1
|
Leino A, Nostolahti A, Ahtikoski A, Huvila J. Molecular Subtype and Mutational Profile of Endometrial Atypical Hyperplasia/Endometrioid Intraepithelial Neoplasia. Int J Gynecol Pathol 2025:00004347-990000000-00235. [PMID: 40341112 DOI: 10.1097/pgp.0000000000001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Endometrial atypical hyperplasia/endometrioid intraepithelial neoplasia (EAH/EIN) is the acknowledged precursor of most endometrial carcinomas. Our aim was to assess the molecular alterations and the 4 specific molecular subtypes in EAH/EIN diagnosed on endometrial biopsy. Forty EAH/EIN biopsies were stained for estrogen receptor (ER), mismatch repair (MMR) proteins (PMS2 and MSH6), and p53 and were subjected to genomic testing (NGS Panel, Canexia Health V5). Based on these results, cases were assigned to 1 of 4 molecular subtypes [POLEmut, MMRd, p53abn, and no specific molecular profile (NSMP)]. Follow-up data was collected. There was 1 POLEmut case with a pathogenic POLE mutation (P286R), 5 were MMRd, 1 was p53abn, and the remaining 33 were NSMP. Thirty-nine of 40 cases harbored one or several mutations known to be associated with endometrial carcinoma pathogenesis (PIK3CA, PTEN, and CTNNB1). On follow-up, there was carcinoma or EAH identified in a subsequent hysterectomy or biopsy in 6 of 6 patients with MMRd or p53abn EAH, compared with 19 of 34 with NSMP or POLEmut (P=0.067). Most EAH/EIN (33/40, 81.5%) are of the NSMP molecular subtype. Molecular subtypes other than NSMP (eg, POLE mutation, MMR deficiency, and p53 mutant pattern staining) are present in EAH/EIN but are less common than in carcinoma. Mutations associated with EC pathogenesis were identified in 39/40 (97.5%) biopsies containing EAH/EIN, highlighting the neoplastic nature of this lesion and raising the possibility of using sequencing (NGS) as an adjuvant test to support a diagnosis of EAH/EIN.
Collapse
Affiliation(s)
- Annamari Leino
- Department of Pathology, Turku University Hospital, University of Turku, Turku
| | - Anton Nostolahti
- Department of Pathology, Turku University Hospital, University of Turku, Turku
| | - Anne Ahtikoski
- Department of Pathology, Turku University Hospital, University of Turku, Turku
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland
| | - Jutta Huvila
- Department of Pathology, Turku University Hospital, University of Turku, Turku
| |
Collapse
|
2
|
Chou AJ, Bing RS, Ding DC. Endometrial Atypical Hyperplasia and Risk of Endometrial Cancer. Diagnostics (Basel) 2024; 14:2471. [PMID: 39594136 PMCID: PMC11593242 DOI: 10.3390/diagnostics14222471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Endometrial atypical hyperplasia (EAH) is a premalignant condition with a substantial risk of progression to endometrial cancer (EC), with the endometrioid subtype being the most common. EAH is characterized by abnormal endometrial gland proliferation and cellular atypia, often resulting from prolonged unopposed estrogen exposure. This review aims to explore the clinical significance of EAH, its risk of progression to EC, and the current approaches to management. The risk of EAH progressing to EC ranges from 20 to 50%, influenced by factors such as histopathology and genetic mutations including PTEN and KRAS. Key risk factors include obesity, polycystic ovary syndrome, and postmenopausal status. Abnormal uterine bleeding is a hallmark symptom of EAH and early-stage EC, necessitating diagnostic evaluation through endometrial biopsy and transvaginal ultrasonography. Therapeutic management strategies depend on patient risk and fertility considerations. Hormonal therapy, particularly progestins, is the mainstay for fertility preservation, while hysterectomy is preferred for higher-risk patients. Regular monitoring with biopsies is essential for those undergoing conservative treatment. Recent advancements in the management of EAH and EC have shifted towards incorporation of molecular diagnostics and targeted therapies, enabling better risk stratification and individualized care. Biomarkers and minimally invasive surgical techniques are emerging as promising approaches in improving outcomes for women with EAH. This review underscores the importance of early diagnosis and personalized management in preventing the progression of EAH to EC, highlighting current clinical practices and potential future developments in this field.
Collapse
Affiliation(s)
- An-Ju Chou
- Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, New Taipei City 231, Taiwan; (A.-J.C.); (R.-S.B.)
| | - Ruo-Shi Bing
- Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, New Taipei City 231, Taiwan; (A.-J.C.); (R.-S.B.)
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
3
|
Nishijima Y, Inoue N, Iwase A, Ikota H, Kobayashi S, Yokoo H, Saio M. Lamin A and Emerin Protein Expression Remains Consistently Low and Nuclear Size is Unchanged in Normal Endometrium, Precancerous Lesions, and Endometrioid Carcinoma. Int J Gynecol Pathol 2024:00004347-990000000-00203. [PMID: 39479965 DOI: 10.1097/pgp.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Nuclear laminar or inner nuclear membrane proteins, including lamin A, B1, and B2 and emerin, are involved in maintaining nuclear morphology. However, their expression patterns vary among tumors and remain incompletely understood. Endometrioid carcinoma (EC) exhibits mild nuclear atypia, although the underlying reasons have not been thoroughly explored. In this study, we quantitatively analyzed emerin and lamin A, B1, and B2 expression levels in normal endometrium (NE), precancerous lesions, and EC using computer-assisted image analysis to assess the proteins' roles in nuclear morphologic change during tumorigenesis. From NE to EC, nuclear size remained unchanged, and lamin A and emerin were consistently expressed at low levels, whereas lamin B1 and B2 expression gradually decreased. Given the association between lamin A and emerin as well as their roles in nuclear morphology, these results indicate that their consistent low expression may underlie the preservation of nuclear size and shape in EC relative to NE. Conversely, lamin B1 and B2 are implicated in tumor progression rather than nuclear morphology maintenance. As lamin A and emerin are expressed in many organs and tumors, the consistently low expression of these proteins from NE to EC highlights a notable feature of the endometrium and endometrial carcinogenesis.
Collapse
Affiliation(s)
- Yoshimi Nishijima
- Laboratory of Histopathology and Cytopathology, Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences
| | - Naoki Inoue
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine
| | - Hayato Ikota
- Clinical Department of Pathology, Gunma University Hospital
| | - Sayaka Kobayashi
- Laboratory of Histopathology and Cytopathology, Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masanao Saio
- Laboratory of Histopathology and Cytopathology, Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences
| |
Collapse
|
4
|
Morgan JE, Jaferi N, Shonibare Z, Huang GS. ARID1A in Gynecologic Precancers and Cancers. Reprod Sci 2024; 31:2150-2162. [PMID: 38740655 DOI: 10.1007/s43032-024-01585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
The highest frequency of genetic alterations in the tumor suppressor ARID1A occurs in malignancies of the female reproductive tract. The prevalence of ARID1A alterations in gynecologic precancers and cancers is summarized from the literature, and the putative mechanisms of tumor suppressive action examined both in benign/precursor lesions including endometriosis and atypical hyperplasia and in malignancies of the ovary, uterus, cervix and vagina. ARID1A alterations in gynecologic cancers are usually loss-of-function mutations, resulting in diminished or absent protein expression. ARID1A deficiency results in pleiotropic downstream effects related not only to its role in transcriptional regulation as a SWI/SNF complex subunit, but also related to the functions of ARID1A in DNA replication and repair, immune modulation, cell cycle progression, endoplasmic reticulum (ER) stress and oxidative stress. The most promising actionable signaling pathway interactions and therapeutic vulnerabilities of ARID1A mutated cancers are presented with a critical review of the currently available experimental and clinical evidence. The role of ARID1A in response to chemotherapeutic agents, radiation therapy and immunotherapy is also addressed. In summary, the multi-faceted role of ARID1A mutation in precancer and cancer is examined through a clinical lens focused on development of novel preventive and therapeutic interventions for gynecological cancers.
Collapse
Affiliation(s)
- Jaida E Morgan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Nishah Jaferi
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Zainab Shonibare
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Gloria S Huang
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology, Yale School of Medicine, Yale Cancer Center, Yale University, PO Box 208063, New Haven, CT, 06520-8063, USA.
| |
Collapse
|
5
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
6
|
Stan A, Bosart K, Kaur M, Vo M, Escorcia W, Yoder RJ, Bouley RA, Petreaca RC. Detection of driver mutations and genomic signatures in endometrial cancers using artificial intelligence algorithms. PLoS One 2024; 19:e0299114. [PMID: 38408048 PMCID: PMC10896512 DOI: 10.1371/journal.pone.0299114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Analyzed endometrial cancer (EC) genomes have allowed for the identification of molecular signatures, which enable the classification, and sometimes prognostication, of these cancers. Artificial intelligence algorithms have facilitated the partitioning of mutations into driver and passenger based on a variety of parameters, including gene function and frequency of mutation. Here, we undertook an evaluation of EC cancer genomes deposited on the Catalogue of Somatic Mutations in Cancers (COSMIC), with the goal to classify all mutations as either driver or passenger. Our analysis showed that approximately 2.5% of all mutations are driver and cause cellular transformation and immortalization. We also characterized nucleotide level mutation signatures, gross chromosomal re-arrangements, and gene expression profiles. We observed that endometrial cancers show distinct nucleotide substitution and chromosomal re-arrangement signatures compared to other cancers. We also identified high expression levels of the CLDN18 claudin gene, which is involved in growth, survival, metastasis and proliferation. We then used in silico protein structure analysis to examine the effect of certain previously uncharacterized driver mutations on protein structure. We found that certain mutations in CTNNB1 and TP53 increase protein stability, which may contribute to cellular transformation. While our analysis retrieved previously classified mutations and genomic alterations, which is to be expected, this study also identified new signatures. Additionally, we show that artificial intelligence algorithms can be effectively leveraged to accurately predict key drivers of cancer. This analysis will expand our understanding of ECs and improve the molecular toolbox for classification, diagnosis, or potential treatment of these cancers.
Collapse
Affiliation(s)
- Anda Stan
- Biology Program, The Ohio State University, Marion, Ohio, United States of America
| | - Korey Bosart
- Biology Program, The Ohio State University, Marion, Ohio, United States of America
| | - Mehak Kaur
- Biology Program, The Ohio State University, Marion, Ohio, United States of America
| | - Martin Vo
- Biology Department, Xavier University, Cincinnati, Ohio, United States of America
| | - Wilber Escorcia
- Biology Department, Xavier University, Cincinnati, Ohio, United States of America
| | - Ryan J Yoder
- Department of Chemistry and Biochemistry, The Ohio State University, Marion, Ohio, United States of America
| | - Renee A Bouley
- Department of Chemistry and Biochemistry, The Ohio State University, Marion, Ohio, United States of America
| | - Ruben C Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, Ohio, United States of America
- James Comprehensive Cancer Center, The Ohio State University Columbus, Columbus, Ohio, United States of America
| |
Collapse
|
7
|
Chen S, Gallant S, Cunningham MJ, Robson CD, Church AJ, Perez-Atayde AR, Al-Ibraheemi A. CTNNB1 and APC Mutations in Sinonasal Myxoma : Expanding the Spectrum of Tumors Driven By WNT/β-catenin Pathway. Am J Surg Pathol 2023; 47:1291-1300. [PMID: 37589277 DOI: 10.1097/pas.0000000000002112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Sinonasal myxoma (SNM) is a rare, benign mesenchymal neoplasm with distinct clinicopathologic features and aberrant nuclear localization of β-catenin by immunohistochemistry. The molecular underpinnings have been linked to that of a "myxoid variant" of desmoid fibromatosis. Herein, we describe a series of 8 cases of SNM and propose clinical and biologic differences compared with desmoid fibromatosis. Our patient cohort is comprised of 5 males and 3 females (age range: 10 mo to 12 y), 6 of whom are aged less than or equal to 24 months. All presented with facial swelling, reflecting lesions involving the maxillary bone, and all underwent resection. All tumors were variably cellular and comprised of bland spindled to stellate cells in a profusely myxoid background with diffuse nuclear β-catenin expression. All cases of SNM were analyzed by next-generation sequencing using the Oncopanel assay. Three cases failed sequencing, 2 of 5 successful cases exhibited exon 3 CTNNB1 alterations involving the ubiquitin recognition motif, and 3 had adenomatous polyposis coli ( APC ) deletions. One patient had APC germline testing which was negative. No germline testing was available for the remaining 7 patients. Follow-up data over a range of 1 month to 23 years was available for 7 of the 8 SNMs. One case patient had local recurrence, and all were alive without evidence of disease. This is in contrast to the high recurrence rate typically seen in desmoid fibromatosis, particularly after resection. Our findings expand the spectrum of tumors with underlying WNT/β-catenin pathway and highlight the histologic, clinical, and genetic differences of SNM compared with desmoid fibromatosis. APC deletion raises the possibility of underlying germline alteration and familial adenomatous polyposis.
Collapse
Affiliation(s)
- Sonja Chen
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Sara Gallant
- Departments of Otolaryngology and Communication Enhancement
- Harvard Medical School, Boston, MA
| | - Michael J Cunningham
- Departments of Otolaryngology and Communication Enhancement
- Harvard Medical School, Boston, MA
| | | | - Alanna J Church
- Pathology and Laboratory Medicine, Boston Children's Hospital
- Harvard Medical School, Boston, MA
| | - Antonio R Perez-Atayde
- Pathology and Laboratory Medicine, Boston Children's Hospital
- Harvard Medical School, Boston, MA
| | - Alyaa Al-Ibraheemi
- Pathology and Laboratory Medicine, Boston Children's Hospital
- Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Fontana D, Crespiatico I, Crippa V, Malighetti F, Villa M, Angaroni F, De Sano L, Aroldi A, Antoniotti M, Caravagna G, Piazza R, Graudenzi A, Mologni L, Ramazzotti D. Evolutionary signatures of human cancers revealed via genomic analysis of over 35,000 patients. Nat Commun 2023; 14:5982. [PMID: 37749078 PMCID: PMC10519956 DOI: 10.1038/s41467-023-41670-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Recurring sequences of genomic alterations occurring across patients can highlight repeated evolutionary processes with significant implications for predicting cancer progression. Leveraging the ever-increasing availability of cancer omics data, here we unveil cancer's evolutionary signatures tied to distinct disease outcomes, representing "favored trajectories" of acquisition of driver mutations detected in patients with similar prognosis. We present a framework named ASCETIC (Agony-baSed Cancer EvoluTion InferenCe) to extract such signatures from sequencing experiments generated by different technologies such as bulk and single-cell sequencing data. We apply ASCETIC to (i) single-cell data from 146 myeloid malignancy patients and bulk sequencing from 366 acute myeloid leukemia patients, (ii) multi-region sequencing from 100 early-stage lung cancer patients, (iii) exome/genome data from 10,000+ Pan-Cancer Atlas samples, and (iv) targeted sequencing from 25,000+ MSK-MET metastatic patients, revealing subtype-specific single-nucleotide variant signatures associated with distinct prognostic clusters. Validations on several datasets underscore the robustness and generalizability of the extracted signatures.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ilaria Crespiatico
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentina Crippa
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Malighetti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fabrizio Angaroni
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
- Center of Computational Biology, Human Technopole, Milano, Italy
| | - Luca De Sano
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Hematology and Clinical Research Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marco Antoniotti
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre-B4, Milan, Italy
| | - Giulio Caravagna
- Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alex Graudenzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy.
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre-B4, Milan, Italy.
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR), Segrate, Milan, Italy.
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
9
|
Aguilar M, Chen H, Sahoo SS, Zheng W, Grubman J, SoRelle JA, Lucas E, Castrillon DH. β-catenin, Pax2, and Pten Panel Identifies Precancers Among Histologically Subdiagnostic Endometrial Lesions. Am J Surg Pathol 2023; 47:618-629. [PMID: 36939046 PMCID: PMC10101134 DOI: 10.1097/pas.0000000000002034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Despite refinements in histologic criteria for the diagnosis of endometrioid precancers, many challenging cases are encountered in daily practice, creating diagnostic uncertainty and suboptimal patient management. Recently, an immunohistochemical 3-marker panel consisting of β-catenin, Pax2, and Pten was identified as a useful diagnostic adjunct. However, previous studies focused either on cancers or diagnostically unambiguous precancers, leaving questions about the applicability and utility of the panel in endometria with architectural features near or below the threshold of accepted histologic criteria for endometrioid precancers. Here, in a retrospective study of 90 patients, we evaluated the performance of the 3-marker panel. Notably, the panel detected a subset of disordered proliferative endometria (8/44, 18%), nonatypical hyperplasias (19/40, 48%), and cases with ambiguous features (3/6, 50%) with aberrancy for ≥1 markers. Marker-aberrant cases were more likely to progress to endometrioid precancer or cancer ( P =0.0002). Patterns of marker aberrancy in the index and progressor cases from individual patients provided evidence for origin in a common precursor, and next-generation sequencing of the progressor cases rationalized marker aberrancy for β-catenin and Pten. The results unequivocally demonstrate that some lesions that do not approach current histologic thresholds are bona fide neoplastic precursors with clinically-relevant driver events that can be detected by the 3-marker panel. The findings provide further validation for the diagnostic utility of the panel in clinical practice and its application in difficult or ambiguous cases.
Collapse
Affiliation(s)
| | | | | | - Wenxin Zheng
- Departments of Pathology
- Obstetrics and Gynecology
- Harold C. Simmons Comprehensive Cancer Center
| | | | - Jeffrey A. SoRelle
- Departments of Pathology
- Once Upon a Time Human Genomics Center, UT Southwestern Medical Center, Dallas, TX
| | - Elena Lucas
- Departments of Pathology
- Harold C. Simmons Comprehensive Cancer Center
| | - Diego H. Castrillon
- Departments of Pathology
- Obstetrics and Gynecology
- Harold C. Simmons Comprehensive Cancer Center
| |
Collapse
|
10
|
Orazov MR, Mikhaleva LM, Mullina IA. Endometrial hyperplasia and progesterone resistance: a complex relationship. RUDN JOURNAL OF MEDICINE 2023. [DOI: 10.22363/2313-0245-2023-27-1-65-70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The endometrium is one of the most dynamic tissues that constantly undergoes changes during the menstrual cycle in women of the reproductive period. All these processes take place mainly under the influence of steroid hormones that are produced in the woman’s body. However, it is important to remember that throughout life the endometrial tissue undergoes changes under the influence of various factors that lead to imbalances in hormonal regulation. All these changes can lead to the development of endometrial hyperplasia, which has a high risk of both recurrence and malignization. Over the past few decades, the incidence of endometrial cancer has increased in many countries. This trend is thought to be related to the increasing prevalence of obesity, as well as to changing female reproductive patterns. Although there are currently no well-established screening programmers for endometrial cancer, endometrial hyperplasia is a recognized precursor, and its detection provides an opportunity for prevention. Studying the pathogenesis and risk factors will give a great advantage in the future to prevent possible complications. At this point, the activity and inhibition of the different hormone isoforms can lead to different hyperplastic processes. The management of patients depends on many factors: age, species, reproductive potential and other factors. Therefore, a comprehensive approach to treatment is always necessary. In recent years, interest in the study of endometrial hyperplasia has increased dramatically due to the increase in endometrial cancer. Therefore, the issue of early diagnosis and prevention is most urgent in modern gynecology and requires further study. This review reflects the current understanding of the disruption of progesterone signaling mechanisms in endometrial hyperplasia according to domestic and foreign literature.
Collapse
|
11
|
Rasheed S, Bouley RA, Yoder RJ, Petreaca RC. Protein Arginine Methyltransferase 5 (PRMT5) Mutations in Cancer Cells. Int J Mol Sci 2023; 24:6042. [PMID: 37047013 PMCID: PMC10094674 DOI: 10.3390/ijms24076042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Arginine methylation is a form of posttranslational modification that regulates many cellular functions such as development, DNA damage repair, inflammatory response, splicing, and signal transduction, among others. Protein arginine methyltransferase 5 (PRMT5) is one of nine identified methyltransferases, and it can methylate both histone and non-histone targets. It has pleiotropic functions, including recruitment of repair machinery to a chromosomal DNA double strand break (DSB) and coordinating the interplay between repair and checkpoint activation. Thus, PRMT5 has been actively studied as a cancer treatment target, and small molecule inhibitors of its enzymatic activity have already been developed. In this report, we analyzed all reported PRMT5 mutations appearing in cancer cells using data from the Catalogue of Somatic Mutations in Cancers (COSMIC). Our goal is to classify mutations as either drivers or passengers to understand which ones are likely to promote cellular transformation. Using gold standard artificial intelligence algorithms, we uncovered several key driver mutations in the active site of the enzyme (D306H, L315P, and N318K). In silico protein modeling shows that these mutations may affect the affinity of PRMT5 for S-adenosylmethionine (SAM), which is required as a methyl donor. Electrostatic analysis of the enzyme active site shows that one of these mutations creates a tunnel in the vicinity of the SAM binding site, which may allow interfering molecules to enter the enzyme active site and decrease its activity. We also identified several non-coding mutations that appear to affect PRMT5 splicing. Our analyses provide insights into the role of PRMT5 mutations in cancer cells. Additionally, since PRMT5 single molecule inhibitors have already been developed, this work may uncover future directions in how mutations can affect targeted inhibition.
Collapse
Affiliation(s)
- Shayaan Rasheed
- James Comprehensive Cancer Center, The Ohio State University Columbus, Columbus, OH 43210, USA
- Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Renee A. Bouley
- Department of Chemistry and Biochemistry, The Ohio State University, Marion, OH 43302, USA
| | - Ryan J. Yoder
- Department of Chemistry and Biochemistry, The Ohio State University, Marion, OH 43302, USA
| | - Ruben C. Petreaca
- James Comprehensive Cancer Center, The Ohio State University Columbus, Columbus, OH 43210, USA
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| |
Collapse
|
12
|
Highly Sensitive Microsatellite Instability and Immunohistochemistry Assessment in Endometrial Aspirates as a Tool for Cancer Risk Individualization in Lynch Syndrome. Mod Pathol 2023; 36:100158. [PMID: 36918055 DOI: 10.1016/j.modpat.2023.100158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/22/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
Women with Lynch syndrome (LS) are at increased risk of endometrial cancer (EC), among other tumors, and are characterized by mismatch repair (MMR) deficiency and microsatellite instability (MSI). While risk-reducing gynecological surgeries are effective in decreasing EC incidence, doubts arise regarding the appropriate timing of the surgery. We explored the usefulness of highly-sensitive MSI (hs-MSI) assessment in endometrial aspirates for the individualization of gynecological surveillance in LS carriers. Ninety-three women with LS, 25 sporadic EC patients (9 MMR-proficient and 16 MMR-deficient), and 30 women with benign gynecological disease were included in this study. Hs-MSI was assessed in prospectively collected endometrial aspirates in 67 LS carriers, EC cases, and controls. MMR, PTEN, ARID1A, and PAX2 expression patterns were evaluated in LS samples. Follow-up aspirates from eight LS carriers were also analyzed. Elevated hs-MSI scores were detected in all aspirates from MMR-deficient EC cases (3 LS and 16 sporadic), being negative in aspirates from controls and MMR-proficient EC cases. Positive hs-MSI scores were also detected in all four LS aspirates reported as complex hyperplasia. High hs-MSI was also present in 10 of 49 aspirates (20%) from LS carriers presenting a morphologically normal endometrium, where MMR expression loss was detected in 69% of the samples. Interestingly, the hs-MSI score was positively correlated with MMR-deficient gland density and the presence of MMR-deficient clusters, colocalizing with PTEN and ARID1A expression loss. High hs-MSI scores and clonality were evidenced in two samples collected up to four months before EC diagnosis; hs-MSI scores increased over time in five LS carriers, whereas they decreased in a patient with endometrial hyperplasia after progestin therapy. In LS carriers, elevated hs-MSI scores were detected in aspirates from premalignant and malignant lesions and normal endometrium, correlating with MMR protein loss. Hs-MSI assessment and MMR immunohistochemistry may help individualize EC risk assessment in women with LS.
Collapse
|
13
|
Asaka S, Liu Y, Yu ZC, Rahmanto YS, Ono M, Asaka R, Miyamoto T, Yen TT, Ayhan A, Wang TL, Shih IM. ARID1A Regulates Progesterone Receptor Expression in Early Endometrial Endometrioid Carcinoma Pathogenesis. Mod Pathol 2023; 36:100045. [PMID: 36853791 DOI: 10.1016/j.modpat.2022.100045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 01/11/2023]
Abstract
Loss of progesterone receptor (PR) expression is an established risk factor for unresponsiveness to progesterone therapy in patients with endometrial atypical hyperplasia and endometrioid carcinoma. ARID1A is one of the most commonly mutated genes in endometrioid carcinomas, and the loss of its expression is associated with tumor progression. In this study, we investigated the roles of ARID1A deficiency in PR expression in human and murine endometrial epithelial neoplasia. An analysis of genome-wide chromatin immunoprecipitation sequencing in isogenic ARID1A-/- and ARID1A+/+ human endometrial epithelial cells revealed that ARID1A-/- cells showed significantly reduced chromatin immunoprecipitation sequencing signals for ARID1A, BRG1, and H3K27AC in the PgR enhancer region. We then performed immunohistochemistry to correlate the protein expression levels of ARID1A, estrogen receptor, and PR in 50 human samples of endometrial atypical hyperplasia and 75 human samples of endometrial carcinomas. The expression levels of PR but not were significantly lower in ARID1A-deficient low-grade endometrial carcinomas and atypical hyperplasia (P = .0002). When Pten and Pten/Arid1a conditional knockout murine models were used, Pten-/-;Arid1a-/- mice exhibited significantly decreased epithelial PR expression in endometrial carcinomas (P = .003) and atypical hyperplasia (P < .0001) compared with that in the same tissues from Pten-/-;Arid1a+/+ mice. Our data suggest that the loss of ARID1A expression, as occurs in ARID1A-mutated endometrioid carcinomas, decreases PgR transcription by modulating the PgR enhancer region during early tumor development.
Collapse
Affiliation(s)
- Shiho Asaka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ying Liu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zheng-Cheng Yu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yohan Suryo Rahmanto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Motoki Ono
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryoichi Asaka
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tsutomu Miyamoto
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ting-Tai Yen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ayse Ayhan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Seirei Mikatahara Hospital, Hamamatsu, Japan; Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
14
|
Wang J, Zhong F, Li J, Yue H, Li W, Lu X. The epigenetic factor CHD4 contributes to metastasis by regulating the EZH2/β-catenin axis and acts as a therapeutic target in ovarian cancer. J Transl Med 2023; 21:38. [PMID: 36681835 PMCID: PMC9862813 DOI: 10.1186/s12967-022-03854-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/26/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The overall survival rate of patients with advanced ovarian cancer (OC) has remained static for several decades. Advanced ovarian cancer is known for its poor prognosis due to extensive metastasis. Epigenetic alterations contribute to tumour progression and therefore are of interest for potential therapeutic strategies. METHODS Following our previous study, we identified that CHD4, a chromatin remodelling factor, plays a strong role in ovarian cancer cell metastasis. We investigated the clinical significance of CHD4 through TCGA and GEO database analyses and explored the effect of CHD4 expression modulation and romidepsin treatment on the biological behaviour of ovarian cancer through CCK-8 and transwell assays. Bioluminescence imaging of tumours in xenografted mice was applied to determine the therapeutic effect of romidepsin. GSEA and western blotting were used to screen the regulatory mechanism of CHD4. RESULTS In ovarian cancer patient specimens, high CHD4 expression was associated with a poor prognosis. Loss of function of CHD4 in ovarian cancer cells induced suppression of migration and invasion. Mechanistically, CHD4 knockdown suppressed the expression of EZH2 and the nuclear accumulation of β-catenin. CHD4 also suppressed the metastasis of ovarian cancer cells and prevented disease progression in a mouse model. To inhibit the functions of CHD4 that are mediated by histone deacetylase, we evaluated the effect of the HDAC1/2 selective inhibitor romidepsin. Our findings indicated that treatment with romidepsin suppressed the progression of metastases in vitro and in vivo. CONCLUSIONS Collectively, our results uncovered an oncogenic function of CHD4 in ovarian cancer and provide a rationale for clinical trials of romidepsin in ovarian cancer patients.
Collapse
Affiliation(s)
- Jieyu Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200090, China
| | - Fangfang Zhong
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China
| | - Jun Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China
| | - Huiran Yue
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China
| | - Wenzhi Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200090, China
| | - Xin Lu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200090, China.
| |
Collapse
|
15
|
Peng H, Jiang J, Li X. Endometrial Cancer Following Levonorgestrel-Releasing Intrauterine System Insertion in Young Women with Atypical Hyperplasia: Two Case Reports and Literature Review. Reprod Sci 2022; 29:3278-3284. [PMID: 35641856 PMCID: PMC9154205 DOI: 10.1007/s43032-022-00982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Levonorgestrel-releasing intrauterine system (LNG-IUS) insertion is the first-line treatment for atypical hyperplasia (AH) in young women who wish to retain their fertility. However, the procedure is not always effective, and may allow AH to progress to endometrioid endometrial cancer (EEC). Two young women with AH who wished to preserve their fertility developed EEC following 52-mg LNG-IUS in insertion at our institution. One was a 34-year-old woman diagnosed with endometrial cancer 2 years after LNG-IUS insertion. The second was a 30-year-old woman diagnosed 17 months after LNG-IUS insertion. Proactive molecular risk classification for endometrial cancer (ProMisE) classification revealed that the first and second patients had p53-abnormal (p53abn) EEC and mismatch repair deficient (MMR-d) EEC, respectively. MMR-d and p 53abn were frequently observed in both AH and EEC specimens. Studies suggest that MMR-d and p53abn are predictors of the occurrence adverse effects after fertility-preserving treatment for EEC. AH is a precursor of EEC. Therefore, p53 and mismatch repair (MMR) mutation may be used to identify women with AH who will not likely benefit from progestin therapy. Molecular assays in women with AH will likely be useful for identifying novel predictive biomarkers of progestin resistance and to improve the safety of conservative treatment. Combined assessment of progesterone receptor (PR) with these predictive molecular markers may improve the predictive ability.
Collapse
Affiliation(s)
- Hongfa Peng
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Hebei Province, Shijiazhuang City, 050000, China.
| | - Jingjing Jiang
- Department of Obstetrics and Gynecology, Hebei General Hospital, Hebei Province, Shijiazhuang City, 050051, China
| | - Xiaodong Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Hebei Province, Shijiazhuang City, 050000, China
| |
Collapse
|
16
|
Zhao L, Jiang L, Liu Y, Wang X, Song J, Sun Y, Bai Y, Dong X, Sun L, Wu J, Jiao Y, Zhao X. Integrated analysis of circulating tumour cells and circulating tumour DNA to detect minimal residual disease in hepatocellular carcinoma. Clin Transl Med 2022; 12:e793. [PMID: 35384341 PMCID: PMC8982315 DOI: 10.1002/ctm2.793] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Lina Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Jiang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunhe Liu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuebing Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Transplantation Center, National Clinical Research Center for Digestive Diseases (NCRC-DD), Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jinge Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinlei Bai
- Jinchenjunchuang Clinical Laboratory, Hangzhou, China
| | - Xiu Dong
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liying Sun
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Transplantation Center, National Clinical Research Center for Digestive Diseases (NCRC-DD), Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianxiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Munakata S. Diagnostic value of endometrial cytology and related technology. Diagn Cytopathol 2022; 50:363-366. [PMID: 35302716 DOI: 10.1002/dc.24956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Endometrial cytology is not much popular in the world, but is commonly used in a few countries. Although cytomorphological evaluation of endometrial cytology is complicating, recent advance in technology helps improve diagnostic accuracy. In addition, new reporting system, The Yokohama System, has been introduced as a standard reporting system resembling The Bethesda System of the uterine cervical cytology. Although sample standardization is one of the causes in diagnostic problem, it was solved by liquid-based cytology (LBC) technology. In addition, standardized diagnostic algorithm by cytomorphological assessment of LBC samples, the Osaki Study Group (OSG) method, was recently proposed as a reliable and reproducible method. LBC can be utilized for ancillary methods. Application of immunocytochemistry and molecular technology on endometrial cytology samples has been studied to improve diagnostic accuracy. Recent progress of molecular technology has revealed many driver gene mutations in endometrial cancer and its precursors. Surprisingly, many studies revealed that even normal endometrial tissue had driver gene mutations. CONCLUSION Based on the recent advance in knowledge of molecular profile of endometrial lesions and normal endometrial tissue, endometrial cytology will gain much power in clinical usefulness.
Collapse
Affiliation(s)
- Satoru Munakata
- Department of Pathology, Hakodate Municipal Hospital, Hakodate, Japan
| |
Collapse
|
18
|
Youssef ASED, Abdel-Fattah MA, Lotfy MM, Nassar A, Abouelhoda M, Touny AO, Hassan ZK, Mohey Eldin M, Bahnassy AA, Khaled H, Zekri ARN. Multigene Panel Sequencing Reveals Cancer-Specific and Common Somatic Mutations in Colorectal Cancer Patients: An Egyptian Experience. Curr Issues Mol Biol 2022; 44:1332-1352. [PMID: 35723313 PMCID: PMC8947625 DOI: 10.3390/cimb44030090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
This study aims at identifying common pathogenic somatic mutations at different stages of colorectal carcinogenesis in Egyptian patients. Our cohort included colonoscopic biopsies collected from 120 patients: 20 biopsies from patients with inflammatory bowel disease, 38 from colonic polyp patients, and 62 from patients with colorectal cancer. On top of this, the cohort included 20 biopsies from patients with non-specific mild to moderated colitis. Targeted DNA sequencing using a customized gene panel of 96 colorectal related genes running on the Ion Torrent NGS technology was used to process the samples. Our results revealed that 69% of all cases harbored at least one somatic mutation. Fifty-seven genes were found to carry 232 somatic non-synonymous variants. The most frequently pathogenic somatic mutations were localized in TP53, APC, KRAS, and PIK3CA. In total, 16 somatic mutations were detected in the CRC group and in either the IBD or CP group. In addition, our data showed that 51% of total somatic variants were CRC-specific variants. The average number of CRC-specific variants per sample is 2.4. The top genes carrying CRC-specific mutations are APC, TP53, PIK3CA, FBXW7, ATM, and SMAD4. It seems obvious that TP53 and APC genes were the most affected genes with somatic mutations in all groups. Of interest, 85% and 28% of the APC and TP53 deleterious somatic mutations were located in Exon 14 and Exon 3, respectively. Besides, 37% and 28% of the total somatic mutations identified in APC and TP53 were CRC-specific variants, respectively. Moreover, we identified that, in 29 somatic mutations in 21 genes, their association with CRC patients was unprecedented. Ten detected variants were likely to be novel: six in PIK3CA and four variants in FBXW7. The detected P53, Wnt/βcatenin, Angiogenesis, EGFR, TGF-β and Interleukin signaling pathways were the most altered pathways in 22%, 16%, 12%, 10%, 9% and 9% of the CRC patients, respectively. These results would contribute to a better understanding of the colorectal cancer and in introducing personalized therapies for Egyptian CRC patients.
Collapse
Affiliation(s)
- Amira Salah El-Din Youssef
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | | | - Mai M. Lotfy
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | - Auhood Nassar
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | | | - Ahmed O. Touny
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Zeinab K. Hassan
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | - Mohammed Mohey Eldin
- Tropical Medicine Department, El Kasr Al-Aini, Cairo University, Cairo 11562, Egypt;
| | - Abeer A. Bahnassy
- Molecular Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Hussein Khaled
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Abdel Rahman N. Zekri
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| |
Collapse
|
19
|
Aguilar M, Chen H, Rivera-Colon G, Niu S, Carrick K, Gwin K, Cuevas IC, Sahoo SS, Li HD, Zhang S, Zheng W, Lucas E, Castrillon DH. Reliable Identification of Endometrial Precancers Through Combined Pax2, β-Catenin, and Pten Immunohistochemistry. Am J Surg Pathol 2022; 46:404-414. [PMID: 34545858 PMCID: PMC8860214 DOI: 10.1097/pas.0000000000001810] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The diagnosis of endometrial atypical hyperplasia/endometrioid intraepithelial neoplasia (AH/EIN) remains challenging and subjective in some cases, with variable histologic criteria and differences of opinion among gynecologic pathologists, potentially leading to under/overtreatment. There has been growing interest in the use of specific immunohistochemical markers as adjuncts in AH/EIN diagnosis. For example, the World Health Organization 2020 Classification specifies that loss of Pten, Pax2, or mismatch repair proteins are desirable diagnostic criteria. Other markers, most notably β-catenin and Arid1a, are also aberrantly expressed in some AH/EIN. However, the performance of some markers individually-and more importantly as a group-has not been rigorously explored, raising questions as to which marker(s) or combination(s) is the most effective in practice. Formalin-fixed paraffin-embedded tissue sections from AH/EIN cases (n=111) were analyzed by immunohistochemistry for 6 markers: Pax2, Pten, Mlh1, β-catenin, Arid1a, and p53. Aberrant expression was tabulated for each case and marker. An additional set of normal endometria (n=79) was also analyzed to define optimal diagnostic criteria for marker aberrance. The performance characteristics of each marker, the entire panel, and subsets thereof were quantitatively and statistically analyzed. In order of number of cases detected, the most frequently aberrant markers in AH/EIN were Pax2 (81.1% of cases), Pten (50.5%), β-catenin (47.7%), Arid1a (7.2%), Mlh1 (4.5%), and p53 (2.7%). The majority of cases showed aberrant expression of ≥2 markers. All 6 markers together identified 92.8% of cases. Arid1a, Mlh1, and p53 were robust and readily scored markers, but all cases showing aberrant expression of these 3 markers were also detected by Pax2, Pten, or β-catenin. A focused panel of only 3 markers (Pax2, Pten, and β-catenin) showed optimal performance characteristics as a diagnostic adjunct in the histopathologic diagnosis of AH/EIN. Use of this panel is practicable and robust, with at least 1 of the 3 markers being aberrant in 92.8% of AH/EIN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Song Zhang
- Population and Data Sciences, UT Southwestern Medical School
- Harold C. Simmons Comprehensive Cancer Center, Dallas, TX
| | - Wenxin Zheng
- Departments of Pathology
- Harold C. Simmons Comprehensive Cancer Center, Dallas, TX
| | - Elena Lucas
- Departments of Pathology
- Harold C. Simmons Comprehensive Cancer Center, Dallas, TX
| | - Diego H. Castrillon
- Departments of Pathology
- Harold C. Simmons Comprehensive Cancer Center, Dallas, TX
| |
Collapse
|
20
|
Megino-Luque C, Sisó P, Mota-Martorell N, Navaridas R, de la Rosa I, Urdanibia I, Albertí-Valls M, Santacana M, Pinyol M, Bonifaci N, Macià A, Llobet-Navas D, Gatius S, Matias-Guiu X, Eritja N. ARID1A-deficient cells require HDAC6 for progression of endometrial carcinoma. Mol Oncol 2022; 16:2235-2259. [PMID: 35167193 PMCID: PMC9168762 DOI: 10.1002/1878-0261.13193] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
AT‐rich interactive domain‐containing protein 1A (ARID1A) loss‐of‐function mutation accompanied by a loss of ARID1A protein expression is frequently observed in endometrial carcinomas. However, the molecular mechanisms linking these genetic changes to the altered pathways regulating tumour initiation, maintenance and/or progression remain poorly understood. Thus, the main aim of this study was to analyse the role of ARID1A loss of function in endometrial tumorigenesis. Here, using different endometrial in vitro and in vivo models, such as tumoral cell lines, 3D primary cultures and metastatic or genetically modified mouse models, we show that altered expression of ARID1A is not enough to initiate endometrial tumorigenesis. However, in an established endometrial cancer context, ARID1A loss of function accelerates tumoral progression and metastasis through the disruption of the G2/M cell cycle checkpoint and ATM/ATR‐mediated DNA damage checkpoints, increases epithelial cell proliferation rates and induces epithelial mesenchymal transition through the activation of histone deacetylase 6 (HDAC6). Next, we demonstrated that the inhibition of HDAC6 function, using the HDAC6‐specific inhibitor ACY1215 or by transfection with HDAC6 short hairpin RNA (shRNA), can reverse the migratory and invasive phenotype of ARID1A‐knockdown cells. Further, we also show that inhibition of HDAC6 activity causes an apoptotic vulnerability to etoposide treatments in ARID1A‐deficient cells. In summary, the findings exposed in this work indicate that the inhibition of HDAC6 activity is a potential therapeutic strategy for patients suffering from ARID1A‐mutant endometrial cancer diagnosed in advanced stages.
Collapse
Affiliation(s)
- Cristina Megino-Luque
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Pol Sisó
- Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Natalia Mota-Martorell
- Metabolic Physiopathology Group, Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Raúl Navaridas
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Inés de la Rosa
- Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Izaskun Urdanibia
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Manel Albertí-Valls
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Maria Santacana
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Scientific and Technical Service of Immunohistochemistry, Biomedical Research Institute of Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Miquel Pinyol
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Department of Pathology, Hospital Universitari Arnau de Vilanova, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Núria Bonifaci
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Anna Macià
- Oncologic Pathology Group, Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - David Llobet-Navas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sònia Gatius
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Av. Gran via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Núria Eritja
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| |
Collapse
|
21
|
MacLean JA, Hayashi K. Progesterone Actions and Resistance in Gynecological Disorders. Cells 2022; 11:647. [PMID: 35203298 PMCID: PMC8870180 DOI: 10.3390/cells11040647] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Estrogen and progesterone and their signaling mechanisms are tightly regulated to maintain a normal menstrual cycle and to support a successful pregnancy. The imbalance of estrogen and progesterone disrupts their complex regulatory mechanisms, leading to estrogen dominance and progesterone resistance. Gynecological diseases are heavily associated with dysregulated steroid hormones and can induce chronic pelvic pain, dysmenorrhea, dyspareunia, heavy bleeding, and infertility, which substantially impact the quality of women's lives. Because the menstrual cycle repeatably occurs during reproductive ages with dynamic changes and remodeling of reproductive-related tissues, these alterations can accumulate and induce chronic and recurrent conditions. This review focuses on faulty progesterone signaling mechanisms and cellular responses to progesterone in endometriosis, adenomyosis, leiomyoma (uterine fibroids), polycystic ovary syndrome (PCOS), and endometrial hyperplasia. We also summarize the association with gene mutations and steroid hormone regulation in disease progression as well as current hormonal therapies and the clinical consequences of progesterone resistance.
Collapse
Affiliation(s)
- James A. MacLean
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, 1770 NE Stadium Way, Pullman, WA 99164, USA
| | - Kanako Hayashi
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, 1770 NE Stadium Way, Pullman, WA 99164, USA
| |
Collapse
|
22
|
Chen H, Strickland AL, Castrillon DH. Histopathologic diagnosis of endometrial precancers: Updates and future directions. Semin Diagn Pathol 2021; 39:137-147. [PMID: 34920905 PMCID: PMC9035046 DOI: 10.1053/j.semdp.2021.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022]
Abstract
Early detection of endometrial cancer, especially its precancers, remains a critical and evolving issue in patient management and the quest to decrease mortality due to endometrial cancer. Due to many factors such as specimen fragmentation, the confounding influence of endogenous or exogenous hormones, and variable or overlapping histologic features, identification of bona fide endometrial precancers and their reliable discrimination from benign mimics remains one of the most challenging areas in diagnostic pathology. At the same time, the diagnosis of endometrial precancer, or the presence of suspicious but subdiagnostic features in an endometrial biopsy, can lead to long clinical follow-up with multiple patient visits and serial endometrial sampling, emphasizing the need for accurate diagnosis. Our understanding of endometrial precancers and their diagnosis has improved due to systematic investigations into morphologic criteria, the molecular genetics of endometrial cancer and their precursors, the validation of novel biomarkers and their use in panels, and more recent methods such digital image analysis. Although precancers for both endometrioid and non-endometrioid carcinomas will be reviewed, emphasis will be placed on the former. We review these advances and their relevance to the histopathologic diagnosis of endometrial precancers, and the recently updated 2020 World Health Organization (WHO) Classification of Female Genital Tumors.
Collapse
|
23
|
Mori S, Gotoh O, Kiyotani K, Low SK. Genomic alterations in gynecological malignancies: histotype-associated driver mutations, molecular subtyping schemes, and tumorigenic mechanisms. J Hum Genet 2021; 66:853-868. [PMID: 34092788 DOI: 10.1038/s10038-021-00940-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023]
Abstract
There are numerous histological subtypes (histotypes) of gynecological malignancies, with each histotype considered to largely reflect a feature of the "cell of origin," and to be tightly linked with the clinical behavior and biological phenotype of the tumor. The recent advances in massive parallel sequencing technologies have provided a more complete picture of the range of the genomic alterations that can persist within individual tumors, and have highlighted the types and frequencies of driver-gene mutations and molecular subtypes often associated with these histotypes. Several large-scale genomic cohorts, including the Cancer Genome Atlas (TCGA), have been used to characterize the genomic features of a range of gynecological malignancies, including high-grade serous ovarian carcinoma, uterine corpus endometrial carcinoma, uterine cervical carcinoma, and uterine carcinosarcoma. These datasets have also been pivotal in identifying clinically relevant molecular targets and biomarkers, and in the construction of molecular subtyping schemes. In addition, the recent widespread use of clinical sequencing for the more ubiquitous types of gynecological cancer has manifested in a series of large genomic datasets that have allowed the characterization of the genomes, driver mutations, and histotypes of even rare cancer types, with sufficient statistical power. Here, we review the field of gynecological cancer, and seek to describe the genomic features by histotype. We also will demonstrate how these are linked with clinicopathological attributes and highlight the potential tumorigenic mechanisms.
Collapse
Affiliation(s)
- Seiichi Mori
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Osamu Gotoh
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Siew Kee Low
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
24
|
Novillo A, Fernández-Santander A, Gaibar M, Galán M, Romero-Lorca A, El Abdellaoui-Soussi F, Gómez-Del Arco P. Role of Chromodomain-Helicase-DNA-Binding Protein 4 (CHD4) in Breast Cancer. Front Oncol 2021; 11:633233. [PMID: 33981601 PMCID: PMC8107472 DOI: 10.3389/fonc.2021.633233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Chromodomain-helicase-DNA-binding protein 4 (CHD4) is an epigenetic regulator identified as an oncogenic element that may provide a novel therapeutic target for the treatment of breast cancer (BC). CHD4—the core component of the nucleosome remodeling and deacetylase (NuRD) complex—may be mutated in patients with this disease. However, information on CHD4 mutants that might allow their use as biomarkers of therapeutic success and prognosis is lacking. The present work examines mutations in CHD4 reported in patients with breast cancer and included in public databases and attempts to identify their roles in its development. The databases revealed 81 point mutations across different types of breast cancer (19 of which also appeared in endometrial, intestinal, nervous system, kidney, and lymphoid organ cancers). 71.6% of the detected mutations were missense mutations, 13.6% were silent, and 6.2% nonsense. Over 50% affected conserved residues of the ATPase motor (ATPase and helicase domains), and domains of unknown function in the C-terminal region. Thirty one mutations were classified in the databases as either ‘deleterious’, ‘probably/possibly damaging’ or as ‘high/medium pathogenic’; another five nonsense and one splice-site variant were predicted to produce potentially harmful truncated proteins. Eight of the 81 mutations were categorized as putative driver mutations and have been found in other cancer types. Some mutations seem to influence ATPase and DNA translocation activities (R1162W), while others may alter protein stability (R877Q/H, R975H) or disrupt DNA binding and protein activity (R572*, X34_splice) suggesting CHD4 function may be affected. In vivo tumorigenecity studies in endometrial cancer have revealed R975H and R1162W as mutations that lead to CHD4 loss-of-function. Our study provides insight into the molecular mechanism whereby CHD4, and some of its mutants could play a role in breast cancer and suggest important implications for the biological comprehension and prognosis of breast cancer, identifying CHD4 as a novel therapeutic target for BC patients.
Collapse
Affiliation(s)
- Apolonia Novillo
- Department of Pre-clinical Dentistry, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana Fernández-Santander
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Maria Gaibar
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel Galán
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia Romero-Lorca
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | | | - Pablo Gómez-Del Arco
- Institute of Rare Diseases Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
25
|
Aguilar M, Zhang H, Zhang M, Cantarell B, Sahoo SS, Li HD, Cuevas IC, Lea J, Miller DS, Chen H, Zheng W, Gagan J, Lucas E, Castrillon DH. Serial genomic analysis of endometrium supports the existence of histologically indistinct endometrial cancer precursors. J Pathol 2021; 254:20-30. [PMID: 33506979 PMCID: PMC8252414 DOI: 10.1002/path.5628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 11/18/2022]
Abstract
The endometrium is unique as an accessible anatomic location that can be repeatedly biopsied and where diagnostic biopsies do not extirpate neoplastic lesions. We exploited these features to retrospectively characterize serial genomic alterations along the precancer/cancer continuum in individual women. Cases were selected based on (1) endometrial cancer diagnosis/hysterectomy and (2) preceding serial endometrial biopsies including for some patients an early biopsy before a precancer histologic diagnosis. A comprehensive panel was designed for endometrial cancer genes. Formalin‐fixed, paraffin‐embedded specimens for each cancer, preceding biopsies, and matched germline samples were subjected to barcoded high‐throughput sequencing to identify mutations and track their origin and allelic frequency progression. In total, 92 samples from 21 patients were analyzed, providing an opportunity for new insights into early endometrial cancer progression. Definitive invasive endometrial cancers exhibited expected mutational spectra, and canonical driver mutations were detectable in preceding biopsies. Notably, ≥1 cancer mutations were detected prior to the histopathologic diagnosis of an endometrial precancer in the majority of patients. In 18/21 cases, ≥1 mutations were confirmed by abnormal protein levels or subcellular localization by immunohistochemistry, confirming genomic data and providing unique views of histologic correlates. In 19 control endometria, mutation counts were lower, with a lack of canonical endometrial cancer hotspot mutations. Our study documents the existence of endometrial lesions that are histologically indistinct but are bona fide endometrial cancer precursors. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mitzi Aguilar
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Musi Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandi Cantarell
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Subhransu S Sahoo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hao-Dong Li
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ileana C Cuevas
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jayanthi Lea
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David S Miller
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hao Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey Gagan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elena Lucas
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diego H Castrillon
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
26
|
Huvila J, Pors J, Thompson EF, Gilks CB. Endometrial carcinoma: molecular subtypes, precursors and the role of pathology in early diagnosis. J Pathol 2021; 253:355-365. [PMID: 33368243 DOI: 10.1002/path.5608] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/22/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Endometrial carcinoma (EC) is classified into a wide range of morphological variants; this list has expanded over the past decade with the inclusion of mesonephric-like and dedifferentiated carcinoma as EC variants in the fifth edition of the WHO Classification of Female Genital Tumours, and recognition that carcinosarcoma is a biphasic carcinoma rather than a sarcoma. Each EC variant has distinct molecular abnormalities, including TCGA-based molecular subtypes, allowing further subclassification and adding complexity. In contrast to this rapid progress in understanding EC, there are only two recognized EC precursor lesions: endometrial atypical hyperplasia/endometrioid intraepithelial neoplasia (EAH/EIN) and serous intraepithelial carcinoma, a situation that has not changed for many years. Diagnosis of EC precursors is a cornerstone of surgical pathology practice, with early diagnosis contributing to the relatively favorable prognosis of EC. In this review we relate the precursor lesions to each of the EC morphological variants and molecular subtypes, discuss how successful early diagnosis is for each variant/molecular subtype and how it might be improved, and identify knowledge gaps where there is insufficient understanding of EC histogenesis. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jutta Huvila
- Department of Pathology, University of Turku, Turku, Finland.,Department of Pathology and Laboratory Medicine, Vancouver General Hospital and University of British Columbia, Vancouver, Canada
| | - Jennifer Pors
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital and University of British Columbia, Vancouver, Canada
| | - Emily F Thompson
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital and University of British Columbia, Vancouver, Canada
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital and University of British Columbia, Vancouver, Canada
| |
Collapse
|
27
|
Shih IM, Wang Y, Wang TL. The Origin of Ovarian Cancer Species and Precancerous Landscape. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:26-39. [PMID: 33011111 DOI: 10.1016/j.ajpath.2020.09.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Unlike other human cancers, in which all primary tumors arise de novo, ovarian epithelial cancers are primarily imported from either endometrial or fallopian tube epithelium. The prevailing paradigm in the genesis of high-grade serous carcinoma (HGSC), the most common ovarian cancer, posits to its development in fallopian tubes through stepwise tumor progression. Recent progress has been made not only in gathering terabytes of omics data but also in detailing the histologic-molecular correlations required for looking into, and making sense of, the tissue origin of HGSC. This emerging paradigm is changing many facets of ovarian cancer research and routine gynecology practice. The precancerous landscape in fallopian tubes contains multiple concurrent precursor lesions, including serous tubal intraepithelial carcinoma (STIC), with genetic heterogeneity providing a platform for HGSC evolution. Mathematical models imply that a prolonged time (decades) elapses from the development of a TP53 mutation, the earliest known molecular alteration, to an STIC, followed by a shorter span (6 years) for progression to an HGSC. Genetic predisposition accelerates the trajectory. This timeline may allow for the early diagnosis of HGSC and STIC, followed by intent-to-cure surgery. This review discusses the recent advances in this tubal paradigm and its biological and clinical implications, alongside the promise and challenge of studying STIC and other precancerous lesions of HGSC.
Collapse
Affiliation(s)
- Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Yeh Wang
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tian-Li Wang
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|