1
|
Chen XL, Ojalill M, Jean C, Tancioni I, Jiang S, Boyer A, Ozmadenci D, Uryu S, Tarin D, Schlessinger J, Stupack DG, Schlaepfer DD. Inducible FAK loss but not FAK inhibition in endothelial cells of PYK2-null mice activates p53 tumor suppressor to prevent tumor growth. Mol Biol Cell 2025; 36:ar64. [PMID: 40202821 DOI: 10.1091/mbc.e24-12-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Focal adhesion kinase (FAK) and the related tyrosine kinase PYK2 are signaling and scaffolding proteins co-expressed in endothelial cells (ECs) that regulate blood vessel function and tumor growth. As FAK-PYK2 share overlapping cellular roles, we generated PYK2-/- FAKfl/fl mice with tamoxifen-inducible EC-specific Cre expression. EC FAK inactivation in PYK2-/- but not PYK2+/+ mice led to increased heart and lung mass, vascular leakage, and created a tumor microenvironment that was repressive to syngeneic melanoma, breast, and lung carcinoma implanted tumor growth. Tumor suppression was associated with defective vessel sprouting, enhanced p53 tumor suppressor and p21CIP1 protein expression in ECs, elevated markers of DNA damage, and altered blood cytokine levels in tumor-bearing mice. However, EC-specific hemizygous kinase-defective (KD) FAK expression in EC FAK-/KD PYK2-/- mice was not associated with elevated p53 levels. Instead, EC FAK-/KD PYK2-/- mice supported primary tumor growth but prevented metastasis, implicating EC FAK activity in tumor spread. In vitro, combined genetic or small molecule FAK-PYK2 knockdown in ECs or tumor cells elevated p21CIP1 and prevented cell proliferation in a p53-dependent manner, highlighting a linkage between EC FAK-PYK2 loss and p53 activation in tumor regulation.
Collapse
Affiliation(s)
- Xiao Lei Chen
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Marjaana Ojalill
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Christine Jean
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Isabelle Tancioni
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Shulin Jiang
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Antonia Boyer
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Duygu Ozmadenci
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Sean Uryu
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - David Tarin
- Department of Pathology, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - David D Schlaepfer
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| |
Collapse
|
2
|
Drake RJ, Landén AH, Holmberg E, Stenmark Tullberg A, Killander F, Niméus E, Jordan A, McGuinness J, Karlsson P, Hodivala-Dilke K. Endothelial Cell pY397-FAK Expression Predicts the Risk of Breast Cancer Recurrences after Radiotherapy in the SweBCG91-RT Cohort. Clin Cancer Res 2025; 31:1323-1332. [PMID: 39908003 PMCID: PMC11959269 DOI: 10.1158/1078-0432.ccr-24-2939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/18/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE Identifying biomarkers of radiotherapy (RT) response is important for optimizing the treatment of early breast cancer. In this study, we tested the interaction between endothelial cell (EC) expression of phospho-Tyr397-FAK (pY397-FAK) and adjuvant-RT on clinical outcomes after breast-conserving surgery (BCS) within a randomized study. Preclinical data suggest an enhanced effect of RT on low EC_pY397-FAK expression. EXPERIMENTAL DESIGN We analyzed tissue microarrays from the Swedish Breast Cancer Group 91 Radiotherapy (stage I-II, lymph node-negative) breast cancer cohort, consisting of 1,178 patients randomly assigned to receive either BCS alone or BCS plus adjuvant-RT. Tissue microarray sections were immunostained for pY397-FAK, CD31, α-smooth muscle actin, and pan-cytokeratin. HALO analysis scored mean pY397-FAK intensity in CD31+ ECs, pan-cytokeratin-positive tumor epithelial cells, and α-smooth muscle actin + mural/stromal cells per core. For 822 patients, multivariable Cox regression analysis was performed for the primary and secondary 5-year endpoints, locoregional recurrence and all recurrence, respectively, as dependent variables and RT and EC_pY397-FAK as independent variables. RESULTS EC_pY397-FAK expression was not predictive for the primary endpoint locoregional recurrence (P = 0.098), but the direction of the RT effect was in line with preclinical findings. For the secondary endpoint all recurrence, there was a significant interaction (P = 0.026) between EC_pY397-FAK and RT. Without RT, higher EC_pY397-FAK expression resulted in a lower risk for all recurrence (HR = 0.74 per SD; 95% confidence interval = 0.57-0.96; P = 0.026). CONCLUSIONS Within the first 5 years following BCS, patients with low EC_pY397-FAK expression derive greater benefit from RT than patients with high EC_pY397-FAK expression. However, without RT, low EC_pY397-FAK expression is associated with a higher risk of recurrence.
Collapse
Affiliation(s)
- Rebecca J.G. Drake
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Amalia H. Landén
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Erik Holmberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Axel Stenmark Tullberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Fredrika Killander
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Emma Niméus
- Division of Surgery, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Lund, Sweden
| | - Alexander Jordan
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
3
|
Wei Y, He X, Long Z, Le Y, Liu L, Yan L. Discovery of noncovalent diaminopyrimidine-based Inhibitors for glioblastoma via a dual FAK/DNA targeting strategy. Eur J Med Chem 2025; 286:117288. [PMID: 39832391 DOI: 10.1016/j.ejmech.2025.117288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development. In this study, we report design and synthesis of a novel series of diaminopyrimidine-based small molecules that concurrently target both FAK and DNA. Among these compounds, 9f emerged as a potent dual inhibitor, demonstrating exceptional inhibitory activity against FAK (IC50 = 0.815 nM) and DNA, as well as remarkable antiproliferative effects on glioblastoma cell lines U87-MG (IC50 = 15 nM) and U251 (IC50 = 20 nM). Furthermore, compound 9f significantly induced apoptosis in U87-MG cells and caused cell cycle arrest at the G2/M phase. Notably, in a U87-MG xenograft model, compound 9f exhibited superior antitumor efficacy. These findings underscore the potential of FAK/DNA inhibitors as a promising approach to overcome resistance.
Collapse
Affiliation(s)
- Yi Wei
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Xiaoling He
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhiwu Long
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yi Le
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Li Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Longjia Yan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Chen XL, Ojalill M, Jean C, Tancioni I, Jiang S, Boyer A, Ozmadenci D, Uryu S, Tarin D, Schlessinger J, Stupack DG, Schlaepfer DD. Inducible FAK Deletion but not FAK Inhibition in Endothelial Cells Activates p53 to Suppress Tumor Growth in PYK2-null Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.622008. [PMID: 39574770 PMCID: PMC11580918 DOI: 10.1101/2024.11.04.622008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Focal adhesion kinase (FAK) functions as a signaling and scaffolding protein within endothelial cells (ECs) impacting blood vessel function and tumor growth. Interpretations of EC FAK-null phenotypes are complicated by related PYK2 (protein tyrosine kinase 2) expression, and to test this, we created PYK2 -/- FAK fl/fl mice with tamoxifen-inducible EC-specific Cre recombinase expression. At 11 weeks of age, EC FAK inactivation resulted in increased heart and lung mass and vascular leakage only on a PYK2 -/- background. Surprisingly, ∼90% of PYK2 -/- EC FAK -/- mice survived to 75 weeks of age. Syngeneic melanoma, breast, or lung carcinoma tumors did not grow in PYK2 -/- EC FAK -/- mice, but tumors grew normally in PYK2 -/- EC FAK fl/fl mice lacking Cre. This tumor inhibitory phenotype was associated with abortive EC vessel sprouting, enhanced EC p53 tumor suppressor and p21CIP1 (cyclin-dependent inhibitor 1) expression, and alterations in serum cytokine levels. To discern the role of FAK kinase versus scaffolding activity in ECs, we generated kinase defective (FAK K454R, KD) PYK2 -/- EC FAK fl/KD and PYK2 -/- EC FAK fl/WT (WT, wildtype) mice. Hemizygous EC FAK -/KD expression supported primary tumor growth but not metastasis, implicating EC FAK activity in tumor dissemination. In vitro , hemizygous expression of either WT or KD FAK suppressed EC p21CIP1 levels and cell death observed in primary PYK2 -/- EC FAK -/- ECs. Combined FAK and PYK2 knockdown in tumor cells also increased p21CIP1 and PARP1 (poly ADP-ribose polymerase 1) levels in a p53-associated manner impacting anchorage-independent growth. Together, these results underscore the linkage between PYK2 and FAK loss with p53 activation impacting tumor growth. Impact Statement PYK2-null combined with endothelial cell-specific FAK transgenic mouse models show that loss of FAK activity limits tumor spread and that genetic or chemical degradation preventing combined FAK-PYK2 expression may be an approach to induce a p53-associated anti-tumor response.
Collapse
|
5
|
Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer 2024; 24:655-675. [PMID: 39210063 DOI: 10.1038/s41568-024-00736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
As angiogenesis was recognized as a core hallmark of cancer growth and survival, several strategies have been implemented to target the tumour vasculature. Yet to date, attempts have rarely been so diverse, ranging from vessel growth inhibition and destruction to vessel normalization, reprogramming and vessel growth promotion. Some of these strategies, combined with standard of care, have translated into improved cancer therapies, but their successes are constrained to certain cancer types. This Review provides an overview of these vascular targeting approaches and puts them into context based on our subsequent improved understanding of the tumour vasculature as an integral part of the tumour microenvironment with which it is functionally interlinked. This new knowledge has already led to dual targeting of the vascular and immune cell compartments and sets the scene for future investigations of possible alternative approaches that consider the vascular link with other tumour microenvironment components for improved cancer therapy.
Collapse
Affiliation(s)
- Sophie Guelfi
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK.
| | - Gabriele Bergers
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Schlaepfer DD, Ojalill M, Stupack DG. Focal adhesion kinase signaling - tumor vulnerabilities and clinical opportunities. J Cell Sci 2024; 137:jcs261723. [PMID: 39034922 PMCID: PMC11298715 DOI: 10.1242/jcs.261723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.
Collapse
Affiliation(s)
- David D. Schlaepfer
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Marjaana Ojalill
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Dwayne G. Stupack
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| |
Collapse
|
7
|
Reynolds LE, Maallin S, Haston S, Martinez-Barbera JP, Hodivala-Dilke KM, Pedrosa AR. Effects of senescence on the tumour microenvironment and response to therapy. FEBS J 2024; 291:2306-2319. [PMID: 37873605 DOI: 10.1111/febs.16984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/04/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Cellular senescence is a state of durable cell arrest that has been identified both in vitro and in vivo. It is associated with profound changes in gene expression and a specific secretory profile that includes pro-inflammatory cytokines, growth factors and matrix-remodelling enzymes, referred to as the senescence-associated secretory phenotype (SASP). In cancer, senescence can have anti- or pro-tumour effects. On one hand, it can inhibit tumour progression in a cell autonomous manner. On the other hand, senescence can also promote tumour initiation, progression, metastatic dissemination and resistance to therapy in a paracrine manner. Therefore, despite efforts to target senescence as a potential strategy to inhibit tumour growth, senescent cancer and microenvironmental cells can eventually lead to uncontrolled proliferation and aggressive tumour phenotypes. This can happen either through overcoming senescence growth arrest or through SASP-mediated effects in adjacent tumour cells. This review will discuss how senescence affects the tumour microenvironment, including extracellular matrix remodelling, the immune system and the vascular compartment, to promote tumourigenesis, metastasis and resistance to DNA-damaging therapies. It will also discuss current approaches used in the field to target senescence: senolytics, improving the immune clearance of senescent cells and targeting the SASP.
Collapse
Affiliation(s)
- Louise E Reynolds
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| | - Seynab Maallin
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| | - Scott Haston
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Kairbaan M Hodivala-Dilke
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| | - Ana-Rita Pedrosa
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| |
Collapse
|
8
|
Ge D, Luo T, Sun Y, Liu M, Lyu Y, Yin W, Li R, Zhang Y, Yue H, Liu N. Natural diterpenoid EKO activates deubiqutinase ATXN3 to preserve vascular endothelial integrity and alleviate diabetic retinopathy through c-fos/focal adhesion axis. Int J Biol Macromol 2024; 260:129341. [PMID: 38218272 DOI: 10.1016/j.ijbiomac.2024.129341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Diabetic retinopathy (DR) is one of the most prevalent severe diabetic microvascular complications caused by hyperglycemia. Deciphering the underlying mechanism of vascular injury and finding ways to alleviate hyperglycemia induced microvascular complications is of great necessity. In this study, we identified that a compound ent-9α-hydroxy-15-oxo-16-kauren-19-oic acid (EKO), the diterpenoid isolated and purified from Pteris semipinnata L., exhibited good protective roles against vascular endothelial injury associated with diabetic retinopathy in vitro and in vivo. To further uncover the underlying mechanism, we used unbiased transcriptome sequencing analysis and showed substantial impairment in the focal adhesion pathway upon high glucose and IL-1β stimulation. EKO could effectively improve endothelial focal adhesion pathway by enhancing the expression of two focal adhesion proteins Vinculin and ITGA11. We found that c-fos protein was involved in regulating the expression of Vinculin and ITGA11, a transcription factor component that was downregulated by high glucose and IL-1β stimulation and recovered by EKO. Mechanically, EKO facilitated the binding of deubiquitylation enzyme ATXN3 to c-fos protein and promoted its deubiquitylation, thereby elevating its protein level to enhance the expression of Vinculin and ITGA11. Besides, EKO effectively suppressed ROS production and restored mitochondrial function. In vivo studies, we confirmed EKO could alleviate some of the indicators of diabetic mice. In addition, protein levels of ATXN3 and focal adhesion Vinculin molecule were also verified in vivo. Collectively, our findings addressed the endothelial protective role of natural diterpenoid EKO, with emphasize of mechanism on ATXN3/c-fos/focal adhesion signaling pathway as well as oxygen stress suppression, implicating its therapeutic potential in alleviating vascular endothelium injury and diabetic retinopathy.
Collapse
Affiliation(s)
- Di Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Tingting Luo
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Yajie Sun
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Mengjia Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Yuzhu Lyu
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Wenying Yin
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Rongxian Li
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Yongqi Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Hongwei Yue
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.
| | - Na Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China.
| |
Collapse
|
9
|
Hu HH, Wang SQ, Shang HL, Lv HF, Chen BB, Gao SG, Chen XB. Roles and inhibitors of FAK in cancer: current advances and future directions. Front Pharmacol 2024; 15:1274209. [PMID: 38410129 PMCID: PMC10895298 DOI: 10.3389/fphar.2024.1274209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that exhibits high expression in various tumors and is associated with a poor prognosis. FAK activation promotes tumor growth, invasion, metastasis, and angiogenesis via both kinase-dependent and kinase-independent pathways. Moreover, FAK is crucial for sustaining the tumor microenvironment. The inhibition of FAK impedes tumorigenesis, metastasis, and drug resistance in cancer. Therefore, developing targeted inhibitors against FAK presents a promising therapeutic strategy. To date, numerous FAK inhibitors, including IN10018, defactinib, GSK2256098, conteltinib, and APG-2449, have been developed, which have demonstrated positive anti-tumor effects in preclinical studies and are undergoing clinical trials for several types of tumors. Moreover, many novel FAK inhibitors are currently in preclinical studies to advance targeted therapy for tumors with aberrantly activated FAK. The benefits of FAK degraders, especially in terms of their scaffold function, are increasingly evident, holding promising potential for future clinical exploration and breakthroughs. This review aims to clarify FAK's role in cancer, offering a comprehensive overview of the current status and future prospects of FAK-targeted therapy and combination approaches. The goal is to provide valuable insights for advancing anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Hui-Hui Hu
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Hai-Li Shang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Hui-Fang Lv
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Bei-Bei Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - She-Gan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Tan X, Yan Y, Song B, Zhu S, Mei Q, Wu K. Focal adhesion kinase: from biological functions to therapeutic strategies. Exp Hematol Oncol 2023; 12:83. [PMID: 37749625 PMCID: PMC10519103 DOI: 10.1186/s40164-023-00446-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Focal adhesion kinase (FAK), a nonreceptor cytoplasmic tyrosine kinase, is a vital participant in primary cellular functions, such as proliferation, survival, migration, and invasion. In addition, FAK regulates cancer stem cell activities and contributes to the formation of the tumor microenvironment (TME). Importantly, increased FAK expression and activity are strongly associated with unfavorable clinical outcomes and metastatic characteristics in numerous tumors. In vitro and in vivo studies have demonstrated that modulating FAK activity by application of FAK inhibitors alone or in combination treatment regimens could be effective for cancer therapy. Based on these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. This article briefly describes the structure and function of FAK, as well as research progress on FAK inhibitors in combination therapies. We also discuss the challenges and future directions regarding anti-FAK combination therapies.
Collapse
Affiliation(s)
- Ximin Tan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Zhang Z, Li J, Jiao S, Han G, Zhu J, Liu T. Functional and clinical characteristics of focal adhesion kinases in cancer progression. Front Cell Dev Biol 2022; 10:1040311. [PMID: 36407100 PMCID: PMC9666724 DOI: 10.3389/fcell.2022.1040311] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and an adaptor protein that primarily regulates adhesion signaling and cell migration. FAK promotes cell survival in response to stress. Increasing evidence has shown that at the pathological level, FAK is highly expressed in multiple tumors in several systems (including lung, liver, gastric, and colorectal cancers) and correlates with tumor aggressiveness and patient prognosis. At the molecular level, FAK promotes tumor progression mainly by altering survival signals, invasive capacity, epithelial-mesenchymal transition, the tumor microenvironment, the Warburg effect, and stemness of tumor cells. Many effective drugs have been developed based on the comprehensive role of FAK in tumor cells. In addition, its potential as a tumor marker cannot be ignored. Here, we discuss the pathological and pre-clinical evidence of the role of FAK in cancer development; we hope that these findings will assist in FAK-based clinical studies.
Collapse
Affiliation(s)
- Zhaoyu Zhang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinlong Li
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guangda Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
D'Amico G, Fernandez I, Gómez-Escudero J, Kim H, Maniati E, Azman MS, Mardakheh FK, Serrels B, Serrels A, Parsons M, Squire A, Birdsey GM, Randi AM, Bolado-Carrancio A, Gangeswaran R, Reynolds LE, Bodrug N, Wang Y, Wang J, Meier P, Hodivala-Dilke KM. ERG activity is regulated by endothelial FAK coupling with TRIM25/USP9x in vascular patterning. Development 2022; 149:dev200528. [PMID: 35723257 PMCID: PMC9340553 DOI: 10.1242/dev.200528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022]
Abstract
Precise vascular patterning is crucial for normal growth and development. The ERG transcription factor drives Delta-like ligand 4 (DLL4)/Notch signalling and is thought to act as a pivotal regulator of endothelial cell (EC) dynamics and developmental angiogenesis. However, molecular regulation of ERG activity remains obscure. Using a series of EC-specific focal adhesion kinase (FAK)-knockout (KO) and point-mutant FAK-knock-in mice, we show that loss of ECFAK, its kinase activity or phosphorylation at FAK-Y397, but not FAK-Y861, reduces ERG and DLL4 expression levels together with concomitant aberrations in vascular patterning. Rapid immunoprecipitation mass spectrometry of endogenous proteins identified that endothelial nuclear-FAK interacts with the deubiquitinase USP9x and the ubiquitin ligase TRIM25. Further in silico analysis confirms that ERG interacts with USP9x and TRIM25. Moreover, ERG levels are reduced in FAKKO ECs via a ubiquitin-mediated post-translational modification programme involving USP9x and TRIM25. Re-expression of ERG in vivo and in vitro rescues the aberrant vessel-sprouting defects observed in the absence of ECFAK. Our findings identify ECFAK as a regulator of retinal vascular patterning by controlling ERG protein degradation via TRIM25/USP9x.
Collapse
Affiliation(s)
- Gabriela D'Amico
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Isabelle Fernandez
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Jesús Gómez-Escudero
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Hyojin Kim
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Eleni Maniati
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Muhammad Syahmi Azman
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Faraz K. Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Bryan Serrels
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden G61 1QH, UK
| | - Alan Serrels
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Maddy Parsons
- Kings College London, Randall Centre of Cell and Molecular Biophysics, Room 3.22B, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Anthony Squire
- IMCES - Imaging Centre Essen, Institute for Experimental Immunology and Imaging, University Clinic Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Graeme M. Birdsey
- National Heart & Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Anna M. Randi
- National Heart & Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | - Rathi Gangeswaran
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Louise E. Reynolds
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Natalia Bodrug
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Yaohe Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Jun Wang
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pascal Meier
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Kairbaan M. Hodivala-Dilke
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
13
|
Roy-Luzarraga M, Reynolds LE, de Luxán-Delgado B, Maiques O, Wisniewski L, Newport E, Rajeeve V, Drake RJ, Gómez-Escudero J, Richards FM, Weller C, Dormann C, Meng YM, Vermeulen PB, Saur D, Sanz-Moreno V, Wong PP, Géraud C, Cutillas PR, Hodivala-Dilke K. Suppression of Endothelial Cell FAK Expression Reduces Pancreatic Ductal Adenocarcinoma Metastasis after Gemcitabine Treatment. Cancer Res 2022; 82:1909-1925. [PMID: 35350066 PMCID: PMC9381116 DOI: 10.1158/0008-5472.can-20-3807] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 02/02/2023]
Abstract
Despite substantial advances in the treatment of solid cancers, resistance to therapy remains a major obstacle to prolonged progression-free survival. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, with a high level of liver metastasis. Primary PDAC is highly hypoxic, and metastases are resistant to first-line treatment, including gemcitabine. Recent studies have indicated that endothelial cell (EC) focal adhesion kinase (FAK) regulates DNA-damaging therapy-induced angiocrine factors and chemosensitivity in primary tumor models. Here, we show that inducible loss of EC-FAK in both orthotopic and spontaneous mouse models of PDAC is not sufficient to affect primary tumor growth but reduces liver and lung metastasis load and improves survival rates in gemcitabine-treated, but not untreated, mice. EC-FAK loss did not affect primary tumor angiogenesis, tumor blood vessel leakage, or early events in metastasis, including the numbers of circulating tumor cells, tumor cell homing, or metastatic seeding. Phosphoproteomics analysis showed a downregulation of the MAPK, RAF, and PAK signaling pathways in gemcitabine-treated FAK-depleted ECs compared with gemcitabine-treated wild-type ECs. Moreover, low levels of EC-FAK correlated with increased survival and reduced relapse in gemcitabine-treated patients with PDAC, supporting the clinical relevance of these findings. Altogether, we have identified a new role of EC-FAK in regulating PDAC metastasis upon gemcitabine treatment that impacts outcome. SIGNIFICANCE These findings establish the potential utility of combinatorial endothelial cell FAK targeting together with gemcitabine in future clinical applications to control metastasis in patients with pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Marina Roy-Luzarraga
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Louise E. Reynolds
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Beatriz de Luxán-Delgado
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Laura Wisniewski
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Emma Newport
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Vinothini Rajeeve
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Rebecca J.G. Drake
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Jesús Gómez-Escudero
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Frances M. Richards
- Translational Medicine Operations, Astrazeneca Oncology, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, United Kingdom
| | - Céline Weller
- Department of Dermatology, Section of Clinical and Molecular Dermatology, Venereology and Allergology, University Medical Center and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christof Dormann
- Department of Dermatology, Section of Clinical and Molecular Dermatology, Venereology and Allergology, University Medical Center and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ya-Ming Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peter B. Vermeulen
- Department of Oncological Research, Translational Cancer Research Unit, Oncology Center GZA—GZA Hospitals St. Augustinus and University of Antwerp, Antwerp, Belgium
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg and Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, München, Germany
| | - Victoria Sanz-Moreno
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cyrill Géraud
- Department of Dermatology, Section of Clinical and Molecular Dermatology, Venereology and Allergology, University Medical Center and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pedro R. Cutillas
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| |
Collapse
|