1
|
Lee J, Lee Y. The role of transcription factors in prostate cancer progression. Mol Cells 2025; 48:100193. [PMID: 39938868 PMCID: PMC11907451 DOI: 10.1016/j.mocell.2025.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
Prostate cancer is one of the most common malignancies in men, with most cases initially responding to androgen deprivation therapy. However, a significant number of patients eventually develop castration-resistant prostate cancer, an aggressive form of the disease. Although androgen receptor (AR) pathway inhibitors target AR signaling, and have extended survival in patients with castration-resistant prostate cancer, prolonged treatment can lead to the emergence of neuroendocrine prostate cancer (NEPC), a lethal subtype characterized by the expression of neuroendocrine markers and reduced AR activity. The transition from adenocarcinoma to NEPC is driven by lineage plasticity, wherein cancer cells adopt a neuroendocrine phenotype to evade treatment. Consequently, NEPC patients face poor clinical outcomes and limited effective treatment options. To improve outcomes, it is crucial to understand the molecular mechanisms driving NEPC development. In this review, we highlight the role of transcription factors in this process and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
2
|
Fei A, Li L, Liu Y, Lv Z, Jin J. Histone Demethylase PHF8 Confers Protection against Oxidative Stress and Cardiomyocyte Apoptosis in Heart Failure by Upregulating FOXA2. Int Heart J 2025; 66:114-125. [PMID: 39894540 DOI: 10.1536/ihj.24-268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Oxidative stress and cardiomyocyte apoptosis are hallmarks of heart failure (HF) development. Plant homeodomain finger protein 8 (PHF8) is a histone demethylase downregulated in failing human hearts. Nevertheless, the potential role of PHF8 in HF remains unclear. Therefore, this study aimed to explore the biological action and molecular mechanism of PHF8 in HF.A rat model of left anterior descending coronary artery (LAD) ligation-induced HF and a cardiomyocyte model of oxygen-glucose deprivation/reperfusion (OGD/R) were developed after gain- or loss-of-function experiments in rats and cardiomyocytes, respectively. Heart function indexes, such as left ventricular end-diastolic diameter, left ventricular end-systolic diameter, left ventricular ejection fraction, and left ventricular fractional shortening, were detected. Changes in myocardial tissues were examined by pathological staining. Cardiomyocyte apoptosis and oxidative stress markers, such as malondialdehyde, reactive oxygen species, superoxide dismutase, and catalase, were examined. The relationship between PHF8 and forkhead box A2 (FOXA2) was analyzed by luciferase and chromatin immunoprecipitation-quantitative polymerase chain reaction assays.PHF8 was downregulated in LAD-ligated rats and OGD/R-exposed cardiomyocytes. Following PHF8 upregulation, pathological changes in myocardial tissues and heart dysfunction were improved in LAD-ligated rats. Importantly, cardiomyocyte apoptosis and oxidative stress were diminished in vivo and in vitro upon PHF8 upregulation. Mechanistically, PHF8 increased FOXA2 expression in a histone demethylase-dependent manner. FOXA2 silencing abrogated the protective effect of PHF8 upregulation on cardiomyocytes against OGD/R-induced apoptosis and oxidative stress.PHF8 exerts protective functions against cardiomyocyte apoptosis, oxidative stress, and heart dysfunction in HF, in correlation with FOXA2 upregulation. These results suggest that the PHF8/FOXA2 axis may be a promising therapeutic target to prevent HF.
Collapse
Affiliation(s)
- Aike Fei
- Department of Cardiovascular Medicine, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University
| | - Li Li
- Department of Cardiovascular Medicine, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University
| | - Yanfei Liu
- Department of Cardiovascular Medicine, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University
| | - Zhe Lv
- Department of Cardiovascular Medicine, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University
| | - Jing Jin
- Department of Cardiovascular Medicine, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University
| |
Collapse
|
3
|
Jiang J, Han D, Wang J, Wen W, Zhang R, Qin W. Neuroendocrine transdifferentiation in human cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e761. [PMID: 39372390 PMCID: PMC11450264 DOI: 10.1002/mco2.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Neuroendocrine transdifferentiation (NEtD), also commonly referred to as lineage plasticity, emerges as an acquired resistance mechanism to molecular targeted therapies in multiple cancer types, predominately occurs in metastatic epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors and metastatic castration-resistant prostate cancer treated with androgen receptor targeting therapies. NEtD tumors are the lethal cancer histologic subtype with unfavorable prognosis and limited treatment. A comprehensive understanding of molecular mechanism underlying targeted-induced plasticity could greatly facilitate the development of novel therapies. In the past few years, increasingly elegant studies indicated that NEtD tumors share key the convergent genomic and phenotypic characteristics irrespective of their site of origin, but also embrace distinct change and function of molecular mechanisms. In this review, we provide a comprehensive overview of the current understanding of molecular mechanism in regulating the NEtD, including genetic alterations, DNA methylation, histone modifications, dysregulated noncoding RNA, lineage-specific transcription factors regulation, and other proteomic alterations. We also provide the current management of targeted therapies in clinical and preclinical practice.
Collapse
Affiliation(s)
- Jun Jiang
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
- Department of Health Service, Base of Health ServiceAir Force Medical UniversityXi'anChina
| | - Donghui Han
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jiawei Wang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, and National Translational Science Center for Molecular MedicineAir Force Medical UniversityXi'anChina
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Rui Zhang
- State Key Laboratory of Cancer BiologyDepartment of ImmunologyAir Force Medical UniversityXi'anChina
| | - Weijun Qin
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
4
|
Fan T, Xie J, Huang G, Li L, Zeng X, Tao Q. PHF8/KDM7B: A Versatile Histone Demethylase and Epigenetic Modifier in Nervous System Disease and Cancers. EPIGENOMES 2024; 8:36. [PMID: 39311138 PMCID: PMC11417953 DOI: 10.3390/epigenomes8030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Many human diseases, such as malignant tumors and neurological diseases, have a complex pathophysiological etiology, often accompanied by aberrant epigenetic changes including various histone modifications. Plant homologous domain finger protein 8 (PHF8), also known as lysine-specific demethylase 7B (KDM7B), is a critical histone lysine demethylase (KDM) playing an important role in epigenetic modification. Characterized by the zinc finger plant homology domain (PHD) and the Jumonji C (JmjC) domain, PHF8 preferentially binds to H3K4me3 and erases repressive methyl marks, including H3K9me1/2, H3K27me1, and H4K20me1. PHF8 is indispensable for developmental processes and the loss of PHF8 enzyme activity is linked to neurodevelopmental disorders. Moreover, increasing evidence shows that PHF8 is highly expressed in multiple tumors as an oncogenic factor. These findings indicate that studying the role of PHF8 will facilitate the development of novel therapeutic agents by the manipulation of PHF8 demethylation activity. Herein, we summarize the current knowledge of PHF8 about its structure and demethylation activity and its involvement in development and human diseases, with an emphasis on nervous system disorders and cancer. This review will update our understanding of PHF8 and promote the clinical transformation of its predictive and therapeutic value.
Collapse
Affiliation(s)
- Tingyu Fan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (T.F.); (G.H.)
| | - Jianlian Xie
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong; (J.X.); (L.L.)
| | - Guo Huang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (T.F.); (G.H.)
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong; (J.X.); (L.L.)
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (T.F.); (G.H.)
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong; (J.X.); (L.L.)
| |
Collapse
|
5
|
Wang Z, Tang P, Xiao H, Peng S, Chen J, Wang Y, Xu J, Yan Q, Zhang J, Deng J, Ma Q, Zhu H, Luo W, Zhang D, Wang L, Qin J, Lan W, Jiang J, Liu Q. Histone demethylase PHF8 promotes prostate cancer metastasis via the E2F1-SNAI1 axis. J Pathol 2024; 264:68-79. [PMID: 39022843 DOI: 10.1002/path.6325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/21/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Metastasis is the primary culprit behind cancer-related fatalities in multiple cancer types, including prostate cancer. Despite great advances, the precise mechanisms underlying prostate cancer metastasis are far from complete. By using a transgenic mouse prostate cancer model (TRAMP) with and without Phf8 knockout, we have identified a crucial role of PHF8 in prostate cancer metastasis. By complexing with E2F1, PHF8 transcriptionally upregulates SNAI1 in a demethylation-dependent manner. The upregulated SNAI1 subsequently enhances epithelial-to-mesenchymal transition (EMT) and metastasis. Given the role of the abnormally activated PHF8/E2F1-SNAI1 axis in prostate cancer metastasis and poor prognosis, the levels of PHF8 or the activity of this axis could serve as biomarkers for prostate cancer metastasis. Moreover, targeting this axis could become a potential therapeutic strategy for prostate cancer treatment. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ze Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Peng Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Haiyang Xiao
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Song Peng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jian Chen
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Yapeng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Qian Yan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Junying Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, PR China
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Jie Deng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Qiang Ma
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Hailin Zhu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Weiming Luo
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| |
Collapse
|
6
|
Zhou Y, Chen H, Yan J, Yao Q, Kong C, Peng Y, Xiao S, Yang J. FOXA2 Activates RND1 to Regulate Arachidonic Acid Metabolism Pathway and Suppress Cisplatin Resistance in Lung Squamous Cell Carcinoma. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13814. [PMID: 39129202 PMCID: PMC11317498 DOI: 10.1111/crj.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/09/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND The primary cause of cancer-related fatalities globally is lung cancer. Although the chemotherapy drug cisplatin (DDP) has brought certain benefits to patients, the rapid development of drug resistance has greatly hindered treatment success. METHODS We used the lung squamous cell carcinoma (LUSC) mRNA data set to explore the differentially expressed gene (RND1) in LUSC and detected RND1 expression in LUSC cells and DDP-resistant cells by qRT-PCR. Meanwhile, we performed abnormal expression treatment on RND1 and conducted CCK8, colony formation, and flow cytometry to evaluate the impact of RND1 expression on cell proliferation, apoptosis, and DDP resistance. In addition, we analyzed metabolism pathways involving RND1 using GSEA. We also used online tools such as hTFtarget and JASPAR to screen for the upstream transcription factor FOXA2 of RND1 and verified their relationship through CHIP and dual luciferase experiments. Finally, we validated the role of FOXA2-RND1 in DDP resistance in LUSC through the above experiments. RESULTS RND1 was downregulated in LUSC, and overexpression of RND1 repressed proliferation and DDP resistance of LUSC cells and facilitated cell apoptosis. RND1 modulated the arachidonic acid (AA) metabolism pathway, and FOXA2 positively manipulated RND1 expression. By activating FOXA2, stabilizing RND1, and regulating AA levels, the sensitivity of LUSC cells to DDP could be enhanced. CONCLUSION Our study suggested that FOXA2 positively modulated the RND1-AA pathway, which repressed the resistance of LUSC cells to DDP.
Collapse
Affiliation(s)
- Yafu Zhou
- Department of Thoracic SurgeonsHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Huiguo Chen
- Department of Thoracic SurgeonsHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Jianhua Yan
- Department of Thoracic SurgeonsHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Qi Yao
- Department of Thoracic SurgeonsHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Chunchu Kong
- Department of RespiratoryHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - You Peng
- Department of GeriatricHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Shengying Xiao
- Department of OncologyHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Jinsong Yang
- Department of Thoracic SurgeonsHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaChina
| |
Collapse
|
7
|
He Y, Shao Y, Zhou Z, Li T, Gao Y, Liu X, Yuan G, Yang G, Zhang L, Li F. MORC2 regulates RBM39-mediated CDK5RAP2 alternative splicing to promote EMT and metastasis in colon cancer. Cell Death Dis 2024; 15:530. [PMID: 39048555 PMCID: PMC11269669 DOI: 10.1038/s41419-024-06908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Colorectal carcinogenesis and progression are associated with aberrant alternative splicing, yet its molecular mechanisms remain largely unexplored. Here, we find that Microrchidia family CW-type zinc finger 2 (MORC2) binds to RRM1 domain of RNA binding motif protein 39 (RBM39), and RBM39 interacts with site 1 of pre-CDK5RAP2 exon 32 via its UHM domain, resulting in a splicing switch of cyclin-dependent kinase 5 regulatory subunit associated protein 2 (CDK5RAP2) L to CDK5RAP2 S. CDK5RAP2 S promotes invasion of colorectal cancer cells in vitro and metastasis in vivo. Mechanistically, CDK5RAP2 S specifically recruits the PHD finger protein 8 to promote Slug transcription by removing repressive histone marks at the Slug promoter. Moreover, CDK5RAP2 S, but not CDK5RAP2 L, is essential for the promotion of epithelial-mesenchymal transition induced by MORC2 or RBM39. Importantly, high protein levels of MORC2, RBM39 and Slug are strongly associated with metastasis and poor clinical outcomes of colorectal cancer patients. Taken together, our findings uncover a novel mechanism by which MORC2 promotes colorectal cancer metastasis, through RBM39-mediated pre-CDK5RAP2 alternative splicing and highlight the MORC2/RBM39/CDK5RAP2 axis as a potential therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Yuxin He
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yangguang Shao
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Zhihui Zhou
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Tingting Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yunling Gao
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Xue Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Gang Yuan
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Gaoxiang Yang
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Lili Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
8
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
9
|
Tong D, Tang Y, Zhong P. The emerging roles of histone demethylases in cancers. Cancer Metastasis Rev 2024; 43:795-821. [PMID: 38227150 DOI: 10.1007/s10555-023-10160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Modulation of histone methylation status is regarded as an important mechanism of epigenetic regulation and has substantial clinical potential for the therapy of diseases, including cancer and other disorders. The present study aimed to provide a comprehensive introduction to the enzymology of histone demethylases, as well as their cancerous roles, molecular mechanisms, therapeutic possibilities, and challenges for targeting them, in order to advance drug design for clinical therapy and highlight new insight into the mechanisms of these enzymes in cancer. A series of clinical trials have been performed to explore potential roles of histone demethylases in several cancer types. Numerous targeted inhibitors associated with immunotherapy, chemotherapy, radiotherapy, and targeted therapy have been used to exert anticancer functions. Future studies should evaluate the dynamic transformation of histone demethylases leading to carcinogenesis and explore individual therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urological Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Ying Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Peng Zhong
- Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| |
Collapse
|
10
|
Fan T, Jiang L, Zhou X, Chi H, Zeng X. Deciphering the dual roles of PHD finger proteins from oncogenic drivers to tumor suppressors. Front Cell Dev Biol 2024; 12:1403396. [PMID: 38813086 PMCID: PMC11133592 DOI: 10.3389/fcell.2024.1403396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
PHD (plant homeodomain) finger proteins emerge as central epigenetic readers and modulators in cancer biology, orchestrating a broad spectrum of cellular processes pivotal to oncogenesis and tumor suppression. This review delineates the dualistic roles of PHD fingers in cancer, highlighting their involvement in chromatin remodeling, gene expression regulation, and interactions with cellular signaling networks. PHD fingers' ability to interpret specific histone modifications underscores their influence on gene expression patterns, impacting crucial cancer-related processes such as cell proliferation, DNA repair, and apoptosis. The review delves into the oncogenic potential of certain PHD finger proteins, exemplified by PHF1 and PHF8, which promote tumor progression through epigenetic dysregulation and modulation of signaling pathways like Wnt and TGFβ. Conversely, it discusses the tumor-suppressive functions of PHD finger proteins, such as PHF2 and members of the ING family, which uphold genomic stability and inhibit tumor growth through their interactions with chromatin and transcriptional regulators. Additionally, the review explores the therapeutic potential of targeting PHD finger proteins in cancer treatment, considering their pivotal roles in regulating cancer stem cells and influencing the immune response to cancer therapy. Through a comprehensive synthesis of current insights, this review underscores the complex but promising landscape of PHD finger proteins in cancer biology, advocating for further research to unlock novel therapeutic avenues that leverage their unique cellular roles.
Collapse
Affiliation(s)
- Tingyu Fan
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Xuancheng Zhou
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
11
|
Liu N, Wang A, Xue M, Zhu X, Liu Y, Chen M. FOXA1 and FOXA2: the regulatory mechanisms and therapeutic implications in cancer. Cell Death Discov 2024; 10:172. [PMID: 38605023 PMCID: PMC11009302 DOI: 10.1038/s41420-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
FOXA1 (Forkhead Box A1) and FOXA2 (Forkhead Box A2) serve as pioneering transcription factors that build gene expression capacity and play a central role in biological processes, including organogenesis and differentiation, glycolipid metabolism, proliferation, migration and invasion, and drug resistance. Notably, FOXA1 and FOXA2 may exert antagonistic, synergistic, or complementary effects in the aforementioned biological processes. This article focuses on the molecular mechanisms and clinical relevance of FOXA1 and FOXA2 in steroid hormone-induced malignancies and highlights potential strategies for targeting FOXA1 and FOXA2 for cancer therapy. Furthermore, the article describes the prospect of targeting upstream regulators of FOXA1/FOXA2 to regulate its expression for cancer therapy because of the drug untargetability of FOXA1/FOXA2.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Anran Wang
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Mengen Xue
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China.
| |
Collapse
|
12
|
Fedele M, Cerchia L, Battista S. Subtype Transdifferentiation in Human Cancer: The Power of Tissue Plasticity in Tumor Progression. Cells 2024; 13:350. [PMID: 38391963 PMCID: PMC10887430 DOI: 10.3390/cells13040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
The classification of tumors into subtypes, characterized by phenotypes determined by specific differentiation pathways, aids diagnosis and directs therapy towards targeted approaches. However, with the advent and explosion of next-generation sequencing, cancer phenotypes are turning out to be far more heterogenous than initially thought, and the classification is continually being updated to include more subtypes. Tumors are indeed highly dynamic, and they can evolve and undergo various changes in their characteristics during disease progression. The picture becomes even more complex when the tumor responds to a therapy. In all these cases, cancer cells acquire the ability to transdifferentiate, changing subtype, and adapt to changing microenvironments. These modifications affect the tumor's growth rate, invasiveness, response to treatment, and overall clinical behavior. Studying tumor subtype transitions is crucial for understanding tumor evolution, predicting disease outcomes, and developing personalized treatment strategies. We discuss this emerging hallmark of cancer and the molecular mechanisms involved at the crossroads between tumor cells and their microenvironment, focusing on four different human cancers in which tissue plasticity causes a subtype switch: breast cancer, prostate cancer, glioblastoma, and pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council—CNR, 80131 Naples, Italy; (L.C.); (S.B.)
| | | | | |
Collapse
|
13
|
Ajithkumar P, Vasantharajan SS, Pattison S, McCall JL, Rodger EJ, Chatterjee A. Exploring Potential Epigenetic Biomarkers for Colorectal Cancer Metastasis. Int J Mol Sci 2024; 25:874. [PMID: 38255946 PMCID: PMC10815915 DOI: 10.3390/ijms25020874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Metastatic progression is a complex, multistep process and the leading cause of cancer mortality. There is growing evidence that emphasises the significance of epigenetic modification, specifically DNA methylation and histone modifications, in influencing colorectal (CRC) metastasis. Epigenetic modifications influence the expression of genes involved in various cellular processes, including the pathways associated with metastasis. These modifications could contribute to metastatic progression by enhancing oncogenes and silencing tumour suppressor genes. Moreover, specific epigenetic alterations enable cancer cells to acquire invasive and metastatic characteristics by altering cell adhesion, migration, and invasion-related pathways. Exploring the involvement of DNA methylation and histone modification is crucial for identifying biomarkers that impact cancer prediction for metastasis in CRC. This review provides a summary of the potential epigenetic biomarkers associated with metastasis in CRC, particularly DNA methylation and histone modifications, and examines the pathways associated with these biomarkers.
Collapse
Affiliation(s)
- Priyadarshana Ajithkumar
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
| | - Sai Shyam Vasantharajan
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
| | - Sharon Pattison
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - John L. McCall
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Euan J. Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
- School of Health Sciences and Technology, UPES University, Dehradun 248007, India
| |
Collapse
|
14
|
Tang X, He J, Hao Y. Histone demethylase PHF8 protected against chondrocyte injury and alleviated posttraumatic osteoarthritis by epigenetically enhancing WWP2 expression. Hum Exp Toxicol 2024; 43:9603271241292165. [PMID: 39454680 DOI: 10.1177/09603271241292165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Aberrant mechanical forces were considered as an important factor for osteoarthritis (OA) pathogenesis. Plant homeodomain finger-containing protein 8 (PHF8) participated in osteogenic differentiation and inflammatory progression. However, the role of PHF8 in aberrant force-related OA remains to be elucidated. In this study, a fluid shear stress (FSS) model in ATDC5 cells and an anterior cruciate ligament transection (ACLT) animal model were constructed. The results revealed the decrease of PHF8 in aberrant force-induced cartilage damage in vitro and in vivo. PHF8 overexpression alleviated the aberrant force-induced cell apoptosis, extracellular matrix degradation, and inflammation. Chromatin immunoprecipitation (ChIP) assays demonstrated that PHF8 epigenetically regulated WWP2 expression through demethylating H3K9me2 at WWP2 promoter, which was influenced by FSS treatment. C-X-C chemokine receptor type 4 (CXCR4) was identified as a potential substrate of WWP2. Co-immunoprecipitation (Co-IP) and ubiquitination experiments further demonstrated WWP2 decreased the stability of CXCR4 via the ubiquitination pathway. Subsequently, rescue experiments validated reintroduction of WWP2 significantly attenuated the effects of PHF8 deletion on FSS-induced chondrocyte injury, and CXCR4 overexpression reversed the protective effects of WWP2 overexpression on chondrocyte injury in FSS-treated ATDC5 cells. Moreover, delivery of a PHF8 adeno-associated virus (AAV) into articular cartilage remarkably ameliorated the breakdown of cartilage matrix by ACLT in mice. In conclusion, our findings highlighted the importance of PHF8/WWP2/CXCR4 signaling pathway in aberrant force-induced cartilage injury, which might provide a novel insight on future epigenetic-based treatment of posttraumatic OA.
Collapse
Affiliation(s)
- Xin Tang
- Department of Orthopedic Joint Surgery, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital
| | - Jingsheng He
- Department of Orthopedic Joint Surgery, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital
| | - Ye Hao
- Department of Orthopedic Joint Surgery, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital
| |
Collapse
|
15
|
Zamora I, Freeman MR, Encío IJ, Rotinen M. Targeting Key Players of Neuroendocrine Differentiation in Prostate Cancer. Int J Mol Sci 2023; 24:13673. [PMID: 37761978 PMCID: PMC10531052 DOI: 10.3390/ijms241813673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer (PC) that commonly emerges through a transdifferentiation process from prostate adenocarcinoma and evades conventional therapies. Extensive molecular research has revealed factors that drive lineage plasticity, uncovering novel therapeutic targets to be explored. A diverse array of targeting agents is currently under evaluation in pre-clinical and clinical studies with promising results in suppressing or reversing the neuroendocrine phenotype and inhibiting tumor growth and metastasis. This new knowledge has the potential to contribute to the development of novel therapeutic approaches that may enhance the clinical management and prognosis of this lethal disease. In the present review, we discuss molecular players involved in the neuroendocrine phenotype, and we explore therapeutic strategies that are currently under investigation for NEPC.
Collapse
Affiliation(s)
- Irene Zamora
- Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Michael R. Freeman
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ignacio J. Encío
- Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarre Institute for Health Research, 31008 Pamplona, Spain
| | - Mirja Rotinen
- Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarre Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
16
|
Feng H, Fu Y, Cui Z, Zhou M, Zhang L, Gao Z, Ma S, Chen C. Histone demethylase PHF8 facilitates the development of chronic myeloid leukaemia by directly targeting BCR::ABL1. Br J Haematol 2023; 202:1178-1191. [PMID: 37469124 DOI: 10.1111/bjh.18983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Although tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of chronic myeloid leukaemia (CML), TKI resistance remains a major challenge. Here, we demonstrated that plant homeodomain finger protein 8 (PHF8), a histone demethylase was aberrantly enriched in CML samples compared to healthy controls. PHF8 inhibited CML cell differentiation and promoted CML cell proliferation. Furthermore, the proliferation-inhibited function of PHF8-knockdown have stronger effect on imatinib mesylate (IM)-resistant CML cells. Mechanistically, we identified that PHF8 as a transcriptional modulator interacted with the promoter of the BCR::ABL1 fusion gene and alters the methylation levels of H3K9me1, H3K9me2 and H3K27me1, thereby promoting BCR::ABL1 transcription. Overall, our study suggests that targeting PHF8, which directly regulates BCR::ABL1 expression, is a useful therapeutic approach for CML.
Collapse
MESH Headings
- Humans
- Apoptosis
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/metabolism
- Histone Demethylases/genetics
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Huimin Feng
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zelong Cui
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenxing Gao
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Sai Ma
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
17
|
Peng S, Wang Z, Tang P, Wang S, Huang Y, Xie Q, Wang Y, Tan X, Tang T, Yan X, Xu J, Lan W, Wang L, Zhang D, Wang B, Pan T, Qin J, Jiang J, Liu Q. PHF8-GLUL axis in lipid deposition and tumor growth of clear cell renal cell carcinoma. SCIENCE ADVANCES 2023; 9:eadf3566. [PMID: 37531433 PMCID: PMC10396305 DOI: 10.1126/sciadv.adf3566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
For clear cell renal cell carcinoma (ccRCC), lipid deposition plays important roles in the development, metastasis, and drug resistance. However, the molecular mechanisms underlying lipid deposition in ccRCC remain largely unknown. By conducting an unbiased CRISPR-Cas9 screening, we identified the epigenetic regulator plant homeodomain finger protein 8 (PHF8) as an important regulator in ccRCC lipid deposition. Moreover, PHF8 is regulated by von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF) axis and essential for VHL deficiency-induced lipid deposition. PHF8 transcriptionally up-regulates glutamate-ammonia ligase (GLUL), which promotes the lipid deposition and ccRCC progression. Mechanistically, by forming a complex with c-MYC, PHF8 up-regulates TEA domain transcription factor 1 (TEAD1) in a histone demethylation-dependent manner. Subsequently, TEAD1 up-regulates GLUL transcriptionally. Pharmacological inhibition of GLUL by l-methionine sulfoximine not only repressed ccRCC lipid deposition and tumor growth but also enhanced the anticancer effects of everolimus. Thus, the PHF8-GLUL axis represents a potential therapeutic target for ccRCC treatment.
Collapse
Affiliation(s)
- Song Peng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Ze Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Peng Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Shuo Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Yiqiang Huang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Qiubo Xie
- Department of Urology, Chinese PLA General Hospital of Central Theater Command, Wuhan, Hubei, P.R. China
| | - Yapeng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xintao Tan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Tang Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xuzhi Yan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Tiejun Pan
- Department of Urology, Chinese PLA General Hospital of Central Theater Command, Wuhan, Hubei, P.R. China
| | - Jun Qin
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
18
|
Ragavi R, Muthukumaran P, Nandagopal S, Ahirwar DK, Tomo S, Misra S, Guerriero G, Shukla KK. Epigenetics regulation of prostate cancer: Biomarker and therapeutic potential. Urol Oncol 2023:S1078-1439(23)00090-X. [PMID: 37032230 DOI: 10.1016/j.urolonc.2023.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
Prostate cancer (CaP) is the second leading cause of cancer death and displays a broad range of clinical behavior from relatively indolent to aggressive metastatic disease. The etiology of most cases of CaP is not understood completely, which makes it imperative to search for the molecular basis of CaP and markers for early diagnosis. Epigenetic modifications, including changes in DNA methylation patterns, histone modifications, miRNAs, and lncRNAs are key drivers of prostate tumorigenesis. These epigenetic defects might be due to deregulated expression of the epigenetic machinery, affecting the expression of several important genes like GSTP1, RASSF1, CDKN2, RARRES1, IGFBP3, RARB, TMPRSS2-ERG, ITGB4, AOX1, HHEX, WT1, HSPE, PLAU, FOXA1, ASC, GPX3, EZH2, LSD1, etc. In this review, we highlighted the most important epigenetic gene alterations and their variations as a diagnostic marker and target for therapeutic intervention of CaP in the future. Characterization of epigenetic changes involved in CaP is obscure and adequate validation studies are still required to corroborate the present results that would be the impending future of transforming basic research settings into clinical practice.
Collapse
Affiliation(s)
- Ravindran Ragavi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Srividhya Nandagopal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sanjeev Misra
- Atal Bihari Vajpayee Medical University, Lucknow Uttar Pradesh, India
| | - Giulia Guerriero
- Comparative Endocrinology Lab, Department of Biology, University of Naples Federico II, Naples, Italy
| | - Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| |
Collapse
|
19
|
Expression Patterns of PAK4 and PHF8 Are Associated with the Survival of Gallbladder Carcinoma Patients. Diagnostics (Basel) 2023; 13:diagnostics13061149. [PMID: 36980457 PMCID: PMC10047028 DOI: 10.3390/diagnostics13061149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Background: PAK4 and PHF8 are involved in cancer progression and are under evaluation as targets for cancer therapy. However, despite extensive studies in human cancers, there are limited reports on the roles of PAK4 and PHF8 in gallbladder cancers. Methods: Immunohistochemical expression of PAK4 and PHF8 and their prognostic significance were evaluated in 148 human gallbladder carcinomas. Results: PAK4 expression was significantly associated with PHF8 expression in gallbladder carcinomas. Positive expression of nuclear PAK4, cytoplasmic PAK4, nuclear PHF8, and cytoplasmic PHF8 were significantly associated with shorter overall survival and relapse-free survival in univariate analysis. Multivariate analysis showed that nuclear PAK4 expression and nuclear PHF8 expression were independent predictors of overall survival and relapse-free survival in gallbladder carcinomas. Furthermore, coexpression of nuclear PAK4 and nuclear PHF8 predicted shorter overall survival (p < 0.001) and relapse-free survival (p < 0.001) of gallbladder carcinoma in multivariate analysis. Conclusions: This study suggests that the individual and coexpression patterns of PAK4 and PHF8 as the prognostic indicators for gallbladder carcinoma patients.
Collapse
|
20
|
Cao Z, Zhan H, Wu W, Kuang Z, Mo F, Liu X, Dai M. A comprehensive pan-cancer analysis unveiling the oncogenic effect of plant homeodomain finger protein 14 (PHF14) in human tumors. Front Genet 2023; 14:1073138. [PMID: 37007943 PMCID: PMC10061232 DOI: 10.3389/fgene.2023.1073138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The plant homeodomain (PHD) finger refers to a protein motif that plays a key role in the recognition and translation of histone modification marks by promoting gene transcriptional activation and silencing. As an important member of the PHD family, the plant homeodomain finger protein 14 (PHF14) affects the biological behavior of cells as a regulatory factor. Several emerging studies have demonstrated that PHF14 expression is closely associated with the development of some cancers, but there is still no feasible pan-cancer analysis. Based on existing datasets from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO), we performed a systematic analysis of the oncogenic role of the PHF14 gene in 33 human cancers. The expression level of PHF14 was significantly different between different types of tumors and adjacent normal tissues, and the expression or genetic alteration of PHF14 gene was closely related to the prognosis of most cancer patients. Levels of cancer-associated fibroblasts (CAFs) infiltration in various cancer types were also observed to correlate with PHF14 expression. In some tumors, PFH14 may play a role in tumor immunity by regulating the expression levels of immune checkpoint genes. In addition, the results of enrichment analysis showed that the main biological activities of PHF14 were related to various signaling pathways or chromatin complex effects. In conclusion, our pan-cancer research shows that the expression level of PHF14 is closely related to the carcinogenesis and prognosis of certain tumors, which needs to be further verified by more experiments and more in-depth mechanism exploration.
Collapse
Affiliation(s)
- Zhiyou Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Haibo Zhan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Weiwei Wu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Zhihui Kuang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Fengbo Mo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- *Correspondence: Xuqiang Liu, ; Min Dai,
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- *Correspondence: Xuqiang Liu, ; Min Dai,
| |
Collapse
|
21
|
Singh VK, Kainat KM, Sharma PK. Crosstalk between epigenetics and tumor promoting androgen signaling in prostate cancer. VITAMINS AND HORMONES 2023; 122:253-282. [PMID: 36863797 DOI: 10.1016/bs.vh.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the major health burdens among all cancer types in men globally. Early diagnosis and efficacious treatment options are highly warranted as far as the incidence of PCa is concerned. Androgen-dependent transcriptional activation of androgen receptor (AR) is central to the prostate tumorigenesis and therefore hormonal ablation therapy remains the first line of treatment for PCa in the clinics. However, the molecular signaling engaged in AR-dependent PCa initiation and progression is infrequent and diverse. Moreover, apart from the genomic changes, non-genomic changes such as epigenetic modifications have also been suggested as critical regulator of PCa development. Among the non-genomic mechanisms, various epigenetic changes such as histones modifications, chromatin methylation and noncoding RNAs regulations etc. play decisive role in the prostate tumorigenesis. Given that epigenetic modifications are reversible using pharmacological modifiers, various promising therapeutic approaches have been designed for the better management of PCa. In this chapter, we discuss the epigenetic control of tumor promoting AR signaling that underlies the mechanism of prostate tumorigenesis and progression. In addition, we have discussed the approaches and opportunities to develop novel epigenetic modifications based therapeutic strategies for targeting PCa including castrate resistant prostate cancer (CRPC).
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - K M Kainat
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
22
|
Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther 2023; 8:69. [PMID: 36797239 PMCID: PMC9935618 DOI: 10.1038/s41392-023-01341-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Drug resistance is mainly responsible for cancer recurrence and poor prognosis. Epigenetic regulation is a heritable change in gene expressions independent of nucleotide sequence changes. As the common epigenetic regulation mechanisms, DNA methylation, histone modification, and non-coding RNA regulation have been well studied. Increasing evidence has shown that aberrant epigenetic regulations contribute to tumor resistance. Therefore, targeting epigenetic regulators represents an effective strategy to reverse drug resistance. In this review, we mainly summarize the roles of epigenetic regulation in tumor resistance. In addition, as the essential factors for epigenetic modifications, histone demethylases mediate the histone or genomic DNA modifications. Herein, we comprehensively describe the functions of the histone demethylase family including the lysine-specific demethylase family, the Jumonji C-domain-containing demethylase family, and the histone arginine demethylase family, and fully discuss their regulatory mechanisms related to cancer drug resistance. In addition, therapeutic strategies, including small-molecule inhibitors and small interfering RNA targeting histone demethylases to overcome drug resistance, are also described.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Ma
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
23
|
Zhang Y, Zhou L, Xu Y, Zhou J, Jiang T, Wang J, Li C, Sun X, Song H, Song J. Targeting SMYD2 inhibits angiogenesis and increases the efficiency of apatinib by suppressing EGFL7 in colorectal cancer. Angiogenesis 2023; 26:1-18. [PMID: 35503397 DOI: 10.1007/s10456-022-09839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/11/2022] [Indexed: 11/01/2022]
Abstract
Angiogenesis is an essential factor affecting the occurrence and development of solid tumors. SET And MYND Domain Containing 2 (SMYD2) serves as an oncogene in various cancers. However, whether SMYD2 is involved in tumor angiogenesis remains unclear. Here, we report that SMYD2 expression is associated with microvessel density in colorectal cancer (CRC) tissues. SMYD2 promotes CRC angiogenesis in vitro and in vivo. Mechanistically, SMYD2 physically interacts with HNRNPK and mediates lysine monomethylation at K422 of HNRNPK, which substantially increases RNA binding activity. HNRNPK acts by binding and stabilizing EGFL7 mRNA. As an angiogenic stimulant, EGFL7 enhances CRC angiogenesis. H3K4me3 maintained by PHF8 mediates the abnormal overexpression of SMYD2 in CRC. Moreover, targeting SMYD2 blocks CRC angiogenesis in tumor xenografts. Treatment with BAY-598, a functional inhibitor of SMYD2, can also synergize with apatinib in patient-derived xenografts. Overall, our findings reveal a new regulatory axis of CRC angiogenesis and provide a potential strategy for antiangiogenic therapy.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Zhou
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China
| | - Jingyu Zhou
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China
| | - Jiaqi Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China
| | - Chao Li
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoxiong Sun
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China.
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
24
|
Kemble J, Kwon ED, Karnes RJ. Addressing the need for more therapeutic options in neuroendocrine prostate cancer. Expert Rev Anticancer Ther 2023; 23:177-185. [PMID: 36698089 DOI: 10.1080/14737140.2023.2173174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer frequently seen after prolonged treatment of castration resistant prostate cancer (CRPC). NEPC has become increasingly prevalent over the last 20 years, with a poor prognosis caused by a late diagnosis and limited treatment options. Recent advances in PET/CT imaging and targeted radioimmunotherapy are promising, but more research into additional treatment options is needed. AREAS COVERED The aim of this review is to analyze the current imaging and treatment options for NEPC, and to highlight future potential treatment strategies. A Pubmed search for 'Neuroendocrine Prostate Cancer' was performed and relevant articles were reviewed. EXPERT OPINION The recent FDA approval and success of 177 PSMA Lutetium in CRPC is promising, as 177 Lutetium could potentially be paired with a NEPC specific biomarker for targeted therapy. Recent laboratory studies pairing DLL3, which is overexpressed in NEPC, with 177 Lutetium and new PET agents have showed good efficacy in identifying and treating NEPC. The success of future development of NEPC therapies may depend on the availability of 177 Lutetium, as current supplies are limited. Further research into additional imaging and treatment options for NEPC is warranted.
Collapse
Affiliation(s)
- Jayson Kemble
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - Eugene D Kwon
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
25
|
NEDD4L represses prostate cancer cell proliferation via modulating PHF8 through the ubiquitin-proteasome pathway. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:243-255. [PMID: 36136271 DOI: 10.1007/s12094-022-02933-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Prostate cancer (PC) is a heterogeneous malignancy that greatly threatens man's health. E3 ubiquitin-protein ligase neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) imparts an regulatory role in various malignancies. This study focused on the modulatory mechanism of NEDD4L in proliferation of prostate cancer cells (PCCs) via regulating histone demethylase plant homeodomain finger protein 8 (PHF8/KDM7B) through the ubiquitin-proteasome system. METHODS The expression levels of NEDD4L, PHF8, H3 lysine 9 dimethylation (H3K9me2) and activating transcription factor 2 (ATF2) in PC tissues and cell lines were detected via real-time quantitative polymerase chain reaction and Western blotting. After transfection of pcDNA3.1-NEDD4L, pcDNA3.1-PHF8, and pcDNA3.1-ATF2 into PCCs, cell proliferation was assessed via the cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays. Interaction between NEDD4L and PHF8 was identified via the protein immunoprecipitation. The ubiquitination level of PHF8 was determined via the ubiquitination detection. The enrichments of H3K9me2 and PHF8 in the ATF2 promotor region were detected via the chromatin-immunoprecipitation assay. RESULTS PHF8 and ATF2 were highly expressed while NEDD4L was poorly expressed in PC tissues and cells. NEDD4L overexpression reduced proliferation of PCCs. NEDD4Linduced degradation of PHF8 via ubiquitination. PHF8 limited the enrichment of H3K9me2 in the ATF2 promotor region and enhanced ATF2 transcription. Upregulation of PHF8 or ATF2 abolished the inhibitory role of NEDD4L in proliferation of PCCs. CONCLUSION NEDD4L facilitated degradation of PHF8 to limit ATF2 transcription, thereby suppressing proliferation of PCCs.
Collapse
|
26
|
Tao H, Zhang Y, Li J, Liu J, Yuan T, Wang W, Liang H, Zhang E, Huang Z. Oncogenic lncRNA BBOX1-AS1 promotes PHF8-mediated autophagy and elicits sorafenib resistance in hepatocellular carcinoma. Mol Ther Oncolytics 2022; 28:88-103. [PMID: 36699616 PMCID: PMC9852557 DOI: 10.1016/j.omto.2022.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Some long non-coding RNAs (lncRNAs) have been documented to be involved in cancer progression and anticancer drug resistance in hepatocellular carcinoma (HCC). Thus, approaches designed to target these genes may facilitate the development of promising strategies for treating HCC. Previously, we showed that lncRNA BBOX1-AS1 was highly expressed and played an oncogenic role in HCC. However, the potential functions and mechanisms through which BBOX1-AS1 regulates HCC progression and drug resistance remain unclear. This study revealed that BBOX1-AS1 could promote tumor progression, autophagy, and drug resistance by upregulating PHF8 in HCC cells. Mechanistically, BBOX1-AS1 enhanced the stability of PHF8 mRNA by targeting the PHF8 inhibitor miR-361-3p to regulate tumor progression and autophagy in HCC. The functional rescue experiments showed that PHF8 acted as a key factor in regulating the biological effects induced by BBOX1-AS1 and miR-361-3p in HCC, indicating that BBOX1-AS1 promotes tumor progression and sorafenib resistance by regulating miR-361-3p/PHF8. Finally, mouse tumor models and patient-derived organoid models were established to further confirm these findings. Taken together, the results demonstrate that BBOX1-AS1 promotes HCC progression and sorafenib resistance via the miR-361-3p/PHF8 axis.
Collapse
Affiliation(s)
- Haisu Tao
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Yuxin Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jiang Li
- The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Beijing, China
| | - Junjie Liu
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Tong Yuan
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Wenqiang Wang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
- Corresponding author: Huifang Liang, Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
- Corresponding author: Erlei Zhang, Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
- Corresponding author: Zhiyong Huang, Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
27
|
Pan F, Huang K, Dai H, Sha C. PHF8 promotes osteogenic differentiation of BMSCs in old rat with osteoporosis by regulating Wnt/β-catenin pathway. Open Life Sci 2022; 17:1591-1599. [DOI: 10.1515/biol-2022-0523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022] Open
Abstract
Abstract
Osteoporosis is a progressive bone disorder with a higher incidence in the elderly and has become a major public health concern all over the world. Therefore, it is urgent to investigate the mechanisms underlying the pathogenesis of osteoporosis. In this study, the osteoporosis animal model was established, and then rat bone marrow mesenchymal stem cells (rBMSCs) were cultured. The results showed that PHF8 expression was decreased in osteoporosis rats compared to controls. Overexpression of PHF8 promoted BMSC osteogenic differentiation and the expression of osteogenesis-related genes. In addition, the Wnt/β-catenin signaling pathway in BMSCs was inhibited in osteoporosis rats, which was rescued by overexpression of PHF8. After treatment with the Wnt pathway antagonist, the improved osteogenic differentiation of BMSCs induced by overexpression of PHF8 was blocked. Collectively, our data revealed that the decreased expression of PHF8 in osteoporosis rats suppressed the osteogenic differentiation of BMSCs, which was then restored by PHF8 overexpression. Furthermore, the inhibition of the Wnt/β-catenin signaling pathway in BMSCs suppressed osteogenic differentiation. Thus, these findings indicated that PHF8 plays a role in osteogenic differentiation through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Feng Pan
- Department of Orthopaedics Part 2, Shanghai Jing’an District Zhabei Central Hospital , No. 619, Zhonghua New Road, Jing’an District , Shanghai , 200073 , China
| | - Kai Huang
- Department of Orthopaedics Part 2, Shanghai Jing’an District Zhabei Central Hospital , No. 619, Zhonghua New Road, Jing’an District , Shanghai , 200073 , China
| | - Hongbin Dai
- Department of Orthopaedics Part 2, Shanghai Jing’an District Zhabei Central Hospital , No. 619, Zhonghua New Road, Jing’an District , Shanghai , 200073 , China
| | - Chunhe Sha
- Department of Orthopaedics Part 2, Shanghai Jing’an District Zhabei Central Hospital , No. 619, Zhonghua New Road, Jing’an District , Shanghai , 200073 , China
| |
Collapse
|
28
|
Liu S, Alabi BR, Yin Q, Stoyanova T. Molecular mechanisms underlying the development of neuroendocrine prostate cancer. Semin Cancer Biol 2022; 86:57-68. [PMID: 35597438 DOI: 10.1016/j.semcancer.2022.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 01/27/2023]
Abstract
Prostate cancer is the most common non-cutaneous cancer and the second leading cause of cancer-associated deaths among men in the United States. Androgen deprivation therapy (ADT) is the standard of care for advanced prostate cancer. While patients with advanced prostate cancer initially respond to ADT, the disease frequently progresses to a lethal metastatic form, defined as castration-resistant prostate cancer (CRPC). After multiple rounds of anti-androgen therapies, 20-25% of metastatic CRPCs develop a neuroendocrine (NE) phenotype. These tumors are classified as neuroendocrine prostate cancer (NEPC). De novo NEPC is rare and accounts for less than 2% of all prostate cancers at diagnosis. NEPC is commonly characterized by the expression of NE markers and the absence of androgen receptor (AR) expression. NEPC is usually associated with tumor aggressiveness, hormone therapy resistance, and poor clinical outcome. Here, we review the molecular mechanisms underlying the emergence of NEPC and provide insights into the future perspectives on potential therapeutic strategies for NEPC.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Busola Ruth Alabi
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Qingqing Yin
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
29
|
Xi M, Zhang L, Wei Y, Li T, Qu M, Hua Q, He R, Liu Y. Effect of ribose-glycated BSA on histone demethylation. Front Genet 2022; 13:957937. [PMID: 36276938 PMCID: PMC9581222 DOI: 10.3389/fgene.2022.957937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
A reducing sugar reacts with the protein, resulting in advanced glycation end-products (AGEs), which have been implicated in diabetes-related complications. Recently, it has been found that both type 1 and type 2 diabetic patients suffer from not only glucose but also ribose dysmetabolism. Here, we compared the effects of ribose and glucose glycation on epigenetics, such as histone methylation and demethylation. To prepare ribose-glycated (riboglycated) proteins, we incubated 150 μM bovine serum albumin (BSA) with 1 M ribose at different time periods, and we evaluated the samples by ELISAs, Western blot analysis, and cellular experiments. Riboglycated BSA, which was incubated with ribose for approximately 7 days, showed the strongest cytotoxicity, leading to a significant decrease in the viability of SH-SY5Y cells cultured for 24 h (IC50 = 1.5 μM). A global demethylation of histone 3 (H3K4) was observed in SH-SY5Y cells accompanied with significant increases in lysine-specific demethylase-1 (LSD1) and plant homeodomain finger protein 8 (PHF8) after treatment with riboglycated BSA (1.5 μM), but demethylation did not occur after treatment with glucose-glycated (glucoglycated) proteins or the ribose, glucose, BSA, and Tris–HCl controls. Moreover, a significant demethylation of H3K4, H3K4me3, and H3K4me2, but not H3K4me1, occurred in the presence of riboglycated proteins. A significant increase of formaldehyde was also detected in the medium of SH-SY5Y cells cultured with riboglycated BSA, further indicating the occurrence of histone demethylation. The present study provides a new insight into understanding an epigenetic mechanism of diabetes mellitus (DM) related to ribose metabolic disorders.
Collapse
Affiliation(s)
- Mengqi Xi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lingyun Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Wei
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ting Li
- Bayannur Hospital, Bayannur, China
| | - Meihua Qu
- Second People’s Hospital of Weifang, Weifang, Shandong, China
| | - Qian Hua
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rongqiao He
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Rongqiao He, ; Ying Liu,
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Rongqiao He, ; Ying Liu,
| |
Collapse
|
30
|
Ren L, Wen X, Liu M, Xiao Y, Leng P, Luo H, Tao P, Xie L. Comprehensive Analysis of the Molecular Characteristics and Prognosis value of AT II-associated Genes in Non-small Cell Lung Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3106688. [PMID: 36203529 PMCID: PMC9530922 DOI: 10.1155/2022/3106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/10/2022] [Indexed: 11/25/2022]
Abstract
Alveolar type II (AT II) is a key structure of the distal lung epithelium and essential to maintain normal lung homeostasis. Dedifferentiation of AT II cells is significantly correlated with lung tumor progression. However, the potential molecular mechanism and clinical significance of AT II-associated genes for lung cancer has not yet been fully elucidated. In this study, we comprehensively analyzed the gene expression, prognosis value, genetic alteration, and immune cell infiltration of eight AT II-associated genes (AQP4, SFTPB, SFTPC, SFTPD, CLDN18, FOXA2, NKX2-1, and PGC) in Nonsmall Cell Lung Cancer (NSCLC). The results have shown that the expression of eight genes were remarkably reduced in cancer tissues and observably relating to clinical cancer stages. Survival analysis of the eight genes revealed that low-expression of CLDN18, FOXA2, NKX2-1, PGC, SFTPB, SFTPC, and SFTPD were significantly related to a reduced progression-free survival (FP), and low CLDN18, FOXA2, and SFTPD mRNA expression led to a short postprogression survival (PPS). Meanwhile, the alteration of 8 AT II-associated genes covered 273 out of 1053 NSCLC samples (26%). Additionally, the expression level of eight genes were significantly correlated with the infiltration of diverse immune cells, including six types of CD4+T cells, macrophages, neutrophils, B cells, CD8+ T cells, and dendritic cells. In summary, this study provided clues of the values of eight AT II-associated genes as clinical biomarkers and therapeutic targets in NSCLC and might provide some new inspirations to assist the design of new immunotherapies.
Collapse
Affiliation(s)
- Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Xiaoxia Wen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mujiexin Liu
- Ineye hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Xiao
- Department of clinical laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huaichao Luo
- Department of clinical laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Pei Tao
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan 611731, China
| | - Lei Xie
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
31
|
Diao W, Zheng J, Li Y, Wang J, Xu S. Targeting histone demethylases as a potential cancer therapy (Review). Int J Oncol 2022; 61:103. [PMID: 35801593 DOI: 10.3892/ijo.2022.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
Post‑translational modifications of histones by histone demethylases have an important role in the regulation of gene transcription and are implicated in cancers. Recently, the family of lysine (K)‑specific demethylase (KDM) proteins, referring to histone demethylases that dynamically regulate histone methylation, were indicated to be involved in various pathways related to cancer development. To date, numerous studies have been conducted to explore the effects of KDMs on cancer growth, metastasis and drug resistance, and a majority of KDMs have been indicated to be oncogenes in both leukemia and solid tumors. In addition, certain KDM inhibitors have been developed and have become the subject of clinical trials to explore their safety and efficacy in cancer therapy. However, most of them focus on hematopoietic malignancy. This review summarizes the effects of KDMs on tumor growth, drug resistance and the current status of KDM inhibitors in clinical trials.
Collapse
Affiliation(s)
- Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Songhui Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
32
|
Abstract
Most prostate cancers initially respond to androgen deprivation therapy (ADT). With the long-term application of ADT, localized prostate cancer will progress to castration-resistant prostate cancer (CRPC), metastatic CRPC (mCRPC), and neuroendocrine prostate cancer (NEPC), and the transcriptional network shifted. Forkhead box protein A1 (FOXA1) may play a key role in this process through multiple mechanisms. To better understand the role of FOXA1 in prostate cancer, we review the interplay among FOXA1-targeted genes, modulators of FOXA1, and FOXA1 with a particular emphasis on androgen receptor (AR) function. Furthermore, we discuss the distinct role of FOXA1 mutations in prostate cancer and clinical significance of FOXA1. We summarize possible regulation pathways of FOXA1 in different stages of prostate cancer. We focus on links between FOXA1 and AR, which may play different roles in various types of prostate cancer. Finally, we discuss FOXA1 mutation and its clinical significance in prostate cancer. FOXA1 regulates the development of prostate cancer through various pathways, and it could be a biomarker for mCRPC and NEPC. Future efforts need to focus on mechanisms underlying mutation of FOXA1 in advanced prostate cancer. We believe that FOXA1 would be a prognostic marker and therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Hui-Yu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou 215009, China
| | - Lei Ding
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tian-Ren Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tao Yan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
33
|
Zhou H, He Q, Li C, Alsharafi BLM, Deng L, Long Z, Gan Y. Focus on the tumor microenvironment: A seedbed for neuroendocrine prostate cancer. Front Cell Dev Biol 2022; 10:955669. [PMID: 35938167 PMCID: PMC9355504 DOI: 10.3389/fcell.2022.955669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) is a microecology consisting of tumor and mesenchymal cells and extracellular matrices. The TME plays important regulatory roles in tumor proliferation, invasion, metastasis, and differentiation. Neuroendocrine differentiation (NED) is a mechanism by which castration resistance develops in advanced prostate cancer (PCa). NED is induced after androgen deprivation therapy and neuroendocrine prostate cancer (NEPC) is established finally. NEPC has poor prognosis and short overall survival and is a major cause of death in patients with PCa. Both the cellular and non-cellular components of the TME regulate and induce NEPC formation through various pathways. Insights into the roles of the TME in NEPC evolution, growth, and progression have increased over the past few years. These novel insights will help refine the NEPC formation model and lay the foundation for the discovery of new NEPC therapies targeting the TME.
Collapse
Affiliation(s)
- Hengfeng Zhou
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangrong He
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Chao Li
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Liang Deng
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Long
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| |
Collapse
|
34
|
Chen Z, Xiao Q, Shen Y, Xue C. FOXA2 promotes esophageal cancer migration and metastasis by activating CXCR4 expression. Biochem Biophys Res Commun 2022; 625:16-22. [DOI: 10.1016/j.bbrc.2022.07.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022]
|
35
|
Xie Y, Ning S, Hu J. Molecular mechanisms of neuroendocrine differentiation in prostate cancer progression. J Cancer Res Clin Oncol 2022; 148:1813-1823. [PMID: 35633416 PMCID: PMC9189092 DOI: 10.1007/s00432-022-04061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022]
Abstract
Background Rapid evolution of the therapeutic management of prostate cancer, especially in in second-generation androgen inhibitors, has increased the opportunity of transformation from prostate cancer (PCa) to neuroendocrine prostate cancer (NEPC). NEPC still lacks effective diagnostic and therapeutic interventions. Researches into the molecular characteristics of neuroendocrine differentiation is undoubtedly crucial to the discovery of new target genes for accurate diagnostic and therapeutic targets. Purpose In this review, we focus on the relevant genes and molecular mechanisms that have contributed to the transformation in the progression of PCa and discuss the potential targeted molecule that might improve diagnostic accuracy and therapeutic effectiveness. Methods The relevant literatures from PubMed have been reviewed for this article. Conclusion Several molecular characteristics influence the progression of neuroendocrine differentiation of prostate cancer which will provide a novel sight for accurate diagnosis and target therapeutic intervention for patients with NEPC.
Collapse
Affiliation(s)
- Yuchen Xie
- Affiliated Renmin Hospital of Jiangsu University, Zhenjiang First People's Hospital, Zhenjiang, 212002, China
| | - Songyi Ning
- Jiangsu University, Zhenjiang, 212013, China
| | - Jianpeng Hu
- Affiliated Renmin Hospital of Jiangsu University, Zhenjiang First People's Hospital, Zhenjiang, 212002, China.
| |
Collapse
|
36
|
Huang J, Lin B, Li B. Anti-Androgen Receptor Therapies in Prostate Cancer: A Brief Update and Perspective. Front Oncol 2022; 12:865350. [PMID: 35372068 PMCID: PMC8965587 DOI: 10.3389/fonc.2022.865350] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer is a major health issue in western countries and is the second leading cause of cancer death in American men. Prostate cancer depends on the androgen receptor (AR), a transcriptional factor critical for prostate cancer growth and progression. Castration by surgery or medical treatment reduces androgen levels, resulting in prostatic atrophy and prostate cancer regression. Thus, metastatic prostate cancers are initially managed with androgen deprivation therapy. Unfortunately, prostate cancers rapidly relapse after castration therapy and progress to a disease stage called castration-resistant prostate cancer (CRPC). Currently, clinical treatment for CRPCs is focused on suppressing AR activity with antagonists like Enzalutamide or by reducing androgen production with Abiraterone. In clinical practice, these treatments fail to yield a curative benefit in CRPC patients in part due to AR gene mutations or splicing variations, resulting in AR reactivation. It is conceivable that eliminating the AR protein in prostate cancer cells is a promising solution to provide a potential curative outcome. Multiple strategies have emerged, and several potent agents that reduce AR protein levels were reported to eliminate xenograft tumor growth in preclinical models via distinct mechanisms, including proteasome-mediated degradation, heat-shock protein inhibition, AR splicing suppression, blockage of AR nuclear localization, AR N-terminal suppression. A few small chemical compounds are undergoing clinical trials combined with existing AR antagonists. AR protein elimination by enhanced protein or mRNA degradation is a realistic solution for avoiding AR reactivation during androgen deprivation therapy in prostate cancers.
Collapse
Affiliation(s)
- Jian Huang
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Biyun Lin
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
37
|
Merkens L, Sailer V, Lessel D, Janzen E, Greimeier S, Kirfel J, Perner S, Pantel K, Werner S, von Amsberg G. Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:46. [PMID: 35109899 PMCID: PMC8808994 DOI: 10.1186/s13046-022-02255-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
Prostate cancer is a hormone-driven disease and its tumor cell growth highly relies on increased androgen receptor (AR) signaling. Therefore, targeted therapy directed against androgen synthesis or AR activation is broadly used and continually improved. However, a subset of patients eventually progresses to castration-resistant disease. To date, various mechanisms of resistance have been identified including the development of AR-independent aggressive variant prostate cancer based on neuroendocrine transdifferentiation (NED). Here, we review the highly complex processes contributing to NED. Genetic, epigenetic, transcriptional aberrations and posttranscriptional modifications are highlighted and the potential interplay of the different factors is discussed. Background Aggressive variant prostate cancer (AVPC) with traits of neuroendocrine differentiation emerges in a rising number of patients in recent years. Among others, advanced therapies targeting the androgen receptor axis have been considered causative for this development. Cell growth of AVPC often occurs completely independent of the androgen receptor signal transduction pathway and cells have mostly lost the typical cellular features of prostate adenocarcinoma. This complicates both diagnosis and treatment of this very aggressive disease. We believe that a deeper understanding of the complex molecular pathological mechanisms contributing to transdifferentiation will help to improve diagnostic procedures and develop effective treatment strategies. Indeed, in recent years, many scientists have made important contributions to unravel possible causes and mechanisms in the context of neuroendocrine transdifferentiation. However, the complexity of the diverse molecular pathways has not been captured completely, yet. This narrative review comprehensively highlights the individual steps of neuroendocrine transdifferentiation and makes an important contribution in bringing together the results found so far.
Collapse
Affiliation(s)
- Lina Merkens
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Verena Sailer
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ella Janzen
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sarah Greimeier
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jutta Kirfel
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany
| | - Sven Perner
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany.,Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg HaTRiCs4, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
38
|
Pan G, Zhang K, Geng S, Lan C, Hu X, Li C, Ji H, Li C, Hu X, Wang Y, LV M, Cui H. PHF14 knockdown causes apoptosis by inducing DNA damage and impairing the activity of the damage response complex in colorectal cancer. Cancer Lett 2022; 531:109-123. [DOI: 10.1016/j.canlet.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022]
|
39
|
HAUSP Is a Key Epigenetic Regulator of the Chromatin Effector Proteins. Genes (Basel) 2021; 13:genes13010042. [PMID: 35052383 PMCID: PMC8774506 DOI: 10.3390/genes13010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
HAUSP (herpes virus-associated ubiquitin-specific protease), also known as Ubiquitin Specific Protease 7, plays critical roles in cellular processes, such as chromatin biology and epigenetics, through the regulation of different signaling pathways. HAUSP is a main partner of the “Epigenetic Code Replication Machinery,” ECREM, a large protein complex that includes several epigenetic players, such as the ubiquitin-like containing plant homeodomain (PHD) and an interesting new gene (RING), finger domains 1 (UHRF1), as well as DNA methyltransferase 1 (DNMT1), histone deacetylase 1 (HDAC1), histone methyltransferase G9a, and histone acetyltransferase TIP60. Due to its deubiquitinase activity and its ability to team up through direct interactions with several epigenetic regulators, mainly UHRF1, DNMT1, TIP60, the histone lysine methyltransferase EZH2, and the lysine-specific histone demethylase LSD1, HAUSP positions itself at the top of the regulatory hierarchies involved in epigenetic silencing of tumor suppressor genes in cancer. This review highlights the increasing role of HAUSP as an epigenetic master regulator that governs a set of epigenetic players involved in both the maintenance of DNA methylation and histone post-translational modifications.
Collapse
|
40
|
Zhang C, Qian J, Wu Y, Zhu Z, Yu W, Gong Y, Li X, He Z, Zhou L. Identification of Novel Diagnosis Biomarkers for Therapy-Related Neuroendocrine Prostate Cancer. Pathol Oncol Res 2021; 27:1609968. [PMID: 34646089 PMCID: PMC8503838 DOI: 10.3389/pore.2021.1609968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Background: Therapy-related neuroendocrine prostate cancer (NEPC) is a lethal castration-resistant prostate cancer (CRPC) subtype that, at present, lacks well-characterized molecular biomarkers. The clinical diagnosis of this disease is dependent on biopsy and histological assessment: methods that are experience-based and easily misdiagnosed due to tumor heterogeneity. The development of robust diagnostic tools for NEPC may assist clinicians in making medical decisions on the choice of continuing anti-androgen receptor therapy or switching to platinum-based chemotherapy. Methods: Gene expression profiles and clinical characteristics data of 208 samples of metastatic CRPC, including castration-resistant prostate adenocarcinoma (CRPC-adeno) and castration-resistant neuroendocrine prostate adenocarcinoma (CRPC-NE), were obtained from the prad_su2c_2019 dataset. Weighted Gene Co-expression Network Analysis (WGCNA) was subsequently used to construct a free-scale gene co-expression network to study the interrelationship between the potential modules and clinical features of metastatic prostate adenocarcinoma and to identify hub genes in the modules. Furthermore, the least absolute shrinkage and selection operator (LASSO) regression analysis was used to build a model to predict the clinical characteristics of CRPC-NE. The findings were then verified in the nepc_wcm_2016 dataset. Results: A total of 51 co-expression modules were successfully constructed using WGCNA, of which three co-expression modules were found to be significantly associated with the neuroendocrine features and the NEPC score. In total, four novel genes, including NPTX1, PCSK1, ASXL3, and TRIM9, were all significantly upregulated in NEPC compared with the adenocarcinoma samples, and these genes were all associated with the neuroactive ligand receptor interaction pathway. Next, the expression levels of these four genes were used to construct an NEPC diagnosis model, which was successfully able to distinguish CRPC-NE from CRPC-adeno samples in both the training and the validation cohorts. Moreover, the values of the area under the receiver operating characteristic (AUC) were 0.995 and 0.833 for the training and validation cohorts, respectively. Conclusion: The present study identified four specific novel biomarkers for therapy-related NEPC, and these biomarkers may serve as an effective tool for the diagnosis of NEPC, thereby meriting further study.
Collapse
Affiliation(s)
- Cuijian Zhang
- Department of Urology, Peking University First Hospital Institute of Urology, National Urological Cancer Center, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li S, Zhang H, Wei X. Roles and Mechanisms of Deubiquitinases (DUBs) in Breast Cancer Progression and Targeted Drug Discovery. Life (Basel) 2021; 11:life11090965. [PMID: 34575114 PMCID: PMC8467271 DOI: 10.3390/life11090965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinase (DUB) is an essential component in the ubiquitin—proteasome system (UPS) by removing ubiquitin chains from substrates, thus modulating the expression, activity, and localization of many proteins that contribute to tumor development and progression. DUBs have emerged as promising prognostic indicators and drug targets. DUBs have shown significant roles in regulating breast cancer growth, metastasis, resistance to current therapies, and several canonical oncogenic signaling pathways. In addition, specific DUB inhibitors have been identified and are expected to benefit breast cancer patients in the future. Here, we review current knowledge about the effects and molecular mechanisms of DUBs in breast cancer, providing novel insight into treatments of breast cancer-targeting DUBs.
Collapse
|
42
|
Wang Y, Yu J. Dissecting multiple roles of SUMOylation in prostate cancer. Cancer Lett 2021; 521:88-97. [PMID: 34464672 DOI: 10.1016/j.canlet.2021.08.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022]
Abstract
Protein modification with small ubiquitin-like modifiers (SUMOs) plays dual roles in prostate cancer (PCa) tumorigenesis and development. Any intermediary of the SUMO conjugation cycle going awry may forfeit the balance between tumorigenic potential and anticancer effects. Deregulated SUMOylation on the androgen receptor and oncoproteins also takes part in this pathological process, as exemplified by STAT3/NF-κB and tumor suppressors such as PTEN and p53. Here, we outline recent developments and discoveries of SUMOylation in PCa and present an overview of its multiple roles in PCa tumorigenesis/promotion and suppression, while elucidating its potential as a therapeutic target for PCa.
Collapse
Affiliation(s)
- Yishu Wang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|