q, Chen S, Guo X. Combined analysis of 16S rDNA sequencing and metabolomics to find biomarkers of drug-induced liver injury. Sci Rep 2023; 13:15138. [PMID: 37704684 PMCID: PMC10499917 DOI: 10.1038/s41598-023-42312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
Drug induced liver injury (DILI) is a kind of liver dysfunction which caused by drugs, and gut microbiota could affect liver injury. However, the relationship between gut microbiota and its metabolites in DILI patients is not clear. The total gut microbiota DNA was extracted from 28 DILI patient and 28 healthy control volunteers (HC) and 16S rDNA gene were amplified. Next, differentially metabolites were screened. Finally, the correlations between the diagnostic strains and differentially metabolites were studied.The richness and uniformity of the bacterial communities decreased in DILI patients, and the structure of gut microbiota changed obviously. Enterococcus and Veillonella which belong to Firmicutes increased in DILI, and Blautia and Ralstonia which belong to Firmicutes, Dialister which belongs to Proteobacteria increased in HC. In addition, these diagnostic OTUs of DILI were associated with the DILI damage mechanism. On the other hands, there were 66 differentially metabolites between DILI and HC samples, and these metabolites were mainly enriched in pyrimidine metabolism and steroid hormone biosynthesis pathways. Furthermore, the collinear network map of the key microbiota-metabolites were constructed and the results indicated that Cortodoxone, Prostaglandin I1, Bioyclo Prostaglandin E2 and Anacardic acid were positively correlated with Blautia and Ralstonia, and negatively correlated with Veillonella.This study analyzed the changes of DILI from the perspective of gut microbiota and metabolites. Key strains and differentially metabolites of DILI were screened and the correlations between them were studied. This study further illustrated the mechanism of DILI.
Collapse
Affiliation(s)
- Kaini He
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong, University, Xi'an, Shaanxi, China
| | - Mimi Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong, University, Xi'an, Shaanxi, China
| | - Qian Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong, University, Xi'an, Shaanxi, China
| | - Sijie Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong, University, Xi'an, Shaanxi, China
| | - Xiaoyan Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong, University, Xi'an, Shaanxi, China.
| |
Collapse
|
14
|
Ye J, Qi Y, Chen J, Zhang S, Liu B, Zhao Y, Yuan X, Cheng Q, Yang Y, Zhang F, Gao H, Wang H, Wu J, Zhu F, Li C, Cao P, Xue B. Alleviation of Hepatic Steatosis by 4-azidophlorizin via the Degradation of Geranylgeranyl Diphosphate Synthase by the Ubiquitin-Proteasome Pathway in Vivo and in Vitro. Adv Biol (Weinh) 2023; 7:e2200150. [PMID: 36599632 DOI: 10.1002/adbi.202200150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/28/2022] [Indexed: 01/06/2023]
Abstract
There are no known approved pharmacotherapies for non-alcoholic fatty liver disease (NAFLD) in the clinical setting. Although studies have provided substantial evidence that geranylgeranyl diphosphate synthase (GGPPS) is a potential therapeutic target for the treatment of NAFLD corresponding drug screening is rare. A GGPPS-targeted inhibitor is identified using a structure-based virtual small molecule screening method. The interaction of 4-AZ and GGPPS is detected by microscale thermophoresis. 4-AZ degradation of GGPPS by the ubiquitin-proteasome pathway is detected by western blotting. The anti-steatotic effect of 4-AZ in vivo is detected by CT. Lipid-related gene detection is detected by real-time PCR both in primary hepatocytes and mice. The compound inhibits the accumulation of lipids in primary hepatocytes and decreases lipogenic gene expression through GGPPS. Pharmacological studies show that 4-AZ can attenuate hepatic steatosis and improve liver injury in high-fat diet-induced mice. This data provides a novel application of 4-AZ NAFLD therapy, proving that the inhibition of GGPPS is a novel strategy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Juan Ye
- Medical School, Nanjing University, Nanjing, Jiangsu, 210023, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Yaling Qi
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Shihu Zhang
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Boyuan Liu
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yinjuan Zhao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xianwen Yuan
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210023, China
| | - Qi Cheng
- Medical School, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yang Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Furong Zhang
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hongliang Gao
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Haoran Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Jing Wu
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Feng Zhu
- General surgery department, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Chaojun Li
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| |
Collapse
|
15
|
Li S, Hao L, Hu X. Natural products target glycolysis in liver disease. Front Pharmacol 2023; 14:1242955. [PMID: 37663261 PMCID: PMC10469892 DOI: 10.3389/fphar.2023.1242955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Mitochondrial dysfunction plays an important role in the occurrence and development of different liver diseases. Oxidative phosphorylation (OXPHOS) dysfunction and production of reactive oxygen species are closely related to mitochondrial dysfunction, forcing glycolysis to become the main source of energy metabolism of liver cells. Moreover, glycolysis is also enhanced to varying degrees in different liver diseases, especially in liver cancer. Therefore, targeting the glycolytic signaling pathway provides a new strategy for the treatment of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis associated with liver cancer. Natural products regulate many steps of glycolysis, and targeting glycolysis with natural products is a promising cancer treatment. In this review, we have mainly illustrated the relationship between glycolysis and liver disease, natural products can work by targeting key enzymes in glycolysis and their associated proteins, so understanding how natural products regulate glycolysis can help clarify the therapeutic mechanisms these drugs use to inhibit liver disease.
Collapse
Affiliation(s)
- Shenghao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Zhang J, Yang Y, Wang Z, Zhang X, Zhang Y, Lin J, Du Y, Wang S, Si D, Bao J, Tian X. Integration of Metabolomics, Lipidomics, and Proteomics Reveals the Metabolic Characterization of Nonalcoholic Steatohepatitis. J Proteome Res 2023; 22:2577-2592. [PMID: 37403919 DOI: 10.1021/acs.jproteome.3c00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Metabolic dysfunction is associated with nonalcoholic steatohepatitis (NASH) development. However, omics studies investigating metabolic changes in NASH patients are limited. In this study, metabolomics and lipidomics in plasma, as well as proteomics in the liver, were performed to characterize the metabolic profiles of NASH patients. Moreover, the accumulation of bile acids (BAs) in NASH patients prompted us to investigate the protective effect of cholestyramine on NASH. The liver expression of essential proteins involved in FA transport and lipid droplets was significantly elevated in patients with NASH. Furthermore, we observed a distinct lipidomic remodeling in patients with NASH. We also report a novel finding suggesting an increase in the expression of critical proteins responsible for glycolysis and the level of glycolytic output (pyruvic acid) in patients with NASH. Furthermore, the accumulation of branched chain amino acids, aromatic amino acids, purines, and BAs was observed in NASH patients. Similarly, a dramatic metabolic disorder was also observed in a NASH mouse model. Cholestyramine not only significantly alleviated liver steatosis and fibrosis but also reversed NASH-induced accumulation of BAs and steroid hormones. In conclusion, NASH patients were characterized by perturbations in FA uptake, lipid droplet formation, glycolysis, and accumulation of BAs and other metabolites.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yiqin Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Zipeng Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaofen Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yingfan Zhang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiashuo Lin
- School of Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | | | - Jie Bao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
17
|
Kennewick KT, Bensinger SJ. Decoding the crosstalk between mevalonate metabolism and T cell function. Immunol Rev 2023; 317:71-94. [PMID: 36999733 DOI: 10.1111/imr.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
The mevalonate pathway is an essential metabolic pathway in T cells regulating development, proliferation, survival, differentiation, and effector functions. The mevalonate pathway is a complex, branched pathway composed of many enzymes that ultimately generate cholesterol and nonsterol isoprenoids. T cells must tightly control metabolic flux through the branches of the mevalonate pathway to ensure sufficient isoprenoids and cholesterol are available to meet cellular demands. Unbalanced metabolite flux through the sterol or the nonsterol isoprenoid branch is metabolically inefficient and can have deleterious consequences for T cell fate and function. Accordingly, there is tight regulatory control over metabolic flux through the branches of this essential lipid synthetic pathway. In this review we provide an overview of how the branches of the mevalonate pathway are regulated in T cells and discuss our current understanding of the relationship between mevalonate metabolism, cholesterol homeostasis and T cell function.
Collapse
Affiliation(s)
- Kelly T Kennewick
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Steven J Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| |
Collapse
|
18
|
Shao Y, Chen S, Han L, Liu J. Pharmacotherapies of NAFLD: updated opportunities based on metabolic intervention. Nutr Metab (Lond) 2023; 20:30. [PMID: 37415199 DOI: 10.1186/s12986-023-00748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/22/2023] [Indexed: 07/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that is becoming increasingly prevalent, and it ranges from simple steatosis to cirrhosis. However, there is still a lack of pharmacotherapeutic strategies approved by the Food and Drug Administration, which results in a higher risk of death related to carcinoma and cardiovascular complications. Of note, it is well established that the pathogenesis of NAFLD is tightly associated with whole metabolic dysfunction. Thus, targeting interconnected metabolic conditions could present promising benefits to NAFLD, according to a number of clinical studies. Here, we summarize the metabolic characteristics of the development of NAFLD, including glucose metabolism, lipid metabolism and intestinal metabolism, and provide insight into pharmacological targets. In addition, we present updates on the progresses in the development of pharmacotherapeutic strategies based on metabolic intervention globally, which could lead to new opportunities for NAFLD drug development.
Collapse
Affiliation(s)
- Yaodi Shao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Suzhen Chen
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liu Han
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junli Liu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
19
|
Gao Y, Hua R, Peng K, Yin Y, Zeng C, Guo Y, Wang Y, Li L, Li X, Qiu Y, Wang Z. High-starchy carbohydrate diet aggravates NAFLD by increasing fatty acids influx mediated by NOX2. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Jung D, Bachmann HS. Regulation of protein prenylation. Biomed Pharmacother 2023; 164:114915. [PMID: 37236024 DOI: 10.1016/j.biopha.2023.114915] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Prenyltransferases (PTases) are known to play a role in embryonic development, normal tissue homeostasis and cancer by posttranslationally modifying proteins involved in these processes. They are being discussed as potential drug targets in an increasing number of diseases, ranging from Alzheimer's disease to malaria. Protein prenylation and the development of specific PTase inhibitors (PTIs) have been subject to intense research in recent decades. Recently, the FDA approved lonafarnib, a specific farnesyltransferase inhibitor that acts directly on protein prenylation; and bempedoic acid, an ATP citrate lyase inhibitor that might alter intracellular isoprenoid composition, the relative concentrations of which can exert a decisive influence on protein prenylation. Both drugs represent the first approved agent in their respective substance class. Furthermore, an overwhelming number of processes and proteins that regulate protein prenylation have been identified over the years, many of which have been proposed as molecular targets for pharmacotherapy in their own right. However, certain aspects of protein prenylation, such as the regulation of PTase gene expression or the modulation of PTase activity by phosphorylation, have attracted less attention, despite their reported influence on tumor cell proliferation. Here, we want to summarize the advances regarding our understanding of the regulation of protein prenylation and the potential implications for drug development. Additionally, we want to suggest new lines of investigation that encompass the search for regulatory elements for PTases, especially at the genetic and epigenetic levels.
Collapse
Affiliation(s)
- Dominik Jung
- Institute of Pharmacology and Toxicology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Hagen S Bachmann
- Institute of Pharmacology and Toxicology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
21
|
Wulfridge P, Davidovich A, Salvador AC, Manno GC, Tryggvadottir R, Idrizi A, Huda MN, Bennett BJ, Adams LG, Hansen KD, Threadgill DW, Feinberg AP. Precision pharmacological reversal of genotype-specific diet-induced metabolic syndrome in mice informed by transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538156. [PMID: 37163127 PMCID: PMC10168252 DOI: 10.1101/2023.04.25.538156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Diet-related metabolic syndrome is the largest contributor to adverse health in the United States. However, the study of gene-environment interactions and their epigenomic and transcriptomic integration is complicated by the lack of environmental and genetic control in humans that is possible in mouse models. Here we exposed three mouse strains, C57BL/6J (BL6), A/J, and NOD/ShiLtJ (NOD), to a high-fat high-carbohydrate diet, leading to varying degrees of metabolic syndrome. We then performed transcriptomic and genomic DNA methylation analyses and found overlapping but also highly divergent changes in gene expression and methylation upstream of the discordant metabolic phenotypes. Strain-specific pathway analysis of dietary effects reveals a dysregulation of cholesterol biosynthesis common to all three strains but distinct regulatory networks driving this dysregulation. This suggests a strategy for strain-specific targeted pharmacologic intervention of these upstream regulators informed by transcriptional regulation. As a pilot study, we administered the drug GW4064 to target one of these genotype-dependent networks, the Farnesoid X receptor pathway, and found that GW4064 exerts genotype-specific protection against dietary effects in BL6, as predicted by our transcriptomic analysis, as well as increased inflammatory-related gene expression changes in NOD. This pilot study demonstrates the potential efficacy of precision therapeutics for genotype-informed dietary metabolic intervention, and a mouse platform for guiding this approach.
Collapse
|
22
|
Peng K, Wang S, Liu R, Zhou L, Jeong GH, Jeong IH, Liu X, Kiyokawa H, Xue B, Zhao B, Shi H, Yin J. Effects of UBE3A on Cell and Liver Metabolism through the Ubiquitination of PDHA1 and ACAT1. Biochemistry 2023; 62:1274-1286. [PMID: 36920305 PMCID: PMC10077595 DOI: 10.1021/acs.biochem.2c00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/03/2023] [Indexed: 03/16/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is substantiated by the reprogramming of liver metabolic pathways that disrupts the homeostasis of lipid and glucose metabolism and thus promotes the progression of the disease. The metabolic pathways associated with NAFLD are regulated at different levels from gene transcription to various post-translational modifications including ubiquitination. Here, we used a novel orthogonal ubiquitin transfer platform to identify pyruvate dehydrogenase A1 (PDHA1) and acetyl-CoA acetyltransferase 1 (ACAT1), two important enzymes that regulate glycolysis and ketogenesis, as substrates of E3 ubiquitin ligase UBE3A/E6AP. We found that overexpression of UBE3A accelerated the degradation of PDHA1 and promoted glycolytic activities in HEK293 cells. Furthermore, a high-fat diet suppressed the expression of UBE3A in the mouse liver, which was associated with increased ACAT1 protein levels, while forced expression of UBE3A in the mouse liver resulted in decreased ACAT1 protein contents. As a result, the mice with forced expression of UBE3A in the liver exhibited enhanced accumulation of triglycerides, cholesterol, and ketone bodies. These results reveal the role of UBE3A in NAFLD development by inducing the degradation of ACAT1 in the liver and promoting lipid storage. Overall, our work uncovers an important mechanism underlying the regulation of glycolysis and lipid metabolism through UBE3A-mediated ubiquitination of PDHA1 and ACAT1 to regulate their stabilities and enzymatic activities in the cell.
Collapse
Affiliation(s)
- Kangli Peng
- Engineering
Research Center of Cell and Therapeutic Antibody, Ministry of Education,
and School of Pharmacy, Shanghai Jiao Tong
University, Shanghai 200240, China
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Shirong Wang
- Department
of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ruochuan Liu
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Li Zhou
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Geon H. Jeong
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - In Ho Jeong
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xianpeng Liu
- Department
of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
| | - Hiroaki Kiyokawa
- Department
of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
| | - Bingzhong Xue
- Department
of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Bo Zhao
- Engineering
Research Center of Cell and Therapeutic Antibody, Ministry of Education,
and School of Pharmacy, Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Hang Shi
- Department
of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jun Yin
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
23
|
Caballano-Infantes E, Ho-Plágaro A, López-Gómez C, Martín-Reyes F, Rodríguez-Pacheco F, Taminiau B, Daube G, Garrido-Sánchez L, Alcaín-Martínez G, Andrade RJ, García-Cortés M, Lucena MI, García-Fuentes E, Rodríguez-Díaz C. Membrane Vesicles of Toxigenic Clostridioides difficile Affect the Metabolism of Liver HepG2 Cells. Antioxidants (Basel) 2023; 12:antiox12040818. [PMID: 37107193 PMCID: PMC10135135 DOI: 10.3390/antiox12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Clostridioides difficile infection (CDI) appears to be associated with different liver diseases. C. difficile secretes membrane vesicles (MVs), which may be involved in the development of nonalcoholic fatty liver disease (NALFD) and drug-induced liver injury (DILI). In this study, we investigated the presence of C. difficile-derived MVs in patients with and without CDI, and analyzed their effects on pathways related to NAFLD and DILI in HepG2 cells. Fecal extracellular vesicles from CDI patients showed an increase of Clostridioides MVs. C. difficile-derived MVs that were internalized by HepG2 cells. Toxigenic C. difficile-derived MVs decreased mitochondrial membrane potential and increased intracellular ROS compared to non-toxigenic C. difficile-derived MVs. In addition, toxigenic C. difficile-derived MVs upregulated the expression of genes related to mitochondrial fission (FIS1 and DRP1), antioxidant status (GPX1), apoptosis (CASP3), glycolysis (HK2, PDK1, LDHA and PKM2) and β-oxidation (CPT1A), as well as anti- and pro-inflammatory genes (IL-6 and IL-10). However, non-toxigenic C. difficile-derived MVs did not produce changes in the expression of these genes, except for CPT1A, which was also increased. In conclusion, the metabolic and mitochondrial changes produced by MVs obtained from toxigenic C. difficile present in CDI feces are common pathophysiological features observed in the NAFLD spectrum and DILI.
Collapse
Affiliation(s)
- Estefanía Caballano-Infantes
- Department of Regeneration and Cell Therapy Andalusian, Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Junta de Andalucía, 41092 Seville, Spain
| | - Ailec Ho-Plágaro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Carlos López-Gómez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Flores Martín-Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Francisca Rodríguez-Pacheco
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Georges Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Lourdes Garrido-Sánchez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Guillermo Alcaín-Martínez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Raúl J. Andrade
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miren García-Cortés
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - M. Isabel Lucena
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
- UICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Málaga, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| | - Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| |
Collapse
|
24
|
Cheng Q, Wu J, Xia Y, Cheng Q, Zhao Y, Zhu P, Zhang W, Zhang S, Zhang L, Yuan Y, Li C, Chen G, Xue B. Disruption of protein geranylgeranylation in the cerebellum causes cerebellar hypoplasia and ataxia via blocking granule cell progenitor proliferation. Mol Brain 2023; 16:24. [PMID: 36782228 PMCID: PMC9923931 DOI: 10.1186/s13041-023-01010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
The prenylation of proteins is involved in a variety of biological functions. However, it remains unknown whether it plays an important role in the morphogenesis of the cerebellum. To address this question, we generated a mouse model, in which the geranylgeranyl pyrophosphate synthase (Ggps1) gene is inactivated in neural progenitor cells in the developing cerebellum. We report that conditional knockout (cKO) of Ggps1 leads to severe ataxia and deficient locomotion. To identify the underlying mechanisms, we completed a series of cellular and molecular experiments. First, our morphological analysis revealed significantly decreased population of granule cell progenitors (GCPs) and impaired proliferation of GCPs in the developing cerebellum of Ggps1 cKO mice. Second, our molecular analysis showed increased expression of p21, an important cell cycle regulator in Ggps1 cKO mice. Together, this study highlights a critical role of Ggpps-dependent protein prenylation in the proliferation of cerebellar GCPs during cerebellar development.
Collapse
Affiliation(s)
- Qi Cheng
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Jing Wu
- grid.89957.3a0000 0000 9255 8984Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166 China
| | - Yingqian Xia
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Qing Cheng
- grid.89957.3a0000 0000 9255 8984Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004 Jiangsu China
| | - Yinjuan Zhao
- grid.410625.40000 0001 2293 4910Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Peixiang Zhu
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Wangling Zhang
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Shihu Zhang
- grid.410745.30000 0004 1765 1045Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Lei Zhang
- Medical Imaging Center of Fuyang People’s Hospital, Fuyang, Anhui Province China
| | - Yushan Yuan
- Medical Imaging Center of Fuyang People’s Hospital, Fuyang, Anhui Province China
| | - Chaojun Li
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center On Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Guiquan Chen
- Medical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
25
|
Cai X, Jiang Y, Cao Z, Zhang M, Kong N, Yu L, Tang Y, Kong S, Deng W, Wang H, Sun J, Ding L, Jiang R, Sun H, Yan G. Mst1-mediated phosphorylation of Nur77 improves the endometrial receptivity in human and mice. EBioMedicine 2023; 88:104433. [PMID: 36623453 PMCID: PMC9841229 DOI: 10.1016/j.ebiom.2022.104433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/18/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Successful embryo implantation requires the attachment of a blastocyst to the receptive endometrial epithelium, which was disturbed in the women with recurrent implantation failure (RIF). Endometrial β3-integrin was the most important adhesion molecule contributing to endometrial receptivity in both humans and mice. Nur77 has been proven indispensable for fertility in mice, here we explore the role of Nur77 on embryo-epithelial adhesion and potential treatment to embryo implantation failure. METHODS The expression and location of Mst1 and Nur77 in endometrium from fertile women and RIF patients were examined by IHC, qRT-PCR and Western blotting. In vitro kinase assay following with LC-MS/MS were used to identify the phosphorylation site of Nur77 activated by Mst1. The phosphorylated Nur77 was detected by phos-tag SDS-PAGE assay and specific antibody against phospho-Nur77-Thr366. The effect of embryo-epithelium interaction was determined in the BeWo spheroid or mouse embryo adhesion assay, and delayed implantation mouse model. RNA-seq was used to explore the mechanism by which Nur77 derived peptide promotes endometrial receptivity. FINDINGS Endometrial Mammalian sterile 20 (STE20)-like kinase 1 (Mst1) expression level was decreased in the women with RIF than that in the fertile control group, while Mst1 activation in the epithelial cells promoted trophoblast-uterine epithelium adhesion. The effect of Nur77 mediated trophoblast-uterine epithelium adhesion was facilitated by active Mst1. Mechanistically, mst1 promotes the transcription activity of Nur77 by phosphorylating Nur77 at threonine 366 (T366), and consequently increased downstream target β3-integrin expression. Furthermore, a Nur77-derived peptide containing phosphorylated T366 markedly promoted mouse embryo attachment to Ishikawa cells ([4 (2-4)] vs [3 (2-4)]) and increased the embryo implantation rate (4 vs 1.4) in a delayed implantation mouse model by regulating integrin signalling. Finally, it is observed that the endometrial phospho-Nur77 (T366) level is decreased by 80% in the women with RIF. INTERPRETATION In addition to uncovering a potential regulatory mechanism of Mst1/Nur77/β3-integrin signal axis involved in the regulation of embryo-epithelium interaction, our finding provides a novel marker of endometrial receptivity and a potential therapeutic agent for embryo implantation failure. FUNDING National Key Research and Development Program of China (2018YFC1004400), the National Natural Science Foundation of China (82171653, 82271698, 82030040, 81971387 and 30900727), and National Institutes of Health grants (R01HL103869).
Collapse
Affiliation(s)
- Xinyu Cai
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yue Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Zhiwen Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Mei Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Lina Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yedong Tang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, PR China
| | - Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, PR China
| | - Wenbo Deng
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, PR China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, PR China
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Ruiwei Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210032 Nanjing, China.
| |
Collapse
|
26
|
Wu S, Wang X, Xing W, Li F, Liang M, Li K, He Y, Wang J. An update on animal models of liver fibrosis. Front Med (Lausanne) 2023; 10:1160053. [PMID: 37035335 PMCID: PMC10076546 DOI: 10.3389/fmed.2023.1160053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The development of liver fibrosis primarily determines quality of life as well as prognosis. Animal models are often used to model and understand the underlying mechanisms of human disease. Although organoids can be used to simulate organ development and disease, the technology still faces significant challenges. Therefore animal models are still irreplaceable at this stage. Currently, in vivo models of liver fibrosis can be classified into five categories based on etiology: chemical, dietary, surgical, transgenic, and immune. There is a wide variety of animal models of liver fibrosis with varying efficacy, which have different implications for proper understanding of the disease and effective screening of therapeutic agents. There is no high-quality literature recommending the most appropriate animal models. In this paper, we will describe the progress of commonly used animal models of liver fibrosis in terms of their development mechanisms, applications, advantages and disadvantages, and recommend appropriate animal models for different research purposes.
Collapse
Affiliation(s)
- ShuTing Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - WenBo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - FenYao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ming Liang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - KeShen Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Yan He,
| | - JianMing Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Hepatobiliary and Pancreatic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- JianMing Wang,
| |
Collapse
|
27
|
Muehlebach ME, Holstein SA. Geranylgeranyl diphosphate synthase: Role in human health, disease and potential therapeutic target. Clin Transl Med 2023; 13:e1167. [PMID: 36650113 PMCID: PMC9845123 DOI: 10.1002/ctm2.1167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthesis pathway, is responsible for the production of geranylgeranyl pyrophosphate (GGPP). GGPP serves as a substrate for the post-translational modification (geranylgeranylation) of proteins, including those belonging to the Ras superfamily of small GTPases. These proteins play key roles in signalling pathways, cytoskeletal regulation and intracellular transport, and in the absence of the prenylation modification, cannot properly localise and function. Aberrant expression of GGDPS has been implicated in various human pathologies, including liver disease, type 2 diabetes, pulmonary disease and malignancy. Thus, this enzyme is of particular interest from a therapeutic perspective. Here, we review the physiological function of GGDPS as well as its role in pathophysiological processes. We discuss the current GGDPS inhibitors under development and the therapeutic implications of targeting this enzyme.
Collapse
Affiliation(s)
- Molly E. Muehlebach
- Cancer Research Doctoral ProgramUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sarah A. Holstein
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
28
|
Abstract
AIM Fibrosis is a common pathological feature of most types of chronic liver injuries. There is no specific treatment for liver fibrosis at present. The liver microenvironment, which fosters the survival and activity of liver cells, plays an important role in maintaining the normal structure and physiological function of the liver. The aim of this review is to deeply understand the role of the liver microenvironment in the dynamic and complicated development of liver fibrosis. METHODS After searching in Elsevier ScienceDirect, PubMed and Web of Science databases using 'liver fibrosis' and 'microenvironment' as keywords, studies related to microenvironment in liver fibrosis was compiled and examined. RESULTS The homeostasis of the liver microenvironment is disrupted during the development of liver fibrosis, affecting liver cell function, causing various types of cell reactions, and changing the cell-cell and cell-matrix interactions, eventually affecting fibrosis formation. CONCLUSION Liver microenvironment may be important for identifying potential therapeutic targets, and restoring microenvironment homeostasis may be an important strategy for promoting the reversal of liver fibrosis.KEY MESSAGESThe homeostasis of the liver microenvironment is disrupted in liver fibrosis;A pro-fibrotic microenvironment is formed during the development of liver fibrosis;Restoring microenvironment homeostasis may be an important strategy for promoting the reversal of liver fibrosis.
Collapse
Affiliation(s)
- Ying Meng
- Department of General Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Tong Zhao
- Department of Orthopedics, Lanzhou University First Hospital, Lanzhou, Gansu, China
| | - Zhengyi Zhang
- Department of General Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
29
|
Leung H, Long X, Ni Y, Qian L, Nychas E, Siliceo SL, Pohl D, Hanhineva K, Liu Y, Xu A, Nielsen HB, Belda E, Clément K, Loomba R, Li H, Jia W, Panagiotou G. Risk assessment with gut microbiome and metabolite markers in NAFLD development. Sci Transl Med 2022; 14:eabk0855. [PMID: 35675435 PMCID: PMC9746350 DOI: 10.1126/scitranslmed.abk0855] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A growing body of evidence suggests interplay between the gut microbiota and the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the role of the gut microbiome in early detection of NAFLD is unclear. Prospective studies are necessary for identifying reliable, microbiome markers for early NAFLD. We evaluated 2487 individuals in a community-based cohort who were followed up 4.6 years after initial clinical examination and biospecimen sampling. Metagenomic and metabolomic characterizations using stool and serum samples taken at baseline were performed for 90 participants who progressed to NAFLD and 90 controls who remained NAFLD free at the follow-up visit. Cases and controls were matched for gender, age, body mass index (BMI) at baseline and follow-up, and 4-year BMI change. Machine learning models integrating baseline microbial signatures (14 features) correctly classified participants (auROCs of 0.72 to 0.80) based on their NAFLD status and liver fat accumulation at the 4-year follow up, outperforming other prognostic clinical models (auROCs of 0.58 to 0.60). We confirmed the biological relevance of the microbiome features by testing their diagnostic ability in four external NAFLD case-control cohorts examined by biopsy or magnetic resonance spectroscopy, from Asia, Europe, and the United States. Our findings raise the possibility of using gut microbiota for early clinical warning of NAFLD development.
Collapse
Affiliation(s)
- Howell Leung
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Xiaoxue Long
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, 200233 Shanghai, China
| | - Yueqiong Ni
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany.,Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, 200233 Shanghai, China.,Corresponding author. (Y.N.); (H.L.); (W.J.); (G.P.)
| | - Lingling Qian
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, 200233 Shanghai, China
| | - Emmanouil Nychas
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Sara Leal Siliceo
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Dennis Pohl
- Clinical Microbiomics, Fruebjergvej 3, 2100 Copenhagen, Denmark.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Kati Hanhineva
- Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, 20014 Turku, Finland.,Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden.,School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland
| | - Yan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China.,Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China.,Department of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | | | - Eugeni Belda
- Sorbonne Université, INSERM, NutriOmics Research Unit, Nutrition Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
| | - Karine Clément
- Sorbonne Université, INSERM, NutriOmics Research Unit, Nutrition Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
| | - Rohit Loomba
- NAFLD Research Center, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huating Li
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, 200233 Shanghai, China.,Corresponding author. (Y.N.); (H.L.); (W.J.); (G.P.)
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, 200233 Shanghai, China.,Corresponding author. (Y.N.); (H.L.); (W.J.); (G.P.)
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany.,The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China.,Department of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Corresponding author. (Y.N.); (H.L.); (W.J.); (G.P.)
| |
Collapse
|
30
|
Wang Z, Chen M, Pan X, Wang L, Yin C, Lin Q, Jiang J, Zhang Y, Wan B. Knockout of GGPPS1 restrains rab37-mediated autophagy in response to ventilator-induced lung injury. Hum Cell 2022; 35:871-884. [PMID: 35334098 PMCID: PMC8948466 DOI: 10.1007/s13577-022-00692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 12/03/2022]
Abstract
Mechanical ventilation may cause ventilator-induced lung injury (VILI) in patients requiring ventilator support. Inhibition of autophagy is an important approach to ameliorate VILI as it always enhances lung injury after exposure to various stress agents. This study aimed to further reveal the potential mechanisms underlying the effects of geranylgeranyl diphosphate synthase large subunit 1 (GGPPS1) knockout and autophagy in VILI using C57BL/6 mice with lung-specific GGPPS1 knockout that were subjected to mechanical ventilation. The results demonstrate that GGPPS1 knockout mice exhibit significantly attenuated VILI based on the histologic score, the lung wet-to-dry ratio, total protein levels, neutrophils in bronchoalveolar lavage fluid, and reduced levels of inflammatory cytokines. Importantly, the expression levels of autophagy markers were obviously decreased in GGPPS1 knockout mice compared with wild-type mice. The inhibitory effects of GGPPS1 knockout on autophagy were further confirmed by measuring the ultrastructural change of lung tissues under transmission electron microscopy. In addition, knockdown of GGPPS1 in RAW264.7 cells reduced cyclic stretch-induced inflammation and autophagy. The benefits of GGPPS1 knockout for VILI can be partially eliminated through treatment with rapamycin. Further analysis revealed that Rab37 was significantly downregulated in GGPPS1 knockout mice after mechanical ventilation, while it was highly expressed in the control group. Simultaneously, Rab37 overexpression significantly enhances autophagy in cells that are treated with cyclin stretch, including GGPPS1 knockout cells. Collectively, our results indicate that GGPPS1 knockout results in reduced expression of Rab37 proteins, further restraining autophagy and VILI.
Collapse
Affiliation(s)
- Zexu Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Meizi Chen
- Department of General Internal Medicine, The First Hospital of Chenzhou, Chenzhou, 423000, China
| | - Xia Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Cheng Yin
- Department of Clinical Laboratory, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Qiuqi Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Jingjing Jiang
- Department of Rehabilitation Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China.
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China.
| |
Collapse
|
31
|
Wang Y, Zhao H, Yang L, Zhang H, Yu X, Fei W, Zhen Y, Gao Z, Chen S, Ren L. Quantitative proteomics analysis based on tandem mass tag labeling coupled with labeling coupled with liquid chromatography-tandem mass spectrometry discovers the effect of silibinin on non-alcoholic fatty liver disease in mice. Bioengineered 2022; 13:6750-6766. [PMID: 35246007 PMCID: PMC9208462 DOI: 10.1080/21655979.2022.2045837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In recent years, the beneficial effects of silibinin (SIL) on nonalcoholic fatty liver disease (NAFLD) have attracted widespread attention. We tried to study the intervention effect of SIL on NAFLD, and explore the potential mechanisms and targets of SIL on NAFLD improvement. Thirty-three male C57BL6/J mice were divided into three groups, and, respectively, fed a normal diet (ND), a high-fat diet (HFD) or a HFD given SIL treatment (HFD+SIL). Biochemical indexes and histopathological changes of mice in each group were detected. In addition, quantitative proteomics analysis based on tandem mass tag (TMT) labeling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis was performed on protein changes in the livers. SIL could reduce the weight of mice, reduce liver lipid deposition, and improve glucose metabolism. Through comparison among the three experimental groups, a total of 30 overlapping proteins were found. These identified proteins were closely linked to liver lipid metabolism and energy homeostasis. Moreover, some drug targets were found, namely perilipin-2, phosphatidate phosphatase LPIN1, farnesyl pyrophosphate synthase, and glutathione S-transferase A1. In conclusions, high-fat diet increases the expressions of proteins implicated in lipid synthesis and transport in the liver, which can result in disorders of liver lipid metabolism. SIL can decrease liver lipid deposition and increase insulin sensitivity by regulating the expressions of these proteins. It not only improves the disorder of lipid metabolism in vivo, but also improves the disorder of glucose metabolism.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Hang Zhao
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Liying Yang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - He Zhang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xian Yu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wenjie Fei
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yunfeng Zhen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Zhe Gao
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
32
|
Liggett JR, Kang J, Ranjit S, Rodriguez O, Loh K, Patil D, Cui Y, Duttargi A, Nguyen S, He B, Lee Y, Oza K, Frank BS, Kwon D, Li HH, Kallakury B, Libby A, Levi M, Robson SC, Fishbein TM, Cui W, Albanese C, Khan K, Kroemer A. Oral N-acetylcysteine decreases IFN-γ production and ameliorates ischemia-reperfusion injury in steatotic livers. Front Immunol 2022; 13:898799. [PMID: 36148239 PMCID: PMC9486542 DOI: 10.3389/fimmu.2022.898799] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/11/2022] [Indexed: 12/05/2022] Open
Abstract
Type 1 Natural Killer T-cells (NKT1 cells) play a critical role in mediating hepatic ischemia-reperfusion injury (IRI). Although hepatic steatosis is a major risk factor for preservation type injury, how NKT cells impact this is understudied. Given NKT1 cell activation by phospholipid ligands recognized presented by CD1d, we hypothesized that NKT1 cells are key modulators of hepatic IRI because of the increased frequency of activating ligands in the setting of hepatic steatosis. We first demonstrate that IRI is exacerbated by a high-fat diet (HFD) in experimental murine models of warm partial ischemia. This is evident in the evaluation of ALT levels and Phasor-Fluorescence Lifetime (Phasor-FLIM) Imaging for glycolytic stress. Polychromatic flow cytometry identified pronounced increases in CD45+CD3+NK1.1+NKT1 cells in HFD fed mice when compared to mice fed a normal diet (ND). This observation is further extended to IRI, measuring ex vivo cytokine expression in the HFD and ND. Much higher interferon-gamma (IFN-γ) expression is noted in the HFD mice after IRI. We further tested our hypothesis by performing a lipidomic analysis of hepatic tissue and compared this to Phasor-FLIM imaging using "long lifetime species", a byproduct of lipid oxidation. There are higher levels of triacylglycerols and phospholipids in HFD mice. Since N-acetylcysteine (NAC) is able to limit hepatic steatosis, we tested how oral NAC supplementation in HFD mice impacted IRI. Interestingly, oral NAC supplementation in HFD mice results in improved hepatic enhancement using contrast-enhanced magnetic resonance imaging (MRI) compared to HFD control mice and normalization of glycolysis demonstrated by Phasor-FLIM imaging. This correlated with improved biochemical serum levels and a decrease in IFN-γ expression at a tissue level and from CD45+CD3+CD1d+ cells. Lipidomic evaluation of tissue in the HFD+NAC mice demonstrated a drastic decrease in triacylglycerol, suggesting downregulation of the PPAR-γ pathway.
Collapse
Affiliation(s)
- Jedson R Liggett
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States.,Department of Surgery, Naval Medical Center Portsmouth, Portsmouth, VA, United States
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States.,Microscopy & Imaging Shared Resource, Georgetown University, Washington, DC, United States
| | - Olga Rodriguez
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Katrina Loh
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Yuki Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Anju Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Sang Nguyen
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States
| | - Britney He
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States
| | - Yichien Lee
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Kesha Oza
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Brett S Frank
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - DongHyang Kwon
- Department of Pathology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Bhaskar Kallakury
- Department of Pathology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Andrew Libby
- Division of Endocrinology, Metabolism, & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Simon C Robson
- Departments of Anesthesiology and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Thomas M Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Wanxing Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Chris Albanese
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States.,Department of Radiology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
33
|
Lu Q, Tian X, Wu H, Huang J, Li M, Mei Z, Zhou L, Xie H, Zheng S. Metabolic Changes of Hepatocytes in NAFLD. Front Physiol 2021; 12:710420. [PMID: 34526911 PMCID: PMC8437340 DOI: 10.3389/fphys.2021.710420] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is often accompanied by systemic metabolic disorders such as hyperglycemia, insulin resistance, and obesity. The relationship between NAFLD and systemic metabolic disorders has been well reviewed before, however, the metabolic changes that occur in hepatocyte itself have not been discussed. In NAFLD, many metabolic pathways have undergone significant changes in hepatocyte, such as enhanced glycolysis, gluconeogenesis, lactate production, tricarboxylic acid (TCA) cycle, and decreased ketone body production, mitochondrial respiration, and adenosine triphosphate (ATP) synthesis, which play a role in compensating or exacerbating disease progression, and there is close and complex interaction existed between these metabolic pathways. Among them, some metabolic pathways can be the potential therapeutic targets for NAFLD. A detailed summary of the metabolic characteristics of hepatocytes in the context of NAFLD helps us better understand the pathogenesis and outcomes of the disease.
Collapse
Affiliation(s)
- Qianrang Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Xinyao Tian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Hao Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Mengxia Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Zhibin Mei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery & Liver Transplantation, Shulan (Hangzhou) Hospital, Hangzhou, China
| |
Collapse
|
34
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
35
|
Mitochondrial Lipid Homeostasis at the Crossroads of Liver and Heart Diseases. Int J Mol Sci 2021; 22:ijms22136949. [PMID: 34203309 PMCID: PMC8268967 DOI: 10.3390/ijms22136949] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
The prevalence of NAFLD (non-alcoholic fatty liver disease) is a rapidly increasing problem, affecting a huge population around the globe. However, CVDs (cardiovascular diseases) are the most common cause of mortality in NAFLD patients. Atherogenic dyslipidemia, characterized by plasma hypertriglyceridemia, increased small dense LDL (low-density lipoprotein) particles, and decreased HDL-C (high-density lipoprotein cholesterol) levels, is often observed in NAFLD patients. In this review, we summarize recent genetic evidence, proving the diverse nature of metabolic pathways involved in NAFLD pathogenesis. Analysis of available genetic data suggests that the altered operation of fatty-acid β-oxidation in liver mitochondria is the key process, connecting NAFLD-mediated dyslipidemia and elevated CVD risk. In addition, we discuss several NAFLD-associated genes with documented anti-atherosclerotic or cardioprotective effects, and current pharmaceutical strategies focused on both NAFLD treatment and reduction of CVD risk.
Collapse
|
36
|
Chong D, Chen Z, Guan S, Zhang T, Xu N, Zhao Y, Li C. Geranylgeranyl pyrophosphate-mediated protein geranylgeranylation regulates endothelial cell proliferation and apoptosis during vasculogenesis in mouse embryo. J Genet Genomics 2021; 48:300-311. [PMID: 34049800 DOI: 10.1016/j.jgg.2021.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022]
Abstract
Vascular development is essential for the establishment of the circulatory system during embryonic development and requires the proliferation of endothelial cells. However, the underpinning regulatory mechanisms are not well understood. Here, we report that geranylgeranyl pyrophosphate (GGPP), a metabolite involved in protein geranylgeranylation, plays an indispensable role in embryonic vascular development. GGPP is synthesized by geranylgeranyl pyrophosphate synthase (GGPPS) in the mevalonate pathway. The selective knockout of Ggpps in endothelial cells led to aberrant vascular development and embryonic lethality, resulting from the decreased proliferation and enhanced apoptosis of endothelial cells during vasculogenesis. The defect in protein geranylgeranylation induced by GGPP depletion inhibited the membrane localization of RhoA and enhanced yes-associated protein (YAP) phosphorylation, thereby prohibiting the entry of YAP into the nucleus and the expression of YAP target genes related to cell proliferation and the antiapoptosis process. Moreover, inhibition of the mevalonate pathway by simvastatin induced endothelial cell proliferation defects and apoptosis, which were ameliorated by GGPP. Geranylgeraniol (GGOH), a precursor of GGPP, ameliorated the harmful effects of simvastatin on vascular development of developing fetuses in pregnant mice. These results indicate that GGPP-mediated protein geranylgeranylation is essential for endothelial cell proliferation and the antiapoptosis process during embryonic vascular development.
Collapse
Affiliation(s)
- Danyang Chong
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China
| | - Zhong Chen
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China
| | - Shan Guan
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China
| | - Tongyu Zhang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China
| | - Na Xu
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China
| | - Yue Zhao
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China.
| | - Chaojun Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China.
| |
Collapse
|
37
|
Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J, Li P, Wang Y, Du L, Wang C. High fat diet, gut microbiome and gastrointestinal cancer. Theranostics 2021; 11:5889-5910. [PMID: 33897888 PMCID: PMC8058730 DOI: 10.7150/thno.56157] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is currently one of the main causes of cancer death, with a large number of cases and a wide range of lesioned sites. A high fat diet, as a public health problem, has been shown to be correlated with various digestive system diseases and tumors, and can accelerate the occurrence of cancer due to inflammation and altered metabolism. The gut microbiome has been the focus of research in recent years, and associated with cell damage or tumor immune microenvironment changes via direct or extra-intestinal effects; this may facilitate the occurrence and development of gastrointestinal tumors. Based on research showing that both a high fat diet and gut microbes can promote the occurrence of gastrointestinal tumors, and that a high fat diet imbalances intestinal microbes, we propose that a high fat diet drives gastrointestinal tumors by changing the composition of intestinal microbes.
Collapse
Affiliation(s)
- Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| |
Collapse
|
38
|
Jin J, Qian H, Wan B, Zhou L, Chen C, Lv Y, Chen M, Zhu S, Ye L, Wang X, Xu W, Lv T, Song Y. Geranylgeranyl diphosphate synthase deficiency hyperactivates macrophages and aggravates lipopolysaccharide-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1011-L1024. [PMID: 33729030 DOI: 10.1152/ajplung.00281.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophage activation is a key contributing factor for excessive inflammatory responses of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Geranylgeranyl diphosphate synthase (GGPPS) plays a key role in the development of inflammatory diseases. Our group previously showed that GGPPS in alveolar epithelium have deleterious effects on acute lung injury induced by LPS or mechanical ventilation. Herein, we examined the role of GGPPS in modulating macrophage activation in ALI/ARDS. We found significant increased GGPPS expression in alveolar macrophages in patients with ARDS compared with healthy volunteers and in ALI mice induced by LPS. GGPPS-floxed control (GGPPSfl/fl) and myeloid-selective knockout (GGPPSfl/flLysMcre) mice were then generated. Interestingly, using an LPS-induced ALI mouse model, we showed that myeloid-specific GGPPS knockout significantly increased mortality, aggravated lung injury, and increased the accumulation of inflammatory cells, total protein, and inflammatory cytokines in BALF. In vitro, GGPPS deficiency upregulated the production of LPS-induced IL-6, IL-1β, and TNF-α in alveolar macrophages, bone marrow-derived macrophages (BMDMs), and THP-1 cells. Mechanistically, GGPPS knockout increased phosphorylation and nuclear translocation of NF-κB p65 induced by LPS. In addition, GGPPS deficiency increased the level of GTP-Rac1, which was responsible for NF-κB activation. In conclusion, decreased expression of GGPPS in macrophages aggravates lung injury and inflammation in ARDS, at least partly by regulating Rac1-dependent NF-κB signaling. GGPPS in macrophages may represent a novel therapeutic target in ARDS.
Collapse
Affiliation(s)
- Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China.,Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Qian
- Department of Orthopaedic Surgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhou
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Cen Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Yanling Lv
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meizi Chen
- Department of General Internal Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Liang Ye
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoxia Wang
- Department of Intensive Care Unit, Inner Mongolia People's Hospital, Inner Mongolia Autonomous Region, Hohhot, China
| | - Wujian Xu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| |
Collapse
|
39
|
Sang YJ, Wang Q, Zheng F, Hua Y, Wang XY, Zhang JZ, Li K, Wang HQ, Zhao Y, Zhu MS, Sun HX, Li CJ. Ggps1 deficiency in the uterus results in dystocia by disrupting uterine contraction. J Mol Cell Biol 2020; 13:116-127. [PMID: 33340314 PMCID: PMC8104943 DOI: 10.1093/jmcb/mjaa066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 12/01/2022] Open
Abstract
Dystocia is a serious problem for pregnant women, and it increases the cesarean section rate. Although uterine dysfunction has an unknown etiology, it is responsible for cesarean delivery and clinical dystocia, resulting in neonatal morbidity and mortality; thus, there is an urgent need for novel therapeutic agents. Previous studies indicated that statins, which inhibit the mevalonate (MVA) pathway of cholesterol synthesis, can reduce the incidence of preterm birth, but the safety of statins for pregnant women has not been thoroughly evaluated. Therefore, to unambiguously examine the function of the MVA pathway in pregnancy and delivery, we employed a genetic approach by using myometrial cell-specific deletion of geranylgeranyl pyrophosphate synthase (Ggps1) mice. We found that Ggps1 deficiency in myometrial cells caused impaired uterine contractions, resulting in disrupted embryonic placing and dystocia. Studies of the underlying mechanism suggested that Ggps1 is required for uterine contractions to ensure successful parturition by regulating RhoA prenylation to activate the RhoA/Rock2/p-MLC pathway. Our work indicates that perturbing the MVA pathway might result in problems during delivery for pregnant females, but modifying protein prenylation with supplementary farnesyl pyrophosphate or geranylgeranyl pyrophosphate might be a strategy to avoid side effects.
Collapse
Affiliation(s)
- Yong-Juan Sang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Qiang Wang
- Department of Neurosurgery, Jingling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Feng Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Yue Hua
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Xin-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Jing-Zi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Kang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Hai-Quan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Hai-Xiang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| |
Collapse
|
40
|
Wang Y, Chen L, Pandak WM, Heuman D, Hylemon PB, Ren S. High Glucose Induces Lipid Accumulation via 25-Hydroxycholesterol DNA-CpG Methylation. iScience 2020; 23:101102. [PMID: 32408171 PMCID: PMC7225732 DOI: 10.1016/j.isci.2020.101102] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
This work investigates the relationship between high-glucose (HG) culture, CpG methylation of genes involved in cell signaling pathways, and the regulation of carbohydrate and lipid metabolism in hepatocytes. The results indicate that HG leads to an increase in nuclear 25-hydroxycholesterol (25HC), which specifically activates DNA methyltransferase-1 (DNMT1), and regulates gene expression involved in intracellular lipid metabolism. The results show significant increases in 5mCpG levels in at least 2,225 genes involved in 57 signaling pathways. The hypermethylated genes directly involved in carbohydrate and lipid metabolism are of PI3K, cAMP, insulin, insulin secretion, diabetic, and NAFLD signaling pathways. The studies indicate a close relationship between the increase in nuclear 25HC levels and activation of DNMT1, which may regulate lipid metabolism via DNA CpG methylation. Our results indicate an epigenetic regulation of hepatic cell metabolism that has relevance to some common diseases such as non-alcoholic fatty liver disease and metabolic syndrome.
Collapse
Affiliation(s)
- Yaping Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China,Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Research 151, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA
| | - Lanming Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - William M. Pandak
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Research 151, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA
| | - Douglas Heuman
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Research 151, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA
| | - Phillip B. Hylemon
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Research 151, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA
| | - Shunlin Ren
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Research 151, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA.
| |
Collapse
|
41
|
Zhao Y, Wu TY, Zhao MF, Li CJ. The balance of protein farnesylation and geranylgeranylation during the progression of nonalcoholic fatty liver disease. J Biol Chem 2020; 295:5152-5162. [PMID: 32139507 DOI: 10.1074/jbc.rev119.008897] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein prenylation is an essential posttranslational modification and includes protein farnesylation and geranylgeranylation using farnesyl diphosphate or geranylgeranyl diphosphate as substrates, respectively. Geranylgeranyl diphosphate synthase is a branch point enzyme in the mevalonate pathway that affects the ratio of farnesyl diphosphate to geranylgeranyl diphosphate. Abnormal geranylgeranyl diphosphate synthase expression and activity can therefore disrupt the balance of farnesylation and geranylgeranylation and alter the ratio between farnesylated and geranylgeranylated proteins. This change is associated with the progression of nonalcoholic fatty liver disease (NAFLD), a condition characterized by hepatic fat overload. Of note, differential accumulation of farnesylated and geranylgeranylated proteins has been associated with differential stages of NAFLD and NAFLD-associated liver fibrosis. In this review, we summarize key aspects of protein prenylation as well as advances that have uncovered the regulation of associated metabolic patterns and signaling pathways, such as Ras GTPase signaling, involved in NAFLD progression. Additionally, we discuss unique opportunities for targeting prenylation in NAFLD/hepatocellular carcinoma with agents such as statins and bisphosphonates to improve clinical outcomes.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.,MOE Key Laboratory of Model Animal for Disease Study, Model Animals Research Center, Nanjing University, Nanjing 210093, China
| | - Tian-Yu Wu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Meng-Fei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China .,MOE Key Laboratory of Model Animal for Disease Study, Model Animals Research Center, Nanjing University, Nanjing 210093, China
| |
Collapse
|
42
|
Yang L, Zhang B, Wang X, Liu Z, Li J, Zhang S, Gu X, Jia M, Guo H, Feng N, Fan R, Xie M, Pei J, Chen L. P53/PANK1/miR-107 signalling pathway spans the gap between metabolic reprogramming and insulin resistance induced by high-fat diet. J Cell Mol Med 2020; 24:3611-3624. [PMID: 32048816 PMCID: PMC7131928 DOI: 10.1111/jcmm.15053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
High-fat diet (HFD) leads to obesity, type II diabetes mellitus (T2DM) and increases the coincidence of cardiovascular diseases and cancer. Insulin resistance (IR) is considered as the 'common soil' of those diseases. Furthermore, people on HFD showed restrained glycolysis and enhanced fatty acid oxidation, which is the so-called metabolic reprogramming. However, the relationship between metabolic reprogramming and IR induced by HFD is still unclear. Here, we demonstrate that PANK1 and miR-107 were up-regulated in the liver tissue of mice on HFD for 16 weeks and involved in metabolic reprogramming induced by palmitate acid (PA) incubation. Importantly, miR-107 within an intron of PANK1 gene facilitated IR by targeting caveolin-1 in AML12 cells upon PA incubation. Moreover, we identify that HFD enhanced P53 expression, and activation of P53 with nutlin-3a induced PANK1 and miR-107 expression simultaneously in transcriptional level, leading to metabolic reprogramming and IR, respectively. Consistently, inhibition of P53 with pifithrin-α hydrobromide ameliorated PA-induced metabolic reprogramming and IR. Thus, our results revealing a new mechanism by which P53 regulate metabolism. In addition, the results distinguished the different roles of PANK1 and its intron miR-107 in metabolic regulation, which will provide more accurate intervention targets for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Lu Yang
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Bin Zhang
- Department of Aerospace PhysiologyFourth Military Medical UniversityXi'anChina
| | - Xinju Wang
- Battalion 5 of CadetsFourth Military Medical UniversityXi'anChina
| | - Zhenhua Liu
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Juan Li
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Shumiao Zhang
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Xiaoming Gu
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Min Jia
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Haitao Guo
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Na Feng
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Rong Fan
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Manjiang Xie
- Department of Aerospace PhysiologyFourth Military Medical UniversityXi'anChina
| | - Jianming Pei
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Li Chen
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
- Department of Aerospace PhysiologyFourth Military Medical UniversityXi'anChina
| |
Collapse
|
43
|
Jia WJ, Tang QL, Jiang S, Sun SQ, Xue B, Qiu YD, Li CJ, Mao L. Conditional loss of geranylgeranyl diphosphate synthase alleviates acute obstructive cholestatic liver injury by regulating hepatic bile acid metabolism. FEBS J 2020; 287:3328-3345. [PMID: 31905247 DOI: 10.1111/febs.15204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/31/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have suggested that metabolites in the mevalonate pathway are involved in hepatic bile acid metabolism, yet the details of this relationship remain unknown. In this study, we found that the hepatic farnesyl pyrophosphate (FPP) level and the ratio of FPP to geranylgeranyl pyrophosphate (GGPP) were increased in mice with acute obstructive cholestasis compared with mice that underwent a sham operation. In addition, the livers of the mice with acute obstructive cholestasis showed lower expression of geranylgeranyl diphosphate synthase (GGPPS), which synthesizes GGPP from FPP. When Ggps1 was conditionally deleted in the liver, amelioration of liver injury, as shown by downregulation of the hepatic inflammatory response and decreased hepatocellular apoptosis, was found after ligation of the common bile duct and cholecystectomy (BDLC). Subsequently, liquid chromatography/mass spectrometry analysis showed that knocking out Ggps1 decreased the levels of hepatic bile acids, including hydrophobic bile acids. Mechanistically, the disruption of Ggps1 increased the levels of hepatic FPP and its metabolite farnesol, thereby resulting in farnesoid X receptor (FXR) activation, which modulated hepatic bile acid metabolism and reduced hepatic bile acids. It was consistently indicated that digeranyl bisphosphonate, a specific inhibitor of GGPPS, and GW4064, an agonist of FXR, could also alleviate acute obstructive cholestatic liver injury in vivo. In general, GGPPS is critical for modulating acute obstructive cholestatic liver injury, and the inhibition of GGPPS ameliorates acute obstructive cholestatic liver injury by decreasing hepatic bile acids, which is possibly achieved through the activation of FXR-induced bile acid metabolism.
Collapse
Affiliation(s)
- Wen-Jun Jia
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, China.,Department of General Surgery, the Affiliated Drum Tower Hospital of Medical School of Nanjing University, China
| | - Qiao-Li Tang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, China
| | - Shan Jiang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, China
| | - Shi-Quan Sun
- Department of General Surgery, the Affiliated Drum Tower Hospital of Medical School of Nanjing University, China
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yu-Dong Qiu
- Department of General Surgery, the Affiliated Drum Tower Hospital of Medical School of Nanjing University, China
| | - Chao-Jun Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, China
| | - Liang Mao
- Department of General Surgery, the Affiliated Drum Tower Hospital of Medical School of Nanjing University, China
| |
Collapse
|
44
|
Wu J, Tao W, Bu D, Zhao Y, Zhang T, Chong D, Xue B, Xing Z, Li C. Egr-1 transcriptionally activates protein phosphatase PTP1B to facilitate hyperinsulinemia-induced insulin resistance in the liver in type 2 diabetes. FEBS Lett 2019; 593:3054-3063. [PMID: 31309546 DOI: 10.1002/1873-3468.13537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 01/14/2023]
Abstract
During the development of type 2 diabetes mellitus (T2DM), hyperinsulinemia is the earliest symptom. It is believed that long-term high insulin stimulation might facilitate insulin resistance in the liver, but the underlying mechanism remains unknown. Herein, we report that hyperinsulinemia could induce persistent early growth response gene-1 (Egr-1) activation in hepatocytes, which provides negative feedback inhibition of insulin sensitivity by inducing the expression of protein tyrosine phosphatase-1B (PTP1B). Deletion of Egr-1 in the liver remarkably decreases glucose production, thus improving systemic glucose tolerance and insulin sensitivity. Mechanistic analysis indicates that Egr-1 inhibits insulin receptor phosphorylation by directly activating PTP1B transcription in the liver. Our results reveal the molecular mechanism by which hyperinsulinemia accelerates insulin resistance in hepatocytes during the progression of T2DM.
Collapse
Affiliation(s)
- Jing Wu
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| | - Weiwei Tao
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| | - Dandan Bu
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| | - Yue Zhao
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| | - Tongyu Zhang
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| | - Danyang Chong
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, China
| | - Zheng Xing
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| | - Chaojun Li
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| |
Collapse
|
45
|
Zhou T, Chang L, Luo Y, Zhou Y, Zhang J. Mst1 inhibition attenuates non-alcoholic fatty liver disease via reversing Parkin-related mitophagy. Redox Biol 2019; 21:101120. [PMID: 30708325 PMCID: PMC6357900 DOI: 10.1016/j.redox.2019.101120] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/29/2022] Open
Abstract
Obesity-related non-alcoholic fatty liver disease (NAFLD) is connected with mitochondrial stress and hepatocyte apoptosis. Parkin-related mitophagy sustains mitochondrial homeostasis and hepatocyte viability. However, the contribution and regulatory mechanisms of Parkin-related mitophagy in NAFLD are incompletely understood. Macrophage stimulating 1 (Mst1) is a novel mitophagy upstream regulator which excerbates heart and cancer apoptosisn via repressing mitophagy activity. The aim of our study is to explore whether Mst1 contributes to NAFLD via disrupting Parkin-related mitophagy. A NAFLD model was generated in wild-type (WT) mice and Mst1 knockout (Mst1-KO) mice using high-fat diet (HFD). Cell experiments were conducted via palmitic acid (PA) treatment in the primary hepatocytes. The results in our study demonstrated that Mst1 was significantly upregulated in HFD-treated livers. Genetic ablation of Mst1 attenuated HFD-mediated hepatic injury and sustained hepatocyte viability. Functional studies illustrated that Mst1 knockdown reversed Parkin-related mitophagy and the latter protected mitochondria and hepatocytes against HFD challenge. Besides, we further figured out that Mst1 modulated Parkin expression via the AMPK pathway; blockade of AMPK repressed Parkin-related mitophagy and recalled hepatocytes mitochondrial apoptosis. Altogether, our data identified that NAFLD was closely associated with the defective Parkin-related mitophagy due to Mst1 upregulation. This finding may pave the road to new therapeutic modalities for the treatment of fatty liver disease. Mst1 deletion prevents diet-induced NAFLD. Mst1 deficiency increases Parkin expression and thus reverses mitophagy activity. Loss of Parkin-related mitophagy abrogates the protective effect of Mst1 deletion on hepatocyte mitochondrial stress. Mst1 modulates Parkin via activating AMPK pathway.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Chang
- Department of Gastroenterology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhou
- Department of Gastroenterology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
46
|
Ghorbani P, Smith TK, Fullerton MD. Does prenylation predict progression in NAFLD? J Pathol 2018; 247:283-286. [PMID: 30374976 DOI: 10.1002/path.5190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) often develops in concert with related metabolic diseases, such as obesity, dyslipidemia and insulin resistance. Prolonged lipid accumulation and inflammation can progress to non-alcoholic steatohepatitis (NASH). Although factors associated with the development of NAFLD are known, triggers for the progression of NAFLD to NASH are poorly understood. Recent findings published in The Journal of Pathology reveal the possible regulation of NASH progression by metabolites of the mevalonate pathway. Mevalonate can be converted into the isoprenoids farnesyldiphosphate (FPP) and geranylgeranyl diphosphate (GGPP). GGPP synthase (GGPPS), the enzyme that converts FPP to GGPP, is dysregulated in humans and mice during NASH. Both FPP and GGPP can be conjugated to proteins through prenylation, modifying protein function and localization. Deletion or knockdown of GGPPS favors FPP prenylation (farnesylation) and augments the function of liver kinase B1, an upstream kinase of AMP-activated protein kinase (AMPK). Despite increased AMPK activation, livers in Ggpps-deficient mice on a high-fat diet poorly oxidize lipids due to mitochondrial dysfunction. Although work from Liu et al provides evidence as to the potential importance of the prenylation portion of the mevalonate pathway during NAFLD, future studies are necessary to fully grasp any therapeutic or diagnostic potential. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Peyman Ghorbani
- Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tyler Kt Smith
- Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Morgan D Fullerton
- Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| |
Collapse
|